1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113 
 114 #ifdef COMPILER2
 115   // Vectors are generated only by C2.
 116   if (is_wide_vector(MaxVectorSize)) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr ("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr ("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 #if INCLUDE_ALL_GCS
 213 
 214 // G1 write-barrier pre: executed before a pointer store.
 215 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 216   if (orig == NULL) {
 217     assert(false, "should be optimized out");
 218     return;
 219   }
 220   assert(orig->is_oop(true /* ignore mark word */), "Error");
 221   // store the original value that was in the field reference
 222   thread->satb_mark_queue().enqueue(orig);
 223 JRT_END
 224 
 225 // G1 write-barrier post: executed after a pointer store.
 226 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 227   thread->dirty_card_queue().enqueue(card_addr);
 228 JRT_END
 229 
 230 #endif // INCLUDE_ALL_GCS
 231 
 232 
 233 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 234   return x * y;
 235 JRT_END
 236 
 237 
 238 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 239   if (x == min_jlong && y == CONST64(-1)) {
 240     return x;
 241   } else {
 242     return x / y;
 243   }
 244 JRT_END
 245 
 246 
 247 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 248   if (x == min_jlong && y == CONST64(-1)) {
 249     return 0;
 250   } else {
 251     return x % y;
 252   }
 253 JRT_END
 254 
 255 
 256 const juint  float_sign_mask  = 0x7FFFFFFF;
 257 const juint  float_infinity   = 0x7F800000;
 258 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 259 const julong double_infinity  = CONST64(0x7FF0000000000000);
 260 
 261 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 262 #ifdef _WIN64
 263   // 64-bit Windows on amd64 returns the wrong values for
 264   // infinity operands.
 265   union { jfloat f; juint i; } xbits, ybits;
 266   xbits.f = x;
 267   ybits.f = y;
 268   // x Mod Infinity == x unless x is infinity
 269   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 270        ((ybits.i & float_sign_mask) == float_infinity) ) {
 271     return x;
 272   }
 273 #endif
 274   return ((jfloat)fmod((double)x,(double)y));
 275 JRT_END
 276 
 277 
 278 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 279 #ifdef _WIN64
 280   union { jdouble d; julong l; } xbits, ybits;
 281   xbits.d = x;
 282   ybits.d = y;
 283   // x Mod Infinity == x unless x is infinity
 284   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 285        ((ybits.l & double_sign_mask) == double_infinity) ) {
 286     return x;
 287   }
 288 #endif
 289   return ((jdouble)fmod((double)x,(double)y));
 290 JRT_END
 291 
 292 #ifdef __SOFTFP__
 293 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 310   return x + y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 314   return x - y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 318   return x * y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 322   return x / y;
 323 JRT_END
 324 
 325 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 326   return (jfloat)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 338   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 342   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 346   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 // Functions to return the opposite of the aeabi functions for nan.
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 // Intrinsics make gcc generate code for these.
 387 float  SharedRuntime::fneg(float f)   {
 388   return -f;
 389 }
 390 
 391 double SharedRuntime::dneg(double f)  {
 392   return -f;
 393 }
 394 
 395 #endif // __SOFTFP__
 396 
 397 #if defined(__SOFTFP__) || defined(E500V2)
 398 // Intrinsics make gcc generate code for these.
 399 double SharedRuntime::dabs(double f)  {
 400   return (f <= (double)0.0) ? (double)0.0 - f : f;
 401 }
 402 
 403 #endif
 404 
 405 #if defined(__SOFTFP__) || defined(PPC32)
 406 double SharedRuntime::dsqrt(double f) {
 407   return sqrt(f);
 408 }
 409 #endif
 410 
 411 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 412   if (g_isnan(x))
 413     return 0;
 414   if (x >= (jfloat) max_jint)
 415     return max_jint;
 416   if (x <= (jfloat) min_jint)
 417     return min_jint;
 418   return (jint) x;
 419 JRT_END
 420 
 421 
 422 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 423   if (g_isnan(x))
 424     return 0;
 425   if (x >= (jfloat) max_jlong)
 426     return max_jlong;
 427   if (x <= (jfloat) min_jlong)
 428     return min_jlong;
 429   return (jlong) x;
 430 JRT_END
 431 
 432 
 433 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 434   if (g_isnan(x))
 435     return 0;
 436   if (x >= (jdouble) max_jint)
 437     return max_jint;
 438   if (x <= (jdouble) min_jint)
 439     return min_jint;
 440   return (jint) x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 445   if (g_isnan(x))
 446     return 0;
 447   if (x >= (jdouble) max_jlong)
 448     return max_jlong;
 449   if (x <= (jdouble) min_jlong)
 450     return min_jlong;
 451   return (jlong) x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 461   return (jfloat)x;
 462 JRT_END
 463 
 464 
 465 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 466   return (jdouble)x;
 467 JRT_END
 468 
 469 // Exception handling across interpreter/compiler boundaries
 470 //
 471 // exception_handler_for_return_address(...) returns the continuation address.
 472 // The continuation address is the entry point of the exception handler of the
 473 // previous frame depending on the return address.
 474 
 475 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 476   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 477 
 478   // Reset method handle flag.
 479   thread->set_is_method_handle_return(false);
 480 
 481   // The fastest case first
 482   CodeBlob* blob = CodeCache::find_blob(return_address);
 483   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 484   if (nm != NULL) {
 485     // Set flag if return address is a method handle call site.
 486     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 487     // native nmethods don't have exception handlers
 488     assert(!nm->is_native_method(), "no exception handler");
 489     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 490     if (nm->is_deopt_pc(return_address)) {
 491       // If we come here because of a stack overflow, the stack may be
 492       // unguarded. Reguard the stack otherwise if we return to the
 493       // deopt blob and the stack bang causes a stack overflow we
 494       // crash.
 495       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 496       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 497       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 498       return SharedRuntime::deopt_blob()->unpack_with_exception();
 499     } else {
 500       return nm->exception_begin();
 501     }
 502   }
 503 
 504   // Entry code
 505   if (StubRoutines::returns_to_call_stub(return_address)) {
 506     return StubRoutines::catch_exception_entry();
 507   }
 508   // Interpreted code
 509   if (Interpreter::contains(return_address)) {
 510     return Interpreter::rethrow_exception_entry();
 511   }
 512 
 513   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 514   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 515 
 516 #ifndef PRODUCT
 517   { ResourceMark rm;
 518     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 519     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 520     tty->print_cr("b) other problem");
 521   }
 522 #endif // PRODUCT
 523 
 524   ShouldNotReachHere();
 525   return NULL;
 526 }
 527 
 528 
 529 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 530   return raw_exception_handler_for_return_address(thread, return_address);
 531 JRT_END
 532 
 533 
 534 address SharedRuntime::get_poll_stub(address pc) {
 535   address stub;
 536   // Look up the code blob
 537   CodeBlob *cb = CodeCache::find_blob(pc);
 538 
 539   // Should be an nmethod
 540   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 541 
 542   // Look up the relocation information
 543   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 544     "safepoint polling: type must be poll" );
 545 
 546   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 547     "Only polling locations are used for safepoint");
 548 
 549   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 550   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 551   if (at_poll_return) {
 552     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 553            "polling page return stub not created yet");
 554     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 555   } else if (has_wide_vectors) {
 556     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 557            "polling page vectors safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 559   } else {
 560     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 561            "polling page safepoint stub not created yet");
 562     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 563   }
 564 #ifndef PRODUCT
 565   if( TraceSafepoint ) {
 566     char buf[256];
 567     jio_snprintf(buf, sizeof(buf),
 568                  "... found polling page %s exception at pc = "
 569                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 570                  at_poll_return ? "return" : "loop",
 571                  (intptr_t)pc, (intptr_t)stub);
 572     tty->print_raw_cr(buf);
 573   }
 574 #endif // PRODUCT
 575   return stub;
 576 }
 577 
 578 
 579 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 580   assert(caller.is_interpreted_frame(), "");
 581   int args_size = ArgumentSizeComputer(sig).size() + 1;
 582   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 583   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 584   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 585   return result;
 586 }
 587 
 588 
 589 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 590   if (JvmtiExport::can_post_on_exceptions()) {
 591     vframeStream vfst(thread, true);
 592     methodHandle method = methodHandle(thread, vfst.method());
 593     address bcp = method()->bcp_from(vfst.bci());
 594     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 595   }
 596   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 597 }
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 600   Handle h_exception = Exceptions::new_exception(thread, name, message);
 601   throw_and_post_jvmti_exception(thread, h_exception);
 602 }
 603 
 604 // The interpreter code to call this tracing function is only
 605 // called/generated when TraceRedefineClasses has the right bits
 606 // set. Since obsolete methods are never compiled, we don't have
 607 // to modify the compilers to generate calls to this function.
 608 //
 609 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 610     JavaThread* thread, Method* method))
 611   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 612 
 613   if (method->is_obsolete()) {
 614     // We are calling an obsolete method, but this is not necessarily
 615     // an error. Our method could have been redefined just after we
 616     // fetched the Method* from the constant pool.
 617 
 618     // RC_TRACE macro has an embedded ResourceMark
 619     RC_TRACE_WITH_THREAD(0x00001000, thread,
 620                          ("calling obsolete method '%s'",
 621                           method->name_and_sig_as_C_string()));
 622     if (RC_TRACE_ENABLED(0x00002000)) {
 623       // this option is provided to debug calls to obsolete methods
 624       guarantee(false, "faulting at call to an obsolete method.");
 625     }
 626   }
 627   return 0;
 628 JRT_END
 629 
 630 // ret_pc points into caller; we are returning caller's exception handler
 631 // for given exception
 632 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 633                                                     bool force_unwind, bool top_frame_only) {
 634   assert(nm != NULL, "must exist");
 635   ResourceMark rm;
 636 
 637   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 638   // determine handler bci, if any
 639   EXCEPTION_MARK;
 640 
 641   int handler_bci = -1;
 642   int scope_depth = 0;
 643   if (!force_unwind) {
 644     int bci = sd->bci();
 645     bool recursive_exception = false;
 646     do {
 647       bool skip_scope_increment = false;
 648       // exception handler lookup
 649       KlassHandle ek (THREAD, exception->klass());
 650       methodHandle mh(THREAD, sd->method());
 651       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 652       if (HAS_PENDING_EXCEPTION) {
 653         recursive_exception = true;
 654         // We threw an exception while trying to find the exception handler.
