1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // null
 472      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 473      return false;
 474   } else {
 475     return !hr->isHumongous();
 476   }
 477 }
 478 
 479 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 480   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 481   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 482 
 483   // Count the dirty cards at the start.
 484   CountNonCleanMemRegionClosure count1(this);
 485   ct_bs->mod_card_iterate(&count1);
 486   int orig_count = count1.n();
 487 
 488   // First clear the logged cards.
 489   ClearLoggedCardTableEntryClosure clear;
 490   dcqs.set_closure(&clear);
 491   dcqs.apply_closure_to_all_completed_buffers();
 492   dcqs.iterate_closure_all_threads(false);
 493   clear.print_histo();
 494 
 495   // Now ensure that there's no dirty cards.
 496   CountNonCleanMemRegionClosure count2(this);
 497   ct_bs->mod_card_iterate(&count2);
 498   if (count2.n() != 0) {
 499     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 500                            count2.n(), orig_count);
 501   }
 502   guarantee(count2.n() == 0, "Card table should be clean.");
 503 
 504   RedirtyLoggedCardTableEntryClosure redirty;
 505   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 506   dcqs.apply_closure_to_all_completed_buffers();
 507   dcqs.iterate_closure_all_threads(false);
 508   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 509                          clear.calls(), orig_count);
 510   guarantee(redirty.calls() == clear.calls(),
 511             "Or else mechanism is broken.");
 512 
 513   CountNonCleanMemRegionClosure count3(this);
 514   ct_bs->mod_card_iterate(&count3);
 515   if (count3.n() != orig_count) {
 516     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 517                            orig_count, count3.n());
 518     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 519   }
 520 
 521   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 522 }
 523 
 524 // Private class members.
 525 
 526 G1CollectedHeap* G1CollectedHeap::_g1h;
 527 
 528 // Private methods.
 529 
 530 HeapRegion*
 531 G1CollectedHeap::new_region_try_secondary_free_list() {
 532   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 533   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 534     if (!_secondary_free_list.is_empty()) {
 535       if (G1ConcRegionFreeingVerbose) {
 536         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 537                                "secondary_free_list has %u entries",
 538                                _secondary_free_list.length());
 539       }
 540       // It looks as if there are free regions available on the
 541       // secondary_free_list. Let's move them to the free_list and try
 542       // again to allocate from it.
 543       append_secondary_free_list();
 544 
 545       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 546              "empty we should have moved at least one entry to the free_list");
 547       HeapRegion* res = _free_list.remove_head();
 548       if (G1ConcRegionFreeingVerbose) {
 549         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 550                                "allocated "HR_FORMAT" from secondary_free_list",
 551                                HR_FORMAT_PARAMS(res));
 552       }
 553       return res;
 554     }
 555 
 556     // Wait here until we get notified either when (a) there are no
 557     // more free regions coming or (b) some regions have been moved on
 558     // the secondary_free_list.
 559     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 560   }
 561 
 562   if (G1ConcRegionFreeingVerbose) {
 563     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 564                            "could not allocate from secondary_free_list");
 565   }
 566   return NULL;
 567 }
 568 
 569 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 570   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 571          "the only time we use this to allocate a humongous region is "
 572          "when we are allocating a single humongous region");
 573 
 574   HeapRegion* res;
 575   if (G1StressConcRegionFreeing) {
 576     if (!_secondary_free_list.is_empty()) {
 577       if (G1ConcRegionFreeingVerbose) {
 578         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 579                                "forced to look at the secondary_free_list");
 580       }
 581       res = new_region_try_secondary_free_list();
 582       if (res != NULL) {
 583         return res;
 584       }
 585     }
 586   }
 587   res = _free_list.remove_head_or_null();
 588   if (res == NULL) {
 589     if (G1ConcRegionFreeingVerbose) {
 590       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 591                              "res == NULL, trying the secondary_free_list");
 592     }
 593     res = new_region_try_secondary_free_list();
 594   }
 595   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 596     // Currently, only attempts to allocate GC alloc regions set
 597     // do_expand to true. So, we should only reach here during a
 598     // safepoint. If this assumption changes we might have to
 599     // reconsider the use of _expand_heap_after_alloc_failure.
 600     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 601 
 602     ergo_verbose1(ErgoHeapSizing,
 603                   "attempt heap expansion",
 604                   ergo_format_reason("region allocation request failed")
 605                   ergo_format_byte("allocation request"),
 606                   word_size * HeapWordSize);
 607     if (expand(word_size * HeapWordSize)) {
 608       // Given that expand() succeeded in expanding the heap, and we
 609       // always expand the heap by an amount aligned to the heap
 610       // region size, the free list should in theory not be empty. So
 611       // it would probably be OK to use remove_head(). But the extra
 612       // check for NULL is unlikely to be a performance issue here (we
 613       // just expanded the heap!) so let's just be conservative and
 614       // use remove_head_or_null().
 615       res = _free_list.remove_head_or_null();
 616     } else {
 617       _expand_heap_after_alloc_failure = false;
 618     }
 619   }
 620   return res;
 621 }
 622 
 623 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 624                                                         size_t word_size) {
 625   assert(isHumongous(word_size), "word_size should be humongous");
 626   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 627 
 628   uint first = G1_NULL_HRS_INDEX;
 629   if (num_regions == 1) {
 630     // Only one region to allocate, no need to go through the slower
 631     // path. The caller will attempt the expansion if this fails, so
 632     // let's not try to expand here too.
 633     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 634     if (hr != NULL) {
 635       first = hr->hrs_index();
 636     } else {
 637       first = G1_NULL_HRS_INDEX;
 638     }
 639   } else {
 640     // We can't allocate humongous regions while cleanupComplete() is
 641     // running, since some of the regions we find to be empty might not
 642     // yet be added to the free list and it is not straightforward to
 643     // know which list they are on so that we can remove them. Note
 644     // that we only need to do this if we need to allocate more than
 645     // one region to satisfy the current humongous allocation
 646     // request. If we are only allocating one region we use the common
 647     // region allocation code (see above).
 648     wait_while_free_regions_coming();
 649     append_secondary_free_list_if_not_empty_with_lock();
 650 
 651     if (free_regions() >= num_regions) {
 652       first = _hrs.find_contiguous(num_regions);
 653       if (first != G1_NULL_HRS_INDEX) {
 654         for (uint i = first; i < first + num_regions; ++i) {
 655           HeapRegion* hr = region_at(i);
 656           assert(hr->is_empty(), "sanity");
 657           assert(is_on_master_free_list(hr), "sanity");
 658           hr->set_pending_removal(true);
 659         }
 660         _free_list.remove_all_pending(num_regions);
 661       }
 662     }
 663   }
 664   return first;
 665 }
 666 
 667 HeapWord*
 668 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 669                                                            uint num_regions,
 670                                                            size_t word_size) {
 671   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 672   assert(isHumongous(word_size), "word_size should be humongous");
 673   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 674 
 675   // Index of last region in the series + 1.
