1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/icBuffer.hpp"
  29 #include "code/vtableStubs.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "oops/compiledICHolder.hpp"
  32 #include "prims/jvmtiRedefineClassesTrace.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "runtime/vframeArray.hpp"
  35 #include "vmreg_sparc.inline.hpp"
  36 #ifdef COMPILER1
  37 #include "c1/c1_Runtime1.hpp"
  38 #endif
  39 #ifdef COMPILER2
  40 #include "opto/runtime.hpp"
  41 #endif
  42 #ifdef SHARK
  43 #include "compiler/compileBroker.hpp"
  44 #include "shark/sharkCompiler.hpp"
  45 #endif
  46 
  47 #define __ masm->
  48 
  49 
  50 class RegisterSaver {
  51 
  52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  53   // The Oregs are problematic. In the 32bit build the compiler can
  54   // have O registers live with 64 bit quantities. A window save will
  55   // cut the heads off of the registers. We have to do a very extensive
  56   // stack dance to save and restore these properly.
  57 
  58   // Note that the Oregs problem only exists if we block at either a polling
  59   // page exception a compiled code safepoint that was not originally a call
  60   // or deoptimize following one of these kinds of safepoints.
  61 
  62   // Lots of registers to save.  For all builds, a window save will preserve
  63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  64   // builds a window-save will preserve the %o registers.  In the LION build
  65   // we need to save the 64-bit %o registers which requires we save them
  66   // before the window-save (as then they become %i registers and get their
  67   // heads chopped off on interrupt).  We have to save some %g registers here
  68   // as well.
  69   enum {
  70     // This frame's save area.  Includes extra space for the native call:
  71     // vararg's layout space and the like.  Briefly holds the caller's
  72     // register save area.
  73     call_args_area = frame::register_save_words_sp_offset +
  74                      frame::memory_parameter_word_sp_offset*wordSize,
  75     // Make sure save locations are always 8 byte aligned.
  76     // can't use round_to because it doesn't produce compile time constant
  77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  78     g1_offset = start_of_extra_save_area, // g-regs needing saving
  79     g3_offset = g1_offset+8,
  80     g4_offset = g3_offset+8,
  81     g5_offset = g4_offset+8,
  82     o0_offset = g5_offset+8,
  83     o1_offset = o0_offset+8,
  84     o2_offset = o1_offset+8,
  85     o3_offset = o2_offset+8,
  86     o4_offset = o3_offset+8,
  87     o5_offset = o4_offset+8,
  88     start_of_flags_save_area = o5_offset+8,
  89     ccr_offset = start_of_flags_save_area,
  90     fsr_offset = ccr_offset + 8,
  91     d00_offset = fsr_offset+8,  // Start of float save area
  92     register_save_size = d00_offset+8*32
  93   };
  94 
  95 
  96   public:
  97 
  98   static int Oexception_offset() { return o0_offset; };
  99   static int G3_offset() { return g3_offset; };
 100   static int G5_offset() { return g5_offset; };
 101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 102   static void restore_live_registers(MacroAssembler* masm);
 103 
 104   // During deoptimization only the result register need to be restored
 105   // all the other values have already been extracted.
 106 
 107   static void restore_result_registers(MacroAssembler* masm);
 108 };
 109 
 110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 116   int i;
 117   // Always make the frame size 16 byte aligned.
 118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 120   int frame_size_in_slots = frame_size / sizeof(jint);
 121   // CodeBlob frame size is in words.
 122   *total_frame_words = frame_size / wordSize;
 123   // OopMap* map = new OopMap(*total_frame_words, 0);
 124   OopMap* map = new OopMap(frame_size_in_slots, 0);
 125 
 126 #if !defined(_LP64)
 127 
 128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 135 #endif /* _LP64 */
 136 
 137   __ save(SP, -frame_size, SP);
 138 
 139 #ifndef _LP64
 140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 141   // to Oregs here to avoid interrupts cutting off their heads
 142 
 143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 149 
 150   __ stx(O0, SP, o0_offset+STACK_BIAS);
 151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 152 
 153   __ stx(O1, SP, o1_offset+STACK_BIAS);
 154 
 155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 156 
 157   __ stx(O2, SP, o2_offset+STACK_BIAS);
 158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 159 
 160   __ stx(O3, SP, o3_offset+STACK_BIAS);
 161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 162 
 163   __ stx(O4, SP, o4_offset+STACK_BIAS);
 164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 165 
 166   __ stx(O5, SP, o5_offset+STACK_BIAS);
 167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 168 #endif /* _LP64 */
 169 
 170 
 171 #ifdef _LP64
 172   int debug_offset = 0;
 173 #else
 174   int debug_offset = 4;
 175 #endif
 176   // Save the G's
 177   __ stx(G1, SP, g1_offset+STACK_BIAS);
 178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 179 
 180   __ stx(G3, SP, g3_offset+STACK_BIAS);
 181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 182 
 183   __ stx(G4, SP, g4_offset+STACK_BIAS);
 184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 185 
 186   __ stx(G5, SP, g5_offset+STACK_BIAS);
 187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 188 
 189   // This is really a waste but we'll keep things as they were for now
 190   if (true) {
 191 #ifndef _LP64
 192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 202 #endif /* _LP64 */
 203   }
 204 
 205 
 206   // Save the flags
 207   __ rdccr( G5 );
 208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 210 
 211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
 212   int offset = d00_offset;
 213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 214     FloatRegister f = as_FloatRegister(i);
 215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 216     // Record as callee saved both halves of double registers (2 float registers).
 217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 219     offset += sizeof(double);
 220   }
 221 
 222   // And we're done.
 223 
 224   return map;
 225 }
 226 
 227 
 228 // Pop the current frame and restore all the registers that we
 229 // saved.
 230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 231 
 232   // Restore all the FP registers
 233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 235   }
 236 
 237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 238   __ wrccr (G1) ;
 239 
 240   // Restore the G's
 241   // Note that G2 (AKA GThread) must be saved and restored separately.
 242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 243 
 244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 248 
 249 
 250 #if !defined(_LP64)
 251   // Restore the 64-bit O's.
 252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 258 
 259   // And temporarily place them in TLS
 260 
 261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 267 #endif /* _LP64 */
 268 
 269   // Restore flags
 270 
 271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 272 
 273   __ restore();
 274 
 275 #if !defined(_LP64)
 276   // Now reload the 64bit Oregs after we've restore the window.
 277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 283 #endif /* _LP64 */
 284 
 285 }
 286 
 287 // Pop the current frame and restore the registers that might be holding
 288 // a result.
 289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 290 
 291 #if !defined(_LP64)
 292   // 32bit build returns longs in G1
 293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 294 
 295   // Retrieve the 64-bit O's.
 296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 298   // and save to TLS
 299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 301 #endif /* _LP64 */
 302 
 303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 304 
 305   __ restore();
 306 
 307 #if !defined(_LP64)
 308   // Now reload the 64bit Oregs after we've restore the window.
 309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 311 #endif /* _LP64 */
 312 
 313 }
 314 
 315 // Is vector's size (in bytes) bigger than a size saved by default?
 316 // 8 bytes FP registers are saved by default on SPARC.
 317 bool SharedRuntime::is_wide_vector(int size) {
 318   // Note, MaxVectorSize == 8 on SPARC.
 319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
 320   return size > 8;
 321 }
 322 
 323 // The java_calling_convention describes stack locations as ideal slots on
 324 // a frame with no abi restrictions. Since we must observe abi restrictions
 325 // (like the placement of the register window) the slots must be biased by
 326 // the following value.
 327 static int reg2offset(VMReg r) {
 328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 329 }
 330 
 331 static VMRegPair reg64_to_VMRegPair(Register r) {
 332   VMRegPair ret;
 333   if (wordSize == 8) {
 334     ret.set2(r->as_VMReg());
 335   } else {
 336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
 337   }
 338   return ret;
 339 }
 340 
 341 // ---------------------------------------------------------------------------
 342 // Read the array of BasicTypes from a signature, and compute where the
 343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 345 // refer to 4-byte stack slots.  All stack slots are based off of the window
 346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 350 // Each 32-bit quantity is given its own number, so the integer registers
 351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 353 
 354 // Register results are passed in O0-O5, for outgoing call arguments.  To
 355 // convert to incoming arguments, convert all O's to I's.  The regs array
 356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 359 // passed (used as a placeholder for the other half of longs and doubles in
 360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 364 // same VMRegPair.
 365 
 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 368 // units regardless of build.
 369 
 370 
 371 // ---------------------------------------------------------------------------
 372 // The compiled Java calling convention.  The Java convention always passes
 373 // 64-bit values in adjacent aligned locations (either registers or stack),
 374 // floats in float registers and doubles in aligned float pairs.  There is
 375 // no backing varargs store for values in registers.
 376 // In the 32-bit build, longs are passed on the stack (cannot be
 377 // passed in I's, because longs in I's get their heads chopped off at
 378 // interrupt).
 379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 380                                            VMRegPair *regs,
 381                                            int total_args_passed,
 382                                            int is_outgoing) {
 383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 384 
 385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 386   const int flt_reg_max = 8;
 387 
 388   int int_reg = 0;
 389   int flt_reg = 0;
 390   int slot = 0;
 391 
 392   for (int i = 0; i < total_args_passed; i++) {
 393     switch (sig_bt[i]) {
 394     case T_INT:
 395     case T_SHORT:
 396     case T_CHAR:
 397     case T_BYTE:
 398     case T_BOOLEAN:
 399 #ifndef _LP64
 400     case T_OBJECT:
 401     case T_ARRAY:
 402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 403 #endif // _LP64
 404       if (int_reg < int_reg_max) {
 405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 406         regs[i].set1(r->as_VMReg());
 407       } else {
 408         regs[i].set1(VMRegImpl::stack2reg(slot++));
 409       }
 410       break;
 411 
 412 #ifdef _LP64
 413     case T_LONG:
 414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 415       // fall-through
 416     case T_OBJECT:
 417     case T_ARRAY:
 418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 419       if (int_reg < int_reg_max) {
 420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 421         regs[i].set2(r->as_VMReg());
 422       } else {
 423         slot = round_to(slot, 2);  // align
 424         regs[i].set2(VMRegImpl::stack2reg(slot));
 425         slot += 2;
 426       }
 427       break;
 428 #else
 429     case T_LONG:
 430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
 432       // integer argument registers.  They should be used for oops.
 433       slot = round_to(slot, 2);  // align
 434       regs[i].set2(VMRegImpl::stack2reg(slot));
 435       slot += 2;
 436 #endif
 437       break;
 438 
 439     case T_FLOAT:
 440       if (flt_reg < flt_reg_max) {
 441         FloatRegister r = as_FloatRegister(flt_reg++);
 442         regs[i].set1(r->as_VMReg());
 443       } else {
 444         regs[i].set1(VMRegImpl::stack2reg(slot++));
 445       }
 446       break;
 447 
 448     case T_DOUBLE:
 449       assert(sig_bt[i+1] == T_VOID, "expecting half");
 450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
 451         flt_reg = round_to(flt_reg, 2);  // align
 452         FloatRegister r = as_FloatRegister(flt_reg);
 453         regs[i].set2(r->as_VMReg());
 454         flt_reg += 2;
 455       } else {
 456         slot = round_to(slot, 2);  // align
 457         regs[i].set2(VMRegImpl::stack2reg(slot));
 458         slot += 2;
 459       }
 460       break;
 461 
 462     case T_VOID:
 463       regs[i].set_bad();   // Halves of longs & doubles
 464       break;
 465 
 466     default:
 467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
 468       break;
 469     }
 470   }
 471 
 472   // retun the amount of stack space these arguments will need.
 473   return slot;
 474 }
 475 
 476 // Helper class mostly to avoid passing masm everywhere, and handle
 477 // store displacement overflow logic.
 478 class AdapterGenerator {
 479   MacroAssembler *masm;
 480   Register Rdisp;
 481   void set_Rdisp(Register r)  { Rdisp = r; }
 482 
 483   void patch_callers_callsite();
 484 
 485   // base+st_off points to top of argument
 486   int arg_offset(const int st_off) { return st_off; }
 487   int next_arg_offset(const int st_off) {
 488     return st_off - Interpreter::stackElementSize;
 489   }
 490 
 491   // Argument slot values may be loaded first into a register because
 492   // they might not fit into displacement.
 493   RegisterOrConstant arg_slot(const int st_off);
 494   RegisterOrConstant next_arg_slot(const int st_off);
 495 
 496   // Stores long into offset pointed to by base
 497   void store_c2i_long(Register r, Register base,
 498                       const int st_off, bool is_stack);
 499   void store_c2i_object(Register r, Register base,
 500                         const int st_off);
 501   void store_c2i_int(Register r, Register base,
 502                      const int st_off);
 503   void store_c2i_double(VMReg r_2,
 504                         VMReg r_1, Register base, const int st_off);
 505   void store_c2i_float(FloatRegister f, Register base,
 506                        const int st_off);
 507 
 508  public:
 509   void gen_c2i_adapter(int total_args_passed,
 510                               // VMReg max_arg,
 511                               int comp_args_on_stack, // VMRegStackSlots
 512                               const BasicType *sig_bt,
 513                               const VMRegPair *regs,
 514                               Label& skip_fixup);
 515   void gen_i2c_adapter(int total_args_passed,
 516                               // VMReg max_arg,
 517                               int comp_args_on_stack, // VMRegStackSlots
 518                               const BasicType *sig_bt,
 519                               const VMRegPair *regs);
 520 
 521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 522 };
 523 
 524 
 525 // Patch the callers callsite with entry to compiled code if it exists.
 526 void AdapterGenerator::patch_callers_callsite() {
 527   Label L;
 528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
 529   __ br_null(G3_scratch, false, Assembler::pt, L);
 530   __ delayed()->nop();
 531   // Call into the VM to patch the caller, then jump to compiled callee
 532   __ save_frame(4);     // Args in compiled layout; do not blow them
 533 
 534   // Must save all the live Gregs the list is:
 535   // G1: 1st Long arg (32bit build)
 536   // G2: global allocated to TLS
 537   // G3: used in inline cache check (scratch)
 538   // G4: 2nd Long arg (32bit build);
 539   // G5: used in inline cache check (Method*)
 540 
 541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 542 
 543 #ifdef _LP64
 544   // mov(s,d)
 545   __ mov(G1, L1);
 546   __ mov(G4, L4);
 547   __ mov(G5_method, L5);
 548   __ mov(G5_method, O0);         // VM needs target method
 549   __ mov(I7, O1);                // VM needs caller's callsite
 550   // Must be a leaf call...
 551   // can be very far once the blob has been relocated
 552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 553   __ relocate(relocInfo::runtime_call_type);
 554   __ jumpl_to(dest, O7, O7);
 555   __ delayed()->mov(G2_thread, L7_thread_cache);
 556   __ mov(L7_thread_cache, G2_thread);
 557   __ mov(L1, G1);
 558   __ mov(L4, G4);
 559   __ mov(L5, G5_method);
 560 #else
 561   __ stx(G1, FP, -8 + STACK_BIAS);
 562   __ stx(G4, FP, -16 + STACK_BIAS);
 563   __ mov(G5_method, L5);
 564   __ mov(G5_method, O0);         // VM needs target method
 565   __ mov(I7, O1);                // VM needs caller's callsite
 566   // Must be a leaf call...
