1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111 
 112 #ifdef COMPILER2
 113   // Vectors are generated only by C2.
 114   if (is_wide_vector(MaxVectorSize)) {
 115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 116   }
 117 #endif // COMPILER2
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 120 
 121   generate_deopt_blob();
 122 
 123 #ifdef COMPILER2
 124   generate_uncommon_trap_blob();
 125 #endif // COMPILER2
 126 }
 127 
 128 #include <math.h>
 129 
 130 // Implementation of SharedRuntime
 131 
 132 #ifndef PRODUCT
 133 // For statistics
 134 int SharedRuntime::_ic_miss_ctr = 0;
 135 int SharedRuntime::_wrong_method_ctr = 0;
 136 int SharedRuntime::_resolve_static_ctr = 0;
 137 int SharedRuntime::_resolve_virtual_ctr = 0;
 138 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 139 int SharedRuntime::_implicit_null_throws = 0;
 140 int SharedRuntime::_implicit_div0_throws = 0;
 141 int SharedRuntime::_throw_null_ctr = 0;
 142 
 143 int SharedRuntime::_nof_normal_calls = 0;
 144 int SharedRuntime::_nof_optimized_calls = 0;
 145 int SharedRuntime::_nof_inlined_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_calls = 0;
 147 int SharedRuntime::_nof_static_calls = 0;
 148 int SharedRuntime::_nof_inlined_static_calls = 0;
 149 int SharedRuntime::_nof_interface_calls = 0;
 150 int SharedRuntime::_nof_optimized_interface_calls = 0;
 151 int SharedRuntime::_nof_inlined_interface_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 153 int SharedRuntime::_nof_removable_exceptions = 0;
 154 
 155 int SharedRuntime::_new_instance_ctr=0;
 156 int SharedRuntime::_new_array_ctr=0;
 157 int SharedRuntime::_multi1_ctr=0;
 158 int SharedRuntime::_multi2_ctr=0;
 159 int SharedRuntime::_multi3_ctr=0;
 160 int SharedRuntime::_multi4_ctr=0;
 161 int SharedRuntime::_multi5_ctr=0;
 162 int SharedRuntime::_mon_enter_stub_ctr=0;
 163 int SharedRuntime::_mon_exit_stub_ctr=0;
 164 int SharedRuntime::_mon_enter_ctr=0;
 165 int SharedRuntime::_mon_exit_ctr=0;
 166 int SharedRuntime::_partial_subtype_ctr=0;
 167 int SharedRuntime::_jbyte_array_copy_ctr=0;
 168 int SharedRuntime::_jshort_array_copy_ctr=0;
 169 int SharedRuntime::_jint_array_copy_ctr=0;
 170 int SharedRuntime::_jlong_array_copy_ctr=0;
 171 int SharedRuntime::_oop_array_copy_ctr=0;
 172 int SharedRuntime::_checkcast_array_copy_ctr=0;
 173 int SharedRuntime::_unsafe_array_copy_ctr=0;
 174 int SharedRuntime::_generic_array_copy_ctr=0;
 175 int SharedRuntime::_slow_array_copy_ctr=0;
 176 int SharedRuntime::_find_handler_ctr=0;
 177 int SharedRuntime::_rethrow_ctr=0;
 178 
 179 int     SharedRuntime::_ICmiss_index                    = 0;
 180 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 182 
 183 
 184 void SharedRuntime::trace_ic_miss(address at) {
 185   for (int i = 0; i < _ICmiss_index; i++) {
 186     if (_ICmiss_at[i] == at) {
 187       _ICmiss_count[i]++;
 188       return;
 189     }
 190   }
 191   int index = _ICmiss_index++;
 192   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 193   _ICmiss_at[index] = at;
 194   _ICmiss_count[index] = 1;
 195 }
 196 
 197 void SharedRuntime::print_ic_miss_histogram() {
 198   if (ICMissHistogram) {
 199     tty->print_cr ("IC Miss Histogram:");
 200     int tot_misses = 0;
 201     for (int i = 0; i < _ICmiss_index; i++) {
 202       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 203       tot_misses += _ICmiss_count[i];
 204     }
 205     tty->print_cr ("Total IC misses: %7d", tot_misses);
 206   }
 207 }
 208 #endif // PRODUCT
 209 
 210 #if INCLUDE_ALL_GCS
 211 
 212 // G1 write-barrier pre: executed before a pointer store.
 213 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 214   if (orig == NULL) {
 215     assert(false, "should be optimized out");
 216     return;
 217   }
 218   assert(orig->is_oop(true /* ignore mark word */), "Error");
 219   // store the original value that was in the field reference
 220   thread->satb_mark_queue().enqueue(orig);
 221 JRT_END
 222 
 223 // G1 write-barrier post: executed after a pointer store.
 224 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 225   thread->dirty_card_queue().enqueue(card_addr);
 226 JRT_END
 227 
 228 #endif // INCLUDE_ALL_GCS
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 232   return x * y;
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 237   if (x == min_jlong && y == CONST64(-1)) {
 238     return x;
 239   } else {
 240     return x / y;
 241   }
 242 JRT_END
 243 
 244 
 245 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 246   if (x == min_jlong && y == CONST64(-1)) {
 247     return 0;
 248   } else {
 249     return x % y;
 250   }
 251 JRT_END
 252 
 253 
 254 const juint  float_sign_mask  = 0x7FFFFFFF;
 255 const juint  float_infinity   = 0x7F800000;
 256 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 257 const julong double_infinity  = CONST64(0x7FF0000000000000);
 258 
 259 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 260 #ifdef _WIN64
 261   // 64-bit Windows on amd64 returns the wrong values for
 262   // infinity operands.
 263   union { jfloat f; juint i; } xbits, ybits;
 264   xbits.f = x;
 265   ybits.f = y;
 266   // x Mod Infinity == x unless x is infinity
 267   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 268        ((ybits.i & float_sign_mask) == float_infinity) ) {
 269     return x;
 270   }
 271 #endif
 272   return ((jfloat)fmod((double)x,(double)y));
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 277 #ifdef _WIN64
 278   union { jdouble d; julong l; } xbits, ybits;
 279   xbits.d = x;
 280   ybits.d = y;
 281   // x Mod Infinity == x unless x is infinity
 282   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 283        ((ybits.l & double_sign_mask) == double_infinity) ) {
 284     return x;
 285   }
 286 #endif
 287   return ((jdouble)fmod((double)x,(double)y));
 288 JRT_END
 289 
 290 #ifdef __SOFTFP__
 291 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 308   return x + y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 312   return x - y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 316   return x * y;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 320   return x / y;
 321 JRT_END
 322 
 323 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 324   return (jfloat)x;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 328   return (jdouble)x;
 329 JRT_END
 330 
 331 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 332   return (jdouble)x;
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 336   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 340   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 344   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 345 JRT_END
 346 
 347 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 348   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 349 JRT_END
 350 
 351 // Functions to return the opposite of the aeabi functions for nan.
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 353   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 357   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 361   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 365   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 369   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 373   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 377   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 381   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 // Intrinsics make gcc generate code for these.
 385 float  SharedRuntime::fneg(float f)   {
 386   return -f;
 387 }
 388 
 389 double SharedRuntime::dneg(double f)  {
 390   return -f;
 391 }
 392 
 393 #endif // __SOFTFP__
 394 
 395 #if defined(__SOFTFP__) || defined(E500V2)
 396 // Intrinsics make gcc generate code for these.
 397 double SharedRuntime::dabs(double f)  {
 398   return (f <= (double)0.0) ? (double)0.0 - f : f;
 399 }
 400 
 401 #endif
 402 
 403 #if defined(__SOFTFP__) || defined(PPC32)
 404 double SharedRuntime::dsqrt(double f) {
 405   return sqrt(f);
 406 }
 407 #endif
 408 
 409 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 410   if (g_isnan(x))
 411     return 0;
 412   if (x >= (jfloat) max_jint)
 413     return max_jint;
 414   if (x <= (jfloat) min_jint)
 415     return min_jint;
 416   return (jint) x;
 417 JRT_END
 418 
 419 
 420 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 421   if (g_isnan(x))
 422     return 0;
 423   if (x >= (jfloat) max_jlong)
 424     return max_jlong;
 425   if (x <= (jfloat) min_jlong)
 426     return min_jlong;
 427   return (jlong) x;
 428 JRT_END
 429 
 430 
 431 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 432   if (g_isnan(x))
 433     return 0;
 434   if (x >= (jdouble) max_jint)
 435     return max_jint;
 436   if (x <= (jdouble) min_jint)
 437     return min_jint;
 438   return (jint) x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 443   if (g_isnan(x))
 444     return 0;
 445   if (x >= (jdouble) max_jlong)
 446     return max_jlong;
 447   if (x <= (jdouble) min_jlong)
 448     return min_jlong;
 449   return (jlong) x;
 450 JRT_END
 451 
 452 
 453 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 454   return (jfloat)x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 464   return (jdouble)x;
 465 JRT_END
 466 
 467 // Exception handling across interpreter/compiler boundaries
 468 //
 469 // exception_handler_for_return_address(...) returns the continuation address.
 470 // The continuation address is the entry point of the exception handler of the
 471 // previous frame depending on the return address.
 472 
 473 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 474   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 475 
 476   // Reset method handle flag.
 477   thread->set_is_method_handle_return(false);
 478 
 479   // The fastest case first
 480   CodeBlob* blob = CodeCache::find_blob(return_address);
 481   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 482   if (nm != NULL) {
 483     // Set flag if return address is a method handle call site.
 484     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 485     // native nmethods don't have exception handlers
 486     assert(!nm->is_native_method(), "no exception handler");
 487     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 488     if (nm->is_deopt_pc(return_address)) {
 489       // If we come here because of a stack overflow, the stack may be
 490       // unguarded. Reguard the stack otherwise if we return to the
 491       // deopt blob and the stack bang causes a stack overflow we
 492       // crash.