 676   uint last = first + num_regions;
 677 
 678   // We need to initialize the region(s) we just discovered. This is
 679   // a bit tricky given that it can happen concurrently with
 680   // refinement threads refining cards on these regions and
 681   // potentially wanting to refine the BOT as they are scanning
 682   // those cards (this can happen shortly after a cleanup; see CR
 683   // 6991377). So we have to set up the region(s) carefully and in
 684   // a specific order.
 685 
 686   // The word size sum of all the regions we will allocate.
 687   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 688   assert(word_size <= word_size_sum, "sanity");
 689 
 690   // This will be the "starts humongous" region.
 691   HeapRegion* first_hr = region_at(first);
 692   // The header of the new object will be placed at the bottom of
 693   // the first region.
 694   HeapWord* new_obj = first_hr->bottom();
 695   // This will be the new end of the first region in the series that
 696   // should also match the end of the last region in the series.
 697   HeapWord* new_end = new_obj + word_size_sum;
 698   // This will be the new top of the first region that will reflect
 699   // this allocation.
 700   HeapWord* new_top = new_obj + word_size;
 701 
 702   // First, we need to zero the header of the space that we will be
 703   // allocating. When we update top further down, some refinement
 704   // threads might try to scan the region. By zeroing the header we
 705   // ensure that any thread that will try to scan the region will
 706   // come across the zero klass word and bail out.
 707   //
 708   // NOTE: It would not have been correct to have used
 709   // CollectedHeap::fill_with_object() and make the space look like
 710   // an int array. The thread that is doing the allocation will
 711   // later update the object header to a potentially different array
 712   // type and, for a very short period of time, the klass and length
 713   // fields will be inconsistent. This could cause a refinement
 714   // thread to calculate the object size incorrectly.
 715   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 716 
 717   // We will set up the first region as "starts humongous". This
 718   // will also update the BOT covering all the regions to reflect
 719   // that there is a single object that starts at the bottom of the
 720   // first region.
 721   first_hr->set_startsHumongous(new_top, new_end);
 722 
 723   // Then, if there are any, we will set up the "continues
 724   // humongous" regions.
 725   HeapRegion* hr = NULL;
 726   for (uint i = first + 1; i < last; ++i) {
 727     hr = region_at(i);
 728     hr->set_continuesHumongous(first_hr);
 729   }
 730   // If we have "continues humongous" regions (hr != NULL), then the
 731   // end of the last one should match new_end.
 732   assert(hr == NULL || hr->end() == new_end, "sanity");
 733 
 734   // Up to this point no concurrent thread would have been able to
 735   // do any scanning on any region in this series. All the top
 736   // fields still point to bottom, so the intersection between
 737   // [bottom,top] and [card_start,card_end] will be empty. Before we
 738   // update the top fields, we'll do a storestore to make sure that
 739   // no thread sees the update to top before the zeroing of the
 740   // object header and the BOT initialization.
 741   OrderAccess::storestore();
 742 
 743   // Now that the BOT and the object header have been initialized,
 744   // we can update top of the "starts humongous" region.
 745   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 746          "new_top should be in this region");
 747   first_hr->set_top(new_top);
 748   if (_hr_printer.is_active()) {
 749     HeapWord* bottom = first_hr->bottom();
 750     HeapWord* end = first_hr->orig_end();
 751     if ((first + 1) == last) {
 752       // the series has a single humongous region
 753       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 754     } else {
 755       // the series has more than one humongous regions
 756       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 757     }
 758   }
 759 
 760   // Now, we will update the top fields of the "continues humongous"
 761   // regions. The reason we need to do this is that, otherwise,
 762   // these regions would look empty and this will confuse parts of
 763   // G1. For example, the code that looks for a consecutive number
 764   // of empty regions will consider them empty and try to
 765   // re-allocate them. We can extend is_empty() to also include
 766   // !continuesHumongous(), but it is easier to just update the top
 767   // fields here. The way we set top for all regions (i.e., top ==
 768   // end for all regions but the last one, top == new_top for the
 769   // last one) is actually used when we will free up the humongous
 770   // region in free_humongous_region().
 771   hr = NULL;
 772   for (uint i = first + 1; i < last; ++i) {
 773     hr = region_at(i);
 774     if ((i + 1) == last) {
 775       // last continues humongous region
 776       assert(hr->bottom() < new_top && new_top <= hr->end(),
 777              "new_top should fall on this region");
 778       hr->set_top(new_top);
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 780     } else {
 781       // not last one
 782       assert(new_top > hr->end(), "new_top should be above this region");
 783       hr->set_top(hr->end());
 784       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 785     }
 786   }
 787   // If we have continues humongous regions (hr != NULL), then the
 788   // end of the last one should match new_end and its top should
 789   // match new_top.
 790   assert(hr == NULL ||
 791          (hr->end() == new_end && hr->top() == new_top), "sanity");
 792 
 793   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 794   _summary_bytes_used += first_hr->used();
 795   _humongous_set.add(first_hr);
 796 
 797   return new_obj;
 798 }
 799 
 800 // If could fit into free regions w/o expansion, try.
 801 // Otherwise, if can expand, do so.
 802 // Otherwise, if using ex regions might help, try with ex given back.
 803 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 804   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 805 
 806   verify_region_sets_optional();
 807 
 808   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 809   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 810   uint x_num = expansion_regions();
 811   uint fs = _hrs.free_suffix();
 812   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 813   if (first == G1_NULL_HRS_INDEX) {
 814     // The only thing we can do now is attempt expansion.
 815     if (fs + x_num >= num_regions) {
 816       // If the number of regions we're trying to allocate for this
 817       // object is at most the number of regions in the free suffix,
 818       // then the call to humongous_obj_allocate_find_first() above
 819       // should have succeeded and we wouldn't be here.
 820       //
 821       // We should only be trying to expand when the free suffix is
 822       // not sufficient for the object _and_ we have some expansion
 823       // room available.
 824       assert(num_regions > fs, "earlier allocation should have succeeded");
 825 
 826       ergo_verbose1(ErgoHeapSizing,
 827                     "attempt heap expansion",
 828                     ergo_format_reason("humongous allocation request failed")
 829                     ergo_format_byte("allocation request"),
 830                     word_size * HeapWordSize);
 831       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 832         // Even though the heap was expanded, it might not have
 833         // reached the desired size. So, we cannot assume that the
 834         // allocation will succeed.