 655         // Transfer the new exception to the exception handle which will
 656         // be set into thread local storage, and do another lookup for an
 657         // exception handler for this exception, this time starting at the
 658         // BCI of the exception handler which caused the exception to be
 659         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 660         // argument to ensure that the correct exception is thrown (4870175).
 661         exception = Handle(THREAD, PENDING_EXCEPTION);
 662         CLEAR_PENDING_EXCEPTION;
 663         if (handler_bci >= 0) {
 664           bci = handler_bci;
 665           handler_bci = -1;
 666           skip_scope_increment = true;
 667         }
 668       }
 669       else {
 670         recursive_exception = false;
 671       }
 672       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 673         sd = sd->sender();
 674         if (sd != NULL) {
 675           bci = sd->bci();
 676         }
 677         ++scope_depth;
 678       }
 679     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 680   }
 681 
 682   // found handling method => lookup exception handler
 683   int catch_pco = ret_pc - nm->code_begin();
 684 
 685   ExceptionHandlerTable table(nm);
 686   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 687   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 688     // Allow abbreviated catch tables.  The idea is to allow a method
 689     // to materialize its exceptions without committing to the exact
 690     // routing of exceptions.  In particular this is needed for adding
 691     // a synthetic handler to unlock monitors when inlining
 692     // synchronized methods since the unlock path isn't represented in
 693     // the bytecodes.
 694     t = table.entry_for(catch_pco, -1, 0);
 695   }
 696 
 697 #ifdef COMPILER1
 698   if (t == NULL && nm->is_compiled_by_c1()) {
 699     assert(nm->unwind_handler_begin() != NULL, "");
 700     return nm->unwind_handler_begin();
 701   }
 702 #endif
 703 
 704   if (t == NULL) {
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   // We avoid using the normal exception construction in this case because
 745   // it performs an upcall to Java, and we're already out of stack space.
 746   Klass* k = SystemDictionary::StackOverflowError_klass();
 747   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 748   Handle exception (thread, exception_oop);
 749   if (StackTraceInThrowable) {
 750     java_lang_Throwable::fill_in_stack_trace(exception);
 751   }
 752   throw_and_post_jvmti_exception(thread, exception);
 753 JRT_END
 754 
 755 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 756                                                            address pc,
 757                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 758 {
 759   address target_pc = NULL;
 760 
 761   if (Interpreter::contains(pc)) {
 762 #ifdef CC_INTERP
 763     // C++ interpreter doesn't throw implicit exceptions
 764     ShouldNotReachHere();
 765 #else
 766     switch (exception_kind) {
 767       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 768       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 769       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 770       default:                      ShouldNotReachHere();
 771     }
 772 #endif // !CC_INTERP
 773   } else {
 774     switch (exception_kind) {
 775       case STACK_OVERFLOW: {
 776         // Stack overflow only occurs upon frame setup; the callee is
 777         // going to be unwound. Dispatch to a shared runtime stub
 778         // which will cause the StackOverflowError to be fabricated
 779         // and processed.
 780         // Stack overflow should never occur during deoptimization:
 781         // the compiled method bangs the stack by as much as the
 782         // interpreter would need in case of a deoptimization. The
 783         // deoptimization blob and uncommon trap blob bang the stack
 784         // in a debug VM to verify the correctness of the compiled
 785         // method stack banging.
 786         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 787         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 788         return StubRoutines::throw_StackOverflowError_entry();
 789       }
 790 
 791       case IMPLICIT_NULL: {
 792         if (VtableStubs::contains(pc)) {
 793           // We haven't yet entered the callee frame. Fabricate an
 794           // exception and begin dispatching it in the caller. Since
 795           // the caller was at a call site, it's safe to destroy all
 796           // caller-saved registers, as these entry points do.
 797           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 798 
 799           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 800           if (vt_stub == NULL) return NULL;
 801 
 802           if (vt_stub->is_abstract_method_error(pc)) {
 803             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 804             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 805             return StubRoutines::throw_AbstractMethodError_entry();
 806           } else {
 807             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 808             return StubRoutines::throw_NullPointerException_at_call_entry();
 809           }
 810         } else {
 811           CodeBlob* cb = CodeCache::find_blob(pc);
 812 
 813           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 814           if (cb == NULL) return NULL;
 815 
 816           // Exception happened in CodeCache. Must be either:
 817           // 1. Inline-cache check in C2I handler blob,
 818           // 2. Inline-cache check in nmethod, or
 819           // 3. Implicit null exception in nmethod
 820 
 821           if (!cb->is_nmethod()) {
 822             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 823             if (!is_in_blob) {
 824               cb->print();
 825               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 826             }
 827             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 828             // There is no handler here, so we will simply unwind.
 829             return StubRoutines::throw_NullPointerException_at_call_entry();
 830           }
 831 
 832           // Otherwise, it's an nmethod.  Consult its exception handlers.
 833           nmethod* nm = (nmethod*)cb;
 834           if (nm->inlinecache_check_contains(pc)) {
 835             // exception happened inside inline-cache check code
 836             // => the nmethod is not yet active (i.e., the frame
 837             // is not set up yet) => use return address pushed by
 838             // caller => don't push another return address
 839             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842 
 843           if (nm->method()->is_method_handle_intrinsic()) {
 844             // exception happened inside MH dispatch code, similar to a vtable stub
 845             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 846             return StubRoutines::throw_NullPointerException_at_call_entry();
 847           }
 848 
 849 #ifndef PRODUCT
 850           _implicit_null_throws++;
 851 #endif
 852           target_pc = nm->continuation_for_implicit_exception(pc);
 853           // If there's an unexpected fault, target_pc might be NULL,
 854           // in which case we want to fall through into the normal
 855           // error handling code.
 856         }
 857 
 858         break; // fall through
 859       }
 860 
 861 
 862       case IMPLICIT_DIVIDE_BY_ZERO: {
 863         nmethod* nm = CodeCache::find_nmethod(pc);
 864         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 865 #ifndef PRODUCT
 866         _implicit_div0_throws++;
 867 #endif
 868         target_pc = nm->continuation_for_implicit_exception(pc);
 869         // If there's an unexpected fault, target_pc might be NULL,
 870         // in which case we want to fall through into the normal
 871         // error handling code.
 872         break; // fall through
 873       }
 874 
 875       default: ShouldNotReachHere();
 876     }
 877 
 878     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 879 
 880     // for AbortVMOnException flag
 881     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 882     if (exception_kind == IMPLICIT_NULL) {
 883       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 884     } else {
 885       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 886     }
 887     return target_pc;
 888   }
 889 
 890   ShouldNotReachHere();
 891   return NULL;
 892 }
 893 
 894 
 895 /**
 896  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 897  * installed in the native function entry of all native Java methods before
 898  * they get linked to their actual native methods.
 899  *
 900  * \note
 901  * This method actually never gets called!  The reason is because
 902  * the interpreter's native entries call NativeLookup::lookup() which
 903  * throws the exception when the lookup fails.  The exception is then
 904  * caught and forwarded on the return from NativeLookup::lookup() call
 905  * before the call to the native function.  This might change in the future.
 906  */
 907 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 908 {
 909   // We return a bad value here to make sure that the exception is
 910   // forwarded before we look at the return value.
 911   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 912 }
 913 JNI_END
 914 
 915 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 916   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 917 }
 918 
 919 
 920 #ifndef PRODUCT
 921 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 922   const frame f = thread->last_frame();
 923   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 924 #ifndef PRODUCT
 925   methodHandle mh(THREAD, f.interpreter_frame_method());
 926   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 927 #endif // !PRODUCT
 928   return preserve_this_value;
 929 JRT_END
 930 #endif // !PRODUCT
 931 
 932 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 933   assert(obj->is_oop(), "must be a valid oop");
 934   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 935   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 936 JRT_END
 937 
 938 
 939 jlong SharedRuntime::get_java_tid(Thread* thread) {
 940   if (thread != NULL) {
 941     if (thread->is_Java_thread()) {
 942       oop obj = ((JavaThread*)thread)->threadObj();
 943       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 944     }
 945   }
 946   return 0;
 947 }
 948 
 949 /**
 950  * This function ought to be a void function, but cannot be because
 951  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 952  * 6254741.  Once that is fixed we can remove the dummy return value.
 953  */
 954 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 955   return dtrace_object_alloc_base(Thread::current(), o, size);
 956 }
 957 
 958 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 959   assert(DTraceAllocProbes, "wrong call");
 960   Klass* klass = o->klass();
 961   Symbol* name = klass->name();
 962   HOTSPOT_OBJECT_ALLOC(
 963                    get_java_tid(thread),
 964                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 965   return 0;
 966 }
 967 
 968 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 969     JavaThread* thread, Method* method))
 970   assert(DTraceMethodProbes, "wrong call");
 971   Symbol* kname = method->klass_name();
 972   Symbol* name = method->name();
 973   Symbol* sig = method->signature();
 974   HOTSPOT_METHOD_ENTRY(
 975       get_java_tid(thread),
 976       (char *) kname->bytes(), kname->utf8_length(),
 977       (char *) name->bytes(), name->utf8_length(),
 978       (char *) sig->bytes(), sig->utf8_length());
 979   return 0;
 980 JRT_END
 981 
 982 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 983     JavaThread* thread, Method* method))
 984   assert(DTraceMethodProbes, "wrong call");
 985   Symbol* kname = method->klass_name();
 986   Symbol* name = method->name();
 987   Symbol* sig = method->signature();
 988   HOTSPOT_METHOD_RETURN(
 989       get_java_tid(thread),
 990       (char *) kname->bytes(), kname->utf8_length(),
 991       (char *) name->bytes(), name->utf8_length(),
 992       (char *) sig->bytes(), sig->utf8_length());
 993   return 0;
 994 JRT_END
 995 
 996 
 997 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 998 // for a call current in progress, i.e., arguments has been pushed on stack
 999 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1000 // vtable updates, etc.  Caller frame must be compiled.
1001 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1002   ResourceMark rm(THREAD);
1003 
1004   // last java frame on stack (which includes native call frames)
1005   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1006 
1007   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1008 }
1009 
1010 
1011 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1012 // for a call current in progress, i.e., arguments has been pushed on stack
1013 // but callee has not been invoked yet.  Caller frame must be compiled.