 567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 568   __ delayed()->mov(G2_thread, L7_thread_cache);
 569   __ mov(L7_thread_cache, G2_thread);
 570   __ ldx(FP, -8 + STACK_BIAS, G1);
 571   __ ldx(FP, -16 + STACK_BIAS, G4);
 572   __ mov(L5, G5_method);
 573 #endif /* _LP64 */
 574 
 575   __ restore();      // Restore args
 576   __ bind(L);
 577 }
 578 
 579 
 580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
 581   RegisterOrConstant roc(arg_offset(st_off));
 582   return __ ensure_simm13_or_reg(roc, Rdisp);
 583 }
 584 
 585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
 586   RegisterOrConstant roc(next_arg_offset(st_off));
 587   return __ ensure_simm13_or_reg(roc, Rdisp);
 588 }
 589 
 590 
 591 // Stores long into offset pointed to by base
 592 void AdapterGenerator::store_c2i_long(Register r, Register base,
 593                                       const int st_off, bool is_stack) {
 594 #ifdef _LP64
 595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 596   // data is passed in only 1 slot.
 597   __ stx(r, base, next_arg_slot(st_off));
 598 #else
 599 #ifdef COMPILER2
 600   // Misaligned store of 64-bit data
 601   __ stw(r, base, arg_slot(st_off));    // lo bits
 602   __ srlx(r, 32, r);
 603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 604 #else
 605   if (is_stack) {
 606     // Misaligned store of 64-bit data
 607     __ stw(r, base, arg_slot(st_off));    // lo bits
 608     __ srlx(r, 32, r);
 609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 610   } else {
 611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 613   }
 614 #endif // COMPILER2
 615 #endif // _LP64
 616 }
 617 
 618 void AdapterGenerator::store_c2i_object(Register r, Register base,
 619                       const int st_off) {
 620   __ st_ptr (r, base, arg_slot(st_off));
 621 }
 622 
 623 void AdapterGenerator::store_c2i_int(Register r, Register base,
 624                    const int st_off) {
 625   __ st (r, base, arg_slot(st_off));
 626 }
 627 
 628 // Stores into offset pointed to by base
 629 void AdapterGenerator::store_c2i_double(VMReg r_2,
 630                       VMReg r_1, Register base, const int st_off) {
 631 #ifdef _LP64
 632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 633   // data is passed in only 1 slot.
 634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 635 #else
 636   // Need to marshal 64-bit value from misaligned Lesp loads
 637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 639 #endif
 640 }
 641 
 642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 643                                        const int st_off) {
 644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 645 }
 646 
 647 void AdapterGenerator::gen_c2i_adapter(
 648                             int total_args_passed,
 649                             // VMReg max_arg,
 650                             int comp_args_on_stack, // VMRegStackSlots
 651                             const BasicType *sig_bt,
 652                             const VMRegPair *regs,
 653                             Label& L_skip_fixup) {
 654 
 655   // Before we get into the guts of the C2I adapter, see if we should be here
 656   // at all.  We've come from compiled code and are attempting to jump to the
 657   // interpreter, which means the caller made a static call to get here
 658   // (vcalls always get a compiled target if there is one).  Check for a
 659   // compiled target.  If there is one, we need to patch the caller's call.
 660   // However we will run interpreted if we come thru here. The next pass
 661   // thru the call site will run compiled. If we ran compiled here then
 662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 663   // deopt/uncommon trap cycles. If we always go interpreted here then
 664   // we can have at most one and don't need to play any tricks to keep
 665   // from endlessly growing the stack.
 666   //
 667   // Actually if we detected that we had an i2c->c2i transition here we
 668   // ought to be able to reset the world back to the state of the interpreted
 669   // call and not bother building another interpreter arg area. We don't
 670   // do that at this point.
 671 
 672   patch_callers_callsite();
 673 
 674   __ bind(L_skip_fixup);
 675 
 676   // Since all args are passed on the stack, total_args_passed*wordSize is the
 677   // space we need.  Add in varargs area needed by the interpreter. Round up
 678   // to stack alignment.
 679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
 680   const int varargs_area =
 681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 683 
 684   const int bias = STACK_BIAS;
 685   const int interp_arg_offset = frame::varargs_offset*wordSize +
 686                         (total_args_passed-1)*Interpreter::stackElementSize;
 687 
 688   const Register base = SP;
 689 
 690   // Make some extra space on the stack.
 691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
 692   set_Rdisp(G3_scratch);
 693 
 694   // Write the args into the outgoing interpreter space.
 695   for (int i = 0; i < total_args_passed; i++) {
 696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 697     VMReg r_1 = regs[i].first();
 698     VMReg r_2 = regs[i].second();
 699     if (!r_1->is_valid()) {
 700       assert(!r_2->is_valid(), "");
 701       continue;
 702     }
 703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
 705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
 706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 708       else                  __ ldx(base, ld_off, G1_scratch);
 709     }
 710 
 711     if (r_1->is_Register()) {
 712       Register r = r_1->as_Register()->after_restore();
 713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 714         store_c2i_object(r, base, st_off);
 715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 716         store_c2i_long(r, base, st_off, r_2->is_stack());
 717       } else {
 718         store_c2i_int(r, base, st_off);
 719       }
 720     } else {
 721       assert(r_1->is_FloatRegister(), "");
 722       if (sig_bt[i] == T_FLOAT) {
 723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 724       } else {
 725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 726         store_c2i_double(r_2, r_1, base, st_off);
 727       }
 728     }
 729   }
 730 
 731   // Load the interpreter entry point.
 732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
 733 
 734   // Pass O5_savedSP as an argument to the interpreter.
 735   // The interpreter will restore SP to this value before returning.
 736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
 737 
 738   __ mov((frame::varargs_offset)*wordSize -
 739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
 740   // Jump to the interpreter just as if interpreter was doing it.
 741   __ jmpl(G3_scratch, 0, G0);
 742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 743   // (really L0) is in use by the compiled frame as a generic temp.  However,
 744   // the interpreter does not know where its args are without some kind of
 745   // arg pointer being passed in.  Pass it in Gargs.
 746   __ delayed()->add(SP, G1, Gargs);
 747 }
 748 
 749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
 750                         address code_start, address code_end,
 751                         Label& L_ok) {
 752   Label L_fail;
 753   __ set(ExternalAddress(code_start), temp_reg);
 754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
 755   __ cmp(pc_reg, temp_reg);
 756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
 757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
 758   __ cmp(pc_reg, temp_reg);
 759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
 760   __ bind(L_fail);
 761 }
 762 
 763 void AdapterGenerator::gen_i2c_adapter(
 764                             int total_args_passed,
 765                             // VMReg max_arg,
 766                             int comp_args_on_stack, // VMRegStackSlots
 767                             const BasicType *sig_bt,
 768                             const VMRegPair *regs) {
 769 
 770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 771   // layout.  Lesp was saved by the calling I-frame and will be restored on
 772   // return.  Meanwhile, outgoing arg space is all owned by the callee
 773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 774   // hoist register arguments and repack other args according to the compiled
 775   // code convention.  Finally, end in a jump to the compiled code.  The entry
 776   // point address is the start of the buffer.
 777 
 778   // We will only enter here from an interpreted frame and never from after
 779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 780   // race and use a c2i we will remain interpreted for the race loser(s).
 781   // This removes all sorts of headaches on the x86 side and also eliminates
 782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 783 
 784   // More detail:
 785   // Adapters can be frameless because they do not require the caller
 786   // to perform additional cleanup work, such as correcting the stack pointer.
 787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 789   // even if a callee has modified the stack pointer.
 790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 792   // up via the senderSP register).
 793   // In other words, if *either* the caller or callee is interpreted, we can
 794   // get the stack pointer repaired after a call.
 795   // This is why c2i and i2c adapters cannot be indefinitely composed.
 796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 797   // both caller and callee would be compiled methods, and neither would
 798   // clean up the stack pointer changes performed by the two adapters.
 799   // If this happens, control eventually transfers back to the compiled
 800   // caller, but with an uncorrected stack, causing delayed havoc.
 801 
 802   if (VerifyAdapterCalls &&
 803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 804     // So, let's test for cascading c2i/i2c adapters right now.
 805     //  assert(Interpreter::contains($return_addr) ||
 806     //         StubRoutines::contains($return_addr),
 807     //         "i2c adapter must return to an interpreter frame");
 808     __ block_comment("verify_i2c { ");
 809     Label L_ok;
 810     if (Interpreter::code() != NULL)
 811       range_check(masm, O7, O0, O1,
 812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 813                   L_ok);
 814     if (StubRoutines::code1() != NULL)
 815       range_check(masm, O7, O0, O1,
 816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 817                   L_ok);
 818     if (StubRoutines::code2() != NULL)
 819       range_check(masm, O7, O0, O1,
 820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 821                   L_ok);
 822     const char* msg = "i2c adapter must return to an interpreter frame";
 823     __ block_comment(msg);
 824     __ stop(msg);
 825     __ bind(L_ok);
 826     __ block_comment("} verify_i2ce ");
 827   }
 828 
 829   // As you can see from the list of inputs & outputs there are not a lot
 830   // of temp registers to work with: mostly G1, G3 & G4.
 831 
 832   // Inputs:
 833   // G2_thread      - TLS
 834   // G5_method      - Method oop
 835   // G4 (Gargs)     - Pointer to interpreter's args
 836   // O0..O4         - free for scratch
 837   // O5_savedSP     - Caller's saved SP, to be restored if needed
 838   // O6             - Current SP!
 839   // O7             - Valid return address
 840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 841 
 842   // Outputs:
 843   // G2_thread      - TLS
 844   // O0-O5          - Outgoing args in compiled layout
 845   // O6             - Adjusted or restored SP
 846   // O7             - Valid return address
 847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 848   // F0-F7          - more outgoing args
 849 
 850 
 851   // Gargs is the incoming argument base, and also an outgoing argument.
 852   __ sub(Gargs, BytesPerWord, Gargs);
 853 
 854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 855   // WITH O7 HOLDING A VALID RETURN PC
 856   //
 857   // |              |
 858   // :  java stack  :
 859   // |              |
 860   // +--------------+ <--- start of outgoing args
 861   // |   receiver   |   |
 862   // : rest of args :   |---size is java-arg-words
 863   // |              |   |
 864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 865   // |              |   |
 866   // :    unused    :   |---Space for max Java stack, plus stack alignment
 867   // |              |   |
 868   // +--------------+ <--- SP + 16*wordsize
 869   // |              |
 870   // :    window    :
 871   // |              |
 872   // +--------------+ <--- SP
 873 
 874   // WE REPACK THE STACK.  We use the common calling convention layout as
 875   // discovered by calling SharedRuntime::calling_convention.  We assume it
 876   // causes an arbitrary shuffle of memory, which may require some register
 877   // temps to do the shuffle.  We hope for (and optimize for) the case where
 878   // temps are not needed.  We may have to resize the stack slightly, in case
 879   // we need alignment padding (32-bit interpreter can pass longs & doubles
 880   // misaligned, but the compilers expect them aligned).
 881   //
 882   // |              |
 883   // :  java stack  :
 884   // |              |
 885   // +--------------+ <--- start of outgoing args
 886   // |  pad, align  |   |
 887   // +--------------+   |
 888   // | ints, longs, |   |
 889   // |    floats,   |   |---Outgoing stack args.
 890   // :    doubles   :   |   First few args in registers.
 891   // |              |   |
 892   // +--------------+ <--- SP' + 16*wordsize
 893   // |              |
 894   // :    window    :
 895   // |              |
 896   // +--------------+ <--- SP'
 897 
 898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
 899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
 900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
 901 
 902   // Cut-out for having no stack args.  Since up to 6 args are passed
 903   // in registers, we will commonly have no stack args.
 904   if (comp_args_on_stack > 0) {
 905     // Convert VMReg stack slots to words.
 906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 907     // Round up to miminum stack alignment, in wordSize
 908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 909     // Now compute the distance from Lesp to SP.  This calculation does not
 910     // include the space for total_args_passed because Lesp has not yet popped
 911     // the arguments.
 912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
 913   }
 914 
 915   // Now generate the shuffle code.  Pick up all register args and move the
 916   // rest through G1_scratch.
 917   for (int i = 0; i < total_args_passed; i++) {
 918     if (sig_bt[i] == T_VOID) {
 919       // Longs and doubles are passed in native word order, but misaligned
 920       // in the 32-bit build.
 921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 922       continue;
 923     }
 924 
 925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
 926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
 927     // ldx/lddf optimizations.
 928 
 929     // Load in argument order going down.
 930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
 931     set_Rdisp(G1_scratch);
 932 
 933     VMReg r_1 = regs[i].first();
 934     VMReg r_2 = regs[i].second();
 935     if (!r_1->is_valid()) {
 936       assert(!r_2->is_valid(), "");
 937       continue;
 938     }
 939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
 940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
 941       if (r_2->is_valid()) r_2 = r_1->next();
 942     }
 943     if (r_1->is_Register()) {  // Register argument
 944       Register r = r_1->as_Register()->after_restore();
 945       if (!r_2->is_valid()) {
 946         __ ld(Gargs, arg_slot(ld_off), r);
 947       } else {
 948 #ifdef _LP64
 949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
 950         // data is passed in only 1 slot.
 951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
 952               next_arg_slot(ld_off) : arg_slot(ld_off);
 953         __ ldx(Gargs, slot, r);
 954 #else
 955         fatal("longs should be on stack");
 956 #endif
 957       }
 958     } else {
 959       assert(r_1->is_FloatRegister(), "");
 960       if (!r_2->is_valid()) {
 961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
 962       } else {
 963 #ifdef _LP64
 964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 965         // data is passed in only 1 slot.  This code also handles longs that
 966         // are passed on the stack, but need a stack-to-stack move through a
 967         // spare float register.
 968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 969               next_arg_slot(ld_off) : arg_slot(ld_off);
 970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
 971 #else
 972         // Need to marshal 64-bit value from misaligned Lesp loads
 973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
 974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
 975 #endif
 976       }
 977     }
 978     // Was the argument really intended to be on the stack, but was loaded
 979     // into F8/F9?
 980     if (regs[i].first()->is_stack()) {
 981       assert(r_1->as_FloatRegister() == F8, "fix this code");
 982       // Convert stack slot to an SP offset
 983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
 984       // Store down the shuffled stack word.  Target address _is_ aligned.
 985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
 986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
 987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
 988     }
 989   }
 990 
 991   // Jump to the compiled code just as if compiled code was doing it.
 992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
 993 
 994   // 6243940 We might end up in handle_wrong_method if
 995   // the callee is deoptimized as we race thru here. If that
 996   // happens we don't want to take a safepoint because the
 997   // caller frame will look interpreted and arguments are now
 998   // "compiled" so it is much better to make this transition
 999   // invisible to the stack walking code. Unfortunately if
1000   // we try and find the callee by normal means a safepoint
1001   // is possible. So we stash the desired callee in the thread
1002   // and the vm will find there should this case occur.