 493       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 494       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 495       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 496       return SharedRuntime::deopt_blob()->unpack_with_exception();
 497     } else {
 498       return nm->exception_begin();
 499     }
 500   }
 501 
 502   // Entry code
 503   if (StubRoutines::returns_to_call_stub(return_address)) {
 504     return StubRoutines::catch_exception_entry();
 505   }
 506   // Interpreted code
 507   if (Interpreter::contains(return_address)) {
 508     return Interpreter::rethrow_exception_entry();
 509   }
 510 
 511   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 512   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 513 
 514 #ifndef PRODUCT
 515   { ResourceMark rm;
 516     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 517     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 518     tty->print_cr("b) other problem");
 519   }
 520 #endif // PRODUCT
 521 
 522   ShouldNotReachHere();
 523   return NULL;
 524 }
 525 
 526 
 527 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 528   return raw_exception_handler_for_return_address(thread, return_address);
 529 JRT_END
 530 
 531 
 532 address SharedRuntime::get_poll_stub(address pc) {
 533   address stub;
 534   // Look up the code blob
 535   CodeBlob *cb = CodeCache::find_blob(pc);
 536 
 537   // Should be an nmethod
 538   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 539 
 540   // Look up the relocation information
 541   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 542     "safepoint polling: type must be poll" );
 543 
 544   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 545     "Only polling locations are used for safepoint");
 546 
 547   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562 #ifndef PRODUCT
 563   if( TraceSafepoint ) {
 564     char buf[256];
 565     jio_snprintf(buf, sizeof(buf),
 566                  "... found polling page %s exception at pc = "
 567                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 568                  at_poll_return ? "return" : "loop",
 569                  (intptr_t)pc, (intptr_t)stub);
 570     tty->print_raw_cr(buf);
 571   }
 572 #endif // PRODUCT
 573   return stub;
 574 }
 575 
 576 
 577 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 578   assert(caller.is_interpreted_frame(), "");
 579   int args_size = ArgumentSizeComputer(sig).size() + 1;
 580   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 581   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 582   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 583   return result;
 584 }
 585 
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 588   if (JvmtiExport::can_post_on_exceptions()) {
 589     vframeStream vfst(thread, true);
 590     methodHandle method = methodHandle(thread, vfst.method());
 591     address bcp = method()->bcp_from(vfst.bci());
 592     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 593   }
 594   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 595 }
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 598   Handle h_exception = Exceptions::new_exception(thread, name, message);
 599   throw_and_post_jvmti_exception(thread, h_exception);
 600 }
 601 
 602 // The interpreter code to call this tracing function is only
 603 // called/generated when TraceRedefineClasses has the right bits
 604 // set. Since obsolete methods are never compiled, we don't have
 605 // to modify the compilers to generate calls to this function.
 606 //
 607 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 608     JavaThread* thread, Method* method))
 609   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 610 
 611   if (method->is_obsolete()) {
 612     // We are calling an obsolete method, but this is not necessarily
 613     // an error. Our method could have been redefined just after we
 614     // fetched the Method* from the constant pool.
 615 
 616     // RC_TRACE macro has an embedded ResourceMark
 617     RC_TRACE_WITH_THREAD(0x00001000, thread,
 618                          ("calling obsolete method '%s'",
 619                           method->name_and_sig_as_C_string()));
 620     if (RC_TRACE_ENABLED(0x00002000)) {
 621       // this option is provided to debug calls to obsolete methods
 622       guarantee(false, "faulting at call to an obsolete method.");
 623     }
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only) {
 632   assert(nm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       KlassHandle ek (THREAD, exception->klass());
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 704     tty->print_cr("   Exception:");
 705     exception->print();
 706     tty->cr();
 707     tty->print_cr(" Compiled exception table :");
 708     table.print();
 709     nm->print_code();
 710     guarantee(false, "missing exception handler");
 711     return NULL;
 712   }
 713 
 714   return nm->code_begin() + t->pco();
 715 }
 716 
 717 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 718   // These errors occur only at call sites
 719   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 720 JRT_END
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 736   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 737   // cache sites (when the callee activation is not yet set up) so we are at a call site
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 742   // We avoid using the normal exception construction in this case because
 743   // it performs an upcall to Java, and we're already out of stack space.
 744   Klass* k = SystemDictionary::StackOverflowError_klass();
 745   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 746   Handle exception (thread, exception_oop);
 747   if (StackTraceInThrowable) {
 748     java_lang_Throwable::fill_in_stack_trace(exception);
 749   }
 750   throw_and_post_jvmti_exception(thread, exception);
 751 JRT_END
 752 
 753 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 754                                                            address pc,
 755                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 756 {
 757   address target_pc = NULL;
 758 
 759   if (Interpreter::contains(pc)) {
 760 #ifdef CC_INTERP
 761     // C++ interpreter doesn't throw implicit exceptions
 762     ShouldNotReachHere();
 763 #else
 764     switch (exception_kind) {
 765       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 766       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 767       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 768       default:                      ShouldNotReachHere();
 769     }
 770 #endif // !CC_INTERP
 771   } else {
 772     switch (exception_kind) {
 773       case STACK_OVERFLOW: {
 774         // Stack overflow only occurs upon frame setup; the callee is
 775         // going to be unwound. Dispatch to a shared runtime stub
 776         // which will cause the StackOverflowError to be fabricated
 777         // and processed.
 778         // Stack overflow should never occur during deoptimization:
 779         // the compiled method bangs the stack by as much as the
 780         // interpreter would need in case of a deoptimization. The
 781         // deoptimization blob and uncommon trap blob bang the stack
 782         // in a debug VM to verify the correctness of the compiled
 783         // method stack banging.
 784         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 785         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 786         return StubRoutines::throw_StackOverflowError_entry();
 787       }
 788 
 789       case IMPLICIT_NULL: {
 790         if (VtableStubs::contains(pc)) {
 791           // We haven't yet entered the callee frame. Fabricate an
 792           // exception and begin dispatching it in the caller. Since
 793           // the caller was at a call site, it's safe to destroy all
 794           // caller-saved registers, as these entry points do.
 795           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 796 
 797           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 798           if (vt_stub == NULL) return NULL;
 799 
 800           if (vt_stub->is_abstract_method_error(pc)) {
 801             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 802             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 803             return StubRoutines::throw_AbstractMethodError_entry();
 804           } else {
 805             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 806             return StubRoutines::throw_NullPointerException_at_call_entry();
 807           }
 808         } else {
 809           CodeBlob* cb = CodeCache::find_blob(pc);
 810 
 811           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 812           if (cb == NULL) return NULL;
 813 
 814           // Exception happened in CodeCache. Must be either:
 815           // 1. Inline-cache check in C2I handler blob,
 816           // 2. Inline-cache check in nmethod, or
 817           // 3. Implicit null exception in nmethod
 818 
 819           if (!cb->is_nmethod()) {
 820             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 821             if (!is_in_blob) {
 822               cb->print();
 823               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 824             }
 825             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 826             // There is no handler here, so we will simply unwind.
 827             return StubRoutines::throw_NullPointerException_at_call_entry();
 828           }
 829 
 830           // Otherwise, it's an nmethod.  Consult its exception handlers.
 831           nmethod* nm = (nmethod*)cb;
 832           if (nm->inlinecache_check_contains(pc)) {
 833             // exception happened inside inline-cache check code
 834             // => the nmethod is not yet active (i.e., the frame
 835             // is not set up yet) => use return address pushed by
 836             // caller => don't push another return address
 837             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 838             return StubRoutines::throw_NullPointerException_at_call_entry();
 839           }
 840 
 841           if (nm->method()->is_method_handle_intrinsic()) {
 842             // exception happened inside MH dispatch code, similar to a vtable stub
 843             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 844             return StubRoutines::throw_NullPointerException_at_call_entry();
 845           }
 846 
 847 #ifndef PRODUCT
 848           _implicit_null_throws++;
 849 #endif
 850           target_pc = nm->continuation_for_implicit_exception(pc);
 851           // If there's an unexpected fault, target_pc might be NULL,
 852           // in which case we want to fall through into the normal
 853           // error handling code.
 854         }
 855 
 856         break; // fall through
 857       }
 858 
 859 
 860       case IMPLICIT_DIVIDE_BY_ZERO: {
 861         nmethod* nm = CodeCache::find_nmethod(pc);
 862         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 863 #ifndef PRODUCT
 864         _implicit_div0_throws++;
 865 #endif
 866         target_pc = nm->continuation_for_implicit_exception(pc);
 867         // If there's an unexpected fault, target_pc might be NULL,
 868         // in which case we want to fall through into the normal
 869         // error handling code.
 870         break; // fall through
 871       }
 872 
 873       default: ShouldNotReachHere();
 874     }
 875 
 876     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 877 
 878     // for AbortVMOnException flag
 879     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 880     if (exception_kind == IMPLICIT_NULL) {
 881       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 882     } else {
 883       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 884     }
 885     return target_pc;
 886   }
 887 
 888   ShouldNotReachHere();
 889   return NULL;
 890 }
 891 
 892 
 893 /**
 894  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 895  * installed in the native function entry of all native Java methods before
 896  * they get linked to their actual native methods.
 897  *
 898  * \note
 899  * This method actually never gets called!  The reason is because
 900  * the interpreter's native entries call NativeLookup::lookup() which
 901  * throws the exception when the lookup fails.  The exception is then
 902  * caught and forwarded on the return from NativeLookup::lookup() call
 903  * before the call to the native function.  This might change in the future.
 904  */
 905 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 906 {
 907   // We return a bad value here to make sure that the exception is
 908   // forwarded before we look at the return value.
 909   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 910 }
 911 JNI_END
 912 
 913 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 914   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 915 }
 916 
 917 
 918 #ifndef PRODUCT
 919 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 920   const frame f = thread->last_frame();
 921   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 922 #ifndef PRODUCT
 923   methodHandle mh(THREAD, f.interpreter_frame_method());
 924   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 925 #endif // !PRODUCT
 926   return preserve_this_value;
 927 JRT_END
 928 #endif // !PRODUCT
 929 
 930 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 931   assert(obj->is_oop(), "must be a valid oop");
 932   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 933   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 934 JRT_END
 935 
 936 
 937 jlong SharedRuntime::get_java_tid(Thread* thread) {
 938   if (thread != NULL) {
 939     if (thread->is_Java_thread()) {
 940       oop obj = ((JavaThread*)thread)->threadObj();
 941       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 942     }
 943   }
 944   return 0;
 945 }
 946 
 947 /**
 948  * This function ought to be a void function, but cannot be because
 949  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 950  * 6254741.  Once that is fixed we can remove the dummy return value.