1014 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1015                                               vframeStream& vfst,
1016                                               Bytecodes::Code& bc,
1017                                               CallInfo& callinfo, TRAPS) {
1018   Handle receiver;
1019   Handle nullHandle;  //create a handy null handle for exception returns
1020 
1021   assert(!vfst.at_end(), "Java frame must exist");
1022 
1023   // Find caller and bci from vframe
1024   methodHandle caller(THREAD, vfst.method());
1025   int          bci   = vfst.bci();
1026 
1027   // Find bytecode
1028   Bytecode_invoke bytecode(caller, bci);
1029   bc = bytecode.invoke_code();
1030   int bytecode_index = bytecode.index();
1031 
1032   // Find receiver for non-static call
1033   if (bc != Bytecodes::_invokestatic &&
1034       bc != Bytecodes::_invokedynamic &&
1035       bc != Bytecodes::_invokehandle) {
1036     // This register map must be update since we need to find the receiver for
1037     // compiled frames. The receiver might be in a register.
1038     RegisterMap reg_map2(thread);
1039     frame stubFrame   = thread->last_frame();
1040     // Caller-frame is a compiled frame
1041     frame callerFrame = stubFrame.sender(&reg_map2);
1042 
1043     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1044     if (callee.is_null()) {
1045       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1046     }
1047     // Retrieve from a compiled argument list
1048     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1049 
1050     if (receiver.is_null()) {
1051       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1052     }
1053   }
1054 
1055   // Resolve method. This is parameterized by bytecode.
1056   constantPoolHandle constants(THREAD, caller->constants());
1057   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1058   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1059 
1060 #ifdef ASSERT
1061   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1062   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1063     assert(receiver.not_null(), "should have thrown exception");
1064     KlassHandle receiver_klass(THREAD, receiver->klass());
1065     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1066                             // klass is already loaded
1067     KlassHandle static_receiver_klass(THREAD, rk);
1068     // Method handle invokes might have been optimized to a direct call
1069     // so don't check for the receiver class.
1070     // FIXME this weakens the assert too much
1071     methodHandle callee = callinfo.selected_method();
1072     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1073            callee->is_method_handle_intrinsic() ||
1074            callee->is_compiled_lambda_form(),
1075            "actual receiver must be subclass of static receiver klass");
1076     if (receiver_klass->oop_is_instance()) {
1077       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1078         tty->print_cr("ERROR: Klass not yet initialized!!");
1079         receiver_klass()->print();
1080       }
1081       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1082     }
1083   }
1084 #endif
1085 
1086   return receiver;
1087 }
1088 
1089 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1090   ResourceMark rm(THREAD);
1091   // We need first to check if any Java activations (compiled, interpreted)
1092   // exist on the stack since last JavaCall.  If not, we need
1093   // to get the target method from the JavaCall wrapper.
1094   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1095   methodHandle callee_method;
1096   if (vfst.at_end()) {
1097     // No Java frames were found on stack since we did the JavaCall.
1098     // Hence the stack can only contain an entry_frame.  We need to
1099     // find the target method from the stub frame.
1100     RegisterMap reg_map(thread, false);
1101     frame fr = thread->last_frame();
1102     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1103     fr = fr.sender(&reg_map);
1104     assert(fr.is_entry_frame(), "must be");
1105     // fr is now pointing to the entry frame.
1106     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1107     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1108   } else {
1109     Bytecodes::Code bc;
1110     CallInfo callinfo;
1111     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1112     callee_method = callinfo.selected_method();
1113   }
1114   assert(callee_method()->is_method(), "must be");
1115   return callee_method;
1116 }
1117 
1118 // Resolves a call.
1119 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1120                                            bool is_virtual,
1121                                            bool is_optimized, TRAPS) {
1122   methodHandle callee_method;
1123   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1124   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1125     int retry_count = 0;
1126     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1127            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1128       // If has a pending exception then there is no need to re-try to
1129       // resolve this method.
1130       // If the method has been redefined, we need to try again.
1131       // Hack: we have no way to update the vtables of arrays, so don't
1132       // require that java.lang.Object has been updated.
1133 
1134       // It is very unlikely that method is redefined more than 100 times
1135       // in the middle of resolve. If it is looping here more than 100 times
1136       // means then there could be a bug here.
1137       guarantee((retry_count++ < 100),
1138                 "Could not resolve to latest version of redefined method");
1139       // method is redefined in the middle of resolve so re-try.
1140       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1141     }
1142   }
1143   return callee_method;
1144 }
1145 
1146 // Resolves a call.  The compilers generate code for calls that go here
1147 // and are patched with the real destination of the call.
1148 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1149                                            bool is_virtual,
1150                                            bool is_optimized, TRAPS) {
1151 
1152   ResourceMark rm(thread);
1153   RegisterMap cbl_map(thread, false);
1154   frame caller_frame = thread->last_frame().sender(&cbl_map);
1155 
1156   CodeBlob* caller_cb = caller_frame.cb();
1157   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1158   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1159 
1160   // make sure caller is not getting deoptimized
1161   // and removed before we are done with it.
1162   // CLEANUP - with lazy deopt shouldn't need this lock
1163   nmethodLocker caller_lock(caller_nm);
1164 
1165   // determine call info & receiver
1166   // note: a) receiver is NULL for static calls
1167   //       b) an exception is thrown if receiver is NULL for non-static calls
1168   CallInfo call_info;
1169   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1170   Handle receiver = find_callee_info(thread, invoke_code,
1171                                      call_info, CHECK_(methodHandle()));
1172   methodHandle callee_method = call_info.selected_method();
1173 
1174   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1175          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1176          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1177          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1178 
1179   // We do not patch the call site if the caller nmethod has been made non-entrant.
1180   if (!caller_nm->is_in_use()) {
1181     return callee_method;
1182   }
1183 
1184 #ifndef PRODUCT
1185   // tracing/debugging/statistics
1186   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1187                 (is_virtual) ? (&_resolve_virtual_ctr) :
1188                                (&_resolve_static_ctr);
1189   Atomic::inc(addr);
1190 
1191   if (TraceCallFixup) {
1192     ResourceMark rm(thread);
1193     tty->print("resolving %s%s (%s) call to",
1194       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1195       Bytecodes::name(invoke_code));
1196     callee_method->print_short_name(tty);
1197     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1198   }
1199 #endif
1200 
1201   // JSR 292 key invariant:
1202   // If the resolved method is a MethodHandle invoke target the call
1203   // site must be a MethodHandle call site, because the lambda form might tail-call
1204   // leaving the stack in a state unknown to either caller or callee
1205   // TODO detune for now but we might need it again
1206 //  assert(!callee_method->is_compiled_lambda_form() ||
1207 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1208 
1209   // Compute entry points. This might require generation of C2I converter
1210   // frames, so we cannot be holding any locks here. Furthermore, the
1211   // computation of the entry points is independent of patching the call.  We
1212   // always return the entry-point, but we only patch the stub if the call has
1213   // not been deoptimized.  Return values: For a virtual call this is an
1214   // (cached_oop, destination address) pair. For a static call/optimized
1215   // virtual this is just a destination address.
1216 
1217   StaticCallInfo static_call_info;
1218   CompiledICInfo virtual_call_info;
1219 
1220   // Make sure the callee nmethod does not get deoptimized and removed before
1221   // we are done patching the code.
1222   nmethod* callee_nm = callee_method->code();
1223   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1224     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1225     callee_nm = NULL;
1226   }
1227   nmethodLocker nl_callee(callee_nm);
1228 #ifdef ASSERT
1229   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1230 #endif
1231 
1232   if (is_virtual) {
1233     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1234     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1235     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1236     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1237                      is_optimized, static_bound, virtual_call_info,
1238                      CHECK_(methodHandle()));
1239   } else {
1240     // static call
1241     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1242   }
1243 
1244   // grab lock, check for deoptimization and potentially patch caller
1245   {
1246     MutexLocker ml_patch(CompiledIC_lock);
1247 
1248     // Lock blocks for safepoint during which both nmethods can change state.
1249 
1250     // Now that we are ready to patch if the Method* was redefined then
1251     // don't update call site and let the caller retry.
1252     // Don't update call site if caller nmethod has been made non-entrant
1253     // as it is a waste of time.
1254     // Don't update call site if callee nmethod was unloaded or deoptimized.
1255     // Don't update call site if callee nmethod was replaced by an other nmethod
1256     // which may happen when multiply alive nmethod (tiered compilation)
1257     // will be supported.
1258     if (!callee_method->is_old() && caller_nm->is_in_use() &&
1259         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1260 #ifdef ASSERT
1261       // We must not try to patch to jump to an already unloaded method.
1262       if (dest_entry_point != 0) {
1263         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1264         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1265                "should not call unloaded nmethod");
1266       }
1267 #endif
1268       if (is_virtual) {
1269         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1270         if (inline_cache->is_clean()) {
1271           inline_cache->set_to_monomorphic(virtual_call_info);
1272         }
1273       } else {
1274         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1275         if (ssc->is_clean()) ssc->set(static_call_info);
1276       }
1277     }
1278 
1279   } // unlock CompiledIC_lock
1280 
1281   return callee_method;
1282 }
1283 
1284 
1285 // Inline caches exist only in compiled code
1286 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1287 #ifdef ASSERT
1288   RegisterMap reg_map(thread, false);
1289   frame stub_frame = thread->last_frame();
1290   assert(stub_frame.is_runtime_frame(), "sanity check");
1291   frame caller_frame = stub_frame.sender(&reg_map);
1292   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1293 #endif /* ASSERT */
1294 
1295   methodHandle callee_method;
1296   JRT_BLOCK
1297     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1298     // Return Method* through TLS
1299     thread->set_vm_result_2(callee_method());
1300   JRT_BLOCK_END
1301   // return compiled code entry point after potential safepoints
1302   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1303   return callee_method->verified_code_entry();
1304 JRT_END
1305 
1306 
1307 // Handle call site that has been made non-entrant
1308 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1309   // 6243940 We might end up in here if the callee is deoptimized
1310   // as we race to call it.  We don't want to take a safepoint if
1311   // the caller was interpreted because the caller frame will look
1312   // interpreted to the stack walkers and arguments are now
1313   // "compiled" so it is much better to make this transition
1314   // invisible to the stack walking code. The i2c path will
1315   // place the callee method in the callee_target. It is stashed
1316   // there because if we try and find the callee by normal means a
1317   // safepoint is possible and have trouble gc'ing the compiled args.