 835         first = humongous_obj_allocate_find_first(num_regions, word_size);
 836       }
 837     }
 838   }
 839 
 840   HeapWord* result = NULL;
 841   if (first != G1_NULL_HRS_INDEX) {
 842     result =
 843       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 844     assert(result != NULL, "it should always return a valid result");
 845 
 846     // A successful humongous object allocation changes the used space
 847     // information of the old generation so we need to recalculate the
 848     // sizes and update the jstat counters here.
 849     g1mm()->update_sizes();
 850   }
 851 
 852   verify_region_sets_optional();
 853 
 854   return result;
 855 }
 856 
 857 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 858   assert_heap_not_locked_and_not_at_safepoint();
 859   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 860 
 861   unsigned int dummy_gc_count_before;
 862   int dummy_gclocker_retry_count = 0;
 863   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 864 }
 865 
 866 HeapWord*
 867 G1CollectedHeap::mem_allocate(size_t word_size,
 868                               bool*  gc_overhead_limit_was_exceeded) {
 869   assert_heap_not_locked_and_not_at_safepoint();
 870 
 871   // Loop until the allocation is satisfied, or unsatisfied after GC.
 872   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 873     unsigned int gc_count_before;
 874 
 875     HeapWord* result = NULL;
 876     if (!isHumongous(word_size)) {
 877       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 878     } else {
 879       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 880     }
 881     if (result != NULL) {
 882       return result;
 883     }
 884 
 885     // Create the garbage collection operation...
 886     VM_G1CollectForAllocation op(gc_count_before, word_size);
 887     // ...and get the VM thread to execute it.
 888     VMThread::execute(&op);
 889 
 890     if (op.prologue_succeeded() && op.pause_succeeded()) {
 891       // If the operation was successful we'll return the result even
 892       // if it is NULL. If the allocation attempt failed immediately
 893       // after a Full GC, it's unlikely we'll be able to allocate now.
 894       HeapWord* result = op.result();
 895       if (result != NULL && !isHumongous(word_size)) {
 896         // Allocations that take place on VM operations do not do any
 897         // card dirtying and we have to do it here. We only have to do
 898         // this for non-humongous allocations, though.
 899         dirty_young_block(result, word_size);
 900       }
 901       return result;
 902     } else {
 903       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 904         return NULL;
 905       }
 906       assert(op.result() == NULL,
 907              "the result should be NULL if the VM op did not succeed");
 908     }
 909 
 910     // Give a warning if we seem to be looping forever.
 911     if ((QueuedAllocationWarningCount > 0) &&
 912         (try_count % QueuedAllocationWarningCount == 0)) {
 913       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 914     }
 915   }
 916 
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 922                                            unsigned int *gc_count_before_ret,
 923                                            int* gclocker_retry_count_ret) {
 924   // Make sure you read the note in attempt_allocation_humongous().
 925 
 926   assert_heap_not_locked_and_not_at_safepoint();
 927   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 928          "be called for humongous allocation requests");
 929 
 930   // We should only get here after the first-level allocation attempt
 931   // (attempt_allocation()) failed to allocate.
 932 
 933   // We will loop until a) we manage to successfully perform the
 934   // allocation or b) we successfully schedule a collection which
 935   // fails to perform the allocation. b) is the only case when we'll
 936   // return NULL.
 937   HeapWord* result = NULL;
 938   for (int try_count = 1; /* we'll return */; try_count += 1) {
 939     bool should_try_gc;
 940     unsigned int gc_count_before;
 941 
 942     {
 943       MutexLockerEx x(Heap_lock);
 944 
 945       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 946                                                       false /* bot_updates */);
 947       if (result != NULL) {
 948         return result;
 949       }
 950 
 951       // If we reach here, attempt_allocation_locked() above failed to
 952       // allocate a new region. So the mutator alloc region should be NULL.
 953       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 954 
 955       if (GC_locker::is_active_and_needs_gc()) {
 956         if (g1_policy()->can_expand_young_list()) {
 957           // No need for an ergo verbose message here,
 958           // can_expand_young_list() does this when it returns true.
 959           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 960                                                       false /* bot_updates */);
 961           if (result != NULL) {
 962             return result;
 963           }
 964         }
 965         should_try_gc = false;
 966       } else {
 967         // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       bool succeeded;
 984       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 985       if (result != NULL) {
 986         assert(succeeded, "only way to get back a non-NULL result");
 987         return result;
 988       }
 989 
 990       if (succeeded) {
 991         // If we get here we successfully scheduled a collection which
 992         // failed to allocate. No point in trying to allocate
 993         // further. We'll just return NULL.
 994         MutexLockerEx x(Heap_lock);
 995         *gc_count_before_ret = total_collections();
 996         return NULL;
 997       }
 998     } else {
 999       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1000         MutexLockerEx x(Heap_lock);
1001         *gc_count_before_ret = total_collections();
1002         return NULL;
1003       }
1004       // The GCLocker is either active or the GCLocker initiated
1005       // GC has not yet been performed. Stall until it is and
1006       // then retry the allocation.
1007       GC_locker::stall_until_clear();
1008       (*gclocker_retry_count_ret) += 1;
1009     }
1010 
1011     // We can reach here if we were unsuccessful in scheduling a
1012     // collection (because another thread beat us to it) or if we were
1013     // stalled due to the GC locker. In either can we should retry the
1014     // allocation attempt in case another thread successfully
1015     // performed a collection and reclaimed enough space. We do the
1016     // first attempt (without holding the Heap_lock) here and the
1017     // follow-on attempt will be at the start of the next loop
1018     // iteration (after taking the Heap_lock).
1019     result = _mutator_alloc_region.attempt_allocation(word_size,
1020                                                       false /* bot_updates */);
1021     if (result != NULL) {
1022       return result;
1023     }
1024 
1025     // Give a warning if we seem to be looping forever.
1026     if ((QueuedAllocationWarningCount > 0) &&
1027         (try_count % QueuedAllocationWarningCount == 0)) {
1028       warning("G1CollectedHeap::attempt_allocation_slow() "
1029               "retries %d times", try_count);
1030     }
1031   }
1032 
1033   ShouldNotReachHere();
1034   return NULL;
1035 }
1036 
1037 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1038                                           unsigned int * gc_count_before_ret,
1039                                           int* gclocker_retry_count_ret) {
1040   // The structure of this method has a lot of similarities to
1041   // attempt_allocation_slow(). The reason these two were not merged
1042   // into a single one is that such a method would require several "if
1043   // allocation is not humongous do this, otherwise do that"
1044   // conditional paths which would obscure its flow. In fact, an early
1045   // version of this code did use a unified method which was harder to
1046   // follow and, as a result, it had subtle bugs that were hard to
1047   // track down. So keeping these two methods separate allows each to
1048   // be more readable. It will be good to keep these two in sync as
1049   // much as possible.