 951  */
 952 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 953   return dtrace_object_alloc_base(Thread::current(), o, size);
 954 }
 955 
 956 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 957   assert(DTraceAllocProbes, "wrong call");
 958   Klass* klass = o->klass();
 959   Symbol* name = klass->name();
 960   HOTSPOT_OBJECT_ALLOC(
 961                    get_java_tid(thread),
 962                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 963   return 0;
 964 }
 965 
 966 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 967     JavaThread* thread, Method* method))
 968   assert(DTraceMethodProbes, "wrong call");
 969   Symbol* kname = method->klass_name();
 970   Symbol* name = method->name();
 971   Symbol* sig = method->signature();
 972   HOTSPOT_METHOD_ENTRY(
 973       get_java_tid(thread),
 974       (char *) kname->bytes(), kname->utf8_length(),
 975       (char *) name->bytes(), name->utf8_length(),
 976       (char *) sig->bytes(), sig->utf8_length());
 977   return 0;
 978 JRT_END
 979 
 980 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 981     JavaThread* thread, Method* method))
 982   assert(DTraceMethodProbes, "wrong call");
 983   Symbol* kname = method->klass_name();
 984   Symbol* name = method->name();
 985   Symbol* sig = method->signature();
 986   HOTSPOT_METHOD_RETURN(
 987       get_java_tid(thread),
 988       (char *) kname->bytes(), kname->utf8_length(),
 989       (char *) name->bytes(), name->utf8_length(),
 990       (char *) sig->bytes(), sig->utf8_length());
 991   return 0;
 992 JRT_END
 993 
 994 
 995 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 996 // for a call current in progress, i.e., arguments has been pushed on stack
 997 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 998 // vtable updates, etc.  Caller frame must be compiled.
 999 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1000   ResourceMark rm(THREAD);
1001 
1002   // last java frame on stack (which includes native call frames)
1003   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1004 
1005   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1006 }
1007 
1008 
1009 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1010 // for a call current in progress, i.e., arguments has been pushed on stack
1011 // but callee has not been invoked yet.  Caller frame must be compiled.
1012 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1013                                               vframeStream& vfst,
1014                                               Bytecodes::Code& bc,
1015                                               CallInfo& callinfo, TRAPS) {
1016   Handle receiver;
1017   Handle nullHandle;  //create a handy null handle for exception returns
1018 
1019   assert(!vfst.at_end(), "Java frame must exist");
1020 
1021   // Find caller and bci from vframe
1022   methodHandle caller(THREAD, vfst.method());
1023   int          bci   = vfst.bci();
1024 
1025   // Find bytecode
1026   Bytecode_invoke bytecode(caller, bci);
1027   bc = bytecode.invoke_code();
1028   int bytecode_index = bytecode.index();
1029 
1030   // Find receiver for non-static call
1031   if (bc != Bytecodes::_invokestatic &&
1032       bc != Bytecodes::_invokedynamic &&
1033       bc != Bytecodes::_invokehandle) {
1034     // This register map must be update since we need to find the receiver for
1035     // compiled frames. The receiver might be in a register.
1036     RegisterMap reg_map2(thread);
1037     frame stubFrame   = thread->last_frame();
1038     // Caller-frame is a compiled frame
1039     frame callerFrame = stubFrame.sender(&reg_map2);
1040 
1041     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1042     if (callee.is_null()) {
1043       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1044     }
1045     // Retrieve from a compiled argument list
1046     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1047 
1048     if (receiver.is_null()) {
1049       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1050     }
1051   }
1052 
1053   // Resolve method. This is parameterized by bytecode.
1054   constantPoolHandle constants(THREAD, caller->constants());
1055   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1056   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1057 
1058 #ifdef ASSERT
1059   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1060   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1061     assert(receiver.not_null(), "should have thrown exception");
1062     KlassHandle receiver_klass(THREAD, receiver->klass());
1063     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1064                             // klass is already loaded
1065     KlassHandle static_receiver_klass(THREAD, rk);
1066     // Method handle invokes might have been optimized to a direct call
1067     // so don't check for the receiver class.
1068     // FIXME this weakens the assert too much
1069     methodHandle callee = callinfo.selected_method();
1070     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1071            callee->is_method_handle_intrinsic() ||
1072            callee->is_compiled_lambda_form(),
1073            "actual receiver must be subclass of static receiver klass");
1074     if (receiver_klass->oop_is_instance()) {
1075       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1076         tty->print_cr("ERROR: Klass not yet initialized!!");
1077         receiver_klass()->print();
1078       }
1079       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1080     }
1081   }
1082 #endif
1083 
1084   return receiver;
1085 }
1086 
1087 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1088   ResourceMark rm(THREAD);
1089   // We need first to check if any Java activations (compiled, interpreted)
1090   // exist on the stack since last JavaCall.  If not, we need
1091   // to get the target method from the JavaCall wrapper.
1092   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1093   methodHandle callee_method;
1094   if (vfst.at_end()) {
1095     // No Java frames were found on stack since we did the JavaCall.
1096     // Hence the stack can only contain an entry_frame.  We need to
1097     // find the target method from the stub frame.
1098     RegisterMap reg_map(thread, false);
1099     frame fr = thread->last_frame();
1100     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1101     fr = fr.sender(&reg_map);
1102     assert(fr.is_entry_frame(), "must be");
1103     // fr is now pointing to the entry frame.
1104     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1105     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1106   } else {
1107     Bytecodes::Code bc;
1108     CallInfo callinfo;
1109     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1110     callee_method = callinfo.selected_method();
1111   }
1112   assert(callee_method()->is_method(), "must be");
1113   return callee_method;
1114 }
1115 
1116 // Resolves a call.
1117 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1118                                            bool is_virtual,
1119                                            bool is_optimized, TRAPS) {
1120   methodHandle callee_method;
1121   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1122   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1123     int retry_count = 0;
1124     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1125            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1126       // If has a pending exception then there is no need to re-try to
1127       // resolve this method.
1128       // If the method has been redefined, we need to try again.
1129       // Hack: we have no way to update the vtables of arrays, so don't
1130       // require that java.lang.Object has been updated.
1131 
1132       // It is very unlikely that method is redefined more than 100 times
1133       // in the middle of resolve. If it is looping here more than 100 times
1134       // means then there could be a bug here.
1135       guarantee((retry_count++ < 100),
1136                 "Could not resolve to latest version of redefined method");
1137       // method is redefined in the middle of resolve so re-try.
1138       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1139     }
1140   }
1141   return callee_method;
1142 }
1143 
1144 // Resolves a call.  The compilers generate code for calls that go here
1145 // and are patched with the real destination of the call.
1146 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1147                                            bool is_virtual,
1148                                            bool is_optimized, TRAPS) {
1149 
1150   ResourceMark rm(thread);
1151   RegisterMap cbl_map(thread, false);
1152   frame caller_frame = thread->last_frame().sender(&cbl_map);
1153 
1154   CodeBlob* caller_cb = caller_frame.cb();
1155   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1156   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1157 
1158   // make sure caller is not getting deoptimized
1159   // and removed before we are done with it.
1160   // CLEANUP - with lazy deopt shouldn't need this lock
1161   nmethodLocker caller_lock(caller_nm);
1162 
1163   // determine call info & receiver
1164   // note: a) receiver is NULL for static calls
1165   //       b) an exception is thrown if receiver is NULL for non-static calls
1166   CallInfo call_info;
1167   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1168   Handle receiver = find_callee_info(thread, invoke_code,
1169                                      call_info, CHECK_(methodHandle()));
1170   methodHandle callee_method = call_info.selected_method();
1171 
1172   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1173          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1174          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1175          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1176 
1177   // We do not patch the call site if the caller nmethod has been made non-entrant.
1178   if (!caller_nm->is_in_use()) {
1179     return callee_method;
1180   }
1181 
1182 #ifndef PRODUCT
1183   // tracing/debugging/statistics
1184   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1185                 (is_virtual) ? (&_resolve_virtual_ctr) :
1186                                (&_resolve_static_ctr);
1187   Atomic::inc(addr);
1188 
1189   if (TraceCallFixup) {
1190     ResourceMark rm(thread);
1191     tty->print("resolving %s%s (%s) call to",
1192       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1193       Bytecodes::name(invoke_code));
1194     callee_method->print_short_name(tty);
1195     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1196   }
1197 #endif
1198 
1199   // JSR 292 key invariant:
1200   // If the resolved method is a MethodHandle invoke target the call
1201   // site must be a MethodHandle call site, because the lambda form might tail-call
1202   // leaving the stack in a state unknown to either caller or callee
1203   // TODO detune for now but we might need it again
1204 //  assert(!callee_method->is_compiled_lambda_form() ||
1205 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1206 
1207   // Compute entry points. This might require generation of C2I converter
1208   // frames, so we cannot be holding any locks here. Furthermore, the
1209   // computation of the entry points is independent of patching the call.  We
1210   // always return the entry-point, but we only patch the stub if the call has
1211   // not been deoptimized.  Return values: For a virtual call this is an
1212   // (cached_oop, destination address) pair. For a static call/optimized
1213   // virtual this is just a destination address.
1214 
1215   StaticCallInfo static_call_info;
1216   CompiledICInfo virtual_call_info;
1217 
1218   // Make sure the callee nmethod does not get deoptimized and removed before
1219   // we are done patching the code.
1220   nmethod* callee_nm = callee_method->code();
1221   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1222     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1223     callee_nm = NULL;
1224   }
1225   nmethodLocker nl_callee(callee_nm);
1226 #ifdef ASSERT
1227   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1228 #endif
1229 
1230   if (is_virtual) {
1231     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1232     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1233     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1234     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1235                      is_optimized, static_bound, virtual_call_info,
1236                      CHECK_(methodHandle()));
1237   } else {
1238     // static call
1239     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1240   }
1241 
1242   // grab lock, check for deoptimization and potentially patch caller
1243   {
1244     MutexLocker ml_patch(CompiledIC_lock);
1245 
1246     // Lock blocks for safepoint during which both nmethods can change state.
1247 
1248     // Now that we are ready to patch if the Method* was redefined then
1249     // don't update call site and let the caller retry.
1250     // Don't update call site if caller nmethod has been made non-entrant
1251     // as it is a waste of time.
1252     // Don't update call site if callee nmethod was unloaded or deoptimized.
1253     // Don't update call site if callee nmethod was replaced by an other nmethod
1254     // which may happen when multiply alive nmethod (tiered compilation)
1255     // will be supported.
1256     if (!callee_method->is_old() && caller_nm->is_in_use() &&
1257         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1258 #ifdef ASSERT
1259       // We must not try to patch to jump to an already unloaded method.