1318   RegisterMap reg_map(thread, false);
1319   frame stub_frame = thread->last_frame();
1320   assert(stub_frame.is_runtime_frame(), "sanity check");
1321   frame caller_frame = stub_frame.sender(&reg_map);
1322 
1323   if (caller_frame.is_interpreted_frame() ||
1324       caller_frame.is_entry_frame()) {
1325     Method* callee = thread->callee_target();
1326     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1327     thread->set_vm_result_2(callee);
1328     thread->set_callee_target(NULL);
1329     return callee->get_c2i_entry();
1330   }
1331 
1332   // Must be compiled to compiled path which is safe to stackwalk
1333   methodHandle callee_method;
1334   JRT_BLOCK
1335     // Force resolving of caller (if we called from compiled frame)
1336     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1337     thread->set_vm_result_2(callee_method());
1338   JRT_BLOCK_END
1339   // return compiled code entry point after potential safepoints
1340   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1341   return callee_method->verified_code_entry();
1342 JRT_END
1343 
1344 // Handle abstract method call
1345 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1346   return StubRoutines::throw_AbstractMethodError_entry();
1347 JRT_END
1348 
1349 
1350 // resolve a static call and patch code
1351 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1352   methodHandle callee_method;
1353   JRT_BLOCK
1354     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1355     thread->set_vm_result_2(callee_method());
1356   JRT_BLOCK_END
1357   // return compiled code entry point after potential safepoints
1358   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1359   return callee_method->verified_code_entry();
1360 JRT_END
1361 
1362 
1363 // resolve virtual call and update inline cache to monomorphic
1364 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1365   methodHandle callee_method;
1366   JRT_BLOCK
1367     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1368     thread->set_vm_result_2(callee_method());
1369   JRT_BLOCK_END
1370   // return compiled code entry point after potential safepoints
1371   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1372   return callee_method->verified_code_entry();
1373 JRT_END
1374 
1375 
1376 // Resolve a virtual call that can be statically bound (e.g., always
1377 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1378 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1379   methodHandle callee_method;
1380   JRT_BLOCK
1381     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1382     thread->set_vm_result_2(callee_method());
1383   JRT_BLOCK_END
1384   // return compiled code entry point after potential safepoints
1385   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1386   return callee_method->verified_code_entry();
1387 JRT_END
1388 
1389 
1390 
1391 
1392 
1393 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1394   ResourceMark rm(thread);
1395   CallInfo call_info;
1396   Bytecodes::Code bc;
1397 
1398   // receiver is NULL for static calls. An exception is thrown for NULL
1399   // receivers for non-static calls
1400   Handle receiver = find_callee_info(thread, bc, call_info,
1401                                      CHECK_(methodHandle()));
1402   // Compiler1 can produce virtual call sites that can actually be statically bound
1403   // If we fell thru to below we would think that the site was going megamorphic
1404   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1405   // we'd try and do a vtable dispatch however methods that can be statically bound
1406   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1407   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1408   // plain ic_miss) and the site will be converted to an optimized virtual call site
1409   // never to miss again. I don't believe C2 will produce code like this but if it
1410   // did this would still be the correct thing to do for it too, hence no ifdef.
1411   //
1412   if (call_info.resolved_method()->can_be_statically_bound()) {
1413     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1414     if (TraceCallFixup) {
1415       RegisterMap reg_map(thread, false);
1416       frame caller_frame = thread->last_frame().sender(&reg_map);
1417       ResourceMark rm(thread);
1418       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1419       callee_method->print_short_name(tty);
1420       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1421       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1422     }
1423     return callee_method;
1424   }
1425 
1426   methodHandle callee_method = call_info.selected_method();
1427 
1428   bool should_be_mono = false;
1429 
1430 #ifndef PRODUCT
1431   Atomic::inc(&_ic_miss_ctr);
1432 
1433   // Statistics & Tracing
1434   if (TraceCallFixup) {
1435     ResourceMark rm(thread);
1436     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1437     callee_method->print_short_name(tty);
1438     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1439   }
1440 
1441   if (ICMissHistogram) {
1442     MutexLocker m(VMStatistic_lock);
1443     RegisterMap reg_map(thread, false);
1444     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1445     // produce statistics under the lock
1446     trace_ic_miss(f.pc());
1447   }
1448 #endif
1449 
1450   // install an event collector so that when a vtable stub is created the
1451   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1452   // event can't be posted when the stub is created as locks are held
1453   // - instead the event will be deferred until the event collector goes
1454   // out of scope.
1455   JvmtiDynamicCodeEventCollector event_collector;
1456 
1457   // Update inline cache to megamorphic. Skip update if caller has been
1458   // made non-entrant or we are called from interpreted.
1459   { MutexLocker ml_patch (CompiledIC_lock);
1460     RegisterMap reg_map(thread, false);
1461     frame caller_frame = thread->last_frame().sender(&reg_map);
1462     CodeBlob* cb = caller_frame.cb();
1463     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1464       // Not a non-entrant nmethod, so find inline_cache
1465       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1466       bool should_be_mono = false;
1467       if (inline_cache->is_optimized()) {
1468         if (TraceCallFixup) {
1469           ResourceMark rm(thread);
1470           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1471           callee_method->print_short_name(tty);
1472           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1473         }
1474         should_be_mono = true;
1475       } else if (inline_cache->is_icholder_call()) {
1476         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1477         if ( ic_oop != NULL) {
1478 
1479           if (receiver()->klass() == ic_oop->holder_klass()) {
1480             // This isn't a real miss. We must have seen that compiled code
1481             // is now available and we want the call site converted to a
1482             // monomorphic compiled call site.
1483             // We can't assert for callee_method->code() != NULL because it
1484             // could have been deoptimized in the meantime
1485             if (TraceCallFixup) {
1486               ResourceMark rm(thread);
1487               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1488               callee_method->print_short_name(tty);
1489               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1490             }
1491             should_be_mono = true;
1492           }
1493         }
1494       }
1495 
1496       if (should_be_mono) {
1497 
1498         // We have a path that was monomorphic but was going interpreted
1499         // and now we have (or had) a compiled entry. We correct the IC
1500         // by using a new icBuffer.
1501         CompiledICInfo info;
1502         KlassHandle receiver_klass(THREAD, receiver()->klass());
1503         inline_cache->compute_monomorphic_entry(callee_method,
1504                                                 receiver_klass,
1505                                                 inline_cache->is_optimized(),
1506                                                 false,
1507                                                 info, CHECK_(methodHandle()));
1508         inline_cache->set_to_monomorphic(info);
1509       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1510         // Potential change to megamorphic
1511         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1512         if (!successful) {
1513           inline_cache->set_to_clean();
1514         }
1515       } else {
1516         // Either clean or megamorphic
1517       }
1518     }
1519   } // Release CompiledIC_lock
1520 
1521   return callee_method;
1522 }
1523 
1524 //
1525 // Resets a call-site in compiled code so it will get resolved again.
1526 // This routines handles both virtual call sites, optimized virtual call
1527 // sites, and static call sites. Typically used to change a call sites
1528 // destination from compiled to interpreted.
1529 //
1530 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1531   ResourceMark rm(thread);
1532   RegisterMap reg_map(thread, false);
1533   frame stub_frame = thread->last_frame();
1534   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1535   frame caller = stub_frame.sender(&reg_map);
1536 
1537   // Do nothing if the frame isn't a live compiled frame.
1538   // nmethod could be deoptimized by the time we get here
1539   // so no update to the caller is needed.
1540 
1541   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1542 
1543     address pc = caller.pc();
1544 
1545     // Default call_addr is the location of the "basic" call.
1546     // Determine the address of the call we a reresolving. With
1547     // Inline Caches we will always find a recognizable call.
1548     // With Inline Caches disabled we may or may not find a
1549     // recognizable call. We will always find a call for static
1550     // calls and for optimized virtual calls. For vanilla virtual
1551     // calls it depends on the state of the UseInlineCaches switch.
1552     //
1553     // With Inline Caches disabled we can get here for a virtual call
1554     // for two reasons:
1555     //   1 - calling an abstract method. The vtable for abstract methods
1556     //       will run us thru handle_wrong_method and we will eventually
1557     //       end up in the interpreter to throw the ame.
1558     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1559     //       call and between the time we fetch the entry address and
1560     //       we jump to it the target gets deoptimized. Similar to 1
1561     //       we will wind up in the interprter (thru a c2i with c2).
1562     //
1563     address call_addr = NULL;
1564     {
1565       // Get call instruction under lock because another thread may be
1566       // busy patching it.
1567       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1568       // Location of call instruction
1569       if (NativeCall::is_call_before(pc)) {
1570         NativeCall *ncall = nativeCall_before(pc);
1571         call_addr = ncall->instruction_address();
1572       }
1573     }
1574 
1575     // Check for static or virtual call
1576     bool is_static_call = false;
1577     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1578     // Make sure nmethod doesn't get deoptimized and removed until
1579     // this is done with it.
1580     // CLEANUP - with lazy deopt shouldn't need this lock
1581     nmethodLocker nmlock(caller_nm);
1582 
1583     if (call_addr != NULL) {
1584       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1585       int ret = iter.next(); // Get item
1586       if (ret) {
1587         assert(iter.addr() == call_addr, "must find call");
1588         if (iter.type() == relocInfo::static_call_type) {
1589           is_static_call = true;
1590         } else {
1591           assert(iter.type() == relocInfo::virtual_call_type ||
1592                  iter.type() == relocInfo::opt_virtual_call_type
1593                 , "unexpected relocInfo. type");
1594         }
1595       } else {
1596         assert(!UseInlineCaches, "relocation info. must exist for this address");
1597       }
1598 
1599       // Cleaning the inline cache will force a new resolve. This is more robust
1600       // than directly setting it to the new destination, since resolving of calls
1601       // is always done through the same code path. (experience shows that it
1602       // leads to very hard to track down bugs, if an inline cache gets updated
1603       // to a wrong method). It should not be performance critical, since the
1604       // resolve is only done once.