1050 
1051   assert_heap_not_locked_and_not_at_safepoint();
1052   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1053          "should only be called for humongous allocations");
1054 
1055   // Humongous objects can exhaust the heap quickly, so we should check if we
1056   // need to start a marking cycle at each humongous object allocation. We do
1057   // the check before we do the actual allocation. The reason for doing it
1058   // before the allocation is that we avoid having to keep track of the newly
1059   // allocated memory while we do a GC.
1060   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1061                                            word_size)) {
1062     collect(GCCause::_g1_humongous_allocation);
1063   }
1064 
1065   // We will loop until a) we manage to successfully perform the
1066   // allocation or b) we successfully schedule a collection which
1067   // fails to perform the allocation. b) is the only case when we'll
1068   // return NULL.
1069   HeapWord* result = NULL;
1070   for (int try_count = 1; /* we'll return */; try_count += 1) {
1071     bool should_try_gc;
1072     unsigned int gc_count_before;
1073 
1074     {
1075       MutexLockerEx x(Heap_lock);
1076 
1077       // Given that humongous objects are not allocated in young
1078       // regions, we'll first try to do the allocation without doing a
1079       // collection hoping that there's enough space in the heap.
1080       result = humongous_obj_allocate(word_size);
1081       if (result != NULL) {
1082         return result;
1083       }
1084 
1085       if (GC_locker::is_active_and_needs_gc()) {
1086         should_try_gc = false;
1087       } else {
1088          // The GCLocker may not be active but the GCLocker initiated
1089         // GC may not yet have been performed (GCLocker::needs_gc()
1090         // returns true). In this case we do not try this GC and
1091         // wait until the GCLocker initiated GC is performed, and
1092         // then retry the allocation.
1093         if (GC_locker::needs_gc()) {
1094           should_try_gc = false;
1095         } else {
1096           // Read the GC count while still holding the Heap_lock.
1097           gc_count_before = total_collections();
1098           should_try_gc = true;
1099         }
1100       }
1101     }
1102 
1103     if (should_try_gc) {
1104       // If we failed to allocate the humongous object, we should try to
1105       // do a collection pause (if we're allowed) in case it reclaims
1106       // enough space for the allocation to succeed after the pause.
1107 
1108       bool succeeded;
1109       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1110       if (result != NULL) {
1111         assert(succeeded, "only way to get back a non-NULL result");
1112         return result;
1113       }
1114 
1115       if (succeeded) {
1116         // If we get here we successfully scheduled a collection which
1117         // failed to allocate. No point in trying to allocate
1118         // further. We'll just return NULL.
1119         MutexLockerEx x(Heap_lock);
1120         *gc_count_before_ret = total_collections();
1121         return NULL;
1122       }
1123     } else {
1124       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1125         MutexLockerEx x(Heap_lock);
1126         *gc_count_before_ret = total_collections();
1127         return NULL;
1128       }
1129       // The GCLocker is either active or the GCLocker initiated
1130       // GC has not yet been performed. Stall until it is and
1131       // then retry the allocation.
1132       GC_locker::stall_until_clear();
1133       (*gclocker_retry_count_ret) += 1;
1134     }
1135 
1136     // We can reach here if we were unsuccessful in scheduling a
1137     // collection (because another thread beat us to it) or if we were
1138     // stalled due to the GC locker. In either can we should retry the
1139     // allocation attempt in case another thread successfully
1140     // performed a collection and reclaimed enough space.  Give a
1141     // warning if we seem to be looping forever.
1142 
1143     if ((QueuedAllocationWarningCount > 0) &&
1144         (try_count % QueuedAllocationWarningCount == 0)) {
1145       warning("G1CollectedHeap::attempt_allocation_humongous() "
1146               "retries %d times", try_count);
1147     }
1148   }
1149 
1150   ShouldNotReachHere();
1151   return NULL;
1152 }
1153 
1154 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1155                                        bool expect_null_mutator_alloc_region) {
1156   assert_at_safepoint(true /* should_be_vm_thread */);
1157   assert(_mutator_alloc_region.get() == NULL ||
1158                                              !expect_null_mutator_alloc_region,
1159          "the current alloc region was unexpectedly found to be non-NULL");
1160 
1161   if (!isHumongous(word_size)) {
1162     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1163                                                       false /* bot_updates */);
1164   } else {
1165     HeapWord* result = humongous_obj_allocate(word_size);
1166     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1167       g1_policy()->set_initiate_conc_mark_if_possible();
1168     }
1169     return result;
1170   }
1171 
1172   ShouldNotReachHere();
1173 }
1174 
1175 class PostMCRemSetClearClosure: public HeapRegionClosure {
1176   G1CollectedHeap* _g1h;
1177   ModRefBarrierSet* _mr_bs;
1178 public:
1179   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1180     _g1h(g1h), _mr_bs(mr_bs) { }
1181   bool doHeapRegion(HeapRegion* r) {
1182     if (r->continuesHumongous()) {
1183       return false;
1184     }
1185     _g1h->reset_gc_time_stamps(r);
1186     HeapRegionRemSet* hrrs = r->rem_set();
1187     if (hrrs != NULL) hrrs->clear();
1188     // You might think here that we could clear just the cards
1189     // corresponding to the used region.  But no: if we leave a dirty card
1190     // in a region we might allocate into, then it would prevent that card
1191     // from being enqueued, and cause it to be missed.
1192     // Re: the performance cost: we shouldn't be doing full GC anyway!
1193     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1194     return false;
1195   }
1196 };
1197 
1198 void G1CollectedHeap::clear_rsets_post_compaction() {
1199   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1200   heap_region_iterate(&rs_clear);
1201 }
1202 
1203 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1204   G1CollectedHeap*   _g1h;
1205   UpdateRSOopClosure _cl;
1206   int                _worker_i;
1207 public:
1208   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1209     _cl(g1->g1_rem_set(), worker_i),
1210     _worker_i(worker_i),
1211     _g1h(g1)
1212   { }
1213 
1214   bool doHeapRegion(HeapRegion* r) {
1215     if (!r->continuesHumongous()) {
1216       _cl.set_from(r);
1217       r->oop_iterate(&_cl);
1218     }
1219     return false;
1220   }
1221 };
1222 
1223 class ParRebuildRSTask: public AbstractGangTask {
1224   G1CollectedHeap* _g1;
1225 public:
1226   ParRebuildRSTask(G1CollectedHeap* g1)
1227     : AbstractGangTask("ParRebuildRSTask"),
1228       _g1(g1)
1229   { }
1230 
1231   void work(uint worker_id) {
1232     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1233     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1234                                           _g1->workers()->active_workers(),
1235                                          HeapRegion::RebuildRSClaimValue);
1236   }
1237 };
1238 
1239 class PostCompactionPrinterClosure: public HeapRegionClosure {
1240 private:
1241   G1HRPrinter* _hr_printer;
1242 public:
1243   bool doHeapRegion(HeapRegion* hr) {
1244     assert(!hr->is_young(), "not expecting to find young regions");
1245     // We only generate output for non-empty regions.