1260       if (dest_entry_point != 0) {
1261         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1262         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1263                "should not call unloaded nmethod");
1264       }
1265 #endif
1266       if (is_virtual) {
1267         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1268         if (inline_cache->is_clean()) {
1269           inline_cache->set_to_monomorphic(virtual_call_info);
1270         }
1271       } else {
1272         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1273         if (ssc->is_clean()) ssc->set(static_call_info);
1274       }
1275     }
1276 
1277   } // unlock CompiledIC_lock
1278 
1279   return callee_method;
1280 }
1281 
1282 
1283 // Inline caches exist only in compiled code
1284 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1285 #ifdef ASSERT
1286   RegisterMap reg_map(thread, false);
1287   frame stub_frame = thread->last_frame();
1288   assert(stub_frame.is_runtime_frame(), "sanity check");
1289   frame caller_frame = stub_frame.sender(&reg_map);
1290   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1291 #endif /* ASSERT */
1292 
1293   methodHandle callee_method;
1294   JRT_BLOCK
1295     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1296     // Return Method* through TLS
1297     thread->set_vm_result_2(callee_method());
1298   JRT_BLOCK_END
1299   // return compiled code entry point after potential safepoints
1300   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1301   return callee_method->verified_code_entry();
1302 JRT_END
1303 
1304 
1305 // Handle call site that has been made non-entrant
1306 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1307   // 6243940 We might end up in here if the callee is deoptimized
1308   // as we race to call it.  We don't want to take a safepoint if
1309   // the caller was interpreted because the caller frame will look
1310   // interpreted to the stack walkers and arguments are now
1311   // "compiled" so it is much better to make this transition
1312   // invisible to the stack walking code. The i2c path will
1313   // place the callee method in the callee_target. It is stashed
1314   // there because if we try and find the callee by normal means a
1315   // safepoint is possible and have trouble gc'ing the compiled args.
1316   RegisterMap reg_map(thread, false);
1317   frame stub_frame = thread->last_frame();
1318   assert(stub_frame.is_runtime_frame(), "sanity check");
1319   frame caller_frame = stub_frame.sender(&reg_map);
1320 
1321   if (caller_frame.is_interpreted_frame() ||
1322       caller_frame.is_entry_frame()) {
1323     Method* callee = thread->callee_target();
1324     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1325     thread->set_vm_result_2(callee);
1326     thread->set_callee_target(NULL);
1327     return callee->get_c2i_entry();
1328   }
1329 
1330   // Must be compiled to compiled path which is safe to stackwalk
1331   methodHandle callee_method;
1332   JRT_BLOCK
1333     // Force resolving of caller (if we called from compiled frame)
1334     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1335     thread->set_vm_result_2(callee_method());
1336   JRT_BLOCK_END
1337   // return compiled code entry point after potential safepoints
1338   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1339   return callee_method->verified_code_entry();
1340 JRT_END
1341 
1342 // Handle abstract method call
1343 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1344   return StubRoutines::throw_AbstractMethodError_entry();
1345 JRT_END
1346 
1347 
1348 // resolve a static call and patch code
1349 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1350   methodHandle callee_method;
1351   JRT_BLOCK
1352     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1353     thread->set_vm_result_2(callee_method());
1354   JRT_BLOCK_END
1355   // return compiled code entry point after potential safepoints
1356   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1357   return callee_method->verified_code_entry();
1358 JRT_END
1359 
1360 
1361 // resolve virtual call and update inline cache to monomorphic
1362 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1363   methodHandle callee_method;
1364   JRT_BLOCK
1365     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1366     thread->set_vm_result_2(callee_method());
1367   JRT_BLOCK_END
1368   // return compiled code entry point after potential safepoints
1369   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1370   return callee_method->verified_code_entry();
1371 JRT_END
1372 
1373 
1374 // Resolve a virtual call that can be statically bound (e.g., always
1375 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1376 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1377   methodHandle callee_method;
1378   JRT_BLOCK
1379     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1380     thread->set_vm_result_2(callee_method());
1381   JRT_BLOCK_END
1382   // return compiled code entry point after potential safepoints
1383   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1384   return callee_method->verified_code_entry();
1385 JRT_END
1386 
1387 
1388 
1389 
1390 
1391 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1392   ResourceMark rm(thread);
1393   CallInfo call_info;
1394   Bytecodes::Code bc;
1395 
1396   // receiver is NULL for static calls. An exception is thrown for NULL
1397   // receivers for non-static calls
1398   Handle receiver = find_callee_info(thread, bc, call_info,
1399                                      CHECK_(methodHandle()));
1400   // Compiler1 can produce virtual call sites that can actually be statically bound
1401   // If we fell thru to below we would think that the site was going megamorphic
1402   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1403   // we'd try and do a vtable dispatch however methods that can be statically bound
1404   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1405   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1406   // plain ic_miss) and the site will be converted to an optimized virtual call site
1407   // never to miss again. I don't believe C2 will produce code like this but if it
1408   // did this would still be the correct thing to do for it too, hence no ifdef.
1409   //
1410   if (call_info.resolved_method()->can_be_statically_bound()) {
1411     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1412     if (TraceCallFixup) {
1413       RegisterMap reg_map(thread, false);
1414       frame caller_frame = thread->last_frame().sender(&reg_map);
1415       ResourceMark rm(thread);
1416       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1417       callee_method->print_short_name(tty);
1418       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1419       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1420     }
1421     return callee_method;
1422   }
1423 
1424   methodHandle callee_method = call_info.selected_method();
1425 
1426   bool should_be_mono = false;
1427 
1428 #ifndef PRODUCT
1429   Atomic::inc(&_ic_miss_ctr);
1430 
1431   // Statistics & Tracing
1432   if (TraceCallFixup) {
1433     ResourceMark rm(thread);
1434     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1435     callee_method->print_short_name(tty);
1436     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1437   }
1438 
1439   if (ICMissHistogram) {
1440     MutexLocker m(VMStatistic_lock);
1441     RegisterMap reg_map(thread, false);
1442     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1443     // produce statistics under the lock
1444     trace_ic_miss(f.pc());
1445   }
1446 #endif
1447 
1448   // install an event collector so that when a vtable stub is created the
1449   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1450   // event can't be posted when the stub is created as locks are held
1451   // - instead the event will be deferred until the event collector goes
1452   // out of scope.
1453   JvmtiDynamicCodeEventCollector event_collector;
1454 
1455   // Update inline cache to megamorphic. Skip update if caller has been
1456   // made non-entrant or we are called from interpreted.
1457   { MutexLocker ml_patch (CompiledIC_lock);
1458     RegisterMap reg_map(thread, false);
1459     frame caller_frame = thread->last_frame().sender(&reg_map);
1460     CodeBlob* cb = caller_frame.cb();
1461     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1462       // Not a non-entrant nmethod, so find inline_cache
1463       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1464       bool should_be_mono = false;
1465       if (inline_cache->is_optimized()) {
1466         if (TraceCallFixup) {
1467           ResourceMark rm(thread);
1468           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1469           callee_method->print_short_name(tty);
1470           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1471         }
1472         should_be_mono = true;
1473       } else if (inline_cache->is_icholder_call()) {
1474         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1475         if ( ic_oop != NULL) {
1476 
1477           if (receiver()->klass() == ic_oop->holder_klass()) {
1478             // This isn't a real miss. We must have seen that compiled code
1479             // is now available and we want the call site converted to a
1480             // monomorphic compiled call site.
1481             // We can't assert for callee_method->code() != NULL because it
1482             // could have been deoptimized in the meantime
1483             if (TraceCallFixup) {
1484               ResourceMark rm(thread);
1485               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1486               callee_method->print_short_name(tty);
1487               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1488             }
1489             should_be_mono = true;
1490           }
1491         }
1492       }
1493 
1494       if (should_be_mono) {
1495 
1496         // We have a path that was monomorphic but was going interpreted
1497         // and now we have (or had) a compiled entry. We correct the IC
1498         // by using a new icBuffer.
1499         CompiledICInfo info;
1500         KlassHandle receiver_klass(THREAD, receiver()->klass());
1501         inline_cache->compute_monomorphic_entry(callee_method,
1502                                                 receiver_klass,
1503                                                 inline_cache->is_optimized(),
1504                                                 false,
1505                                                 info, CHECK_(methodHandle()));
1506         inline_cache->set_to_monomorphic(info);
1507       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1508         // Potential change to megamorphic
1509         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1510         if (!successful) {
1511           inline_cache->set_to_clean();
1512         }
1513       } else {
1514         // Either clean or megamorphic
1515       }
1516     }
1517   } // Release CompiledIC_lock
1518 
1519   return callee_method;
1520 }
1521 
1522 //
1523 // Resets a call-site in compiled code so it will get resolved again.
1524 // This routines handles both virtual call sites, optimized virtual call
1525 // sites, and static call sites. Typically used to change a call sites
1526 // destination from compiled to interpreted.
1527 //
1528 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1529   ResourceMark rm(thread);
1530   RegisterMap reg_map(thread, false);
1531   frame stub_frame = thread->last_frame();
1532   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1533   frame caller = stub_frame.sender(&reg_map);
1534 
1535   // Do nothing if the frame isn't a live compiled frame.
1536   // nmethod could be deoptimized by the time we get here
1537   // so no update to the caller is needed.
1538 
1539   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1540 
1541     address pc = caller.pc();
1542 
1543     // Default call_addr is the location of the "basic" call.
1544     // Determine the address of the call we a reresolving. With
1545     // Inline Caches we will always find a recognizable call.
1546     // With Inline Caches disabled we may or may not find a
1547     // recognizable call. We will always find a call for static
1548     // calls and for optimized virtual calls. For vanilla virtual
1549     // calls it depends on the state of the UseInlineCaches switch.
1550     //
1551     // With Inline Caches disabled we can get here for a virtual call
1552     // for two reasons:
1553     //   1 - calling an abstract method. The vtable for abstract methods
1554     //       will run us thru handle_wrong_method and we will eventually
1555     //       end up in the interpreter to throw the ame.
1556     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1557     //       call and between the time we fetch the entry address and
1558     //       we jump to it the target gets deoptimized. Similar to 1
1559     //       we will wind up in the interprter (thru a c2i with c2).
1560     //
1561     address call_addr = NULL;
1562     {
1563       // Get call instruction under lock because another thread may be
1564       // busy patching it.
1565       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1566       // Location of call instruction
1567       if (NativeCall::is_call_before(pc)) {
1568         NativeCall *ncall = nativeCall_before(pc);
1569         call_addr = ncall->instruction_address();
1570       }
1571     }
1572 
1573     // Check for static or virtual call
1574     bool is_static_call = false;
1575     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1576     // Make sure nmethod doesn't get deoptimized and removed until
1577     // this is done with it.
1578     // CLEANUP - with lazy deopt shouldn't need this lock
1579     nmethodLocker nmlock(caller_nm);
1580 
1581     if (call_addr != NULL) {
1582       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1583       int ret = iter.next(); // Get item
1584       if (ret) {
1585         assert(iter.addr() == call_addr, "must find call");
1586         if (iter.type() == relocInfo::static_call_type) {
1587           is_static_call = true;
1588         } else {
1589           assert(iter.type() == relocInfo::virtual_call_type ||
1590                  iter.type() == relocInfo::opt_virtual_call_type
1591                 , "unexpected relocInfo. type");
1592         }
1593       } else {
1594         assert(!UseInlineCaches, "relocation info. must exist for this address");
1595       }
1596 
1597       // Cleaning the inline cache will force a new resolve. This is more robust
1598       // than directly setting it to the new destination, since resolving of calls
1599       // is always done through the same code path. (experience shows that it
1600       // leads to very hard to track down bugs, if an inline cache gets updated
1601       // to a wrong method). It should not be performance critical, since the
1602       // resolve is only done once.