1605 
1606       MutexLocker ml(CompiledIC_lock);
1607       //
1608       // We do not patch the call site if the nmethod has been made non-entrant
1609       // as it is a waste of time
1610       //
1611       if (caller_nm->is_in_use()) {
1612         if (is_static_call) {
1613           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1614           ssc->set_to_clean();
1615         } else {
1616           // compiled, dispatched call (which used to call an interpreted method)
1617           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1618           inline_cache->set_to_clean();
1619         }
1620       }
1621     }
1622 
1623   }
1624 
1625   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1626 
1627 
1628 #ifndef PRODUCT
1629   Atomic::inc(&_wrong_method_ctr);
1630 
1631   if (TraceCallFixup) {
1632     ResourceMark rm(thread);
1633     tty->print("handle_wrong_method reresolving call to");
1634     callee_method->print_short_name(tty);
1635     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1636   }
1637 #endif
1638 
1639   return callee_method;
1640 }
1641 
1642 #ifdef ASSERT
1643 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1644                                                                 const BasicType* sig_bt,
1645                                                                 const VMRegPair* regs) {
1646   ResourceMark rm;
1647   const int total_args_passed = method->size_of_parameters();
1648   const VMRegPair*    regs_with_member_name = regs;
1649         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1650 
1651   const int member_arg_pos = total_args_passed - 1;
1652   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1653   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1654 
1655   const bool is_outgoing = method->is_method_handle_intrinsic();
1656   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1657 
1658   for (int i = 0; i < member_arg_pos; i++) {
1659     VMReg a =    regs_with_member_name[i].first();
1660     VMReg b = regs_without_member_name[i].first();
1661     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1662   }
1663   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1664 }
1665 #endif
1666 
1667 // ---------------------------------------------------------------------------
1668 // We are calling the interpreter via a c2i. Normally this would mean that
1669 // we were called by a compiled method. However we could have lost a race
1670 // where we went int -> i2c -> c2i and so the caller could in fact be
1671 // interpreted. If the caller is compiled we attempt to patch the caller
1672 // so he no longer calls into the interpreter.
1673 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1674   Method* moop(method);
1675 
1676   address entry_point = moop->from_compiled_entry();
1677 
1678   // It's possible that deoptimization can occur at a call site which hasn't
1679   // been resolved yet, in which case this function will be called from
1680   // an nmethod that has been patched for deopt and we can ignore the
1681   // request for a fixup.
1682   // Also it is possible that we lost a race in that from_compiled_entry
1683   // is now back to the i2c in that case we don't need to patch and if
1684   // we did we'd leap into space because the callsite needs to use
1685   // "to interpreter" stub in order to load up the Method*. Don't
1686   // ask me how I know this...
1687 
1688   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1689   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1690     return;
1691   }
1692 
1693   // The check above makes sure this is a nmethod.
1694   nmethod* nm = cb->as_nmethod_or_null();
1695   assert(nm, "must be");
1696 
1697   // Get the return PC for the passed caller PC.
1698   address return_pc = caller_pc + frame::pc_return_offset;
1699 
1700   // There is a benign race here. We could be attempting to patch to a compiled
1701   // entry point at the same time the callee is being deoptimized. If that is
1702   // the case then entry_point may in fact point to a c2i and we'd patch the
1703   // call site with the same old data. clear_code will set code() to NULL
1704   // at the end of it. If we happen to see that NULL then we can skip trying
1705   // to patch. If we hit the window where the callee has a c2i in the
1706   // from_compiled_entry and the NULL isn't present yet then we lose the race
1707   // and patch the code with the same old data. Asi es la vida.
1708 
1709   if (moop->code() == NULL) return;
1710 
1711   if (nm->is_in_use()) {
1712 
1713     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1714     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1715     if (NativeCall::is_call_before(return_pc)) {
1716       NativeCall *call = nativeCall_before(return_pc);
1717       //
1718       // bug 6281185. We might get here after resolving a call site to a vanilla
1719       // virtual call. Because the resolvee uses the verified entry it may then
1720       // see compiled code and attempt to patch the site by calling us. This would
1721       // then incorrectly convert the call site to optimized and its downhill from
1722       // there. If you're lucky you'll get the assert in the bugid, if not you've
1723       // just made a call site that could be megamorphic into a monomorphic site
1724       // for the rest of its life! Just another racing bug in the life of
1725       // fixup_callers_callsite ...
1726       //
1727       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1728       iter.next();
1729       assert(iter.has_current(), "must have a reloc at java call site");
1730       relocInfo::relocType typ = iter.reloc()->type();
1731       if ( typ != relocInfo::static_call_type &&
1732            typ != relocInfo::opt_virtual_call_type &&
1733            typ != relocInfo::static_stub_type) {
1734         return;
1735       }
1736       address destination = call->destination();
1737       if (destination != entry_point) {
1738         CodeBlob* callee = CodeCache::find_blob(destination);
1739         // callee == cb seems weird. It means calling interpreter thru stub.
1740         if (callee == cb || callee->is_adapter_blob()) {
1741           // static call or optimized virtual
1742           if (TraceCallFixup) {
1743             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1744             moop->print_short_name(tty);
1745             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1746           }
1747           call->set_destination_mt_safe(entry_point);
1748         } else {
1749           if (TraceCallFixup) {
1750             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1751             moop->print_short_name(tty);
1752             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1753           }
1754           // assert is too strong could also be resolve destinations.
1755           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1756         }
1757       } else {
1758           if (TraceCallFixup) {
1759             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1760             moop->print_short_name(tty);
1761             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1762           }
1763       }
1764     }
1765   }
1766 IRT_END
1767 
1768 
1769 // same as JVM_Arraycopy, but called directly from compiled code
1770 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1771                                                 oopDesc* dest, jint dest_pos,
1772                                                 jint length,
1773                                                 JavaThread* thread)) {
1774 #ifndef PRODUCT
1775   _slow_array_copy_ctr++;
1776 #endif
1777   // Check if we have null pointers
1778   if (src == NULL || dest == NULL) {
1779     THROW(vmSymbols::java_lang_NullPointerException());
1780   }
1781   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1782   // even though the copy_array API also performs dynamic checks to ensure
1783   // that src and dest are truly arrays (and are conformable).
1784   // The copy_array mechanism is awkward and could be removed, but
1785   // the compilers don't call this function except as a last resort,
1786   // so it probably doesn't matter.
1787   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1788                                         (arrayOopDesc*)dest, dest_pos,
1789                                         length, thread);
1790 }
1791 JRT_END
1792 
1793 char* SharedRuntime::generate_class_cast_message(
1794     JavaThread* thread, const char* objName) {
1795 
1796   // Get target class name from the checkcast instruction
1797   vframeStream vfst(thread, true);
1798   assert(!vfst.at_end(), "Java frame must exist");
1799   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1800   Klass* targetKlass = vfst.method()->constants()->klass_at(
1801     cc.index(), thread);
1802   return generate_class_cast_message(objName, targetKlass->external_name());
1803 }
1804 
1805 char* SharedRuntime::generate_class_cast_message(
1806     const char* objName, const char* targetKlassName, const char* desc) {
1807   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1808 
1809   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1810   if (NULL == message) {
1811     // Shouldn't happen, but don't cause even more problems if it does
1812     message = const_cast<char*>(objName);
1813   } else {
1814     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1815   }
1816   return message;
1817 }
1818 
1819 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1820   (void) JavaThread::current()->reguard_stack();
1821 JRT_END
1822 
1823 
1824 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1825 #ifndef PRODUCT
1826 int SharedRuntime::_monitor_enter_ctr=0;
1827 #endif
1828 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1829   oop obj(_obj);
1830 #ifndef PRODUCT
1831   _monitor_enter_ctr++;             // monitor enter slow
1832 #endif
1833   if (PrintBiasedLockingStatistics) {
1834     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1835   }
1836   Handle h_obj(THREAD, obj);
1837   if (UseBiasedLocking) {
1838     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1839     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1840   } else {
1841     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1842   }
1843   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1844 JRT_END
1845 
1846 #ifndef PRODUCT
1847 int SharedRuntime::_monitor_exit_ctr=0;
1848 #endif
1849 // Handles the uncommon cases of monitor unlocking in compiled code
1850 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1851    oop obj(_obj);
1852 #ifndef PRODUCT
1853   _monitor_exit_ctr++;              // monitor exit slow
1854 #endif
1855   Thread* THREAD = JavaThread::current();
1856   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1857   // testing was unable to ever fire the assert that guarded it so I have removed it.
1858   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1859 #undef MIGHT_HAVE_PENDING
1860 #ifdef MIGHT_HAVE_PENDING
1861   // Save and restore any pending_exception around the exception mark.
1862   // While the slow_exit must not throw an exception, we could come into
1863   // this routine with one set.
1864   oop pending_excep = NULL;
1865   const char* pending_file;
1866   int pending_line;
1867   if (HAS_PENDING_EXCEPTION) {
1868     pending_excep = PENDING_EXCEPTION;
1869     pending_file  = THREAD->exception_file();
1870     pending_line  = THREAD->exception_line();
1871     CLEAR_PENDING_EXCEPTION;
1872   }
1873 #endif /* MIGHT_HAVE_PENDING */
1874 
1875   {
1876     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1877     EXCEPTION_MARK;
1878     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1879   }
1880 
1881 #ifdef MIGHT_HAVE_PENDING
1882   if (pending_excep != NULL) {
1883     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1884   }
1885 #endif /* MIGHT_HAVE_PENDING */
1886 JRT_END
1887 
1888 #ifndef PRODUCT
1889 
1890 void SharedRuntime::print_statistics() {
1891   ttyLocker ttyl;
1892   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1893 
1894   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1895   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1896   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1897 
1898   SharedRuntime::print_ic_miss_histogram();
1899 
1900   if (CountRemovableExceptions) {
1901     if (_nof_removable_exceptions > 0) {
1902       Unimplemented(); // this counter is not yet incremented
1903       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1904     }
1905   }
1906 
1907   // Dump the JRT_ENTRY counters
1908   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1909   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1910   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1911   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1912   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1913   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1914   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1915 
1916   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1917   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1918   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1919   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1920   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1921 
1922   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1923   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1924   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1925   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1926   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1927   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1928   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1929   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1930   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1931   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1932   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1933   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1934   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1935   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1936   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1937   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1938 
1939   AdapterHandlerLibrary::print_statistics();
1940 
1941   if (xtty != NULL)  xtty->tail("statistics");
1942 }
1943 
1944 inline double percent(int x, int y) {
1945   return 100.0 * x / MAX2(y, 1);
1946 }
1947 
1948 class MethodArityHistogram {
1949  public:
1950   enum { MAX_ARITY = 256 };
1951  private:
1952   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1953   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1954   static int _max_arity;                      // max. arity seen
1955   static int _max_size;                       // max. arg size seen
1956 
1957   static void add_method_to_histogram(nmethod* nm) {
1958     Method* m = nm->method();
1959     ArgumentCount args(m->signature());
1960     int arity   = args.size() + (m->is_static() ? 0 : 1);
1961     int argsize = m->size_of_parameters();
1962     arity   = MIN2(arity, MAX_ARITY-1);
1963     argsize = MIN2(argsize, MAX_ARITY-1);
1964     int count = nm->method()->compiled_invocation_count();
1965     _arity_histogram[arity]  += count;
1966     _size_histogram[argsize] += count;
1967     _max_arity = MAX2(_max_arity, arity);
1968     _max_size  = MAX2(_max_size, argsize);
1969   }
1970 
1971   void print_histogram_helper(int n, int* histo, const char* name) {
1972     const int N = MIN2(5, n);
1973     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1974     double sum = 0;
1975     double weighted_sum = 0;
1976     int i;
1977     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1978     double rest = sum;
1979     double percent = sum / 100;
1980     for (i = 0; i <= N; i++) {
1981       rest -= histo[i];
1982       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1983     }
1984     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1985     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1986   }
1987 
1988   void print_histogram() {
1989     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1990     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1991     tty->print_cr("\nSame for parameter size (in words):");
1992     print_histogram_helper(_max_size, _size_histogram, "size");
1993     tty->cr();
1994   }
1995 
1996  public:
1997   MethodArityHistogram() {
1998     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1999     _max_arity = _max_size = 0;
2000     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2001     CodeCache::nmethods_do(add_method_to_histogram);
2002     print_histogram();
2003   }
2004 };
2005 
2006 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2007 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2008 int MethodArityHistogram::_max_arity;
2009 int MethodArityHistogram::_max_size;
2010 
2011 void SharedRuntime::print_call_statistics(int comp_total) {
2012   tty->print_cr("Calls from compiled code:");
2013   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2014   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2015   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2016   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2017   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2020   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2021   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2022   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2023   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2026   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2027   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2028   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2029   tty->cr();
2030   tty->print_cr("Note 1: counter updates are not MT-safe.");
2031   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2032   tty->print_cr("        %% in nested categories are relative to their category");
2033   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2034   tty->cr();
2035 
2036   MethodArityHistogram h;
2037 }
2038 #endif
2039 
2040 
2041 // A simple wrapper class around the calling convention information
2042 // that allows sharing of adapters for the same calling convention.