1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1004   __ st_ptr(G5_method, callee_target_addr);
1005   __ jmpl(G3, 0, G0);
1006   __ delayed()->nop();
1007 }
1008 
1009 // ---------------------------------------------------------------
1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1011                                                             int total_args_passed,
1012                                                             // VMReg max_arg,
1013                                                             int comp_args_on_stack, // VMRegStackSlots
1014                                                             const BasicType *sig_bt,
1015                                                             const VMRegPair *regs,
1016                                                             AdapterFingerPrint* fingerprint) {
1017   address i2c_entry = __ pc();
1018 
1019   AdapterGenerator agen(masm);
1020 
1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1022 
1023 
1024   // -------------------------------------------------------------------------
1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1026   // args start out packed in the compiled layout.  They need to be unpacked
1027   // into the interpreter layout.  This will almost always require some stack
1028   // space.  We grow the current (compiled) stack, then repack the args.  We
1029   // finally end in a jump to the generic interpreter entry point.  On exit
1030   // from the interpreter, the interpreter will restore our SP (lest the
1031   // compiled code, which relys solely on SP and not FP, get sick).
1032 
1033   address c2i_unverified_entry = __ pc();
1034   Label L_skip_fixup;
1035   {
1036     Register R_temp = G1;  // another scratch register
1037 
1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1039 
1040     __ verify_oop(O0);
1041     __ load_klass(O0, G3_scratch);
1042 
1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1044     __ cmp(G3_scratch, R_temp);
1045 
1046     Label ok, ok2;
1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
1049     __ jump_to(ic_miss, G3_scratch);
1050     __ delayed()->nop();
1051 
1052     __ bind(ok);
1053     // Method might have been compiled since the call site was patched to
1054     // interpreted if that is the case treat it as a miss so we can get
1055     // the call site corrected.
1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1057     __ bind(ok2);
1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
1059     __ delayed()->nop();
1060     __ jump_to(ic_miss, G3_scratch);
1061     __ delayed()->nop();
1062 
1063   }
1064 
1065   address c2i_entry = __ pc();
1066 
1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
1068 
1069   __ flush();
1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1071 
1072 }
1073 
1074 // Helper function for native calling conventions
1075 static VMReg int_stk_helper( int i ) {
1076   // Bias any stack based VMReg we get by ignoring the window area
1077   // but not the register parameter save area.
1078   //
1079   // This is strange for the following reasons. We'd normally expect
1080   // the calling convention to return an VMReg for a stack slot
1081   // completely ignoring any abi reserved area. C2 thinks of that
1082   // abi area as only out_preserve_stack_slots. This does not include
1083   // the area allocated by the C abi to store down integer arguments
1084   // because the java calling convention does not use it. So
1085   // since c2 assumes that there are only out_preserve_stack_slots
1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1087   // location the c calling convention must add in this bias amount
1088   // to make up for the fact that the out_preserve_stack_slots is
1089   // insufficient for C calls. What a mess. I sure hope those 6
1090   // stack words were worth it on every java call!
1091 
1092   // Another way of cleaning this up would be for out_preserve_stack_slots
1093   // to take a parameter to say whether it was C or java calling conventions.
1094   // Then things might look a little better (but not much).
1095 
1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1097   if( mem_parm_offset < 0 ) {
1098     return as_oRegister(i)->as_VMReg();
1099   } else {
1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1103   }
1104 }
1105 
1106 
1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1108                                          VMRegPair *regs,
1109                                          VMRegPair *regs2,
1110                                          int total_args_passed) {
1111     assert(regs2 == NULL, "not needed on sparc");
1112 
1113     // Return the number of VMReg stack_slots needed for the args.
1114     // This value does not include an abi space (like register window
1115     // save area).
1116 
1117     // The native convention is V8 if !LP64
1118     // The LP64 convention is the V9 convention which is slightly more sane.
1119 
1120     // We return the amount of VMReg stack slots we need to reserve for all
1121     // the arguments NOT counting out_preserve_stack_slots. Since we always
1122     // have space for storing at least 6 registers to memory we start with that.
1123     // See int_stk_helper for a further discussion.
1124     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1125 
1126 #ifdef _LP64
1127     // V9 convention: All things "as-if" on double-wide stack slots.
1128     // Hoist any int/ptr/long's in the first 6 to int regs.
1129     // Hoist any flt/dbl's in the first 16 dbl regs.
1130     int j = 0;                  // Count of actual args, not HALVES
1131     for( int i=0; i<total_args_passed; i++, j++ ) {
1132       switch( sig_bt[i] ) {
1133       case T_BOOLEAN:
1134       case T_BYTE:
1135       case T_CHAR:
1136       case T_INT:
1137       case T_SHORT:
1138         regs[i].set1( int_stk_helper( j ) ); break;
1139       case T_LONG:
1140         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1141       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1142       case T_ARRAY:
1143       case T_OBJECT:
1144       case T_METADATA:
1145         regs[i].set2( int_stk_helper( j ) );
1146         break;
1147       case T_FLOAT:
1148         if ( j < 16 ) {
1149           // V9ism: floats go in ODD registers
1150           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1151         } else {
1152           // V9ism: floats go in ODD stack slot
1153           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1154         }
1155         break;
1156       case T_DOUBLE:
1157         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1158         if ( j < 16 ) {
1159           // V9ism: doubles go in EVEN/ODD regs
1160           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1161         } else {
1162           // V9ism: doubles go in EVEN/ODD stack slots
1163           regs[i].set2(VMRegImpl::stack2reg(j<<1));
1164         }
1165         break;
1166       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1167       default:
1168         ShouldNotReachHere();
1169       }
1170       if (regs[i].first()->is_stack()) {
1171         int off =  regs[i].first()->reg2stack();
1172         if (off > max_stack_slots) max_stack_slots = off;
1173       }
1174       if (regs[i].second()->is_stack()) {
1175         int off =  regs[i].second()->reg2stack();
1176         if (off > max_stack_slots) max_stack_slots = off;
1177       }
1178     }
1179 
1180 #else // _LP64
1181     // V8 convention: first 6 things in O-regs, rest on stack.
1182     // Alignment is willy-nilly.
1183     for( int i=0; i<total_args_passed; i++ ) {
1184       switch( sig_bt[i] ) {
1185       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1186       case T_ARRAY:
1187       case T_BOOLEAN:
1188       case T_BYTE:
1189       case T_CHAR:
1190       case T_FLOAT:
1191       case T_INT:
1192       case T_OBJECT:
1193       case T_METADATA:
1194       case T_SHORT:
1195         regs[i].set1( int_stk_helper( i ) );
1196         break;
1197       case T_DOUBLE:
1198       case T_LONG:
1199         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1200         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1201         break;
1202       case T_VOID: regs[i].set_bad(); break;
1203       default:
1204         ShouldNotReachHere();
1205       }
1206       if (regs[i].first()->is_stack()) {
1207         int off =  regs[i].first()->reg2stack();
1208         if (off > max_stack_slots) max_stack_slots = off;
1209       }
1210       if (regs[i].second()->is_stack()) {
1211         int off =  regs[i].second()->reg2stack();
1212         if (off > max_stack_slots) max_stack_slots = off;
1213       }
1214     }
1215 #endif // _LP64
1216 
1217   return round_to(max_stack_slots + 1, 2);
1218 
1219 }
1220 
1221 
1222 // ---------------------------------------------------------------------------
1223 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1224   switch (ret_type) {
1225   case T_FLOAT:
1226     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1227     break;
1228   case T_DOUBLE:
1229     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1230     break;
1231   }
1232 }
1233 
1234 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1235   switch (ret_type) {
1236   case T_FLOAT:
1237     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1238     break;
1239   case T_DOUBLE:
1240     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1241     break;
1242   }
1243 }
1244 
1245 // Check and forward and pending exception.  Thread is stored in
1246 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1247 // is no exception handler.  We merely pop this frame off and throw the
1248 // exception in the caller's frame.
1249 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1250   Label L;
1251   __ br_null(Rex_oop, false, Assembler::pt, L);
1252   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1253   // Since this is a native call, we *know* the proper exception handler
1254   // without calling into the VM: it's the empty function.  Just pop this
1255   // frame and then jump to forward_exception_entry; O7 will contain the
1256   // native caller's return PC.
1257  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1258   __ jump_to(exception_entry, G3_scratch);
1259   __ delayed()->restore();      // Pop this frame off.
1260   __ bind(L);
1261 }
1262 
1263 // A simple move of integer like type
1264 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1265   if (src.first()->is_stack()) {
1266     if (dst.first()->is_stack()) {
1267       // stack to stack
1268       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1269       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1270     } else {
1271       // stack to reg
1272       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1273     }
1274   } else if (dst.first()->is_stack()) {
1275     // reg to stack
1276     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1277   } else {
1278     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1279   }
1280 }
1281 
1282 // On 64 bit we will store integer like items to the stack as
1283 // 64 bits items (sparc abi) even though java would only store
1284 // 32bits for a parameter. On 32bit it will simply be 32 bits
1285 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1286 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1287   if (src.first()->is_stack()) {
1288     if (dst.first()->is_stack()) {
1289       // stack to stack
1290       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1291       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1292     } else {
1293       // stack to reg
1294       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1295     }
1296   } else if (dst.first()->is_stack()) {
1297     // reg to stack
1298     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1299   } else {
1300     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1301   }
1302 }
1303 
1304 
1305 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1306   if (src.first()->is_stack()) {
1307     if (dst.first()->is_stack()) {
1308       // stack to stack
1309       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1310       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1311     } else {
1312       // stack to reg
1313       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1314     }
1315   } else if (dst.first()->is_stack()) {
1316     // reg to stack
1317     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1318   } else {
1319     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1320   }
1321 }
1322 
1323 
1324 // An oop arg. Must pass a handle not the oop itself
1325 static void object_move(MacroAssembler* masm,
1326                         OopMap* map,
1327                         int oop_handle_offset,
1328                         int framesize_in_slots,
1329                         VMRegPair src,
1330                         VMRegPair dst,
1331                         bool is_receiver,
1332                         int* receiver_offset) {
1333 
1334   // must pass a handle. First figure out the location we use as a handle
1335 
1336   if (src.first()->is_stack()) {
1337     // Oop is already on the stack
1338     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1339     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1340     __ ld_ptr(rHandle, 0, L4);
1341 #ifdef _LP64
1342     __ movr( Assembler::rc_z, L4, G0, rHandle );
1343 #else
1344     __ tst( L4 );
1345     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1346 #endif
1347     if (dst.first()->is_stack()) {
1348       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1349     }
1350     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1351     if (is_receiver) {
1352       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1353     }
1354     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1355   } else {
1356     // Oop is in an input register pass we must flush it to the stack
1357     const Register rOop = src.first()->as_Register();
1358     const Register rHandle = L5;
1359     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1360     int offset = oop_slot*VMRegImpl::stack_slot_size;
1361     Label skip;
1362     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1363     if (is_receiver) {
1364       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1365     }
1366     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1367     __ add(SP, offset + STACK_BIAS, rHandle);
1368 #ifdef _LP64
1369     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1370 #else
1371     __ tst( rOop );
1372     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1373 #endif
1374 
1375     if (dst.first()->is_stack()) {
1376       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1377     } else {
1378       __ mov(rHandle, dst.first()->as_Register());
1379     }
1380   }
1381 }
1382 
1383 // A float arg may have to do float reg int reg conversion
1384 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1385   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1386 
1387   if (src.first()->is_stack()) {
1388     if (dst.first()->is_stack()) {
1389       // stack to stack the easiest of the bunch
1390       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1391       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1392     } else {
1393       // stack to reg
1394       if (dst.first()->is_Register()) {
1395         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1396       } else {
1397         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1398       }
1399     }
1400   } else if (dst.first()->is_stack()) {
1401     // reg to stack
1402     if (src.first()->is_Register()) {
1403       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1404     } else {
1405       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1406     }
1407   } else {
1408     // reg to reg
1409     if (src.first()->is_Register()) {
1410       if (dst.first()->is_Register()) {
1411         // gpr -> gpr
1412         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1413       } else {
1414         // gpr -> fpr
1415         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1416         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1417       }
1418     } else if (dst.first()->is_Register()) {
1419       // fpr -> gpr
1420       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1421       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1422     } else {
1423       // fpr -> fpr
1424       // In theory these overlap but the ordering is such that this is likely a nop
1425       if ( src.first() != dst.first()) {
1426         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1427       }
1428     }
1429   }
1430 }
1431 
1432 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1433   VMRegPair src_lo(src.first());
1434   VMRegPair src_hi(src.second());
1435   VMRegPair dst_lo(dst.first());
1436   VMRegPair dst_hi(dst.second());
1437   simple_move32(masm, src_lo, dst_lo);
1438   simple_move32(masm, src_hi, dst_hi);
1439 }
1440 
1441 // A long move
1442 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1443 
1444   // Do the simple ones here else do two int moves
1445   if (src.is_single_phys_reg() ) {
1446     if (dst.is_single_phys_reg()) {
1447       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1448     } else {
1449       // split src into two separate registers
1450       // Remember hi means hi address or lsw on sparc
1451       // Move msw to lsw
1452       if (dst.second()->is_reg()) {
1453         // MSW -> MSW
1454         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1455         // Now LSW -> LSW
1456         // this will only move lo -> lo and ignore hi
1457         VMRegPair split(dst.second());
1458         simple_move32(masm, src, split);
1459       } else {
1460         VMRegPair split(src.first(), L4->as_VMReg());
1461         // MSW -> MSW (lo ie. first word)
1462         __ srax(src.first()->as_Register(), 32, L4);
1463         split_long_move(masm, split, dst);
1464       }
1465     }
1466   } else if (dst.is_single_phys_reg()) {
1467     if (src.is_adjacent_aligned_on_stack(2)) {
1468       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1469     } else {
1470       // dst is a single reg.
1471       // Remember lo is low address not msb for stack slots
1472       // and lo is the "real" register for registers
1473       // src is
1474 
1475       VMRegPair split;
1476 
1477       if (src.first()->is_reg()) {
1478         // src.lo (msw) is a reg, src.hi is stk/reg
1479         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1480         split.set_pair(dst.first(), src.first());
1481       } else {
1482         // msw is stack move to L5
1483         // lsw is stack move to dst.lo (real reg)
1484         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1485         split.set_pair(dst.first(), L5->as_VMReg());
1486       }
1487 
1488       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1489       // msw   -> src.lo/L5,  lsw -> dst.lo
1490       split_long_move(masm, src, split);
1491 
1492       // So dst now has the low order correct position the
1493       // msw half
1494       __ sllx(split.first()->as_Register(), 32, L5);
1495 
1496       const Register d = dst.first()->as_Register();
1497       __ or3(L5, d, d);
1498     }
1499   } else {
1500     // For LP64 we can probably do better.
1501     split_long_move(masm, src, dst);
1502   }
1503 }
1504 
1505 // A double move
1506 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1507 
1508   // The painful thing here is that like long_move a VMRegPair might be
1509   // 1: a single physical register
1510   // 2: two physical registers (v8)
1511   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1512   // 4: two stack slots
1513 
1514   // Since src is always a java calling convention we know that the src pair
1515   // is always either all registers or all stack (and aligned?)
1516 
1517   // in a register [lo] and a stack slot [hi]
1518   if (src.first()->is_stack()) {
1519     if (dst.first()->is_stack()) {
1520       // stack to stack the easiest of the bunch
1521       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1522       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1523       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1524       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1525       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1526     } else {
1527       // stack to reg
1528       if (dst.second()->is_stack()) {
1529         // stack -> reg, stack -> stack
1530         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1531         if (dst.first()->is_Register()) {
1532           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1533         } else {
1534           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1535         }
1536         // This was missing. (very rare case)
1537         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1538       } else {
1539         // stack -> reg
1540         // Eventually optimize for alignment QQQ
1541         if (dst.first()->is_Register()) {
1542           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1543           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1544         } else {
1545           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1546           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1547         }
1548       }
1549     }
1550   } else if (dst.first()->is_stack()) {
1551     // reg to stack
1552     if (src.first()->is_Register()) {
1553       // Eventually optimize for alignment QQQ
1554       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1555       if (src.second()->is_stack()) {
1556         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1557         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1558       } else {
1559         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1560       }
1561     } else {
1562       // fpr to stack
1563       if (src.second()->is_stack()) {
1564         ShouldNotReachHere();
1565       } else {
1566         // Is the stack aligned?