1603 
1604       MutexLocker ml(CompiledIC_lock);
1605       //
1606       // We do not patch the call site if the nmethod has been made non-entrant
1607       // as it is a waste of time
1608       //
1609       if (caller_nm->is_in_use()) {
1610         if (is_static_call) {
1611           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1612           ssc->set_to_clean();
1613         } else {
1614           // compiled, dispatched call (which used to call an interpreted method)
1615           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1616           inline_cache->set_to_clean();
1617         }
1618       }
1619     }
1620 
1621   }
1622 
1623   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1624 
1625 
1626 #ifndef PRODUCT
1627   Atomic::inc(&_wrong_method_ctr);
1628 
1629   if (TraceCallFixup) {
1630     ResourceMark rm(thread);
1631     tty->print("handle_wrong_method reresolving call to");
1632     callee_method->print_short_name(tty);
1633     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1634   }
1635 #endif
1636 
1637   return callee_method;
1638 }
1639 
1640 #ifdef ASSERT
1641 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1642                                                                 const BasicType* sig_bt,
1643                                                                 const VMRegPair* regs) {
1644   ResourceMark rm;
1645   const int total_args_passed = method->size_of_parameters();
1646   const VMRegPair*    regs_with_member_name = regs;
1647         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1648 
1649   const int member_arg_pos = total_args_passed - 1;
1650   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1651   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1652 
1653   const bool is_outgoing = method->is_method_handle_intrinsic();
1654   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1655 
1656   for (int i = 0; i < member_arg_pos; i++) {
1657     VMReg a =    regs_with_member_name[i].first();
1658     VMReg b = regs_without_member_name[i].first();
1659     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1660   }
1661   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1662 }
1663 #endif
1664 
1665 // ---------------------------------------------------------------------------
1666 // We are calling the interpreter via a c2i. Normally this would mean that
1667 // we were called by a compiled method. However we could have lost a race
1668 // where we went int -> i2c -> c2i and so the caller could in fact be
1669 // interpreted. If the caller is compiled we attempt to patch the caller
1670 // so he no longer calls into the interpreter.
1671 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1672   Method* moop(method);
1673 
1674   address entry_point = moop->from_compiled_entry();
1675 
1676   // It's possible that deoptimization can occur at a call site which hasn't
1677   // been resolved yet, in which case this function will be called from
1678   // an nmethod that has been patched for deopt and we can ignore the
1679   // request for a fixup.
1680   // Also it is possible that we lost a race in that from_compiled_entry
1681   // is now back to the i2c in that case we don't need to patch and if
1682   // we did we'd leap into space because the callsite needs to use
1683   // "to interpreter" stub in order to load up the Method*. Don't
1684   // ask me how I know this...
1685 
1686   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1687   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1688     return;
1689   }
1690 
1691   // The check above makes sure this is a nmethod.
1692   nmethod* nm = cb->as_nmethod_or_null();
1693   assert(nm, "must be");
1694 
1695   // Get the return PC for the passed caller PC.
1696   address return_pc = caller_pc + frame::pc_return_offset;
1697 
1698   // There is a benign race here. We could be attempting to patch to a compiled
1699   // entry point at the same time the callee is being deoptimized. If that is
1700   // the case then entry_point may in fact point to a c2i and we'd patch the
1701   // call site with the same old data. clear_code will set code() to NULL
1702   // at the end of it. If we happen to see that NULL then we can skip trying
1703   // to patch. If we hit the window where the callee has a c2i in the
1704   // from_compiled_entry and the NULL isn't present yet then we lose the race
1705   // and patch the code with the same old data. Asi es la vida.
1706 
1707   if (moop->code() == NULL) return;
1708 
1709   if (nm->is_in_use()) {
1710 
1711     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1712     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1713     if (NativeCall::is_call_before(return_pc)) {
1714       NativeCall *call = nativeCall_before(return_pc);
1715       //
1716       // bug 6281185. We might get here after resolving a call site to a vanilla
1717       // virtual call. Because the resolvee uses the verified entry it may then
1718       // see compiled code and attempt to patch the site by calling us. This would
1719       // then incorrectly convert the call site to optimized and its downhill from
1720       // there. If you're lucky you'll get the assert in the bugid, if not you've
1721       // just made a call site that could be megamorphic into a monomorphic site
1722       // for the rest of its life! Just another racing bug in the life of
1723       // fixup_callers_callsite ...
1724       //
1725       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1726       iter.next();
1727       assert(iter.has_current(), "must have a reloc at java call site");
1728       relocInfo::relocType typ = iter.reloc()->type();
1729       if ( typ != relocInfo::static_call_type &&
1730            typ != relocInfo::opt_virtual_call_type &&
1731            typ != relocInfo::static_stub_type) {
1732         return;
1733       }
1734       address destination = call->destination();
1735       if (destination != entry_point) {
1736         CodeBlob* callee = CodeCache::find_blob(destination);
1737         // callee == cb seems weird. It means calling interpreter thru stub.
1738         if (callee == cb || callee->is_adapter_blob()) {
1739           // static call or optimized virtual
1740           if (TraceCallFixup) {
1741             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1742             moop->print_short_name(tty);
1743             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1744           }
1745           call->set_destination_mt_safe(entry_point);
1746         } else {
1747           if (TraceCallFixup) {
1748             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1749             moop->print_short_name(tty);
1750             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1751           }
1752           // assert is too strong could also be resolve destinations.
1753           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1754         }
1755       } else {
1756           if (TraceCallFixup) {
1757             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1758             moop->print_short_name(tty);
1759             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1760           }
1761       }
1762     }
1763   }
1764 IRT_END
1765 
1766 
1767 // same as JVM_Arraycopy, but called directly from compiled code
1768 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1769                                                 oopDesc* dest, jint dest_pos,
1770                                                 jint length,
1771                                                 JavaThread* thread)) {
1772 #ifndef PRODUCT
1773   _slow_array_copy_ctr++;
1774 #endif
1775   // Check if we have null pointers
1776   if (src == NULL || dest == NULL) {
1777     THROW(vmSymbols::java_lang_NullPointerException());
1778   }
1779   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1780   // even though the copy_array API also performs dynamic checks to ensure
1781   // that src and dest are truly arrays (and are conformable).
1782   // The copy_array mechanism is awkward and could be removed, but
1783   // the compilers don't call this function except as a last resort,
1784   // so it probably doesn't matter.
1785   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1786                                         (arrayOopDesc*)dest, dest_pos,
1787                                         length, thread);
1788 }
1789 JRT_END
1790 
1791 char* SharedRuntime::generate_class_cast_message(
1792     JavaThread* thread, const char* objName) {
1793 
1794   // Get target class name from the checkcast instruction
1795   vframeStream vfst(thread, true);
1796   assert(!vfst.at_end(), "Java frame must exist");
1797   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1798   Klass* targetKlass = vfst.method()->constants()->klass_at(
1799     cc.index(), thread);
1800   return generate_class_cast_message(objName, targetKlass->external_name());
1801 }
1802 
1803 char* SharedRuntime::generate_class_cast_message(
1804     const char* objName, const char* targetKlassName, const char* desc) {
1805   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1806 
1807   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1808   if (NULL == message) {
1809     // Shouldn't happen, but don't cause even more problems if it does
1810     message = const_cast<char*>(objName);
1811   } else {
1812     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1813   }
1814   return message;
1815 }
1816 
1817 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1818   (void) JavaThread::current()->reguard_stack();
1819 JRT_END
1820 
1821 
1822 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1823 #ifndef PRODUCT
1824 int SharedRuntime::_monitor_enter_ctr=0;
1825 #endif
1826 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1827   oop obj(_obj);
1828 #ifndef PRODUCT
1829   _monitor_enter_ctr++;             // monitor enter slow
1830 #endif
1831   if (PrintBiasedLockingStatistics) {
1832     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1833   }
1834   Handle h_obj(THREAD, obj);
1835   if (UseBiasedLocking) {
1836     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1837     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1838   } else {
1839     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1840   }
1841   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1842 JRT_END
1843 
1844 #ifndef PRODUCT
1845 int SharedRuntime::_monitor_exit_ctr=0;
1846 #endif
1847 // Handles the uncommon cases of monitor unlocking in compiled code
1848 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1849    oop obj(_obj);
1850 #ifndef PRODUCT
1851   _monitor_exit_ctr++;              // monitor exit slow
1852 #endif
1853   Thread* THREAD = JavaThread::current();
1854   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1855   // testing was unable to ever fire the assert that guarded it so I have removed it.
1856   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1857 #undef MIGHT_HAVE_PENDING
1858 #ifdef MIGHT_HAVE_PENDING
1859   // Save and restore any pending_exception around the exception mark.
1860   // While the slow_exit must not throw an exception, we could come into
1861   // this routine with one set.