2043 class AdapterFingerPrint : public CHeapObj<mtCode> {
2044  private:
2045   enum {
2046     _basic_type_bits = 4,
2047     _basic_type_mask = right_n_bits(_basic_type_bits),
2048     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2049     _compact_int_count = 3
2050   };
2051   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2052   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2053 
2054   union {
2055     int  _compact[_compact_int_count];
2056     int* _fingerprint;
2057   } _value;
2058   int _length; // A negative length indicates the fingerprint is in the compact form,
2059                // Otherwise _value._fingerprint is the array.
2060 
2061   // Remap BasicTypes that are handled equivalently by the adapters.
2062   // These are correct for the current system but someday it might be
2063   // necessary to make this mapping platform dependent.
2064   static int adapter_encoding(BasicType in) {
2065     switch(in) {
2066       case T_BOOLEAN:
2067       case T_BYTE:
2068       case T_SHORT:
2069       case T_CHAR:
2070         // There are all promoted to T_INT in the calling convention
2071         return T_INT;
2072 
2073       case T_OBJECT:
2074       case T_ARRAY:
2075         // In other words, we assume that any register good enough for
2076         // an int or long is good enough for a managed pointer.
2077 #ifdef _LP64
2078         return T_LONG;
2079 #else
2080         return T_INT;
2081 #endif
2082 
2083       case T_INT:
2084       case T_LONG:
2085       case T_FLOAT:
2086       case T_DOUBLE:
2087       case T_VOID:
2088         return in;
2089 
2090       default:
2091         ShouldNotReachHere();
2092         return T_CONFLICT;
2093     }
2094   }
2095 
2096  public:
2097   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2098     // The fingerprint is based on the BasicType signature encoded
2099     // into an array of ints with eight entries per int.
2100     int* ptr;
2101     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2102     if (len <= _compact_int_count) {
2103       assert(_compact_int_count == 3, "else change next line");
2104       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2105       // Storing the signature encoded as signed chars hits about 98%
2106       // of the time.
2107       _length = -len;
2108       ptr = _value._compact;
2109     } else {
2110       _length = len;
2111       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2112       ptr = _value._fingerprint;
2113     }
2114 
2115     // Now pack the BasicTypes with 8 per int
2116     int sig_index = 0;
2117     for (int index = 0; index < len; index++) {
2118       int value = 0;
2119       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2120         int bt = ((sig_index < total_args_passed)
2121                   ? adapter_encoding(sig_bt[sig_index++])
2122                   : 0);
2123         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2124         value = (value << _basic_type_bits) | bt;
2125       }
2126       ptr[index] = value;
2127     }
2128   }
2129 
2130   ~AdapterFingerPrint() {
2131     if (_length > 0) {
2132       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2133     }
2134   }
2135 
2136   int value(int index) {
2137     if (_length < 0) {
2138       return _value._compact[index];
2139     }
2140     return _value._fingerprint[index];
2141   }
2142   int length() {
2143     if (_length < 0) return -_length;
2144     return _length;
2145   }
2146 
2147   bool is_compact() {
2148     return _length <= 0;
2149   }
2150 
2151   unsigned int compute_hash() {
2152     int hash = 0;
2153     for (int i = 0; i < length(); i++) {
2154       int v = value(i);
2155       hash = (hash << 8) ^ v ^ (hash >> 5);
2156     }
2157     return (unsigned int)hash;
2158   }
2159 
2160   const char* as_string() {
2161     stringStream st;
2162     st.print("0x");
2163     for (int i = 0; i < length(); i++) {
2164       st.print("%08x", value(i));
2165     }
2166     return st.as_string();
2167   }
2168 
2169   bool equals(AdapterFingerPrint* other) {
2170     if (other->_length != _length) {
2171       return false;
2172     }
2173     if (_length < 0) {
2174       assert(_compact_int_count == 3, "else change next line");
2175       return _value._compact[0] == other->_value._compact[0] &&
2176              _value._compact[1] == other->_value._compact[1] &&
2177              _value._compact[2] == other->_value._compact[2];
2178     } else {
2179       for (int i = 0; i < _length; i++) {
2180         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2181           return false;
2182         }
2183       }
2184     }
2185     return true;
2186   }
2187 };
2188 
2189 
2190 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2191 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2192   friend class AdapterHandlerTableIterator;
2193 
2194  private:
2195 
2196 #ifndef PRODUCT
2197   static int _lookups; // number of calls to lookup
2198   static int _buckets; // number of buckets checked
2199   static int _equals;  // number of buckets checked with matching hash
2200   static int _hits;    // number of successful lookups
2201   static int _compact; // number of equals calls with compact signature
2202 #endif
2203 
2204   AdapterHandlerEntry* bucket(int i) {
2205     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2206   }
2207 
2208  public:
2209   AdapterHandlerTable()
2210     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2211 
2212   // Create a new entry suitable for insertion in the table
2213   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2214     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2215     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2216     return entry;
2217   }
2218 
2219   // Insert an entry into the table
2220   void add(AdapterHandlerEntry* entry) {
2221     int index = hash_to_index(entry->hash());
2222     add_entry(index, entry);
2223   }
2224 
2225   void free_entry(AdapterHandlerEntry* entry) {
2226     entry->deallocate();
2227     BasicHashtable<mtCode>::free_entry(entry);
2228   }
2229 
2230   // Find a entry with the same fingerprint if it exists
2231   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2232     NOT_PRODUCT(_lookups++);
2233     AdapterFingerPrint fp(total_args_passed, sig_bt);
2234     unsigned int hash = fp.compute_hash();
2235     int index = hash_to_index(hash);
2236     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2237       NOT_PRODUCT(_buckets++);
2238       if (e->hash() == hash) {
2239         NOT_PRODUCT(_equals++);
2240         if (fp.equals(e->fingerprint())) {
2241 #ifndef PRODUCT
2242           if (fp.is_compact()) _compact++;
2243           _hits++;
2244 #endif
2245           return e;
2246         }
2247       }
2248     }
2249     return NULL;
2250   }
2251 
2252 #ifndef PRODUCT
2253   void print_statistics() {
2254     ResourceMark rm;
2255     int longest = 0;
2256     int empty = 0;
2257     int total = 0;
2258     int nonempty = 0;
2259     for (int index = 0; index < table_size(); index++) {
2260       int count = 0;
2261       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2262         count++;
2263       }
2264       if (count != 0) nonempty++;
2265       if (count == 0) empty++;
2266       if (count > longest) longest = count;
2267       total += count;
2268     }
2269     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2270                   empty, longest, total, total / (double)nonempty);
2271     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2272                   _lookups, _buckets, _equals, _hits, _compact);
2273   }
2274 #endif
2275 };
2276 
2277 
2278 #ifndef PRODUCT
2279 
2280 int AdapterHandlerTable::_lookups;
2281 int AdapterHandlerTable::_buckets;
2282 int AdapterHandlerTable::_equals;
2283 int AdapterHandlerTable::_hits;
2284 int AdapterHandlerTable::_compact;
2285 
2286 #endif
2287 
2288 class AdapterHandlerTableIterator : public StackObj {
2289  private:
2290   AdapterHandlerTable* _table;
2291   int _index;
2292   AdapterHandlerEntry* _current;
2293 
2294   void scan() {
2295     while (_index < _table->table_size()) {
2296       AdapterHandlerEntry* a = _table->bucket(_index);
2297       _index++;
2298       if (a != NULL) {
2299         _current = a;
2300         return;
2301       }
2302     }
2303   }
2304 
2305  public:
2306   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2307     scan();
2308   }
2309   bool has_next() {
2310     return _current != NULL;
2311   }
2312   AdapterHandlerEntry* next() {
2313     if (_current != NULL) {
2314       AdapterHandlerEntry* result = _current;
2315       _current = _current->next();
2316       if (_current == NULL) scan();
2317       return result;
2318     } else {
2319       return NULL;
2320     }
2321   }
2322 };
2323 
2324 
2325 // ---------------------------------------------------------------------------
2326 // Implementation of AdapterHandlerLibrary
2327 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2328 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2329 const int AdapterHandlerLibrary_size = 16*K;
2330 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2331 
2332 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2333   // Should be called only when AdapterHandlerLibrary_lock is active.