1567         if (reg2offset(dst.first()) & 0x7) {
1568           // No do as pairs
1569           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1570           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1571         } else {
1572           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1573         }
1574       }
1575     }
1576   } else {
1577     // reg to reg
1578     if (src.first()->is_Register()) {
1579       if (dst.first()->is_Register()) {
1580         // gpr -> gpr
1581         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1582         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1583       } else {
1584         // gpr -> fpr
1585         // ought to be able to do a single store
1586         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1587         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1588         // ought to be able to do a single load
1589         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1590         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1591       }
1592     } else if (dst.first()->is_Register()) {
1593       // fpr -> gpr
1594       // ought to be able to do a single store
1595       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1596       // ought to be able to do a single load
1597       // REMEMBER first() is low address not LSB
1598       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1599       if (dst.second()->is_Register()) {
1600         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1601       } else {
1602         __ ld(FP, -4 + STACK_BIAS, L4);
1603         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1604       }
1605     } else {
1606       // fpr -> fpr
1607       // In theory these overlap but the ordering is such that this is likely a nop
1608       if ( src.first() != dst.first()) {
1609         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1610       }
1611     }
1612   }
1613 }
1614 
1615 // Creates an inner frame if one hasn't already been created, and
1616 // saves a copy of the thread in L7_thread_cache
1617 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1618   if (!*already_created) {
1619     __ save_frame(0);
1620     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1621     // Don't use save_thread because it smashes G2 and we merely want to save a
1622     // copy
1623     __ mov(G2_thread, L7_thread_cache);
1624     *already_created = true;
1625   }
1626 }
1627 
1628 
1629 static void save_or_restore_arguments(MacroAssembler* masm,
1630                                       const int stack_slots,
1631                                       const int total_in_args,
1632                                       const int arg_save_area,
1633                                       OopMap* map,
1634                                       VMRegPair* in_regs,
1635                                       BasicType* in_sig_bt) {
1636   // if map is non-NULL then the code should store the values,
1637   // otherwise it should load them.
1638   if (map != NULL) {
1639     // Fill in the map
1640     for (int i = 0; i < total_in_args; i++) {
1641       if (in_sig_bt[i] == T_ARRAY) {
1642         if (in_regs[i].first()->is_stack()) {
1643           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1644           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1645         } else if (in_regs[i].first()->is_Register()) {
1646           map->set_oop(in_regs[i].first());
1647         } else {
1648           ShouldNotReachHere();
1649         }
1650       }
1651     }
1652   }
1653 
1654   // Save or restore double word values
1655   int handle_index = 0;
1656   for (int i = 0; i < total_in_args; i++) {
1657     int slot = handle_index + arg_save_area;
1658     int offset = slot * VMRegImpl::stack_slot_size;
1659     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1660       const Register reg = in_regs[i].first()->as_Register();
1661       if (reg->is_global()) {
1662         handle_index += 2;
1663         assert(handle_index <= stack_slots, "overflow");
1664         if (map != NULL) {
1665           __ stx(reg, SP, offset + STACK_BIAS);
1666         } else {
1667           __ ldx(SP, offset + STACK_BIAS, reg);
1668         }
1669       }
1670     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1671       handle_index += 2;
1672       assert(handle_index <= stack_slots, "overflow");
1673       if (map != NULL) {
1674         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1675       } else {
1676         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1677       }
1678     }
1679   }
1680   // Save floats
1681   for (int i = 0; i < total_in_args; i++) {
1682     int slot = handle_index + arg_save_area;
1683     int offset = slot * VMRegImpl::stack_slot_size;
1684     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1685       handle_index++;
1686       assert(handle_index <= stack_slots, "overflow");
1687       if (map != NULL) {
1688         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1689       } else {
1690         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1691       }
1692     }
1693   }
1694 
1695 }
1696 
1697 
1698 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1699 // keeps a new JNI critical region from starting until a GC has been
1700 // forced.  Save down any oops in registers and describe them in an
1701 // OopMap.
1702 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1703                                                const int stack_slots,
1704                                                const int total_in_args,
1705                                                const int arg_save_area,
1706                                                OopMapSet* oop_maps,
1707                                                VMRegPair* in_regs,
1708                                                BasicType* in_sig_bt) {
1709   __ block_comment("check GC_locker::needs_gc");
1710   Label cont;
1711   AddressLiteral sync_state(GC_locker::needs_gc_address());
1712   __ load_bool_contents(sync_state, G3_scratch);
1713   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1714   __ delayed()->nop();
1715 
1716   // Save down any values that are live in registers and call into the
1717   // runtime to halt for a GC
1718   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1719   save_or_restore_arguments(masm, stack_slots, total_in_args,
1720                             arg_save_area, map, in_regs, in_sig_bt);
1721 
1722   __ mov(G2_thread, L7_thread_cache);
1723 
1724   __ set_last_Java_frame(SP, noreg);
1725 
1726   __ block_comment("block_for_jni_critical");
1727   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1728   __ delayed()->mov(L7_thread_cache, O0);
1729   oop_maps->add_gc_map( __ offset(), map);
1730 
1731   __ restore_thread(L7_thread_cache); // restore G2_thread
1732   __ reset_last_Java_frame();
1733 
1734   // Reload all the register arguments
1735   save_or_restore_arguments(masm, stack_slots, total_in_args,
1736                             arg_save_area, NULL, in_regs, in_sig_bt);
1737 
1738   __ bind(cont);
1739 #ifdef ASSERT
1740   if (StressCriticalJNINatives) {
1741     // Stress register saving
1742     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1743     save_or_restore_arguments(masm, stack_slots, total_in_args,
1744                               arg_save_area, map, in_regs, in_sig_bt);
1745     // Destroy argument registers
1746     for (int i = 0; i < total_in_args; i++) {
1747       if (in_regs[i].first()->is_Register()) {
1748         const Register reg = in_regs[i].first()->as_Register();
1749         if (reg->is_global()) {
1750           __ mov(G0, reg);
1751         }
1752       } else if (in_regs[i].first()->is_FloatRegister()) {
1753         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1754       }
1755     }
1756 
1757     save_or_restore_arguments(masm, stack_slots, total_in_args,
1758                               arg_save_area, NULL, in_regs, in_sig_bt);
1759   }
1760 #endif
1761 }
1762 
1763 // Unpack an array argument into a pointer to the body and the length
1764 // if the array is non-null, otherwise pass 0 for both.
1765 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1766   // Pass the length, ptr pair
1767   Label is_null, done;
1768   if (reg.first()->is_stack()) {
1769     VMRegPair tmp  = reg64_to_VMRegPair(L2);
1770     // Load the arg up from the stack
1771     move_ptr(masm, reg, tmp);
1772     reg = tmp;
1773   }
1774   __ cmp(reg.first()->as_Register(), G0);
1775   __ brx(Assembler::equal, false, Assembler::pt, is_null);
1776   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1777   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1778   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1779   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1780   __ ba_short(done);
1781   __ bind(is_null);
1782   // Pass zeros
1783   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1784   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1785   __ bind(done);
1786 }
1787 
1788 static void verify_oop_args(MacroAssembler* masm,
1789                             methodHandle method,
1790                             const BasicType* sig_bt,
1791                             const VMRegPair* regs) {
1792   Register temp_reg = G5_method;  // not part of any compiled calling seq
1793   if (VerifyOops) {
1794     for (int i = 0; i < method->size_of_parameters(); i++) {
1795       if (sig_bt[i] == T_OBJECT ||
1796           sig_bt[i] == T_ARRAY) {
1797         VMReg r = regs[i].first();
1798         assert(r->is_valid(), "bad oop arg");
1799         if (r->is_stack()) {
1800           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1801           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1802           __ ld_ptr(SP, ld_off, temp_reg);
1803           __ verify_oop(temp_reg);
1804         } else {
1805           __ verify_oop(r->as_Register());
1806         }
1807       }
1808     }
1809   }
1810 }
1811 
1812 static void gen_special_dispatch(MacroAssembler* masm,
1813                                  methodHandle method,
1814                                  const BasicType* sig_bt,
1815                                  const VMRegPair* regs) {
1816   verify_oop_args(masm, method, sig_bt, regs);
1817   vmIntrinsics::ID iid = method->intrinsic_id();
1818 
1819   // Now write the args into the outgoing interpreter space
1820   bool     has_receiver   = false;
1821   Register receiver_reg   = noreg;
1822   int      member_arg_pos = -1;
1823   Register member_reg     = noreg;
1824   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1825   if (ref_kind != 0) {
1826     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1827     member_reg = G5_method;  // known to be free at this point
1828     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1829   } else if (iid == vmIntrinsics::_invokeBasic) {
1830     has_receiver = true;
1831   } else {
1832     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1833   }
1834 
1835   if (member_reg != noreg) {
1836     // Load the member_arg into register, if necessary.
1837     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1838     VMReg r = regs[member_arg_pos].first();
1839     if (r->is_stack()) {
1840       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1841       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1842       __ ld_ptr(SP, ld_off, member_reg);
1843     } else {
1844       // no data motion is needed
1845       member_reg = r->as_Register();
1846     }
1847   }
1848 
1849   if (has_receiver) {
1850     // Make sure the receiver is loaded into a register.
1851     assert(method->size_of_parameters() > 0, "oob");
1852     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1853     VMReg r = regs[0].first();
1854     assert(r->is_valid(), "bad receiver arg");
1855     if (r->is_stack()) {
1856       // Porting note:  This assumes that compiled calling conventions always
1857       // pass the receiver oop in a register.  If this is not true on some
1858       // platform, pick a temp and load the receiver from stack.
1859       fatal("receiver always in a register");
1860       receiver_reg = G3_scratch;  // known to be free at this point
1861       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1862       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1863       __ ld_ptr(SP, ld_off, receiver_reg);
1864     } else {
1865       // no data motion is needed
1866       receiver_reg = r->as_Register();
1867     }
1868   }
1869 
1870   // Figure out which address we are really jumping to:
1871   MethodHandles::generate_method_handle_dispatch(masm, iid,
1872                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1873 }
1874 
1875 // ---------------------------------------------------------------------------
1876 // Generate a native wrapper for a given method.  The method takes arguments
1877 // in the Java compiled code convention, marshals them to the native
1878 // convention (handlizes oops, etc), transitions to native, makes the call,
1879 // returns to java state (possibly blocking), unhandlizes any result and
1880 // returns.
1881 //
1882 // Critical native functions are a shorthand for the use of
1883 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1884 // functions.  The wrapper is expected to unpack the arguments before
1885 // passing them to the callee and perform checks before and after the
1886 // native call to ensure that they GC_locker
1887 // lock_critical/unlock_critical semantics are followed.  Some other
1888 // parts of JNI setup are skipped like the tear down of the JNI handle
1889 // block and the check for pending exceptions it's impossible for them
1890 // to be thrown.
1891 //
1892 // They are roughly structured like this:
1893 //    if (GC_locker::needs_gc())
1894 //      SharedRuntime::block_for_jni_critical();
1895 //    tranistion to thread_in_native
1896 //    unpack arrray arguments and call native entry point
1897 //    check for safepoint in progress
1898 //    check if any thread suspend flags are set
1899 //      call into JVM and possible unlock the JNI critical
1900 //      if a GC was suppressed while in the critical native.
1901 //    transition back to thread_in_Java
1902 //    return to caller
1903 //
1904 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1905                                                 methodHandle method,
1906                                                 int compile_id,
1907                                                 BasicType* in_sig_bt,
1908                                                 VMRegPair* in_regs,
1909                                                 BasicType ret_type) {
1910   if (method->is_method_handle_intrinsic()) {
1911     vmIntrinsics::ID iid = method->intrinsic_id();
1912     intptr_t start = (intptr_t)__ pc();
1913     int vep_offset = ((intptr_t)__ pc()) - start;
1914     gen_special_dispatch(masm,
1915                          method,
1916                          in_sig_bt,
1917                          in_regs);
1918     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1919     __ flush();
1920     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1921     return nmethod::new_native_nmethod(method,
1922                                        compile_id,
1923                                        masm->code(),
1924                                        vep_offset,
1925                                        frame_complete,
1926                                        stack_slots / VMRegImpl::slots_per_word,
1927                                        in_ByteSize(-1),
1928                                        in_ByteSize(-1),
1929                                        (OopMapSet*)NULL);
1930   }
1931   bool is_critical_native = true;
1932   address native_func = method->critical_native_function();
1933   if (native_func == NULL) {
1934     native_func = method->native_function();
1935     is_critical_native = false;
1936   }
1937   assert(native_func != NULL, "must have function");
1938 
1939   // Native nmethod wrappers never take possesion of the oop arguments.
1940   // So the caller will gc the arguments. The only thing we need an
1941   // oopMap for is if the call is static
1942   //
1943   // An OopMap for lock (and class if static), and one for the VM call itself
1944   OopMapSet *oop_maps = new OopMapSet();
1945   intptr_t start = (intptr_t)__ pc();
1946 
1947   // First thing make an ic check to see if we should even be here
1948   {
1949     Label L;
1950     const Register temp_reg = G3_scratch;
1951     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1952     __ verify_oop(O0);
1953     __ load_klass(O0, temp_reg);
1954     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
1955 
1956     __ jump_to(ic_miss, temp_reg);
1957     __ delayed()->nop();
1958     __ align(CodeEntryAlignment);
1959     __ bind(L);
1960   }
1961 
1962   int vep_offset = ((intptr_t)__ pc()) - start;
1963 
1964 #ifdef COMPILER1
1965   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1966     // Object.hashCode can pull the hashCode from the header word
1967     // instead of doing a full VM transition once it's been computed.
1968     // Since hashCode is usually polymorphic at call sites we can't do
1969     // this optimization at the call site without a lot of work.
1970     Label slowCase;
1971     Register receiver             = O0;
1972     Register result               = O0;
1973     Register header               = G3_scratch;
1974     Register hash                 = G3_scratch; // overwrite header value with hash value
1975     Register mask                 = G1;         // to get hash field from header
1976 
1977     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1978     // We depend on hash_mask being at most 32 bits and avoid the use of
1979     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1980     // vm: see markOop.hpp.
1981     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1982     __ sethi(markOopDesc::hash_mask, mask);
1983     __ btst(markOopDesc::unlocked_value, header);
1984     __ br(Assembler::zero, false, Assembler::pn, slowCase);
1985     if (UseBiasedLocking) {
1986       // Check if biased and fall through to runtime if so
1987       __ delayed()->nop();
1988       __ btst(markOopDesc::biased_lock_bit_in_place, header);
1989       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1990     }
1991     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1992 
1993     // Check for a valid (non-zero) hash code and get its value.
1994 #ifdef _LP64
1995     __ srlx(header, markOopDesc::hash_shift, hash);
1996 #else
1997     __ srl(header, markOopDesc::hash_shift, hash);
1998 #endif
1999     __ andcc(hash, mask, hash);
2000     __ br(Assembler::equal, false, Assembler::pn, slowCase);
2001     __ delayed()->nop();
2002 
2003     // leaf return.