1862   oop pending_excep = NULL;
1863   const char* pending_file;
1864   int pending_line;
1865   if (HAS_PENDING_EXCEPTION) {
1866     pending_excep = PENDING_EXCEPTION;
1867     pending_file  = THREAD->exception_file();
1868     pending_line  = THREAD->exception_line();
1869     CLEAR_PENDING_EXCEPTION;
1870   }
1871 #endif /* MIGHT_HAVE_PENDING */
1872 
1873   {
1874     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1875     EXCEPTION_MARK;
1876     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1877   }
1878 
1879 #ifdef MIGHT_HAVE_PENDING
1880   if (pending_excep != NULL) {
1881     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1882   }
1883 #endif /* MIGHT_HAVE_PENDING */
1884 JRT_END
1885 
1886 #ifndef PRODUCT
1887 
1888 void SharedRuntime::print_statistics() {
1889   ttyLocker ttyl;
1890   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1891 
1892   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1893   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1894   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1895 
1896   SharedRuntime::print_ic_miss_histogram();
1897 
1898   if (CountRemovableExceptions) {
1899     if (_nof_removable_exceptions > 0) {
1900       Unimplemented(); // this counter is not yet incremented
1901       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1902     }
1903   }
1904 
1905   // Dump the JRT_ENTRY counters
1906   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1907   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1908   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1909   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1910   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1911   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1912   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1913 
1914   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1915   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1916   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1917   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1918   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1919 
1920   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1921   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1922   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1923   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1924   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1925   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1926   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1927   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1928   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1929   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1930   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1931   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1932   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1933   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1934   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1935   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1936 
1937   AdapterHandlerLibrary::print_statistics();
1938 
1939   if (xtty != NULL)  xtty->tail("statistics");
1940 }
1941 
1942 inline double percent(int x, int y) {
1943   return 100.0 * x / MAX2(y, 1);
1944 }
1945 
1946 class MethodArityHistogram {
1947  public:
1948   enum { MAX_ARITY = 256 };
1949  private:
1950   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1951   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1952   static int _max_arity;                      // max. arity seen
1953   static int _max_size;                       // max. arg size seen
1954 
1955   static void add_method_to_histogram(nmethod* nm) {
1956     Method* m = nm->method();
1957     ArgumentCount args(m->signature());
1958     int arity   = args.size() + (m->is_static() ? 0 : 1);
1959     int argsize = m->size_of_parameters();
1960     arity   = MIN2(arity, MAX_ARITY-1);
1961     argsize = MIN2(argsize, MAX_ARITY-1);
1962     int count = nm->method()->compiled_invocation_count();
1963     _arity_histogram[arity]  += count;
1964     _size_histogram[argsize] += count;
1965     _max_arity = MAX2(_max_arity, arity);
1966     _max_size  = MAX2(_max_size, argsize);
1967   }
1968 
1969   void print_histogram_helper(int n, int* histo, const char* name) {
1970     const int N = MIN2(5, n);
1971     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1972     double sum = 0;
1973     double weighted_sum = 0;
1974     int i;
1975     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1976     double rest = sum;
1977     double percent = sum / 100;
1978     for (i = 0; i <= N; i++) {
1979       rest -= histo[i];
1980       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1981     }
1982     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1983     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1984   }
1985 
1986   void print_histogram() {
1987     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1988     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1989     tty->print_cr("\nSame for parameter size (in words):");
1990     print_histogram_helper(_max_size, _size_histogram, "size");
1991     tty->cr();
1992   }
1993 
1994  public:
1995   MethodArityHistogram() {
1996     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1997     _max_arity = _max_size = 0;
1998     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1999     CodeCache::nmethods_do(add_method_to_histogram);
2000     print_histogram();
2001   }
2002 };
2003 
2004 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2005 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2006 int MethodArityHistogram::_max_arity;
2007 int MethodArityHistogram::_max_size;
2008 
2009 void SharedRuntime::print_call_statistics(int comp_total) {
2010   tty->print_cr("Calls from compiled code:");
2011   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2012   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2013   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2014   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2015   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2016   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2017   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2020   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2021   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2022   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2023   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2025   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2026   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2027   tty->cr();
2028   tty->print_cr("Note 1: counter updates are not MT-safe.");
2029   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2030   tty->print_cr("        %% in nested categories are relative to their category");
2031   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2032   tty->cr();
2033 
2034   MethodArityHistogram h;
2035 }
2036 #endif
2037 
2038 
2039 // A simple wrapper class around the calling convention information
2040 // that allows sharing of adapters for the same calling convention.
2041 class AdapterFingerPrint : public CHeapObj<mtCode> {
2042  private:
2043   enum {
2044     _basic_type_bits = 4,
2045     _basic_type_mask = right_n_bits(_basic_type_bits),
2046     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2047     _compact_int_count = 3
2048   };
2049   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2050   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2051 
2052   union {
2053     int  _compact[_compact_int_count];
2054     int* _fingerprint;
2055   } _value;
2056   int _length; // A negative length indicates the fingerprint is in the compact form,
2057                // Otherwise _value._fingerprint is the array.
2058 
2059   // Remap BasicTypes that are handled equivalently by the adapters.
2060   // These are correct for the current system but someday it might be
2061   // necessary to make this mapping platform dependent.
2062   static int adapter_encoding(BasicType in) {
2063     switch(in) {
2064       case T_BOOLEAN:
2065       case T_BYTE:
2066       case T_SHORT:
2067       case T_CHAR:
2068         // There are all promoted to T_INT in the calling convention
2069         return T_INT;
2070 
2071       case T_OBJECT:
2072       case T_ARRAY:
2073         // In other words, we assume that any register good enough for
2074         // an int or long is good enough for a managed pointer.
2075 #ifdef _LP64
2076         return T_LONG;
2077 #else
2078         return T_INT;
2079 #endif
2080 
2081       case T_INT:
2082       case T_LONG:
2083       case T_FLOAT:
2084       case T_DOUBLE:
2085       case T_VOID:
2086         return in;
2087 
2088       default:
2089         ShouldNotReachHere();
2090         return T_CONFLICT;
2091     }
2092   }
2093 
2094  public:
2095   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2096     // The fingerprint is based on the BasicType signature encoded
2097     // into an array of ints with eight entries per int.
2098     int* ptr;
2099     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2100     if (len <= _compact_int_count) {
2101       assert(_compact_int_count == 3, "else change next line");
2102       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2103       // Storing the signature encoded as signed chars hits about 98%
2104       // of the time.
2105       _length = -len;
2106       ptr = _value._compact;
2107     } else {
2108       _length = len;
2109       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2110       ptr = _value._fingerprint;
2111     }
2112 
2113     // Now pack the BasicTypes with 8 per int
2114     int sig_index = 0;
2115     for (int index = 0; index < len; index++) {
2116       int value = 0;
2117       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2118         int bt = ((sig_index < total_args_passed)
2119                   ? adapter_encoding(sig_bt[sig_index++])
2120                   : 0);
2121         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2122         value = (value << _basic_type_bits) | bt;
2123       }
2124       ptr[index] = value;
2125     }
2126   }
2127 
2128   ~AdapterFingerPrint() {
2129     if (_length > 0) {
2130       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2131     }
2132   }
2133 
2134   int value(int index) {
2135     if (_length < 0) {
2136       return _value._compact[index];
2137     }
2138     return _value._fingerprint[index];
2139   }
2140   int length() {
2141     if (_length < 0) return -_length;
2142     return _length;
2143   }
2144 
2145   bool is_compact() {
2146     return _length <= 0;
2147   }
2148 
2149   unsigned int compute_hash() {
2150     int hash = 0;
2151     for (int i = 0; i < length(); i++) {
2152       int v = value(i);
2153       hash = (hash << 8) ^ v ^ (hash >> 5);
2154     }
2155     return (unsigned int)hash;
2156   }
2157 
2158   const char* as_string() {
2159     stringStream st;
2160     st.print("0x");
2161     for (int i = 0; i < length(); i++) {
2162       st.print("%08x", value(i));
2163     }
2164     return st.as_string();
2165   }
2166 
2167   bool equals(AdapterFingerPrint* other) {
2168     if (other->_length != _length) {
2169       return false;
2170     }
2171     if (_length < 0) {
2172       assert(_compact_int_count == 3, "else change next line");
2173       return _value._compact[0] == other->_value._compact[0] &&
2174              _value._compact[1] == other->_value._compact[1] &&
2175              _value._compact[2] == other->_value._compact[2];
2176     } else {
2177       for (int i = 0; i < _length; i++) {
2178         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2179           return false;
2180         }
2181       }
2182     }
2183     return true;
2184   }
2185 };
2186 
2187 
2188 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2189 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2190   friend class AdapterHandlerTableIterator;
2191 
2192  private:
2193 
2194 #ifndef PRODUCT
2195   static int _lookups; // number of calls to lookup
2196   static int _buckets; // number of buckets checked
2197   static int _equals;  // number of buckets checked with matching hash
2198   static int _hits;    // number of successful lookups
2199   static int _compact; // number of equals calls with compact signature
2200 #endif
2201 
2202   AdapterHandlerEntry* bucket(int i) {
2203     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2204   }
2205 
2206  public:
2207   AdapterHandlerTable()
2208     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2209 
2210   // Create a new entry suitable for insertion in the table
2211   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2212     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2213     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2214     return entry;
2215   }
2216 
2217   // Insert an entry into the table
2218   void add(AdapterHandlerEntry* entry) {
2219     int index = hash_to_index(entry->hash());
2220     add_entry(index, entry);
2221   }
2222 
2223   void free_entry(AdapterHandlerEntry* entry) {
2224     entry->deallocate();
2225     BasicHashtable<mtCode>::free_entry(entry);
2226   }
2227 
2228   // Find a entry with the same fingerprint if it exists
2229   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2230     NOT_PRODUCT(_lookups++);
2231     AdapterFingerPrint fp(total_args_passed, sig_bt);
2232     unsigned int hash = fp.compute_hash();
2233     int index = hash_to_index(hash);
2234     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2235       NOT_PRODUCT(_buckets++);
2236       if (e->hash() == hash) {
2237         NOT_PRODUCT(_equals++);
2238         if (fp.equals(e->fingerprint())) {
2239 #ifndef PRODUCT
2240           if (fp.is_compact()) _compact++;
2241           _hits++;
2242 #endif
2243           return e;
2244         }
2245       }
2246     }
2247     return NULL;
2248   }
2249 
2250 #ifndef PRODUCT
2251   void print_statistics() {
2252     ResourceMark rm;
2253     int longest = 0;
2254     int empty = 0;
2255     int total = 0;
2256     int nonempty = 0;
2257     for (int index = 0; index < table_size(); index++) {
2258       int count = 0;
2259       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2260         count++;
2261       }
2262       if (count != 0) nonempty++;
2263       if (count == 0) empty++;
2264       if (count > longest) longest = count;
2265       total += count;
2266     }
2267     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2268                   empty, longest, total, total / (double)nonempty);
2269     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2270                   _lookups, _buckets, _equals, _hits, _compact);
2271   }
2272 #endif
2273 };
2274 
2275 
2276 #ifndef PRODUCT
2277 
2278 int AdapterHandlerTable::_lookups;
2279 int AdapterHandlerTable::_buckets;
2280 int AdapterHandlerTable::_equals;
2281 int AdapterHandlerTable::_hits;
2282 int AdapterHandlerTable::_compact;
2283 
2284 #endif
2285 
2286 class AdapterHandlerTableIterator : public StackObj {
2287  private:
2288   AdapterHandlerTable* _table;
2289   int _index;
2290   AdapterHandlerEntry* _current;
2291 
2292   void scan() {
2293     while (_index < _table->table_size()) {
2294       AdapterHandlerEntry* a = _table->bucket(_index);
2295       _index++;
2296       if (a != NULL) {
2297         _current = a;
2298         return;
2299       }
2300     }
2301   }
2302 
2303  public:
2304   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2305     scan();
2306   }
2307   bool has_next() {
2308     return _current != NULL;
2309   }
2310   AdapterHandlerEntry* next() {
2311     if (_current != NULL) {
2312       AdapterHandlerEntry* result = _current;
2313       _current = _current->next();
2314       if (_current == NULL) scan();
2315       return result;
2316     } else {
2317       return NULL;
2318     }
2319   }
2320 };
2321 
2322 
2323 // ---------------------------------------------------------------------------
2324 // Implementation of AdapterHandlerLibrary
2325 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2326 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2327 const int AdapterHandlerLibrary_size = 16*K;
2328 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2329 
2330 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2331   // Should be called only when AdapterHandlerLibrary_lock is active.