2334   if (_buffer == NULL) // Initialize lazily
2335       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2336   return _buffer;
2337 }
2338 
2339 void AdapterHandlerLibrary::initialize() {
2340   if (_adapters != NULL) return;
2341   _adapters = new AdapterHandlerTable();
2342 
2343   // Create a special handler for abstract methods.  Abstract methods
2344   // are never compiled so an i2c entry is somewhat meaningless, but
2345   // throw AbstractMethodError just in case.
2346   // Pass wrong_method_abstract for the c2i transitions to return
2347   // AbstractMethodError for invalid invocations.
2348   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2349   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2350                                                               StubRoutines::throw_AbstractMethodError_entry(),
2351                                                               wrong_method_abstract, wrong_method_abstract);
2352 }
2353 
2354 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2355                                                       address i2c_entry,
2356                                                       address c2i_entry,
2357                                                       address c2i_unverified_entry) {
2358   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2359 }
2360 
2361 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2362   // Use customized signature handler.  Need to lock around updates to
2363   // the AdapterHandlerTable (it is not safe for concurrent readers
2364   // and a single writer: this could be fixed if it becomes a
2365   // problem).
2366 
2367   // Get the address of the ic_miss handlers before we grab the
2368   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2369   // was caused by the initialization of the stubs happening
2370   // while we held the lock and then notifying jvmti while
2371   // holding it. This just forces the initialization to be a little
2372   // earlier.
2373   address ic_miss = SharedRuntime::get_ic_miss_stub();
2374   assert(ic_miss != NULL, "must have handler");
2375 
2376   ResourceMark rm;
2377 
2378   NOT_PRODUCT(int insts_size);
2379   AdapterBlob* new_adapter = NULL;
2380   AdapterHandlerEntry* entry = NULL;
2381   AdapterFingerPrint* fingerprint = NULL;
2382   {
2383     MutexLocker mu(AdapterHandlerLibrary_lock);
2384     // make sure data structure is initialized
2385     initialize();
2386 
2387     if (method->is_abstract()) {
2388       return _abstract_method_handler;
2389     }
2390 
2391     // Fill in the signature array, for the calling-convention call.
2392     int total_args_passed = method->size_of_parameters(); // All args on stack
2393 
2394     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2395     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2396     int i = 0;
2397     if (!method->is_static())  // Pass in receiver first
2398       sig_bt[i++] = T_OBJECT;
2399     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2400       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2401       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2402         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2403     }
2404     assert(i == total_args_passed, "");
2405 
2406     // Lookup method signature's fingerprint
2407     entry = _adapters->lookup(total_args_passed, sig_bt);
2408 
2409 #ifdef ASSERT
2410     AdapterHandlerEntry* shared_entry = NULL;
2411     // Start adapter sharing verification only after the VM is booted.
2412     if (VerifyAdapterSharing && (entry != NULL)) {
2413       shared_entry = entry;
2414       entry = NULL;
2415     }
2416 #endif
2417 
2418     if (entry != NULL) {
2419       return entry;
2420     }
2421 
2422     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2423     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2424 
2425     // Make a C heap allocated version of the fingerprint to store in the adapter
2426     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2427 
2428     // StubRoutines::code2() is initialized after this function can be called. As a result,
2429     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2430     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2431     // stub that ensure that an I2C stub is called from an interpreter frame.
2432     bool contains_all_checks = StubRoutines::code2() != NULL;
2433 
2434     // Create I2C & C2I handlers
2435     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2436     if (buf != NULL) {
2437       CodeBuffer buffer(buf);
2438       short buffer_locs[20];
2439       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2440                                              sizeof(buffer_locs)/sizeof(relocInfo));
2441 
2442       MacroAssembler _masm(&buffer);
2443       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2444                                                      total_args_passed,
2445                                                      comp_args_on_stack,
2446                                                      sig_bt,
2447                                                      regs,
2448                                                      fingerprint);
2449 #ifdef ASSERT
2450       if (VerifyAdapterSharing) {
2451         if (shared_entry != NULL) {
2452           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2453           // Release the one just created and return the original
2454           _adapters->free_entry(entry);
2455           return shared_entry;
2456         } else  {
2457           entry->save_code(buf->code_begin(), buffer.insts_size());
2458         }
2459       }
2460 #endif
2461 
2462       new_adapter = AdapterBlob::create(&buffer);
2463       NOT_PRODUCT(insts_size = buffer.insts_size());
2464     }
2465     if (new_adapter == NULL) {
2466       // CodeCache is full, disable compilation
2467       // Ought to log this but compile log is only per compile thread
2468       // and we're some non descript Java thread.
2469       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2470       CompileBroker::handle_full_code_cache();
2471       return NULL; // Out of CodeCache space
2472     }
2473     entry->relocate(new_adapter->content_begin());
2474 #ifndef PRODUCT
2475     // debugging suppport
2476     if (PrintAdapterHandlers || PrintStubCode) {
2477       ttyLocker ttyl;
2478       entry->print_adapter_on(tty);
2479       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2480                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2481                     method->signature()->as_C_string(), insts_size);
2482       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2483       if (Verbose || PrintStubCode) {
2484         address first_pc = entry->base_address();
2485         if (first_pc != NULL) {
2486           Disassembler::decode(first_pc, first_pc + insts_size);
2487           tty->cr();
2488         }
2489       }
2490     }
2491 #endif
2492     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2493     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2494     if (contains_all_checks || !VerifyAdapterCalls) {
2495       _adapters->add(entry);
2496     }
2497   }
2498   // Outside of the lock
2499   if (new_adapter != NULL) {
2500     char blob_id[256];
2501     jio_snprintf(blob_id,
2502                  sizeof(blob_id),
2503                  "%s(%s)@" PTR_FORMAT,
2504                  new_adapter->name(),
2505                  fingerprint->as_string(),
2506                  new_adapter->content_begin());
2507     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2508 
2509     if (JvmtiExport::should_post_dynamic_code_generated()) {
2510       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2511     }
2512   }
2513   return entry;
2514 }
2515 
2516 address AdapterHandlerEntry::base_address() {
2517   address base = _i2c_entry;
2518   if (base == NULL)  base = _c2i_entry;
2519   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2520   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2521   return base;
2522 }
2523 
2524 void AdapterHandlerEntry::relocate(address new_base) {
2525   address old_base = base_address();
2526   assert(old_base != NULL, "");
2527   ptrdiff_t delta = new_base - old_base;
2528   if (_i2c_entry != NULL)
2529     _i2c_entry += delta;
2530   if (_c2i_entry != NULL)
2531     _c2i_entry += delta;
2532   if (_c2i_unverified_entry != NULL)
2533     _c2i_unverified_entry += delta;
2534   assert(base_address() == new_base, "");
2535 }
2536 
2537 
2538 void AdapterHandlerEntry::deallocate() {
2539   delete _fingerprint;
2540 #ifdef ASSERT
2541   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2542 #endif
2543 }
2544 
2545 
2546 #ifdef ASSERT
2547 // Capture the code before relocation so that it can be compared
2548 // against other versions.  If the code is captured after relocation
2549 // then relative instructions won't be equivalent.
2550 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2551   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2552   _saved_code_length = length;
2553   memcpy(_saved_code, buffer, length);
2554 }
2555 
2556 
2557 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2558   if (length != _saved_code_length) {
2559     return false;
2560   }
2561 
2562   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2563 }
2564 #endif
2565 
2566 
2567 /**
2568  * Create a native wrapper for this native method.  The wrapper converts the
2569  * Java-compiled calling convention to the native convention, handles
2570  * arguments, and transitions to native.  On return from the native we transition
2571  * back to java blocking if a safepoint is in progress.
2572  */
2573 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2574   ResourceMark rm;
2575   nmethod* nm = NULL;
2576 
2577   assert(method->is_native(), "must be native");
2578   assert(method->is_method_handle_intrinsic() ||
2579          method->has_native_function(), "must have something valid to call!");
2580 
2581   {
2582     // Perform the work while holding the lock, but perform any printing outside the lock
2583     MutexLocker mu(AdapterHandlerLibrary_lock);
2584     // See if somebody beat us to it
2585     nm = method->code();
2586     if (nm != NULL) {
2587       return;
2588     }
2589 
2590     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2591     assert(compile_id > 0, "Must generate native wrapper");
2592 
2593 
2594     ResourceMark rm;
2595     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2596     if (buf != NULL) {
2597       CodeBuffer buffer(buf);
2598       double locs_buf[20];
2599       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2600       MacroAssembler _masm(&buffer);
2601 
2602       // Fill in the signature array, for the calling-convention call.
2603       const int total_args_passed = method->size_of_parameters();
2604 
2605       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2606       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2607       int i=0;
2608       if( !method->is_static() )  // Pass in receiver first
2609         sig_bt[i++] = T_OBJECT;
2610       SignatureStream ss(method->signature());
2611       for( ; !ss.at_return_type(); ss.next()) {
2612         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2613         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2614           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2615       }
2616       assert(i == total_args_passed, "");
2617       BasicType ret_type = ss.type();
2618 
2619       // Now get the compiled-Java layout as input (or output) arguments.
2620       // NOTE: Stubs for compiled entry points of method handle intrinsics
2621       // are just trampolines so the argument registers must be outgoing ones.
2622       const bool is_outgoing = method->is_method_handle_intrinsic();
2623       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2624 
2625       // Generate the compiled-to-native wrapper code
2626       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2627 
2628       if (nm != NULL) {
2629         method->set_code(method, nm);
2630       }
2631     }
2632   } // Unlock AdapterHandlerLibrary_lock
2633 
2634 
2635   // Install the generated code.
2636   if (nm != NULL) {
2637     if (PrintCompilation) {
2638       ttyLocker ttyl;
2639       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2640     }
2641     nm->post_compiled_method_load_event();
2642   } else {
2643     // CodeCache is full, disable compilation
2644     CompileBroker::handle_full_code_cache();
2645   }
2646 }
2647 
2648 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2649   assert(thread == JavaThread::current(), "must be");
2650   // The code is about to enter a JNI lazy critical native method and
2651   // _needs_gc is true, so if this thread is already in a critical
2652   // section then just return, otherwise this thread should block
2653   // until needs_gc has been cleared.
2654   if (thread->in_critical()) {
2655     return;
2656   }
2657   // Lock and unlock a critical section to give the system a chance to block
2658   GC_locker::lock_critical(thread);
2659   GC_locker::unlock_critical(thread);
2660 JRT_END
2661 
2662 #ifdef HAVE_DTRACE_H
2663 /**
2664  * Create a dtrace nmethod for this method.  The wrapper converts the
2665  * Java-compiled calling convention to the native convention, makes a dummy call
2666  * (actually nops for the size of the call instruction, which become a trap if
2667  * probe is enabled), and finally returns to the caller. Since this all looks like a
2668  * leaf, no thread transition is needed.