1246     if (!hr->is_empty()) {
1247       if (!hr->isHumongous()) {
1248         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1249       } else if (hr->startsHumongous()) {
1250         if (hr->region_num() == 1) {
1251           // single humongous region
1252           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1253         } else {
1254           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1255         }
1256       } else {
1257         assert(hr->continuesHumongous(), "only way to get here");
1258         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1259       }
1260     }
1261     return false;
1262   }
1263 
1264   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1265     : _hr_printer(hr_printer) { }
1266 };
1267 
1268 void G1CollectedHeap::print_hrs_post_compaction() {
1269   PostCompactionPrinterClosure cl(hr_printer());
1270   heap_region_iterate(&cl);
1271 }
1272 
1273 double G1CollectedHeap::verify(bool guard, const char* msg) {
1274   double verify_time_ms = 0.0;
1275 
1276   if (guard && total_collections() >= VerifyGCStartAt) {
1277     double verify_start = os::elapsedTime();
1278     HandleMark hm;  // Discard invalid handles created during verification
1279     prepare_for_verify();
1280     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
1281     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1282   }
1283 
1284   return verify_time_ms;
1285 }
1286 
1287 void G1CollectedHeap::verify_before_gc() {
1288   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1289   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1290 }
1291 
1292 void G1CollectedHeap::verify_after_gc() {
1293   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1294   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1295 }
1296 
1297 bool G1CollectedHeap::do_collection(bool explicit_gc,
1298                                     bool clear_all_soft_refs,
1299                                     size_t word_size) {
1300   assert_at_safepoint(true /* should_be_vm_thread */);
1301 
1302   if (GC_locker::check_active_before_gc()) {
1303     return false;
1304   }
1305 
1306   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1307   gc_timer->register_gc_start(os::elapsed_counter());
1308 
1309   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1310   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1311 
1312   SvcGCMarker sgcm(SvcGCMarker::FULL);
1313   ResourceMark rm;
1314 
1315   print_heap_before_gc();
1316   trace_heap_before_gc(gc_tracer);
1317 
1318   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1319 
1320   HRSPhaseSetter x(HRSPhaseFullGC);
1321   verify_region_sets_optional();
1322 
1323   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1324                            collector_policy()->should_clear_all_soft_refs();
1325 
1326   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1327 
1328   {
1329     IsGCActiveMark x;
1330 
1331     // Timing
1332     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1333     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1334     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1335 
1336     {
1337       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1338       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1339       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1340 
1341       double start = os::elapsedTime();
1342       g1_policy()->record_full_collection_start();
1343 
1344       // Note: When we have a more flexible GC logging framework that
1345       // allows us to add optional attributes to a GC log record we
1346       // could consider timing and reporting how long we wait in the
1347       // following two methods.
1348       wait_while_free_regions_coming();
1349       // If we start the compaction before the CM threads finish
1350       // scanning the root regions we might trip them over as we'll
1351       // be moving objects / updating references. So let's wait until
1352       // they are done. By telling them to abort, they should complete
1353       // early.
1354       _cm->root_regions()->abort();
1355       _cm->root_regions()->wait_until_scan_finished();
1356       append_secondary_free_list_if_not_empty_with_lock();
1357 
1358       gc_prologue(true);
1359       increment_total_collections(true /* full gc */);
1360       increment_old_marking_cycles_started();
1361 
1362       assert(used() == recalculate_used(), "Should be equal");
1363 
1364       verify_before_gc();
1365 
1366       pre_full_gc_dump(gc_timer);
1367 
1368       COMPILER2_PRESENT(DerivedPointerTable::clear());
1369 
1370       // Disable discovery and empty the discovered lists
1371       // for the CM ref processor.
1372       ref_processor_cm()->disable_discovery();
1373       ref_processor_cm()->abandon_partial_discovery();
1374       ref_processor_cm()->verify_no_references_recorded();
1375 
1376       // Abandon current iterations of concurrent marking and concurrent
1377       // refinement, if any are in progress. We have to do this before
1378       // wait_until_scan_finished() below.
1379       concurrent_mark()->abort();
1380 
1381       // Make sure we'll choose a new allocation region afterwards.
1382       release_mutator_alloc_region();
1383       abandon_gc_alloc_regions();
1384       g1_rem_set()->cleanupHRRS();
1385 
1386       // We should call this after we retire any currently active alloc
1387       // regions so that all the ALLOC / RETIRE events are generated
1388       // before the start GC event.
1389       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1390 
1391       // We may have added regions to the current incremental collection
1392       // set between the last GC or pause and now. We need to clear the
1393       // incremental collection set and then start rebuilding it afresh
1394       // after this full GC.
1395       abandon_collection_set(g1_policy()->inc_cset_head());
1396       g1_policy()->clear_incremental_cset();
1397       g1_policy()->stop_incremental_cset_building();
1398 
1399       tear_down_region_sets(false /* free_list_only */);
1400       g1_policy()->set_gcs_are_young(true);
1401 
1402       // See the comments in g1CollectedHeap.hpp and
1403       // G1CollectedHeap::ref_processing_init() about
1404       // how reference processing currently works in G1.
1405 
1406       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1407       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1408 
1409       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1410       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1411 
1412       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1413       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1414 
1415       // Do collection work
1416       {
1417         HandleMark hm;  // Discard invalid handles created during gc
1418         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1419       }
1420 
1421       assert(free_regions() == 0, "we should not have added any free regions");
1422       rebuild_region_sets(false /* free_list_only */);
1423 
1424       // Enqueue any discovered reference objects that have
1425       // not been removed from the discovered lists.
1426       ref_processor_stw()->enqueue_discovered_references();
1427 
1428       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1429 
1430       MemoryService::track_memory_usage();
1431 
1432       verify_after_gc();
1433 
1434       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1435       ref_processor_stw()->verify_no_references_recorded();
1436 
1437       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1438       ClassLoaderDataGraph::purge();
1439     MetaspaceAux::verify_metrics();
1440 
1441       // Note: since we've just done a full GC, concurrent
1442       // marking is no longer active. Therefore we need not
1443       // re-enable reference discovery for the CM ref processor.
1444       // That will be done at the start of the next marking cycle.
1445       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1446       ref_processor_cm()->verify_no_references_recorded();
1447 
1448       reset_gc_time_stamp();
1449       // Since everything potentially moved, we will clear all remembered
1450       // sets, and clear all cards.  Later we will rebuild remembered
1451       // sets. We will also reset the GC time stamps of the regions.
1452       clear_rsets_post_compaction();
1453       check_gc_time_stamps();
1454 
1455       // Resize the heap if necessary.