2332   if (_buffer == NULL) // Initialize lazily
2333       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2334   return _buffer;
2335 }
2336 
2337 void AdapterHandlerLibrary::initialize() {
2338   if (_adapters != NULL) return;
2339   _adapters = new AdapterHandlerTable();
2340 
2341   // Create a special handler for abstract methods.  Abstract methods
2342   // are never compiled so an i2c entry is somewhat meaningless, but
2343   // throw AbstractMethodError just in case.
2344   // Pass wrong_method_abstract for the c2i transitions to return
2345   // AbstractMethodError for invalid invocations.
2346   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2347   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2348                                                               StubRoutines::throw_AbstractMethodError_entry(),
2349                                                               wrong_method_abstract, wrong_method_abstract);
2350 }
2351 
2352 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2353                                                       address i2c_entry,
2354                                                       address c2i_entry,
2355                                                       address c2i_unverified_entry) {
2356   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2357 }
2358 
2359 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2360   // Use customized signature handler.  Need to lock around updates to
2361   // the AdapterHandlerTable (it is not safe for concurrent readers
2362   // and a single writer: this could be fixed if it becomes a
2363   // problem).
2364 
2365   // Get the address of the ic_miss handlers before we grab the
2366   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2367   // was caused by the initialization of the stubs happening
2368   // while we held the lock and then notifying jvmti while
2369   // holding it. This just forces the initialization to be a little
2370   // earlier.
2371   address ic_miss = SharedRuntime::get_ic_miss_stub();
2372   assert(ic_miss != NULL, "must have handler");
2373 
2374   ResourceMark rm;
2375 
2376   NOT_PRODUCT(int insts_size);
2377   AdapterBlob* new_adapter = NULL;
2378   AdapterHandlerEntry* entry = NULL;
2379   AdapterFingerPrint* fingerprint = NULL;
2380   {
2381     MutexLocker mu(AdapterHandlerLibrary_lock);
2382     // make sure data structure is initialized
2383     initialize();
2384 
2385     if (method->is_abstract()) {
2386       return _abstract_method_handler;
2387     }
2388 
2389     // Fill in the signature array, for the calling-convention call.
2390     int total_args_passed = method->size_of_parameters(); // All args on stack
2391 
2392     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2393     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2394     int i = 0;
2395     if (!method->is_static())  // Pass in receiver first
2396       sig_bt[i++] = T_OBJECT;
2397     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2398       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2399       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2400         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2401     }
2402     assert(i == total_args_passed, "");
2403 
2404     // Lookup method signature's fingerprint
2405     entry = _adapters->lookup(total_args_passed, sig_bt);
2406 
2407 #ifdef ASSERT
2408     AdapterHandlerEntry* shared_entry = NULL;
2409     // Start adapter sharing verification only after the VM is booted.
2410     if (VerifyAdapterSharing && (entry != NULL)) {
2411       shared_entry = entry;
2412       entry = NULL;
2413     }
2414 #endif
2415 
2416     if (entry != NULL) {
2417       return entry;
2418     }
2419 
2420     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2421     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2422 
2423     // Make a C heap allocated version of the fingerprint to store in the adapter
2424     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2425 
2426     // StubRoutines::code2() is initialized after this function can be called. As a result,
2427     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2428     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2429     // stub that ensure that an I2C stub is called from an interpreter frame.
2430     bool contains_all_checks = StubRoutines::code2() != NULL;
2431 
2432     // Create I2C & C2I handlers
2433     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2434     if (buf != NULL) {
2435       CodeBuffer buffer(buf);
2436       short buffer_locs[20];
2437       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2438                                              sizeof(buffer_locs)/sizeof(relocInfo));
2439 
2440       MacroAssembler _masm(&buffer);
2441       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2442                                                      total_args_passed,
2443                                                      comp_args_on_stack,
2444                                                      sig_bt,
2445                                                      regs,
2446                                                      fingerprint);
2447 #ifdef ASSERT
2448       if (VerifyAdapterSharing) {
2449         if (shared_entry != NULL) {
2450           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2451           // Release the one just created and return the original
2452           _adapters->free_entry(entry);
2453           return shared_entry;
2454         } else  {
2455           entry->save_code(buf->code_begin(), buffer.insts_size());
2456         }
2457       }
2458 #endif
2459 
2460       new_adapter = AdapterBlob::create(&buffer);
2461       NOT_PRODUCT(insts_size = buffer.insts_size());
2462     }
2463     if (new_adapter == NULL) {
2464       // CodeCache is full, disable compilation
2465       // Ought to log this but compile log is only per compile thread
2466       // and we're some non descript Java thread.
2467       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2468       CompileBroker::handle_full_code_cache();
2469       return NULL; // Out of CodeCache space
2470     }
2471     entry->relocate(new_adapter->content_begin());
2472 #ifndef PRODUCT
2473     // debugging suppport
2474     if (PrintAdapterHandlers || PrintStubCode) {
2475       ttyLocker ttyl;
2476       entry->print_adapter_on(tty);
2477       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2478                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2479                     method->signature()->as_C_string(), insts_size);
2480       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2481       if (Verbose || PrintStubCode) {
2482         address first_pc = entry->base_address();
2483         if (first_pc != NULL) {
2484           Disassembler::decode(first_pc, first_pc + insts_size);
2485           tty->cr();
2486         }
2487       }
2488     }
2489 #endif
2490     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2491     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2492     if (contains_all_checks || !VerifyAdapterCalls) {
2493       _adapters->add(entry);
2494     }
2495   }
2496   // Outside of the lock
2497   if (new_adapter != NULL) {
2498     char blob_id[256];
2499     jio_snprintf(blob_id,
2500                  sizeof(blob_id),
2501                  "%s(%s)@" PTR_FORMAT,
2502                  new_adapter->name(),
2503                  fingerprint->as_string(),
2504                  new_adapter->content_begin());
2505     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2506 
2507     if (JvmtiExport::should_post_dynamic_code_generated()) {
2508       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2509     }
2510   }
2511   return entry;
2512 }
2513 
2514 address AdapterHandlerEntry::base_address() {
2515   address base = _i2c_entry;
2516   if (base == NULL)  base = _c2i_entry;
2517   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2518   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2519   return base;
2520 }
2521 
2522 void AdapterHandlerEntry::relocate(address new_base) {
2523   address old_base = base_address();
2524   assert(old_base != NULL, "");
2525   ptrdiff_t delta = new_base - old_base;
2526   if (_i2c_entry != NULL)
2527     _i2c_entry += delta;
2528   if (_c2i_entry != NULL)
2529     _c2i_entry += delta;
2530   if (_c2i_unverified_entry != NULL)
2531     _c2i_unverified_entry += delta;
2532   assert(base_address() == new_base, "");
2533 }
2534 
2535 
2536 void AdapterHandlerEntry::deallocate() {
2537   delete _fingerprint;
2538 #ifdef ASSERT
2539   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2540 #endif
2541 }
2542 
2543 
2544 #ifdef ASSERT
2545 // Capture the code before relocation so that it can be compared
2546 // against other versions.  If the code is captured after relocation
2547 // then relative instructions won't be equivalent.
2548 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2549   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2550   _saved_code_length = length;
2551   memcpy(_saved_code, buffer, length);
2552 }
2553 
2554 
2555 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2556   if (length != _saved_code_length) {
2557     return false;
2558   }
2559 
2560   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2561 }
2562 #endif
2563 
2564 
2565 /**
2566  * Create a native wrapper for this native method.  The wrapper converts the
2567  * Java-compiled calling convention to the native convention, handles
2568  * arguments, and transitions to native.  On return from the native we transition
2569  * back to java blocking if a safepoint is in progress.
2570  */
2571 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2572   ResourceMark rm;
2573   nmethod* nm = NULL;
2574 
2575   assert(method->is_native(), "must be native");
2576   assert(method->is_method_handle_intrinsic() ||
2577          method->has_native_function(), "must have something valid to call!");
2578 
2579   {
2580     // Perform the work while holding the lock, but perform any printing outside the lock
2581     MutexLocker mu(AdapterHandlerLibrary_lock);
2582     // See if somebody beat us to it
2583     nm = method->code();
2584     if (nm != NULL) {
2585       return;
2586     }
2587 
2588     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2589     assert(compile_id > 0, "Must generate native wrapper");
2590 
2591 
2592     ResourceMark rm;
2593     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2594     if (buf != NULL) {
2595       CodeBuffer buffer(buf);
2596       double locs_buf[20];
2597       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2598       MacroAssembler _masm(&buffer);
2599 
2600       // Fill in the signature array, for the calling-convention call.
2601       const int total_args_passed = method->size_of_parameters();
2602 
2603       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2604       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2605       int i=0;
2606       if( !method->is_static() )  // Pass in receiver first
2607         sig_bt[i++] = T_OBJECT;
2608       SignatureStream ss(method->signature());
2609       for( ; !ss.at_return_type(); ss.next()) {
2610         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2611         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2612           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2613       }
2614       assert(i == total_args_passed, "");
2615       BasicType ret_type = ss.type();
2616 
2617       // Now get the compiled-Java layout as input (or output) arguments.
2618       // NOTE: Stubs for compiled entry points of method handle intrinsics
2619       // are just trampolines so the argument registers must be outgoing ones.
2620       const bool is_outgoing = method->is_method_handle_intrinsic();
2621       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2622 
2623       // Generate the compiled-to-native wrapper code
2624       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2625 
2626       if (nm != NULL) {
2627         method->set_code(method, nm);
2628       }
2629     }
2630   } // Unlock AdapterHandlerLibrary_lock
2631 
2632 
2633   // Install the generated code.
2634   if (nm != NULL) {
2635     if (PrintCompilation) {
2636       ttyLocker ttyl;
2637       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2638     }
2639     nm->post_compiled_method_load_event();
2640   } else {
2641     // CodeCache is full, disable compilation
2642     CompileBroker::handle_full_code_cache();
2643   }
2644 }
2645 
2646 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2647   assert(thread == JavaThread::current(), "must be");
2648   // The code is about to enter a JNI lazy critical native method and
2649   // _needs_gc is true, so if this thread is already in a critical
2650   // section then just return, otherwise this thread should block
2651   // until needs_gc has been cleared.