2669  */
2670 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2671   ResourceMark rm;
2672   nmethod* nm = NULL;
2673 
2674   if (PrintCompilation) {
2675     ttyLocker ttyl;
2676     tty->print("---   n  ");
2677     method->print_short_name(tty);
2678     if (method->is_static()) {
2679       tty->print(" (static)");
2680     }
2681     tty->cr();
2682   }
2683 
2684   {
2685     // perform the work while holding the lock, but perform any printing
2686     // outside the lock
2687     MutexLocker mu(AdapterHandlerLibrary_lock);
2688     // See if somebody beat us to it
2689     nm = method->code();
2690     if (nm) {
2691       return nm;
2692     }
2693 
2694     ResourceMark rm;
2695 
2696     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2697     if (buf != NULL) {
2698       CodeBuffer buffer(buf);
2699       // Need a few relocation entries
2700       double locs_buf[20];
2701       buffer.insts()->initialize_shared_locs(
2702         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2703       MacroAssembler _masm(&buffer);
2704 
2705       // Generate the compiled-to-native wrapper code
2706       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2707     }
2708   }
2709   return nm;
2710 }
2711 
2712 // the dtrace method needs to convert java lang string to utf8 string.
2713 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2714   typeArrayOop jlsValue  = java_lang_String::value(src);
2715   int          jlsOffset = java_lang_String::offset(src);
2716   int          jlsLen    = java_lang_String::length(src);
2717   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2718                                            jlsValue->char_at_addr(jlsOffset);
2719   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2720   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2721 }
2722 #endif // ndef HAVE_DTRACE_H
2723 
2724 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2725   int argcnt = in_args_count;
2726   if (CCallingConventionRequiresIntsAsLongs) {
2727     for (int in = 0; in < in_args_count; in++) {
2728       BasicType bt = in_sig_bt[in];
2729       switch (bt) {
2730         case T_BOOLEAN:
2731         case T_CHAR:
2732         case T_BYTE:
2733         case T_SHORT:
2734         case T_INT:
2735           argcnt++;
2736           break;
2737         default:
2738           break;
2739       }
2740     }
2741   } else {
2742     assert(0, "This should not be needed on this platform");
2743   }
2744 
2745   return argcnt;
2746 }
2747 
2748 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2749                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2750   if (CCallingConventionRequiresIntsAsLongs) {
2751     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2752     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2753 
2754     int argcnt = 0;
2755     for (int in = 0; in < in_args_count; in++, argcnt++) {
2756       BasicType bt  = in_sig_bt[in];
2757       VMRegPair reg = in_regs[in];
2758       switch (bt) {
2759         case T_BOOLEAN:
2760         case T_CHAR:
2761         case T_BYTE:
2762         case T_SHORT:
2763         case T_INT:
2764           // Convert (bt) to (T_LONG,bt).
2765           new_in_sig_bt[argcnt  ] = T_LONG;
2766           new_in_sig_bt[argcnt+1] = bt;
2767           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2768           new_in_regs[argcnt  ].set2(reg.first());
2769           new_in_regs[argcnt+1].set_bad();
2770           argcnt++;
2771           break;
2772         default:
2773           // No conversion needed.
2774           new_in_sig_bt[argcnt] = bt;
2775           new_in_regs[argcnt]   = reg;
2776           break;
2777       }
2778     }
2779     assert(argcnt == i2l_argcnt, "must match");
2780 
2781     in_regs = new_in_regs;
2782     in_sig_bt = new_in_sig_bt;
2783     in_args_count = i2l_argcnt;
2784   } else {
2785     assert(0, "This should not be needed on this platform");
2786   }
2787 }
2788 
2789 // -------------------------------------------------------------------------
2790 // Java-Java calling convention
2791 // (what you use when Java calls Java)
2792 
2793 //------------------------------name_for_receiver----------------------------------
2794 // For a given signature, return the VMReg for parameter 0.
2795 VMReg SharedRuntime::name_for_receiver() {
2796   VMRegPair regs;
2797   BasicType sig_bt = T_OBJECT;
2798   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2799   // Return argument 0 register.  In the LP64 build pointers
2800   // take 2 registers, but the VM wants only the 'main' name.
2801   return regs.first();
2802 }
2803 
2804 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2805   // This method is returning a data structure allocating as a
2806   // ResourceObject, so do not put any ResourceMarks in here.
2807   char *s = sig->as_C_string();
2808   int len = (int)strlen(s);
2809   s++; len--;                   // Skip opening paren
2810   char *t = s+len;
2811   while( *(--t) != ')' ) ;      // Find close paren
2812 
2813   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2814   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2815   int cnt = 0;
2816   if (has_receiver) {
2817     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2818   }
2819 
2820   while( s < t ) {
2821     switch( *s++ ) {            // Switch on signature character
2822     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2823     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2824     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2825     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2826     case 'I': sig_bt[cnt++] = T_INT;     break;
2827     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2828     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2829     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2830     case 'V': sig_bt[cnt++] = T_VOID;    break;
2831     case 'L':                   // Oop
2832       while( *s++ != ';'  ) ;   // Skip signature
2833       sig_bt[cnt++] = T_OBJECT;
2834       break;
2835     case '[': {                 // Array
2836       do {                      // Skip optional size
2837         while( *s >= '0' && *s <= '9' ) s++;
2838       } while( *s++ == '[' );   // Nested arrays?
2839       // Skip element type
2840       if( s[-1] == 'L' )
2841         while( *s++ != ';'  ) ; // Skip signature
2842       sig_bt[cnt++] = T_ARRAY;
2843       break;
2844     }
2845     default : ShouldNotReachHere();
2846     }
2847   }
2848 
2849   if (has_appendix) {
2850     sig_bt[cnt++] = T_OBJECT;
2851   }
2852 
2853   assert( cnt < 256, "grow table size" );
2854 
2855   int comp_args_on_stack;
2856   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2857 
2858   // the calling convention doesn't count out_preserve_stack_slots so
2859   // we must add that in to get "true" stack offsets.
2860 
2861   if (comp_args_on_stack) {
2862     for (int i = 0; i < cnt; i++) {
2863       VMReg reg1 = regs[i].first();
2864       if( reg1->is_stack()) {
2865         // Yuck
2866         reg1 = reg1->bias(out_preserve_stack_slots());
2867       }
2868       VMReg reg2 = regs[i].second();
2869       if( reg2->is_stack()) {
2870         // Yuck
2871         reg2 = reg2->bias(out_preserve_stack_slots());
2872       }
2873       regs[i].set_pair(reg2, reg1);
2874     }
2875   }
2876 
2877   // results
2878   *arg_size = cnt;
2879   return regs;
2880 }
2881 
2882 // OSR Migration Code
2883 //
2884 // This code is used convert interpreter frames into compiled frames.  It is
2885 // called from very start of a compiled OSR nmethod.  A temp array is
2886 // allocated to hold the interesting bits of the interpreter frame.  All
2887 // active locks are inflated to allow them to move.  The displaced headers and
2888 // active interpreter locals are copied into the temp buffer.  Then we return
2889 // back to the compiled code.  The compiled code then pops the current
2890 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2891 // copies the interpreter locals and displaced headers where it wants.
2892 // Finally it calls back to free the temp buffer.
2893 //
2894 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2895 
2896 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2897 
2898   //
2899   // This code is dependent on the memory layout of the interpreter local
2900   // array and the monitors. On all of our platforms the layout is identical
2901   // so this code is shared. If some platform lays the their arrays out
2902   // differently then this code could move to platform specific code or
2903   // the code here could be modified to copy items one at a time using
2904   // frame accessor methods and be platform independent.
2905 
2906   frame fr = thread->last_frame();
2907   assert( fr.is_interpreted_frame(), "" );
2908   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2909 
2910   // Figure out how many monitors are active.
2911   int active_monitor_count = 0;
2912   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2913        kptr < fr.interpreter_frame_monitor_begin();
2914        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2915     if( kptr->obj() != NULL ) active_monitor_count++;
2916   }
2917 
2918   // QQQ we could place number of active monitors in the array so that compiled code
2919   // could double check it.
2920 
2921   Method* moop = fr.interpreter_frame_method();
2922   int max_locals = moop->max_locals();
2923   // Allocate temp buffer, 1 word per local & 2 per active monitor
2924   int buf_size_words = max_locals + active_monitor_count*2;
2925   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2926 
2927   // Copy the locals.  Order is preserved so that loading of longs works.
2928   // Since there's no GC I can copy the oops blindly.
2929   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2930   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2931                        (HeapWord*)&buf[0],
2932                        max_locals);
2933 
2934   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2935   int i = max_locals;
2936   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2937        kptr2 < fr.interpreter_frame_monitor_begin();
2938        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2939     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2940       BasicLock *lock = kptr2->lock();
2941       // Inflate so the displaced header becomes position-independent
2942       if (lock->displaced_header()->is_unlocked())
2943         ObjectSynchronizer::inflate_helper(kptr2->obj());
2944       // Now the displaced header is free to move
2945       buf[i++] = (intptr_t)lock->displaced_header();
2946       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2947     }
2948   }
2949   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2950 
2951   return buf;
2952 JRT_END
2953 
2954 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2955   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2956 JRT_END
2957 
2958 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2959   AdapterHandlerTableIterator iter(_adapters);
2960   while (iter.has_next()) {
2961     AdapterHandlerEntry* a = iter.next();
2962     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2963   }
2964   return false;
2965 }
2966 
2967 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2968   AdapterHandlerTableIterator iter(_adapters);
2969   while (iter.has_next()) {
2970     AdapterHandlerEntry* a = iter.next();
2971     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2972       st->print("Adapter for signature: ");
2973       a->print_adapter_on(tty);
2974       return;
2975     }
2976   }
2977   assert(false, "Should have found handler");
2978 }
2979 
2980 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2981   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2982                (intptr_t) this, fingerprint()->as_string(),
2983                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2984 
2985 }
2986 
2987 #ifndef PRODUCT
2988 
2989 void AdapterHandlerLibrary::print_statistics() {
2990   _adapters->print_statistics();
2991 }
2992 
2993 #endif /* PRODUCT */