2004     __ retl();
2005     __ delayed()->mov(hash, result);
2006     __ bind(slowCase);
2007   }
2008 #endif // COMPILER1
2009 
2010 
2011   // We have received a description of where all the java arg are located
2012   // on entry to the wrapper. We need to convert these args to where
2013   // the jni function will expect them. To figure out where they go
2014   // we convert the java signature to a C signature by inserting
2015   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2016 
2017   const int total_in_args = method->size_of_parameters();
2018   int total_c_args = total_in_args;
2019   int total_save_slots = 6 * VMRegImpl::slots_per_word;
2020   if (!is_critical_native) {
2021     total_c_args += 1;
2022     if (method->is_static()) {
2023       total_c_args++;
2024     }
2025   } else {
2026     for (int i = 0; i < total_in_args; i++) {
2027       if (in_sig_bt[i] == T_ARRAY) {
2028         // These have to be saved and restored across the safepoint
2029         total_c_args++;
2030       }
2031     }
2032   }
2033 
2034   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2035   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2036   BasicType* in_elem_bt = NULL;
2037 
2038   int argc = 0;
2039   if (!is_critical_native) {
2040     out_sig_bt[argc++] = T_ADDRESS;
2041     if (method->is_static()) {
2042       out_sig_bt[argc++] = T_OBJECT;
2043     }
2044 
2045     for (int i = 0; i < total_in_args ; i++ ) {
2046       out_sig_bt[argc++] = in_sig_bt[i];
2047     }
2048   } else {
2049     Thread* THREAD = Thread::current();
2050     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2051     SignatureStream ss(method->signature());
2052     for (int i = 0; i < total_in_args ; i++ ) {
2053       if (in_sig_bt[i] == T_ARRAY) {
2054         // Arrays are passed as int, elem* pair
2055         out_sig_bt[argc++] = T_INT;
2056         out_sig_bt[argc++] = T_ADDRESS;
2057         Symbol* atype = ss.as_symbol(CHECK_NULL);
2058         const char* at = atype->as_C_string();
2059         if (strlen(at) == 2) {
2060           assert(at[0] == '[', "must be");
2061           switch (at[1]) {
2062             case 'B': in_elem_bt[i]  = T_BYTE; break;
2063             case 'C': in_elem_bt[i]  = T_CHAR; break;
2064             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2065             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2066             case 'I': in_elem_bt[i]  = T_INT; break;
2067             case 'J': in_elem_bt[i]  = T_LONG; break;
2068             case 'S': in_elem_bt[i]  = T_SHORT; break;
2069             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2070             default: ShouldNotReachHere();
2071           }
2072         }
2073       } else {
2074         out_sig_bt[argc++] = in_sig_bt[i];
2075         in_elem_bt[i] = T_VOID;
2076       }
2077       if (in_sig_bt[i] != T_VOID) {
2078         assert(in_sig_bt[i] == ss.type(), "must match");
2079         ss.next();
2080       }
2081     }
2082   }
2083 
2084   // Now figure out where the args must be stored and how much stack space
2085   // they require (neglecting out_preserve_stack_slots but space for storing
2086   // the 1st six register arguments). It's weird see int_stk_helper.
2087   //
2088   int out_arg_slots;
2089   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2090 
2091   if (is_critical_native) {
2092     // Critical natives may have to call out so they need a save area
2093     // for register arguments.
2094     int double_slots = 0;
2095     int single_slots = 0;
2096     for ( int i = 0; i < total_in_args; i++) {
2097       if (in_regs[i].first()->is_Register()) {
2098         const Register reg = in_regs[i].first()->as_Register();
2099         switch (in_sig_bt[i]) {
2100           case T_ARRAY:
2101           case T_BOOLEAN:
2102           case T_BYTE:
2103           case T_SHORT:
2104           case T_CHAR:
2105           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2106           case T_LONG: if (reg->is_global()) double_slots++; break;
2107           default:  ShouldNotReachHere();
2108         }
2109       } else if (in_regs[i].first()->is_FloatRegister()) {
2110         switch (in_sig_bt[i]) {
2111           case T_FLOAT:  single_slots++; break;
2112           case T_DOUBLE: double_slots++; break;
2113           default:  ShouldNotReachHere();
2114         }
2115       }
2116     }
2117     total_save_slots = double_slots * 2 + single_slots;
2118   }
2119 
2120   // Compute framesize for the wrapper.  We need to handlize all oops in
2121   // registers. We must create space for them here that is disjoint from
2122   // the windowed save area because we have no control over when we might
2123   // flush the window again and overwrite values that gc has since modified.
2124   // (The live window race)
2125   //
2126   // We always just allocate 6 word for storing down these object. This allow
2127   // us to simply record the base and use the Ireg number to decide which
2128   // slot to use. (Note that the reg number is the inbound number not the
2129   // outbound number).
2130   // We must shuffle args to match the native convention, and include var-args space.
2131 
2132   // Calculate the total number of stack slots we will need.
2133 
2134   // First count the abi requirement plus all of the outgoing args
2135   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2136 
2137   // Now the space for the inbound oop handle area
2138 
2139   int oop_handle_offset = round_to(stack_slots, 2);
2140   stack_slots += total_save_slots;
2141 
2142   // Now any space we need for handlizing a klass if static method
2143 
2144   int klass_slot_offset = 0;
2145   int klass_offset = -1;
2146   int lock_slot_offset = 0;
2147   bool is_static = false;
2148 
2149   if (method->is_static()) {
2150     klass_slot_offset = stack_slots;
2151     stack_slots += VMRegImpl::slots_per_word;
2152     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2153     is_static = true;
2154   }
2155 
2156   // Plus a lock if needed
2157 
2158   if (method->is_synchronized()) {
2159     lock_slot_offset = stack_slots;
2160     stack_slots += VMRegImpl::slots_per_word;
2161   }
2162 
2163   // Now a place to save return value or as a temporary for any gpr -> fpr moves
2164   stack_slots += 2;
2165 
2166   // Ok The space we have allocated will look like:
2167   //
2168   //
2169   // FP-> |                     |
2170   //      |---------------------|
2171   //      | 2 slots for moves   |
2172   //      |---------------------|
2173   //      | lock box (if sync)  |
2174   //      |---------------------| <- lock_slot_offset
2175   //      | klass (if static)   |
2176   //      |---------------------| <- klass_slot_offset
2177   //      | oopHandle area      |
2178   //      |---------------------| <- oop_handle_offset
2179   //      | outbound memory     |
2180   //      | based arguments     |
2181   //      |                     |
2182   //      |---------------------|
2183   //      | vararg area         |
2184   //      |---------------------|
2185   //      |                     |
2186   // SP-> | out_preserved_slots |
2187   //
2188   //
2189 
2190 
2191   // Now compute actual number of stack words we need rounding to make
2192   // stack properly aligned.
2193   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2194 
2195   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2196 
2197   // Generate stack overflow check before creating frame
2198   __ generate_stack_overflow_check(stack_size);
2199 
2200   // Generate a new frame for the wrapper.
2201   __ save(SP, -stack_size, SP);
2202 
2203   int frame_complete = ((intptr_t)__ pc()) - start;
2204 
2205   __ verify_thread();
2206 
2207   if (is_critical_native) {
2208     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2209                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2210   }
2211 
2212   //
2213   // We immediately shuffle the arguments so that any vm call we have to
2214   // make from here on out (sync slow path, jvmti, etc.) we will have
2215   // captured the oops from our caller and have a valid oopMap for
2216   // them.
2217 
2218   // -----------------
2219   // The Grand Shuffle
2220   //
2221   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2222   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2223   // the class mirror instead of a receiver.  This pretty much guarantees that
2224   // register layout will not match.  We ignore these extra arguments during
2225   // the shuffle. The shuffle is described by the two calling convention
2226   // vectors we have in our possession. We simply walk the java vector to
2227   // get the source locations and the c vector to get the destinations.
2228   // Because we have a new window and the argument registers are completely
2229   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2230   // here.
2231 
2232   // This is a trick. We double the stack slots so we can claim
2233   // the oops in the caller's frame. Since we are sure to have
2234   // more args than the caller doubling is enough to make
2235   // sure we can capture all the incoming oop args from the
2236   // caller.
2237   //
2238   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2239   // Record sp-based slot for receiver on stack for non-static methods
2240   int receiver_offset = -1;
2241 
2242   // We move the arguments backward because the floating point registers
2243   // destination will always be to a register with a greater or equal register
2244   // number or the stack.
2245 
2246 #ifdef ASSERT
2247   bool reg_destroyed[RegisterImpl::number_of_registers];
2248   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2249   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2250     reg_destroyed[r] = false;
2251   }
2252   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2253     freg_destroyed[f] = false;
2254   }
2255 
2256 #endif /* ASSERT */
2257 
2258   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2259 
2260 #ifdef ASSERT
2261     if (in_regs[i].first()->is_Register()) {
2262       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2263     } else if (in_regs[i].first()->is_FloatRegister()) {
2264       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2265     }
2266     if (out_regs[c_arg].first()->is_Register()) {
2267       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2268     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2269       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2270     }
2271 #endif /* ASSERT */
2272 
2273     switch (in_sig_bt[i]) {
2274       case T_ARRAY:
2275         if (is_critical_native) {
2276           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2277           c_arg--;
2278           break;
2279         }
2280       case T_OBJECT:
2281         assert(!is_critical_native, "no oop arguments");
2282         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2283                     ((i == 0) && (!is_static)),
2284                     &receiver_offset);
2285         break;
2286       case T_VOID:
2287         break;
2288 
2289       case T_FLOAT:
2290         float_move(masm, in_regs[i], out_regs[c_arg]);
2291         break;
2292 
2293       case T_DOUBLE:
2294         assert( i + 1 < total_in_args &&
2295                 in_sig_bt[i + 1] == T_VOID &&
2296                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2297         double_move(masm, in_regs[i], out_regs[c_arg]);
2298         break;
2299 
2300       case T_LONG :
2301         long_move(masm, in_regs[i], out_regs[c_arg]);
2302         break;
2303 
2304       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2305 
2306       default:
2307         move32_64(masm, in_regs[i], out_regs[c_arg]);
2308     }
2309   }
2310 
2311   // Pre-load a static method's oop into O1.  Used both by locking code and
2312   // the normal JNI call code.
2313   if (method->is_static() && !is_critical_native) {
2314     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
2315 
2316     // Now handlize the static class mirror in O1.  It's known not-null.
2317     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2318     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2319     __ add(SP, klass_offset + STACK_BIAS, O1);
2320   }
2321 
2322 
2323   const Register L6_handle = L6;
2324 
2325   if (method->is_synchronized()) {
2326     assert(!is_critical_native, "unhandled");
2327     __ mov(O1, L6_handle);
2328   }
2329 
2330   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2331   // except O6/O7. So if we must call out we must push a new frame. We immediately
2332   // push a new frame and flush the windows.
2333 #ifdef _LP64
2334   intptr_t thepc = (intptr_t) __ pc();
2335   {
2336     address here = __ pc();
2337     // Call the next instruction
2338     __ call(here + 8, relocInfo::none);
2339     __ delayed()->nop();
2340   }
2341 #else
2342   intptr_t thepc = __ load_pc_address(O7, 0);
2343 #endif /* _LP64 */
2344 
2345   // We use the same pc/oopMap repeatedly when we call out
2346   oop_maps->add_gc_map(thepc - start, map);
2347 
2348   // O7 now has the pc loaded that we will use when we finally call to native.
2349 
2350   // Save thread in L7; it crosses a bunch of VM calls below
2351   // Don't use save_thread because it smashes G2 and we merely
2352   // want to save a copy
2353   __ mov(G2_thread, L7_thread_cache);
2354 
2355 
2356   // If we create an inner frame once is plenty
2357   // when we create it we must also save G2_thread
2358   bool inner_frame_created = false;
2359 
2360   // dtrace method entry support
2361   {
2362     SkipIfEqual skip_if(
2363       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2364     // create inner frame
2365     __ save_frame(0);
2366     __ mov(G2_thread, L7_thread_cache);
2367     __ set_metadata_constant(method(), O1);
2368     __ call_VM_leaf(L7_thread_cache,
2369          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2370          G2_thread, O1);
2371     __ restore();
2372   }
2373 
2374   // RedefineClasses() tracing support for obsolete method entry
2375   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2376     // create inner frame
2377     __ save_frame(0);
2378     __ mov(G2_thread, L7_thread_cache);
2379     __ set_metadata_constant(method(), O1);
2380     __ call_VM_leaf(L7_thread_cache,
2381          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2382          G2_thread, O1);
2383     __ restore();
2384   }
2385 
2386   // We are in the jni frame unless saved_frame is true in which case
2387   // we are in one frame deeper (the "inner" frame). If we are in the
2388   // "inner" frames the args are in the Iregs and if the jni frame then
2389   // they are in the Oregs.
2390   // If we ever need to go to the VM (for locking, jvmti) then
2391   // we will always be in the "inner" frame.
2392 
2393   // Lock a synchronized method
2394   int lock_offset = -1;         // Set if locked
2395   if (method->is_synchronized()) {
2396     Register Roop = O1;
2397     const Register L3_box = L3;
2398 
2399     create_inner_frame(masm, &inner_frame_created);
2400 
2401     __ ld_ptr(I1, 0, O1);
2402     Label done;
2403 
2404     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2405     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2406 #ifdef ASSERT
2407     if (UseBiasedLocking) {
2408       // making the box point to itself will make it clear it went unused
2409       // but also be obviously invalid
2410       __ st_ptr(L3_box, L3_box, 0);
2411     }
2412 #endif // ASSERT
2413     //
2414     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2415     //
2416     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2417     __ br(Assembler::equal, false, Assembler::pt, done);
2418     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2419 
2420 
2421     // None of the above fast optimizations worked so we have to get into the
2422     // slow case of monitor enter.  Inline a special case of call_VM that
2423     // disallows any pending_exception.
2424     __ mov(Roop, O0);            // Need oop in O0
2425     __ mov(L3_box, O1);
2426 
2427     // Record last_Java_sp, in case the VM code releases the JVM lock.
2428 
2429     __ set_last_Java_frame(FP, I7);
2430 
2431     // do the call
2432     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2433     __ delayed()->mov(L7_thread_cache, O2);
2434 
2435     __ restore_thread(L7_thread_cache); // restore G2_thread
2436     __ reset_last_Java_frame();
2437 
2438 #ifdef ASSERT
2439     { Label L;
2440     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2441     __ br_null_short(O0, Assembler::pt, L);
2442     __ stop("no pending exception allowed on exit from IR::monitorenter");
2443     __ bind(L);
2444     }
2445 #endif
2446     __ bind(done);
2447   }
2448 
2449 
2450   // Finally just about ready to make the JNI call
2451 
2452   __ flushw();
2453   if (inner_frame_created) {
2454     __ restore();
2455   } else {
2456     // Store only what we need from this frame
2457     // QQQ I think that non-v9 (like we care) we don't need these saves
2458     // either as the flush traps and the current window goes too.
2459     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2460     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2461   }
2462 
2463   // get JNIEnv* which is first argument to native
2464   if (!is_critical_native) {
2465     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2466   }
2467 
2468   // Use that pc we placed in O7 a while back as the current frame anchor
2469   __ set_last_Java_frame(SP, O7);
2470 
2471   // We flushed the windows ages ago now mark them as flushed before transitioning.