1456       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1457 
1458       if (_hr_printer.is_active()) {
1459         // We should do this after we potentially resize the heap so
1460         // that all the COMMIT / UNCOMMIT events are generated before
1461         // the end GC event.
1462 
1463         print_hrs_post_compaction();
1464         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1465       }
1466 
1467       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1468       if (hot_card_cache->use_cache()) {
1469         hot_card_cache->reset_card_counts();
1470         hot_card_cache->reset_hot_cache();
1471       }
1472 
1473       // Rebuild remembered sets of all regions.
1474       if (G1CollectedHeap::use_parallel_gc_threads()) {
1475         uint n_workers =
1476           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1477                                                   workers()->active_workers(),
1478                                                   Threads::number_of_non_daemon_threads());
1479         assert(UseDynamicNumberOfGCThreads ||
1480                n_workers == workers()->total_workers(),
1481                "If not dynamic should be using all the  workers");
1482         workers()->set_active_workers(n_workers);
1483         // Set parallel threads in the heap (_n_par_threads) only
1484         // before a parallel phase and always reset it to 0 after
1485         // the phase so that the number of parallel threads does
1486         // no get carried forward to a serial phase where there
1487         // may be code that is "possibly_parallel".
1488         set_par_threads(n_workers);
1489 
1490         ParRebuildRSTask rebuild_rs_task(this);
1491         assert(check_heap_region_claim_values(
1492                HeapRegion::InitialClaimValue), "sanity check");
1493         assert(UseDynamicNumberOfGCThreads ||
1494                workers()->active_workers() == workers()->total_workers(),
1495                "Unless dynamic should use total workers");
1496         // Use the most recent number of  active workers
1497         assert(workers()->active_workers() > 0,
1498                "Active workers not properly set");
1499         set_par_threads(workers()->active_workers());
1500         workers()->run_task(&rebuild_rs_task);
1501         set_par_threads(0);
1502         assert(check_heap_region_claim_values(
1503                HeapRegion::RebuildRSClaimValue), "sanity check");
1504         reset_heap_region_claim_values();
1505       } else {
1506         RebuildRSOutOfRegionClosure rebuild_rs(this);
1507         heap_region_iterate(&rebuild_rs);
1508       }
1509 
1510       if (true) { // FIXME
1511         MetaspaceGC::compute_new_size();
1512       }
1513 
1514 #ifdef TRACESPINNING
1515       ParallelTaskTerminator::print_termination_counts();
1516 #endif
1517 
1518       // Discard all rset updates
1519       JavaThread::dirty_card_queue_set().abandon_logs();
1520       assert(!G1DeferredRSUpdate
1521              || (G1DeferredRSUpdate &&
1522                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1523 
1524       _young_list->reset_sampled_info();
1525       // At this point there should be no regions in the
1526       // entire heap tagged as young.
1527       assert(check_young_list_empty(true /* check_heap */),
1528              "young list should be empty at this point");
1529 
1530       // Update the number of full collections that have been completed.
1531       increment_old_marking_cycles_completed(false /* concurrent */);
1532 
1533       _hrs.verify_optional();
1534       verify_region_sets_optional();
1535 
1536       // Start a new incremental collection set for the next pause
1537       assert(g1_policy()->collection_set() == NULL, "must be");
1538       g1_policy()->start_incremental_cset_building();
1539 
1540       // Clear the _cset_fast_test bitmap in anticipation of adding
1541       // regions to the incremental collection set for the next
1542       // evacuation pause.
1543       clear_cset_fast_test();
1544 
1545       init_mutator_alloc_region();
1546 
1547       double end = os::elapsedTime();
1548       g1_policy()->record_full_collection_end();
1549 
1550       if (G1Log::fine()) {
1551         g1_policy()->print_heap_transition();
1552       }
1553 
1554       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1555       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1556       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1557       // before any GC notifications are raised.
1558       g1mm()->update_sizes();
1559 
1560       gc_epilogue(true);
1561     }
1562 
1563     if (G1Log::finer()) {
1564       g1_policy()->print_detailed_heap_transition(true /* full */);
1565     }
1566 
1567     print_heap_after_gc();
1568     trace_heap_after_gc(gc_tracer);
1569 
1570     post_full_gc_dump(gc_timer);
1571 
1572     gc_timer->register_gc_end(os::elapsed_counter());
1573     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1574   }
1575 
1576   return true;
1577 }
1578 
1579 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1580   // do_collection() will return whether it succeeded in performing
1581   // the GC. Currently, there is no facility on the
1582   // do_full_collection() API to notify the caller than the collection
1583   // did not succeed (e.g., because it was locked out by the GC
1584   // locker). So, right now, we'll ignore the return value.
1585   bool dummy = do_collection(true,                /* explicit_gc */
1586                              clear_all_soft_refs,
1587                              0                    /* word_size */);
1588 }
1589 
1590 // This code is mostly copied from TenuredGeneration.
1591 void
1592 G1CollectedHeap::
1593 resize_if_necessary_after_full_collection(size_t word_size) {
1594   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1595 
1596   // Include the current allocation, if any, and bytes that will be
1597   // pre-allocated to support collections, as "used".
1598   const size_t used_after_gc = used();
1599   const size_t capacity_after_gc = capacity();
1600   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1601 
1602   // This is enforced in arguments.cpp.
1603   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1604          "otherwise the code below doesn't make sense");
1605 
1606   // We don't have floating point command-line arguments
1607   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1608   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1609   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1610   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1611 
1612   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1613   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1614 
1615   // We have to be careful here as these two calculations can overflow
1616   // 32-bit size_t's.
1617   double used_after_gc_d = (double) used_after_gc;
1618   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1619   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1620 
1621   // Let's make sure that they are both under the max heap size, which
1622   // by default will make them fit into a size_t.
1623   double desired_capacity_upper_bound = (double) max_heap_size;
1624   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1625                                     desired_capacity_upper_bound);
1626   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1627                                     desired_capacity_upper_bound);
1628 
1629   // We can now safely turn them into size_t's.
1630   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1631   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1632 
1633   // This assert only makes sense here, before we adjust them
1634   // with respect to the min and max heap size.
1635   assert(minimum_desired_capacity <= maximum_desired_capacity,
1636          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1637                  "maximum_desired_capacity = "SIZE_FORMAT,
1638                  minimum_desired_capacity, maximum_desired_capacity));
1639 
1640   // Should not be greater than the heap max size. No need to adjust
1641   // it with respect to the heap min size as it's a lower bound (i.e.,
1642   // we'll try to make the capacity larger than it, not smaller).
1643   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1644   // Should not be less than the heap min size. No need to adjust it
1645   // with respect to the heap max size as it's an upper bound (i.e.,
1646   // we'll try to make the capacity smaller than it, not greater).