2652   if (thread->in_critical()) {
2653     return;
2654   }
2655   // Lock and unlock a critical section to give the system a chance to block
2656   GC_locker::lock_critical(thread);
2657   GC_locker::unlock_critical(thread);
2658 JRT_END
2659 
2660 #ifdef HAVE_DTRACE_H
2661 // Create a dtrace nmethod for this method.  The wrapper converts the
2662 // java compiled calling convention to the native convention, makes a dummy call
2663 // (actually nops for the size of the call instruction, which become a trap if
2664 // probe is enabled). The returns to the caller. Since this all looks like a
2665 // leaf no thread transition is needed.
2666 
2667 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2668   ResourceMark rm;
2669   nmethod* nm = NULL;
2670 
2671   if (PrintCompilation) {
2672     ttyLocker ttyl;
2673     tty->print("---   n%s  ");
2674     method->print_short_name(tty);
2675     if (method->is_static()) {
2676       tty->print(" (static)");
2677     }
2678     tty->cr();
2679   }
2680 
2681   {
2682     // perform the work while holding the lock, but perform any printing
2683     // outside the lock
2684     MutexLocker mu(AdapterHandlerLibrary_lock);
2685     // See if somebody beat us to it
2686     nm = method->code();
2687     if (nm) {
2688       return nm;
2689     }
2690 
2691     ResourceMark rm;
2692 
2693     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2694     if (buf != NULL) {
2695       CodeBuffer buffer(buf);
2696       // Need a few relocation entries
2697       double locs_buf[20];
2698       buffer.insts()->initialize_shared_locs(
2699         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2700       MacroAssembler _masm(&buffer);
2701 
2702       // Generate the compiled-to-native wrapper code
2703       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2704     }
2705   }
2706   return nm;
2707 }
2708 
2709 // the dtrace method needs to convert java lang string to utf8 string.
2710 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2711   typeArrayOop jlsValue  = java_lang_String::value(src);
2712   int          jlsOffset = java_lang_String::offset(src);
2713   int          jlsLen    = java_lang_String::length(src);
2714   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2715                                            jlsValue->char_at_addr(jlsOffset);
2716   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2717   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2718 }
2719 #endif // ndef HAVE_DTRACE_H
2720 
2721 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2722   int argcnt = in_args_count;
2723   if (CCallingConventionRequiresIntsAsLongs) {
2724     for (int in = 0; in < in_args_count; in++) {
2725       BasicType bt = in_sig_bt[in];
2726       switch (bt) {
2727         case T_BOOLEAN:
2728         case T_CHAR:
2729         case T_BYTE:
2730         case T_SHORT:
2731         case T_INT:
2732           argcnt++;
2733           break;
2734         default:
2735           break;
2736       }
2737     }
2738   } else {
2739     assert(0, "This should not be needed on this platform");
2740   }
2741 
2742   return argcnt;
2743 }
2744 
2745 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2746                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2747   if (CCallingConventionRequiresIntsAsLongs) {
2748     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2749     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2750 
2751     int argcnt = 0;
2752     for (int in = 0; in < in_args_count; in++, argcnt++) {
2753       BasicType bt  = in_sig_bt[in];
2754       VMRegPair reg = in_regs[in];
2755       switch (bt) {
2756         case T_BOOLEAN:
2757         case T_CHAR:
2758         case T_BYTE:
2759         case T_SHORT:
2760         case T_INT:
2761           // Convert (bt) to (T_LONG,bt).
2762           new_in_sig_bt[argcnt  ] = T_LONG;
2763           new_in_sig_bt[argcnt+1] = bt;
2764           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2765           new_in_regs[argcnt  ].set2(reg.first());
2766           new_in_regs[argcnt+1].set_bad();
2767           argcnt++;
2768           break;
2769         default:
2770           // No conversion needed.
2771           new_in_sig_bt[argcnt] = bt;
2772           new_in_regs[argcnt]   = reg;
2773           break;
2774       }
2775     }
2776     assert(argcnt == i2l_argcnt, "must match");
2777 
2778     in_regs = new_in_regs;
2779     in_sig_bt = new_in_sig_bt;
2780     in_args_count = i2l_argcnt;
2781   } else {
2782     assert(0, "This should not be needed on this platform");
2783   }
2784 }
2785 
2786 // -------------------------------------------------------------------------
2787 // Java-Java calling convention
2788 // (what you use when Java calls Java)
2789 
2790 //------------------------------name_for_receiver----------------------------------
2791 // For a given signature, return the VMReg for parameter 0.
2792 VMReg SharedRuntime::name_for_receiver() {
2793   VMRegPair regs;
2794   BasicType sig_bt = T_OBJECT;
2795   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2796   // Return argument 0 register.  In the LP64 build pointers
2797   // take 2 registers, but the VM wants only the 'main' name.
2798   return regs.first();
2799 }
2800 
2801 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2802   // This method is returning a data structure allocating as a
2803   // ResourceObject, so do not put any ResourceMarks in here.
2804   char *s = sig->as_C_string();
2805   int len = (int)strlen(s);
2806   s++; len--;                   // Skip opening paren
2807   char *t = s+len;
2808   while( *(--t) != ')' ) ;      // Find close paren
2809 
2810   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2811   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2812   int cnt = 0;
2813   if (has_receiver) {
2814     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2815   }
2816 
2817   while( s < t ) {
2818     switch( *s++ ) {            // Switch on signature character
2819     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2820     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2821     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2822     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2823     case 'I': sig_bt[cnt++] = T_INT;     break;
2824     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2825     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2826     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2827     case 'V': sig_bt[cnt++] = T_VOID;    break;
2828     case 'L':                   // Oop
2829       while( *s++ != ';'  ) ;   // Skip signature
2830       sig_bt[cnt++] = T_OBJECT;
2831       break;
2832     case '[': {                 // Array
2833       do {                      // Skip optional size
2834         while( *s >= '0' && *s <= '9' ) s++;
2835       } while( *s++ == '[' );   // Nested arrays?
2836       // Skip element type
2837       if( s[-1] == 'L' )
2838         while( *s++ != ';'  ) ; // Skip signature
2839       sig_bt[cnt++] = T_ARRAY;
2840       break;
2841     }
2842     default : ShouldNotReachHere();
2843     }
2844   }
2845 
2846   if (has_appendix) {
2847     sig_bt[cnt++] = T_OBJECT;
2848   }
2849 
2850   assert( cnt < 256, "grow table size" );
2851 
2852   int comp_args_on_stack;
2853   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2854 
2855   // the calling convention doesn't count out_preserve_stack_slots so
2856   // we must add that in to get "true" stack offsets.
2857 
2858   if (comp_args_on_stack) {
2859     for (int i = 0; i < cnt; i++) {
2860       VMReg reg1 = regs[i].first();
2861       if( reg1->is_stack()) {
2862         // Yuck
2863         reg1 = reg1->bias(out_preserve_stack_slots());
2864       }
2865       VMReg reg2 = regs[i].second();
2866       if( reg2->is_stack()) {
2867         // Yuck
2868         reg2 = reg2->bias(out_preserve_stack_slots());
2869       }
2870       regs[i].set_pair(reg2, reg1);
2871     }
2872   }
2873 
2874   // results
2875   *arg_size = cnt;
2876   return regs;
2877 }
2878 
2879 // OSR Migration Code
2880 //
2881 // This code is used convert interpreter frames into compiled frames.  It is
2882 // called from very start of a compiled OSR nmethod.  A temp array is
2883 // allocated to hold the interesting bits of the interpreter frame.  All
2884 // active locks are inflated to allow them to move.  The displaced headers and
2885 // active interpreter locals are copied into the temp buffer.  Then we return
2886 // back to the compiled code.  The compiled code then pops the current
2887 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2888 // copies the interpreter locals and displaced headers where it wants.
2889 // Finally it calls back to free the temp buffer.
2890 //
2891 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2892 
2893 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2894 
2895   //
2896   // This code is dependent on the memory layout of the interpreter local
2897   // array and the monitors. On all of our platforms the layout is identical
2898   // so this code is shared. If some platform lays the their arrays out
2899   // differently then this code could move to platform specific code or
2900   // the code here could be modified to copy items one at a time using
2901   // frame accessor methods and be platform independent.
2902 
2903   frame fr = thread->last_frame();
2904   assert( fr.is_interpreted_frame(), "" );
2905   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2906 
2907   // Figure out how many monitors are active.
2908   int active_monitor_count = 0;
2909   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2910        kptr < fr.interpreter_frame_monitor_begin();
2911        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2912     if( kptr->obj() != NULL ) active_monitor_count++;
2913   }
2914 
2915   // QQQ we could place number of active monitors in the array so that compiled code
2916   // could double check it.
2917 
2918   Method* moop = fr.interpreter_frame_method();
2919   int max_locals = moop->max_locals();
2920   // Allocate temp buffer, 1 word per local & 2 per active monitor
2921   int buf_size_words = max_locals + active_monitor_count*2;
2922   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2923 
2924   // Copy the locals.  Order is preserved so that loading of longs works.
2925   // Since there's no GC I can copy the oops blindly.
2926   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2927   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2928                        (HeapWord*)&buf[0],
2929                        max_locals);
2930 
2931   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2932   int i = max_locals;
2933   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2934        kptr2 < fr.interpreter_frame_monitor_begin();
2935        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2936     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2937       BasicLock *lock = kptr2->lock();
2938       // Inflate so the displaced header becomes position-independent
2939       if (lock->displaced_header()->is_unlocked())
2940         ObjectSynchronizer::inflate_helper(kptr2->obj());
2941       // Now the displaced header is free to move
2942       buf[i++] = (intptr_t)lock->displaced_header();
2943       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2944     }
2945   }
2946   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2947 
2948   return buf;
2949 JRT_END
2950 
2951 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2952   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2953 JRT_END
2954 
2955 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2956   AdapterHandlerTableIterator iter(_adapters);
2957   while (iter.has_next()) {
2958     AdapterHandlerEntry* a = iter.next();
2959     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2960   }
2961   return false;
2962 }
2963 
2964 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2965   AdapterHandlerTableIterator iter(_adapters);
2966   while (iter.has_next()) {
2967     AdapterHandlerEntry* a = iter.next();
2968     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2969       st->print("Adapter for signature: ");
2970       a->print_adapter_on(tty);
2971       return;
2972     }
2973   }
2974   assert(false, "Should have found handler");
2975 }
2976 
2977 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2978   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2979                (intptr_t) this, fingerprint()->as_string(),
2980                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2981 
2982 }
2983 
2984 #ifndef PRODUCT
2985 
2986 void AdapterHandlerLibrary::print_statistics() {
2987   _adapters->print_statistics();
2988 }
2989 
2990 #endif /* PRODUCT */