2472   __ set(JavaFrameAnchor::flushed, G3_scratch);
2473   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2474 
2475   // Transition from _thread_in_Java to _thread_in_native.
2476   __ set(_thread_in_native, G3_scratch);
2477 
2478 #ifdef _LP64
2479   AddressLiteral dest(native_func);
2480   __ relocate(relocInfo::runtime_call_type);
2481   __ jumpl_to(dest, O7, O7);
2482 #else
2483   __ call(native_func, relocInfo::runtime_call_type);
2484 #endif
2485   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2486 
2487   __ restore_thread(L7_thread_cache); // restore G2_thread
2488 
2489   // Unpack native results.  For int-types, we do any needed sign-extension
2490   // and move things into I0.  The return value there will survive any VM
2491   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2492   // specially in the slow-path code.
2493   switch (ret_type) {
2494   case T_VOID:    break;        // Nothing to do!
2495   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2496   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2497   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2498   case T_LONG:
2499 #ifndef _LP64
2500                   __ mov(O1, I1);
2501 #endif
2502                   // Fall thru
2503   case T_OBJECT:                // Really a handle
2504   case T_ARRAY:
2505   case T_INT:
2506                   __ mov(O0, I0);
2507                   break;
2508   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2509   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2510   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2511   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2512     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2513   default:
2514     ShouldNotReachHere();
2515   }
2516 
2517   Label after_transition;
2518   // must we block?
2519 
2520   // Block, if necessary, before resuming in _thread_in_Java state.
2521   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2522   { Label no_block;
2523     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2524 
2525     // Switch thread to "native transition" state before reading the synchronization state.
2526     // This additional state is necessary because reading and testing the synchronization
2527     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2528     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2529     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2530     //     Thread A is resumed to finish this native method, but doesn't block here since it
2531     //     didn't see any synchronization is progress, and escapes.
2532     __ set(_thread_in_native_trans, G3_scratch);
2533     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2534     if(os::is_MP()) {
2535       if (UseMembar) {
2536         // Force this write out before the read below
2537         __ membar(Assembler::StoreLoad);
2538       } else {
2539         // Write serialization page so VM thread can do a pseudo remote membar.
2540         // We use the current thread pointer to calculate a thread specific
2541         // offset to write to within the page. This minimizes bus traffic
2542         // due to cache line collision.
2543         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2544       }
2545     }
2546     __ load_contents(sync_state, G3_scratch);
2547     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2548 
2549     Label L;
2550     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2551     __ br(Assembler::notEqual, false, Assembler::pn, L);
2552     __ delayed()->ld(suspend_state, G3_scratch);
2553     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2554     __ bind(L);
2555 
2556     // Block.  Save any potential method result value before the operation and
2557     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2558     // lets us share the oopMap we used when we went native rather the create
2559     // a distinct one for this pc
2560     //
2561     save_native_result(masm, ret_type, stack_slots);
2562     if (!is_critical_native) {
2563       __ call_VM_leaf(L7_thread_cache,
2564                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2565                       G2_thread);
2566     } else {
2567       __ call_VM_leaf(L7_thread_cache,
2568                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2569                       G2_thread);
2570     }
2571 
2572     // Restore any method result value
2573     restore_native_result(masm, ret_type, stack_slots);
2574 
2575     if (is_critical_native) {
2576       // The call above performed the transition to thread_in_Java so
2577       // skip the transition logic below.
2578       __ ba(after_transition);
2579       __ delayed()->nop();
2580     }
2581 
2582     __ bind(no_block);
2583   }
2584 
2585   // thread state is thread_in_native_trans. Any safepoint blocking has already
2586   // happened so we can now change state to _thread_in_Java.
2587   __ set(_thread_in_Java, G3_scratch);
2588   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2589   __ bind(after_transition);
2590 
2591   Label no_reguard;
2592   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2593   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2594 
2595     save_native_result(masm, ret_type, stack_slots);
2596   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2597   __ delayed()->nop();
2598 
2599   __ restore_thread(L7_thread_cache); // restore G2_thread
2600     restore_native_result(masm, ret_type, stack_slots);
2601 
2602   __ bind(no_reguard);
2603 
2604   // Handle possible exception (will unlock if necessary)
2605 
2606   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2607 
2608   // Unlock
2609   if (method->is_synchronized()) {
2610     Label done;
2611     Register I2_ex_oop = I2;
2612     const Register L3_box = L3;
2613     // Get locked oop from the handle we passed to jni
2614     __ ld_ptr(L6_handle, 0, L4);
2615     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2616     // Must save pending exception around the slow-path VM call.  Since it's a
2617     // leaf call, the pending exception (if any) can be kept in a register.
2618     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2619     // Now unlock
2620     //                       (Roop, Rmark, Rbox,   Rscratch)
2621     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2622     __ br(Assembler::equal, false, Assembler::pt, done);
2623     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2624 
2625     // save and restore any potential method result value around the unlocking
2626     // operation.  Will save in I0 (or stack for FP returns).
2627     save_native_result(masm, ret_type, stack_slots);
2628 
2629     // Must clear pending-exception before re-entering the VM.  Since this is
2630     // a leaf call, pending-exception-oop can be safely kept in a register.
2631     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2632 
2633     // slow case of monitor enter.  Inline a special case of call_VM that
2634     // disallows any pending_exception.
2635     __ mov(L3_box, O1);
2636 
2637     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2638     __ delayed()->mov(L4, O0);              // Need oop in O0
2639 
2640     __ restore_thread(L7_thread_cache); // restore G2_thread
2641 
2642 #ifdef ASSERT
2643     { Label L;
2644     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2645     __ br_null_short(O0, Assembler::pt, L);
2646     __ stop("no pending exception allowed on exit from IR::monitorexit");
2647     __ bind(L);
2648     }
2649 #endif
2650     restore_native_result(masm, ret_type, stack_slots);
2651     // check_forward_pending_exception jump to forward_exception if any pending
2652     // exception is set.  The forward_exception routine expects to see the
2653     // exception in pending_exception and not in a register.  Kind of clumsy,
2654     // since all folks who branch to forward_exception must have tested
2655     // pending_exception first and hence have it in a register already.
2656     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2657     __ bind(done);
2658   }
2659 
2660   // Tell dtrace about this method exit
2661   {
2662     SkipIfEqual skip_if(
2663       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2664     save_native_result(masm, ret_type, stack_slots);
2665     __ set_metadata_constant(method(), O1);
2666     __ call_VM_leaf(L7_thread_cache,
2667        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2668        G2_thread, O1);
2669     restore_native_result(masm, ret_type, stack_slots);
2670   }
2671 
2672   // Clear "last Java frame" SP and PC.
2673   __ verify_thread(); // G2_thread must be correct
2674   __ reset_last_Java_frame();
2675 
2676   // Unpack oop result
2677   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2678       Label L;
2679       __ addcc(G0, I0, G0);
2680       __ brx(Assembler::notZero, true, Assembler::pt, L);
2681       __ delayed()->ld_ptr(I0, 0, I0);
2682       __ mov(G0, I0);
2683       __ bind(L);
2684       __ verify_oop(I0);
2685   }
2686 
2687   if (!is_critical_native) {
2688     // reset handle block
2689     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2690     __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2691 
2692     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2693     check_forward_pending_exception(masm, G3_scratch);
2694   }
2695 
2696 
2697   // Return
2698 
2699 #ifndef _LP64
2700   if (ret_type == T_LONG) {
2701 
2702     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2703     __ sllx(I0, 32, G1);          // Shift bits into high G1
2704     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2705     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2706   }
2707 #endif
2708 
2709   __ ret();
2710   __ delayed()->restore();
2711 
2712   __ flush();
2713 
2714   nmethod *nm = nmethod::new_native_nmethod(method,
2715                                             compile_id,
2716                                             masm->code(),
2717                                             vep_offset,
2718                                             frame_complete,
2719                                             stack_slots / VMRegImpl::slots_per_word,
2720                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2721                                             in_ByteSize(lock_offset),
2722                                             oop_maps);
2723 
2724   if (is_critical_native) {
2725     nm->set_lazy_critical_native(true);
2726   }
2727   return nm;
2728 
2729 }
2730 
2731 #ifdef HAVE_DTRACE_H
2732 // ---------------------------------------------------------------------------
2733 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2734 // in the Java compiled code convention, marshals them to the native
2735 // abi and then leaves nops at the position you would expect to call a native
2736 // function. When the probe is enabled the nops are replaced with a trap
2737 // instruction that dtrace inserts and the trace will cause a notification
2738 // to dtrace.
2739 //
2740 // The probes are only able to take primitive types and java/lang/String as
2741 // arguments.  No other java types are allowed. Strings are converted to utf8
2742 // strings so that from dtrace point of view java strings are converted to C
2743 // strings. There is an arbitrary fixed limit on the total space that a method
2744 // can use for converting the strings. (256 chars per string in the signature).
2745 // So any java string larger then this is truncated.
2746 
2747 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2748 static bool offsets_initialized = false;
2749 
2750 nmethod *SharedRuntime::generate_dtrace_nmethod(
2751     MacroAssembler *masm, methodHandle method) {
2752 
2753 
2754   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2755   // be single threaded in this method.
2756   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2757 
2758   // Fill in the signature array, for the calling-convention call.
2759   int total_args_passed = method->size_of_parameters();
2760 
2761   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2762   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2763 
2764   // The signature we are going to use for the trap that dtrace will see
2765   // java/lang/String is converted. We drop "this" and any other object
2766   // is converted to NULL.  (A one-slot java/lang/Long object reference
2767   // is converted to a two-slot long, which is why we double the allocation).
2768   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2769   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2770 
2771   int i=0;
2772   int total_strings = 0;
2773   int first_arg_to_pass = 0;
2774   int total_c_args = 0;
2775 
2776   // Skip the receiver as dtrace doesn't want to see it
2777   if( !method->is_static() ) {
2778     in_sig_bt[i++] = T_OBJECT;
2779     first_arg_to_pass = 1;
2780   }
2781 
2782   SignatureStream ss(method->signature());
2783   for ( ; !ss.at_return_type(); ss.next()) {
2784     BasicType bt = ss.type();
2785     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2786     out_sig_bt[total_c_args++] = bt;
2787     if( bt == T_OBJECT) {
2788       Symbol* s = ss.as_symbol_or_null();
2789       if (s == vmSymbols::java_lang_String()) {
2790         total_strings++;
2791         out_sig_bt[total_c_args-1] = T_ADDRESS;
2792       } else if (s == vmSymbols::java_lang_Boolean() ||
2793                  s == vmSymbols::java_lang_Byte()) {
2794         out_sig_bt[total_c_args-1] = T_BYTE;
2795       } else if (s == vmSymbols::java_lang_Character() ||
2796                  s == vmSymbols::java_lang_Short()) {
2797         out_sig_bt[total_c_args-1] = T_SHORT;
2798       } else if (s == vmSymbols::java_lang_Integer() ||
2799                  s == vmSymbols::java_lang_Float()) {
2800         out_sig_bt[total_c_args-1] = T_INT;
2801       } else if (s == vmSymbols::java_lang_Long() ||
2802                  s == vmSymbols::java_lang_Double()) {
2803         out_sig_bt[total_c_args-1] = T_LONG;
2804         out_sig_bt[total_c_args++] = T_VOID;
2805       }
2806     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2807       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2808       // We convert double to long
2809       out_sig_bt[total_c_args-1] = T_LONG;
2810       out_sig_bt[total_c_args++] = T_VOID;
2811     } else if ( bt == T_FLOAT) {
2812       // We convert float to int
2813       out_sig_bt[total_c_args-1] = T_INT;
2814     }
2815   }
2816 
2817   assert(i==total_args_passed, "validly parsed signature");
2818 
2819   // Now get the compiled-Java layout as input arguments
2820   int comp_args_on_stack;
2821   comp_args_on_stack = SharedRuntime::java_calling_convention(
2822       in_sig_bt, in_regs, total_args_passed, false);
2823 
2824   // We have received a description of where all the java arg are located
2825   // on entry to the wrapper. We need to convert these args to where
2826   // the a  native (non-jni) function would expect them. To figure out
2827   // where they go we convert the java signature to a C signature and remove
2828   // T_VOID for any long/double we might have received.
2829 
2830 
2831   // Now figure out where the args must be stored and how much stack space
2832   // they require (neglecting out_preserve_stack_slots but space for storing
2833   // the 1st six register arguments). It's weird see int_stk_helper.
2834   //
2835   int out_arg_slots;
2836   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2837 
2838   // Calculate the total number of stack slots we will need.
2839 
2840   // First count the abi requirement plus all of the outgoing args
2841   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2842 
2843   // Plus a temp for possible converion of float/double/long register args
2844 
2845   int conversion_temp = stack_slots;
2846   stack_slots += 2;
2847 
2848 
2849   // Now space for the string(s) we must convert
2850 
2851   int string_locs = stack_slots;
2852   stack_slots += total_strings *
2853                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2854 
2855   // Ok The space we have allocated will look like:
2856   //
2857   //
2858   // FP-> |                     |
2859   //      |---------------------|
2860   //      | string[n]           |
2861   //      |---------------------| <- string_locs[n]
2862   //      | string[n-1]         |
2863   //      |---------------------| <- string_locs[n-1]
2864   //      | ...                 |
2865   //      | ...                 |
2866   //      |---------------------| <- string_locs[1]
2867   //      | string[0]           |
2868   //      |---------------------| <- string_locs[0]
2869   //      | temp                |
2870   //      |---------------------| <- conversion_temp
2871   //      | outbound memory     |
2872   //      | based arguments     |
2873   //      |                     |
2874   //      |---------------------|
2875   //      |                     |
2876   // SP-> | out_preserved_slots |
2877   //
2878   //
2879 
2880   // Now compute actual number of stack words we need rounding to make
2881   // stack properly aligned.
2882   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2883 
2884   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2885 
2886   intptr_t start = (intptr_t)__ pc();
2887 
2888   // First thing make an ic check to see if we should even be here
2889 
2890   {
2891     Label L;
2892     const Register temp_reg = G3_scratch;
2893     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2894     __ verify_oop(O0);
2895     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2896     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2897 
2898     __ jump_to(ic_miss, temp_reg);
2899     __ delayed()->nop();
2900     __ align(CodeEntryAlignment);
2901     __ bind(L);
2902   }
2903 
2904   int vep_offset = ((intptr_t)__ pc()) - start;
2905 
2906 
2907   // The instruction at the verified entry point must be 5 bytes or longer
2908   // because it can be patched on the fly by make_non_entrant. The stack bang
2909   // instruction fits that requirement.
2910 
2911   // Generate stack overflow check before creating frame
2912   __ generate_stack_overflow_check(stack_size);
2913 
2914   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2915          "valid size for make_non_entrant");
2916 
2917   // Generate a new frame for the wrapper.
2918   __ save(SP, -stack_size, SP);
2919 
2920   // Frame is now completed as far a size and linkage.
2921 
2922   int frame_complete = ((intptr_t)__ pc()) - start;
2923 
2924 #ifdef ASSERT
2925   bool reg_destroyed[RegisterImpl::number_of_registers];
2926   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2927   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2928     reg_destroyed[r] = false;
2929   }
2930   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2931     freg_destroyed[f] = false;
2932   }
2933 
2934 #endif /* ASSERT */
2935 
2936   VMRegPair zero;
2937   const Register g0 = G0; // without this we get a compiler warning (why??)