1647   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1648 
1649   if (capacity_after_gc < minimum_desired_capacity) {
1650     // Don't expand unless it's significant
1651     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1652     ergo_verbose4(ErgoHeapSizing,
1653                   "attempt heap expansion",
1654                   ergo_format_reason("capacity lower than "
1655                                      "min desired capacity after Full GC")
1656                   ergo_format_byte("capacity")
1657                   ergo_format_byte("occupancy")
1658                   ergo_format_byte_perc("min desired capacity"),
1659                   capacity_after_gc, used_after_gc,
1660                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1661     expand(expand_bytes);
1662 
1663     // No expansion, now see if we want to shrink
1664   } else if (capacity_after_gc > maximum_desired_capacity) {
1665     // Capacity too large, compute shrinking size
1666     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1667     ergo_verbose4(ErgoHeapSizing,
1668                   "attempt heap shrinking",
1669                   ergo_format_reason("capacity higher than "
1670                                      "max desired capacity after Full GC")
1671                   ergo_format_byte("capacity")
1672                   ergo_format_byte("occupancy")
1673                   ergo_format_byte_perc("max desired capacity"),
1674                   capacity_after_gc, used_after_gc,
1675                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1676     shrink(shrink_bytes);
1677   }
1678 }
1679 
1680 
1681 HeapWord*
1682 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1683                                            bool* succeeded) {
1684   assert_at_safepoint(true /* should_be_vm_thread */);
1685 
1686   *succeeded = true;
1687   // Let's attempt the allocation first.
1688   HeapWord* result =
1689     attempt_allocation_at_safepoint(word_size,
1690                                  false /* expect_null_mutator_alloc_region */);
1691   if (result != NULL) {
1692     assert(*succeeded, "sanity");
1693     return result;
1694   }
1695 
1696   // In a G1 heap, we're supposed to keep allocation from failing by
1697   // incremental pauses.  Therefore, at least for now, we'll favor
1698   // expansion over collection.  (This might change in the future if we can
1699   // do something smarter than full collection to satisfy a failed alloc.)
1700   result = expand_and_allocate(word_size);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Expansion didn't work, we'll try to do a Full GC.
1707   bool gc_succeeded = do_collection(false, /* explicit_gc */
1708                                     false, /* clear_all_soft_refs */
1709                                     word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   // Then, try a Full GC that will collect all soft references.
1724   gc_succeeded = do_collection(false, /* explicit_gc */
1725                                true,  /* clear_all_soft_refs */
1726                                word_size);
1727   if (!gc_succeeded) {
1728     *succeeded = false;
1729     return NULL;
1730   }
1731 
1732   // Retry the allocation once more
1733   result = attempt_allocation_at_safepoint(word_size,
1734                                   true /* expect_null_mutator_alloc_region */);
1735   if (result != NULL) {
1736     assert(*succeeded, "sanity");
1737     return result;
1738   }
1739 
1740   assert(!collector_policy()->should_clear_all_soft_refs(),
1741          "Flag should have been handled and cleared prior to this point");
1742 
1743   // What else?  We might try synchronous finalization later.  If the total
1744   // space available is large enough for the allocation, then a more
1745   // complete compaction phase than we've tried so far might be
1746   // appropriate.
1747   assert(*succeeded, "sanity");
1748   return NULL;
1749 }
1750 
1751 // Attempting to expand the heap sufficiently
1752 // to support an allocation of the given "word_size".  If
1753 // successful, perform the allocation and return the address of the
1754 // allocated block, or else "NULL".
1755 
1756 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1757   assert_at_safepoint(true /* should_be_vm_thread */);
1758 
1759   verify_region_sets_optional();
1760 
1761   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1762   ergo_verbose1(ErgoHeapSizing,
1763                 "attempt heap expansion",
1764                 ergo_format_reason("allocation request failed")
1765                 ergo_format_byte("allocation request"),
1766                 word_size * HeapWordSize);
1767   if (expand(expand_bytes)) {
1768     _hrs.verify_optional();
1769     verify_region_sets_optional();
1770     return attempt_allocation_at_safepoint(word_size,
1771                                  false /* expect_null_mutator_alloc_region */);
1772   }
1773   return NULL;
1774 }
1775 
1776 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1777                                              HeapWord* new_end) {
1778   assert(old_end != new_end, "don't call this otherwise");
1779   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1780 
1781   // Update the committed mem region.
1782   _g1_committed.set_end(new_end);
1783   // Tell the card table about the update.
1784   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1785   // Tell the BOT about the update.
1786   _bot_shared->resize(_g1_committed.word_size());
1787   // Tell the hot card cache about the update
1788   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1789 }
1790 
1791 bool G1CollectedHeap::expand(size_t expand_bytes) {
1792   size_t old_mem_size = _g1_storage.committed_size();
1793   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1794   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1795                                        HeapRegion::GrainBytes);
1796   ergo_verbose2(ErgoHeapSizing,
1797                 "expand the heap",
1798                 ergo_format_byte("requested expansion amount")
1799                 ergo_format_byte("attempted expansion amount"),
1800                 expand_bytes, aligned_expand_bytes);
1801 
1802   // First commit the memory.
1803   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1804   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1805   if (successful) {
1806     // Then propagate this update to the necessary data structures.
1807     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1808     update_committed_space(old_end, new_end);
1809 
1810     FreeRegionList expansion_list("Local Expansion List");
1811     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1812     assert(mr.start() == old_end, "post-condition");
1813     // mr might be a smaller region than what was requested if
1814     // expand_by() was unable to allocate the HeapRegion instances
1815     assert(mr.end() <= new_end, "post-condition");
1816 
1817     size_t actual_expand_bytes = mr.byte_size();
1818     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1819     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1820            "post-condition");
1821     if (actual_expand_bytes < aligned_expand_bytes) {
1822       // We could not expand _hrs to the desired size. In this case we
1823       // need to shrink the committed space accordingly.
1824       assert(mr.end() < new_end, "invariant");
1825 
1826       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1827       // First uncommit the memory.
1828       _g1_storage.shrink_by(diff_bytes);
1829       // Then propagate this update to the necessary data structures.
1830       update_committed_space(new_end, mr.end());
1831     }
1832     _free_list.add_as_tail(&expansion_list);
1833 
1834     if (_hr_printer.is_active()) {
1835       HeapWord* curr = mr.start();
1836       while (curr < mr.end()) {
1837         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1838         _hr_printer.commit(curr, curr_end);
1839         curr = curr_end;
1840       }
1841       assert(curr == mr.end(), "post-condition");
1842     }
1843     g1_policy()->record_new_heap_size(n_regions());
1844   } else {
1845     ergo_verbose0(ErgoHeapSizing,
1846                   "did not expand the heap",
1847                   ergo_format_reason("heap expansion operation failed"));
1848     // The expansion of the virtual storage space was unsuccessful.
1849     // Let's see if it was because we ran out of swap.