2938   zero.set2(g0->as_VMReg());
2939 
2940   int c_arg, j_arg;
2941 
2942   Register conversion_off = noreg;
2943 
2944   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2945        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2946 
2947     VMRegPair src = in_regs[j_arg];
2948     VMRegPair dst = out_regs[c_arg];
2949 
2950 #ifdef ASSERT
2951     if (src.first()->is_Register()) {
2952       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2953     } else if (src.first()->is_FloatRegister()) {
2954       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2955                                                FloatRegisterImpl::S)], "ack!");
2956     }
2957     if (dst.first()->is_Register()) {
2958       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2959     } else if (dst.first()->is_FloatRegister()) {
2960       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2961                                                  FloatRegisterImpl::S)] = true;
2962     }
2963 #endif /* ASSERT */
2964 
2965     switch (in_sig_bt[j_arg]) {
2966       case T_ARRAY:
2967       case T_OBJECT:
2968         {
2969           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2970               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2971             // need to unbox a one-slot value
2972             Register in_reg = L0;
2973             Register tmp = L2;
2974             if ( src.first()->is_reg() ) {
2975               in_reg = src.first()->as_Register();
2976             } else {
2977               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2978                      "must be");
2979               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2980             }
2981             // If the final destination is an acceptable register
2982             if ( dst.first()->is_reg() ) {
2983               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2984                 tmp = dst.first()->as_Register();
2985               }
2986             }
2987 
2988             Label skipUnbox;
2989             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2990               __ mov(G0, tmp->successor());
2991             }
2992             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2993             __ delayed()->mov(G0, tmp);
2994 
2995             BasicType bt = out_sig_bt[c_arg];
2996             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2997             switch (bt) {
2998                 case T_BYTE:
2999                   __ ldub(in_reg, box_offset, tmp); break;
3000                 case T_SHORT:
3001                   __ lduh(in_reg, box_offset, tmp); break;
3002                 case T_INT:
3003                   __ ld(in_reg, box_offset, tmp); break;
3004                 case T_LONG:
3005                   __ ld_long(in_reg, box_offset, tmp); break;
3006                 default: ShouldNotReachHere();
3007             }
3008 
3009             __ bind(skipUnbox);
3010             // If tmp wasn't final destination copy to final destination
3011             if (tmp == L2) {
3012               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
3013               if (out_sig_bt[c_arg] == T_LONG) {
3014                 long_move(masm, tmp_as_VM, dst);
3015               } else {
3016                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
3017               }
3018             }
3019             if (out_sig_bt[c_arg] == T_LONG) {
3020               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3021               ++c_arg; // move over the T_VOID to keep the loop indices in sync
3022             }
3023           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
3024             Register s =
3025                 src.first()->is_reg() ? src.first()->as_Register() : L2;
3026             Register d =
3027                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3028 
3029             // We store the oop now so that the conversion pass can reach
3030             // while in the inner frame. This will be the only store if
3031             // the oop is NULL.
3032             if (s != L2) {
3033               // src is register
3034               if (d != L2) {
3035                 // dst is register
3036                 __ mov(s, d);
3037               } else {
3038                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
3039                           STACK_BIAS), "must be");
3040                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
3041               }
3042             } else {
3043                 // src not a register
3044                 assert(Assembler::is_simm13(reg2offset(src.first()) +
3045                            STACK_BIAS), "must be");
3046                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
3047                 if (d == L2) {
3048                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
3049                              STACK_BIAS), "must be");
3050                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
3051                 }
3052             }
3053           } else if (out_sig_bt[c_arg] != T_VOID) {
3054             // Convert the arg to NULL
3055             if (dst.first()->is_reg()) {
3056               __ mov(G0, dst.first()->as_Register());
3057             } else {
3058               assert(Assembler::is_simm13(reg2offset(dst.first()) +
3059                          STACK_BIAS), "must be");
3060               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
3061             }
3062           }
3063         }
3064         break;
3065       case T_VOID:
3066         break;
3067 
3068       case T_FLOAT:
3069         if (src.first()->is_stack()) {
3070           // Stack to stack/reg is simple
3071           move32_64(masm, src, dst);
3072         } else {
3073           if (dst.first()->is_reg()) {
3074             // freg -> reg
3075             int off =
3076               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3077             Register d = dst.first()->as_Register();
3078             if (Assembler::is_simm13(off)) {
3079               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3080                      SP, off);
3081               __ ld(SP, off, d);
3082             } else {
3083               if (conversion_off == noreg) {
3084                 __ set(off, L6);
3085                 conversion_off = L6;
3086               }
3087               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3088                      SP, conversion_off);
3089               __ ld(SP, conversion_off , d);
3090             }
3091           } else {
3092             // freg -> mem
3093             int off = STACK_BIAS + reg2offset(dst.first());
3094             if (Assembler::is_simm13(off)) {
3095               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3096                      SP, off);
3097             } else {
3098               if (conversion_off == noreg) {
3099                 __ set(off, L6);
3100                 conversion_off = L6;
3101               }
3102               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3103                      SP, conversion_off);
3104             }
3105           }
3106         }
3107         break;
3108 
3109       case T_DOUBLE:
3110         assert( j_arg + 1 < total_args_passed &&
3111                 in_sig_bt[j_arg + 1] == T_VOID &&
3112                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
3113         if (src.first()->is_stack()) {
3114           // Stack to stack/reg is simple
3115           long_move(masm, src, dst);
3116         } else {
3117           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3118 
3119           // Destination could be an odd reg on 32bit in which case
3120           // we can't load direct to the destination.
3121 
3122           if (!d->is_even() && wordSize == 4) {
3123             d = L2;
3124           }
3125           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3126           if (Assembler::is_simm13(off)) {
3127             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3128                    SP, off);
3129             __ ld_long(SP, off, d);
3130           } else {
3131             if (conversion_off == noreg) {
3132               __ set(off, L6);
3133               conversion_off = L6;
3134             }
3135             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3136                    SP, conversion_off);
3137             __ ld_long(SP, conversion_off, d);
3138           }
3139           if (d == L2) {
3140             long_move(masm, reg64_to_VMRegPair(L2), dst);
3141           }
3142         }
3143         break;
3144 
3145       case T_LONG :
3146         // 32bit can't do a split move of something like g1 -> O0, O1
3147         // so use a memory temp
3148         if (src.is_single_phys_reg() && wordSize == 4) {
3149           Register tmp = L2;
3150           if (dst.first()->is_reg() &&
3151               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
3152             tmp = dst.first()->as_Register();
3153           }
3154 
3155           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3156           if (Assembler::is_simm13(off)) {
3157             __ stx(src.first()->as_Register(), SP, off);
3158             __ ld_long(SP, off, tmp);
3159           } else {
3160             if (conversion_off == noreg) {
3161               __ set(off, L6);
3162               conversion_off = L6;
3163             }
3164             __ stx(src.first()->as_Register(), SP, conversion_off);
3165             __ ld_long(SP, conversion_off, tmp);
3166           }
3167 
3168           if (tmp == L2) {
3169             long_move(masm, reg64_to_VMRegPair(L2), dst);
3170           }
3171         } else {
3172           long_move(masm, src, dst);
3173         }
3174         break;
3175 
3176       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3177 
3178       default:
3179         move32_64(masm, src, dst);
3180     }
3181   }
3182 
3183 
3184   // If we have any strings we must store any register based arg to the stack
3185   // This includes any still live xmm registers too.
3186 
3187   if (total_strings > 0 ) {
3188 
3189     // protect all the arg registers
3190     __ save_frame(0);
3191     __ mov(G2_thread, L7_thread_cache);
3192     const Register L2_string_off = L2;
3193 
3194     // Get first string offset
3195     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
3196 
3197     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
3198       if (out_sig_bt[c_arg] == T_ADDRESS) {
3199 
3200         VMRegPair dst = out_regs[c_arg];
3201         const Register d = dst.first()->is_reg() ?
3202             dst.first()->as_Register()->after_save() : noreg;
3203 
3204         // It's a string the oop and it was already copied to the out arg
3205         // position
3206         if (d != noreg) {
3207           __ mov(d, O0);
3208         } else {
3209           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3210                  "must be");
3211           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
3212         }
3213         Label skip;
3214 
3215         __ br_null(O0, false, Assembler::pn, skip);
3216         __ delayed()->add(FP, L2_string_off, O1);
3217 
3218         if (d != noreg) {
3219           __ mov(O1, d);
3220         } else {
3221           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3222                  "must be");
3223           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3224         }
3225 
3226         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3227                 relocInfo::runtime_call_type);
3228         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3229 
3230         __ bind(skip);
3231 
3232       }
3233 
3234     }
3235     __ mov(L7_thread_cache, G2_thread);
3236     __ restore();
3237 
3238   }
3239 
3240 
3241   // Ok now we are done. Need to place the nop that dtrace wants in order to
3242   // patch in the trap
3243 
3244   int patch_offset = ((intptr_t)__ pc()) - start;
3245 
3246   __ nop();
3247 
3248 
3249   // Return
3250 
3251   __ ret();
3252   __ delayed()->restore();
3253 
3254   __ flush();
3255 
3256   nmethod *nm = nmethod::new_dtrace_nmethod(
3257       method, masm->code(), vep_offset, patch_offset, frame_complete,
3258       stack_slots / VMRegImpl::slots_per_word);
3259   return nm;
3260 
3261 }
3262 
3263 #endif // HAVE_DTRACE_H
3264 
3265 // this function returns the adjust size (in number of words) to a c2i adapter
3266 // activation for use during deoptimization
3267 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3268   assert(callee_locals >= callee_parameters,
3269           "test and remove; got more parms than locals");
3270   if (callee_locals < callee_parameters)
3271     return 0;                   // No adjustment for negative locals
3272   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3273   return round_to(diff, WordsPerLong);
3274 }
3275 
3276 // "Top of Stack" slots that may be unused by the calling convention but must
3277 // otherwise be preserved.
3278 // On Intel these are not necessary and the value can be zero.
3279 // On Sparc this describes the words reserved for storing a register window
3280 // when an interrupt occurs.
3281 uint SharedRuntime::out_preserve_stack_slots() {
3282   return frame::register_save_words * VMRegImpl::slots_per_word;
3283 }
3284 
3285 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3286 //
3287 // Common out the new frame generation for deopt and uncommon trap
3288 //
3289   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3290   Register        Oreturn0           = O0;
3291   Register        Oreturn1           = O1;
3292   Register        O2UnrollBlock      = O2;
3293   Register        O3array            = O3;         // Array of frame sizes (input)
3294   Register        O4array_size       = O4;         // number of frames (input)
3295   Register        O7frame_size       = O7;         // number of frames (input)
3296 
3297   __ ld_ptr(O3array, 0, O7frame_size);
3298   __ sub(G0, O7frame_size, O7frame_size);
3299   __ save(SP, O7frame_size, SP);
3300   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3301 
3302   #ifdef ASSERT
3303   // make sure that the frames are aligned properly
3304 #ifndef _LP64
3305   __ btst(wordSize*2-1, SP);
3306   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
3307 #endif
3308   #endif
3309 
3310   // Deopt needs to pass some extra live values from frame to frame
3311 
3312   if (deopt) {
3313     __ mov(Oreturn0->after_save(), Oreturn0);
3314     __ mov(Oreturn1->after_save(), Oreturn1);
3315   }
3316 
3317   __ mov(O4array_size->after_save(), O4array_size);
3318   __ sub(O4array_size, 1, O4array_size);
3319   __ mov(O3array->after_save(), O3array);
3320   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3321   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3322 
3323   #ifdef ASSERT
3324   // trash registers to show a clear pattern in backtraces
3325   __ set(0xDEAD0000, I0);
3326   __ add(I0,  2, I1);
3327   __ add(I0,  4, I2);
3328   __ add(I0,  6, I3);
3329   __ add(I0,  8, I4);
3330   // Don't touch I5 could have valuable savedSP
3331   __ set(0xDEADBEEF, L0);
3332   __ mov(L0, L1);
3333   __ mov(L0, L2);
3334   __ mov(L0, L3);
3335   __ mov(L0, L4);
3336   __ mov(L0, L5);
3337 
3338   // trash the return value as there is nothing to return yet
3339   __ set(0xDEAD0001, O7);
3340   #endif
3341 
3342   __ mov(SP, O5_savedSP);
3343 }
3344 
3345 
3346 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3347   //
3348   // loop through the UnrollBlock info and create new frames
3349   //
3350   Register        G3pcs              = G3_scratch;
3351   Register        Oreturn0           = O0;
3352   Register        Oreturn1           = O1;
3353   Register        O2UnrollBlock      = O2;
3354   Register        O3array            = O3;
3355   Register        O4array_size       = O4;
3356   Label           loop;
3357 
3358 #ifdef ASSERT
3359   // Compilers generate code that bang the stack by as much as the
3360   // interpreter would need. So this stack banging should never
3361   // trigger a fault. Verify that it does not on non product builds.
3362   if (UseStackBanging) {
3363     // Get total frame size for interpreted frames
3364     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3365     __ bang_stack_size(O4, O3, G3_scratch);
3366   }
3367 #endif
3368 
3369   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3370   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3371   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3372 
3373   // Adjust old interpreter frame to make space for new frame's extra java locals
3374   //
3375   // We capture the original sp for the transition frame only because it is needed in
3376   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3377   // every interpreter frame captures a savedSP it is only needed at the transition
3378   // (fortunately). If we had to have it correct everywhere then we would need to
3379   // be told the sp_adjustment for each frame we create. If the frame size array
3380   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3381   // for each frame we create and keep up the illusion every where.
3382   //
3383 
3384   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3385   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3386   __ sub(SP, O7, SP);
3387 
3388 #ifdef ASSERT
3389   // make sure that there is at least one entry in the array
3390   __ tst(O4array_size);
3391   __ breakpoint_trap(Assembler::zero, Assembler::icc);
3392 #endif
3393 
3394   // Now push the new interpreter frames
3395   __ bind(loop);
3396 
3397   // allocate a new frame, filling the registers
3398 
3399   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3400 
3401   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
3402   __ delayed()->add(O3array, wordSize, O3array);
3403   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3404 
3405 }
3406 
3407 //------------------------------generate_deopt_blob----------------------------
3408 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3409 // instead.
3410 void SharedRuntime::generate_deopt_blob() {
3411   // allocate space for the code
3412   ResourceMark rm;
3413   // setup code generation tools
3414   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3415 #ifdef ASSERT
3416   if (UseStackBanging) {
3417     pad += StackShadowPages*16 + 32;
3418   }
3419 #endif
3420 #ifdef _LP64
3421   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3422 #else
3423   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3424   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3425   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3426 #endif /* _LP64 */
3427   MacroAssembler* masm               = new MacroAssembler(&buffer);
3428   FloatRegister   Freturn0           = F0;
3429   Register        Greturn1           = G1;
3430   Register        Oreturn0           = O0;
3431   Register        Oreturn1           = O1;
3432   Register        O2UnrollBlock      = O2;
3433   Register        L0deopt_mode       = L0;
3434   Register        G4deopt_mode       = G4_scratch;
3435   int             frame_size_words;
3436   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3437 #if !defined(_LP64) && defined(COMPILER2)
3438   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3439 #endif
3440   Label           cont;
3441 
3442   OopMapSet *oop_maps = new OopMapSet();
3443 
3444   //
3445   // This is the entry point for code which is returning to a de-optimized
3446   // frame.
3447   // The steps taken by this frame are as follows:
3448   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3449   //     and all potentially live registers (at a pollpoint many registers can be live).
3450   //
3451   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3452   //     returns information about the number and size of interpreter frames
3453   //     which are equivalent to the frame which is being deoptimized)
3454   //   - deallocate the unpack frame, restoring only results values. Other
3455   //     volatile registers will now be captured in the vframeArray as needed.
3456   //   - deallocate the deoptimization frame
3457   //   - in a loop using the information returned in the previous step
3458   //     push new interpreter frames (take care to propagate the return
3459   //     values through each new frame pushed)
3460   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3461   //   - call the C routine: Deoptimization::unpack_frames (this function
3462   //     lays out values on the interpreter frame which was just created)
3463   //   - deallocate the dummy unpack_frame
3464   //   - ensure that all the return values are correctly set and then do
3465   //     a return to the interpreter entry point
3466   //
3467   // Refer to the following methods for more information:
3468   //   - Deoptimization::fetch_unroll_info
3469   //   - Deoptimization::unpack_frames
3470 
3471   OopMap* map = NULL;
3472 
3473   int start = __ offset();
3474 
3475   // restore G2, the trampoline destroyed it
3476   __ get_thread();
3477 
3478   // On entry we have been called by the deoptimized nmethod with a call that
3479   // replaced the original call (or safepoint polling location) so the deoptimizing
3480   // pc is now in O7. Return values are still in the expected places
3481 
3482   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3483   __ ba(cont);
3484   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3485 
3486   int exception_offset = __ offset() - start;
3487 
3488   // restore G2, the trampoline destroyed it
3489   __ get_thread();
3490 
3491   // On entry we have been jumped to by the exception handler (or exception_blob
3492   // for server).  O0 contains the exception oop and O7 contains the original
3493   // exception pc.  So if we push a frame here it will look to the
3494   // stack walking code (fetch_unroll_info) just like a normal call so
3495   // state will be extracted normally.
3496 
3497   // save exception oop in JavaThread and fall through into the
3498   // exception_in_tls case since they are handled in same way except
3499   // for where the pending exception is kept.
3500   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3501 
3502   //
3503   // Vanilla deoptimization with an exception pending in exception_oop
3504   //
3505   int exception_in_tls_offset = __ offset() - start;
3506 
3507   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3508   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3509 
3510   // Restore G2_thread
3511   __ get_thread();
3512 
3513 #ifdef ASSERT
3514   {
3515     // verify that there is really an exception oop in exception_oop
3516     Label has_exception;
3517     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3518     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3519     __ stop("no exception in thread");
3520     __ bind(has_exception);
3521 
3522     // verify that there is no pending exception
3523     Label no_pending_exception;
3524     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3525     __ ld_ptr(exception_addr, Oexception);
3526     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3527     __ stop("must not have pending exception here");
3528     __ bind(no_pending_exception);
3529   }
3530 #endif
3531 
3532   __ ba(cont);
3533   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3534 
3535   //
3536   // Reexecute entry, similar to c2 uncommon trap
3537   //
3538   int reexecute_offset = __ offset() - start;
3539 
3540   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3541   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3542 
3543   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3544 
3545   __ bind(cont);
3546 
3547   __ set_last_Java_frame(SP, noreg);
3548 
3549   // do the call by hand so we can get the oopmap
3550 
3551   __ mov(G2_thread, L7_thread_cache);
3552   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3553   __ delayed()->mov(G2_thread, O0);
3554 
3555   // Set an oopmap for the call site this describes all our saved volatile registers
3556 
3557   oop_maps->add_gc_map( __ offset()-start, map);
3558 
3559   __ mov(L7_thread_cache, G2_thread);
3560 
3561   __ reset_last_Java_frame();
3562 
3563   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3564   // so this move will survive
3565 
3566   __ mov(L0deopt_mode, G4deopt_mode);
3567 
3568   __ mov(O0, O2UnrollBlock->after_save());
3569 
3570   RegisterSaver::restore_result_registers(masm);
3571 
3572   Label noException;
3573   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3574 
3575   // Move the pending exception from exception_oop to Oexception so
3576   // the pending exception will be picked up the interpreter.
3577   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3578   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3579   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
3580   __ bind(noException);
3581 
3582   // deallocate the deoptimization frame taking care to preserve the return values
3583   __ mov(Oreturn0,     Oreturn0->after_save());
3584   __ mov(Oreturn1,     Oreturn1->after_save());
3585   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3586   __ restore();
3587 
3588   // Allocate new interpreter frame(s) and possible c2i adapter frame
3589 
3590   make_new_frames(masm, true);
3591 
3592   // push a dummy "unpack_frame" taking care of float return values and
3593   // call Deoptimization::unpack_frames to have the unpacker layout
3594   // information in the interpreter frames just created and then return
3595   // to the interpreter entry point
3596   __ save(SP, -frame_size_words*wordSize, SP);
3597   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3598 #if !defined(_LP64)
3599 #if defined(COMPILER2)
3600   // 32-bit 1-register longs return longs in G1
3601   __ stx(Greturn1, saved_Greturn1_addr);
3602 #endif
3603   __ set_last_Java_frame(SP, noreg);
3604   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3605 #else
3606   // LP64 uses g4 in set_last_Java_frame
3607   __ mov(G4deopt_mode, O1);
3608   __ set_last_Java_frame(SP, G0);
3609   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3610 #endif
3611   __ reset_last_Java_frame();
3612   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3613 
3614 #if !defined(_LP64) && defined(COMPILER2)
3615   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3616   // I0/I1 if the return value is long.
3617   Label not_long;
3618   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3619   __ ldd(saved_Greturn1_addr,I0);
3620   __ bind(not_long);
3621 #endif
3622   __ ret();
3623   __ delayed()->restore();
3624 
3625   masm->flush();
3626   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3627   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3628 }
3629 
3630 #ifdef COMPILER2
3631 
3632 //------------------------------generate_uncommon_trap_blob--------------------
3633 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3634 // instead.
3635 void SharedRuntime::generate_uncommon_trap_blob() {
3636   // allocate space for the code
3637   ResourceMark rm;
3638   // setup code generation tools
3639   int pad = VerifyThread ? 512 : 0;
3640 #ifdef ASSERT
3641   if (UseStackBanging) {
3642     pad += StackShadowPages*16 + 32;
3643   }
3644 #endif
3645 #ifdef _LP64
3646   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3647 #else
3648   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3649   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3650   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3651 #endif
3652   MacroAssembler* masm               = new MacroAssembler(&buffer);
3653   Register        O2UnrollBlock      = O2;
3654   Register        O2klass_index      = O2;
3655 
3656   //
3657   // This is the entry point for all traps the compiler takes when it thinks
3658   // it cannot handle further execution of compilation code. The frame is
3659   // deoptimized in these cases and converted into interpreter frames for
3660   // execution
3661   // The steps taken by this frame are as follows:
3662   //   - push a fake "unpack_frame"
3663   //   - call the C routine Deoptimization::uncommon_trap (this function
3664   //     packs the current compiled frame into vframe arrays and returns
3665   //     information about the number and size of interpreter frames which
3666   //     are equivalent to the frame which is being deoptimized)
3667   //   - deallocate the "unpack_frame"
3668   //   - deallocate the deoptimization frame
3669   //   - in a loop using the information returned in the previous step
3670   //     push interpreter frames;
3671   //   - create a dummy "unpack_frame"
3672   //   - call the C routine: Deoptimization::unpack_frames (this function
3673   //     lays out values on the interpreter frame which was just created)
3674   //   - deallocate the dummy unpack_frame
3675   //   - return to the interpreter entry point
3676   //
3677   //  Refer to the following methods for more information:
3678   //   - Deoptimization::uncommon_trap
3679   //   - Deoptimization::unpack_frame
3680 
3681   // the unloaded class index is in O0 (first parameter to this blob)
3682 
3683   // push a dummy "unpack_frame"
3684   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3685   // vframe array and return the UnrollBlock information
3686   __ save_frame(0);
3687   __ set_last_Java_frame(SP, noreg);
3688   __ mov(I0, O2klass_index);
3689   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3690   __ reset_last_Java_frame();
3691   __ mov(O0, O2UnrollBlock->after_save());
3692   __ restore();
3693 
3694   // deallocate the deoptimized frame taking care to preserve the return values
3695   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3696   __ restore();
3697 
3698   // Allocate new interpreter frame(s) and possible c2i adapter frame
3699 
3700   make_new_frames(masm, false);
3701 
3702   // push a dummy "unpack_frame" taking care of float return values and
3703   // call Deoptimization::unpack_frames to have the unpacker layout
3704   // information in the interpreter frames just created and then return
3705   // to the interpreter entry point
3706   __ save_frame(0);
3707   __ set_last_Java_frame(SP, noreg);
3708   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3709   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3710   __ reset_last_Java_frame();
3711   __ ret();
3712   __ delayed()->restore();
3713 
3714   masm->flush();
3715   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3716 }
3717 
3718 #endif // COMPILER2
3719 
3720 //------------------------------generate_handler_blob-------------------
3721 //
3722 // Generate a special Compile2Runtime blob that saves all registers, and sets
3723 // up an OopMap.
3724 //
3725 // This blob is jumped to (via a breakpoint and the signal handler) from a
3726 // safepoint in compiled code.  On entry to this blob, O7 contains the
3727 // address in the original nmethod at which we should resume normal execution.
3728 // Thus, this blob looks like a subroutine which must preserve lots of
3729 // registers and return normally.  Note that O7 is never register-allocated,
3730 // so it is guaranteed to be free here.
3731 //
3732 
3733 // The hardest part of what this blob must do is to save the 64-bit %o
3734 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3735 // an interrupt will chop off their heads.  Making space in the caller's frame
3736 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3737 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3738 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3739 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3740 // Tricky, tricky, tricky...
3741 
3742 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3743   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3744 
3745   // allocate space for the code
3746   ResourceMark rm;
3747   // setup code generation tools
3748   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3749   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3750   // even larger with TraceJumps
3751   int pad = TraceJumps ? 512 : 0;
3752   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3753   MacroAssembler* masm                = new MacroAssembler(&buffer);
3754   int             frame_size_words;
3755   OopMapSet *oop_maps = new OopMapSet();
3756   OopMap* map = NULL;
3757 
3758   int start = __ offset();
3759 
3760   bool cause_return = (poll_type == POLL_AT_RETURN);
3761   // If this causes a return before the processing, then do a "restore"
3762   if (cause_return) {
3763     __ restore();
3764   } else {
3765     // Make it look like we were called via the poll
3766     // so that frame constructor always sees a valid return address
3767     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3768     __ sub(O7, frame::pc_return_offset, O7);
3769   }
3770 
3771   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3772 
3773   // setup last_Java_sp (blows G4)
3774   __ set_last_Java_frame(SP, noreg);
3775 
3776   // call into the runtime to handle illegal instructions exception
3777   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3778   __ mov(G2_thread, O0);
3779   __ save_thread(L7_thread_cache);
3780   __ call(call_ptr);
3781   __ delayed()->nop();
3782 
3783   // Set an oopmap for the call site.
3784   // We need this not only for callee-saved registers, but also for volatile
3785   // registers that the compiler might be keeping live across a safepoint.
3786 
3787   oop_maps->add_gc_map( __ offset() - start, map);
3788 
3789   __ restore_thread(L7_thread_cache);
3790   // clear last_Java_sp
3791   __ reset_last_Java_frame();
3792 
3793   // Check for exceptions
3794   Label pending;
3795 
3796   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3797   __ br_notnull_short(O1, Assembler::pn, pending);
3798 
3799   RegisterSaver::restore_live_registers(masm);
3800 
3801   // We are back the the original state on entry and ready to go.
3802 
3803   __ retl();
3804   __ delayed()->nop();
3805 
3806   // Pending exception after the safepoint
3807 
3808   __ bind(pending);
3809 
3810   RegisterSaver::restore_live_registers(masm);
3811 
3812   // We are back the the original state on entry.
3813 
3814   // Tail-call forward_exception_entry, with the issuing PC in O7,
3815   // so it looks like the original nmethod called forward_exception_entry.
3816   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3817   __ JMP(O0, 0);
3818   __ delayed()->nop();
3819 
3820   // -------------
3821   // make sure all code is generated
3822   masm->flush();
3823 
3824   // return exception blob
3825   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3826 }
3827 
3828 //
3829 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3830 //
3831 // Generate a stub that calls into vm to find out the proper destination
3832 // of a java call. All the argument registers are live at this point
3833 // but since this is generic code we don't know what they are and the caller
3834 // must do any gc of the args.
3835 //
3836 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3837   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3838 
3839   // allocate space for the code
3840   ResourceMark rm;
3841   // setup code generation tools
3842   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3843   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3844   // even larger with TraceJumps
3845   int pad = TraceJumps ? 512 : 0;
3846   CodeBuffer buffer(name, 1600 + pad, 512);
3847   MacroAssembler* masm                = new MacroAssembler(&buffer);
3848   int             frame_size_words;
3849   OopMapSet *oop_maps = new OopMapSet();
3850   OopMap* map = NULL;
3851 
3852   int start = __ offset();
3853 
3854   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3855 
3856   int frame_complete = __ offset();
3857 
3858   // setup last_Java_sp (blows G4)
3859   __ set_last_Java_frame(SP, noreg);
3860 
3861   // call into the runtime to handle illegal instructions exception
3862   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3863   __ mov(G2_thread, O0);
3864   __ save_thread(L7_thread_cache);
3865   __ call(destination, relocInfo::runtime_call_type);
3866   __ delayed()->nop();
3867 
3868   // O0 contains the address we are going to jump to assuming no exception got installed
3869 
3870   // Set an oopmap for the call site.
3871   // We need this not only for callee-saved registers, but also for volatile
3872   // registers that the compiler might be keeping live across a safepoint.
3873 
3874   oop_maps->add_gc_map( __ offset() - start, map);
3875 
3876   __ restore_thread(L7_thread_cache);
3877   // clear last_Java_sp
3878   __ reset_last_Java_frame();
3879 
3880   // Check for exceptions
3881   Label pending;
3882 
3883   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3884   __ br_notnull_short(O1, Assembler::pn, pending);
3885 
3886   // get the returned Method*
3887 
3888   __ get_vm_result_2(G5_method);
3889   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3890 
3891   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3892 
3893   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3894 
3895   RegisterSaver::restore_live_registers(masm);
3896 
3897   // We are back the the original state on entry and ready to go.
3898 
3899   __ JMP(G3, 0);
3900   __ delayed()->nop();
3901 
3902   // Pending exception after the safepoint
3903 
3904   __ bind(pending);
3905 
3906   RegisterSaver::restore_live_registers(masm);
3907 
3908   // We are back the the original state on entry.
3909 
3910   // Tail-call forward_exception_entry, with the issuing PC in O7,
3911   // so it looks like the original nmethod called forward_exception_entry.
3912   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3913   __ JMP(O0, 0);
3914   __ delayed()->nop();
3915 
3916   // -------------
3917   // make sure all code is generated
3918   masm->flush();
3919 
3920   // return the  blob
3921   // frame_size_words or bytes??
3922   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3923 }