1850     if (G1ExitOnExpansionFailure &&
1851         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1852       // We had head room...
1853       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1854     }
1855   }
1856   return successful;
1857 }
1858 
1859 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1860   size_t old_mem_size = _g1_storage.committed_size();
1861   size_t aligned_shrink_bytes =
1862     ReservedSpace::page_align_size_down(shrink_bytes);
1863   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1864                                          HeapRegion::GrainBytes);
1865   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1866 
1867   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1868   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1869   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1870 
1871   ergo_verbose3(ErgoHeapSizing,
1872                 "shrink the heap",
1873                 ergo_format_byte("requested shrinking amount")
1874                 ergo_format_byte("aligned shrinking amount")
1875                 ergo_format_byte("attempted shrinking amount"),
1876                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1877   if (num_regions_removed > 0) {
1878     _g1_storage.shrink_by(shrunk_bytes);
1879     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1880 
1881     if (_hr_printer.is_active()) {
1882       HeapWord* curr = old_end;
1883       while (curr > new_end) {
1884         HeapWord* curr_end = curr;
1885         curr -= HeapRegion::GrainWords;
1886         _hr_printer.uncommit(curr, curr_end);
1887       }
1888     }
1889 
1890     _expansion_regions += num_regions_removed;
1891     update_committed_space(old_end, new_end);
1892     HeapRegionRemSet::shrink_heap(n_regions());
1893     g1_policy()->record_new_heap_size(n_regions());
1894   } else {
1895     ergo_verbose0(ErgoHeapSizing,
1896                   "did not shrink the heap",
1897                   ergo_format_reason("heap shrinking operation failed"));
1898   }
1899 }
1900 
1901 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1902   verify_region_sets_optional();
1903 
1904   // We should only reach here at the end of a Full GC which means we
1905   // should not not be holding to any GC alloc regions. The method
1906   // below will make sure of that and do any remaining clean up.
1907   abandon_gc_alloc_regions();
1908 
1909   // Instead of tearing down / rebuilding the free lists here, we
1910   // could instead use the remove_all_pending() method on free_list to
1911   // remove only the ones that we need to remove.
1912   tear_down_region_sets(true /* free_list_only */);
1913   shrink_helper(shrink_bytes);
1914   rebuild_region_sets(true /* free_list_only */);
1915 
1916   _hrs.verify_optional();
1917   verify_region_sets_optional();
1918 }
1919 
1920 // Public methods.
1921 
1922 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1923 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1924 #endif // _MSC_VER
1925 
1926 
1927 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1928   SharedHeap(policy_),
1929   _g1_policy(policy_),
1930   _dirty_card_queue_set(false),
1931   _into_cset_dirty_card_queue_set(false),
1932   _is_alive_closure_cm(this),
1933   _is_alive_closure_stw(this),
1934   _ref_processor_cm(NULL),
1935   _ref_processor_stw(NULL),
1936   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1937   _bot_shared(NULL),
1938   _evac_failure_scan_stack(NULL),
1939   _mark_in_progress(false),
1940   _cg1r(NULL), _summary_bytes_used(0),
1941   _g1mm(NULL),
1942   _refine_cte_cl(NULL),
1943   _full_collection(false),
1944   _free_list("Master Free List"),
1945   _secondary_free_list("Secondary Free List"),
1946   _old_set("Old Set"),
1947   _humongous_set("Master Humongous Set"),
1948   _free_regions_coming(false),
1949   _young_list(new YoungList(this)),
1950   _gc_time_stamp(0),
1951   _retained_old_gc_alloc_region(NULL),
1952   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1953   _old_plab_stats(OldPLABSize, PLABWeight),
1954   _expand_heap_after_alloc_failure(true),
1955   _surviving_young_words(NULL),
1956   _old_marking_cycles_started(0),
1957   _old_marking_cycles_completed(0),
1958   _concurrent_cycle_started(false),
1959   _in_cset_fast_test(NULL),
1960   _in_cset_fast_test_base(NULL),
1961   _dirty_cards_region_list(NULL),
1962   _worker_cset_start_region(NULL),
1963   _worker_cset_start_region_time_stamp(NULL),
1964   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1965   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1966   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1967   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1968 
1969   _g1h = this;
1970   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1971     vm_exit_during_initialization("Failed necessary allocation.");
1972   }
1973 
1974   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1975 
1976   int n_queues = MAX2((int)ParallelGCThreads, 1);
1977   _task_queues = new RefToScanQueueSet(n_queues);
1978 
1979   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1980   assert(n_rem_sets > 0, "Invariant.");
1981 
1982   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1983   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1984   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1985 
1986   for (int i = 0; i < n_queues; i++) {
1987     RefToScanQueue* q = new RefToScanQueue();
1988     q->initialize();
1989     _task_queues->register_queue(i, q);
1990     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1991   }
1992   clear_cset_start_regions();
1993 
1994   // Initialize the G1EvacuationFailureALot counters and flags.
1995   NOT_PRODUCT(reset_evacuation_should_fail();)
1996 
1997   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1998 }
1999 
2000 jint G1CollectedHeap::initialize() {
2001   CollectedHeap::pre_initialize();
2002   os::enable_vtime();
2003 
2004   G1Log::init();
2005 
2006   // Necessary to satisfy locking discipline assertions.
2007 
2008   MutexLocker x(Heap_lock);
2009 
2010   // We have to initialize the printer before committing the heap, as
2011   // it will be used then.
2012   _hr_printer.set_active(G1PrintHeapRegions);
2013 
2014   // While there are no constraints in the GC code that HeapWordSize
2015   // be any particular value, there are multiple other areas in the
2016   // system which believe this to be true (e.g. oop->object_size in some
2017   // cases incorrectly returns the size in wordSize units rather than
2018   // HeapWordSize).
2019   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2020 
2021   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2022   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2023 
2024   // Ensure that the sizes are properly aligned.
2025   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2026   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2027 
2028   _cg1r = new ConcurrentG1Refine(this);
2029 
2030   // Reserve the maximum.
2031 
2032   // When compressed oops are enabled, the preferred heap base
2033   // is calculated by subtracting the requested size from the
2034   // 32Gb boundary and using the result as the base address for
2035   // heap reservation. If the requested size is not aligned to
2036   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2037   // into the ReservedHeapSpace constructor) then the actual
2038   // base of the reserved heap may end up differing from the
2039   // address that was requested (i.e. the preferred heap base).
2040   // If this happens then we could end up using a non-optimal
2041   // compressed oops mode.
2042 
2043   // Since max_byte_size is aligned to the size of a heap region (checked
2044   // above).
2045   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2046 
2047   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2048                                                  HeapRegion::GrainBytes);
2049 
2050   // It is important to do this in a way such that concurrent readers can't
2051   // temporarily think something is in the heap.  (I've actually seen this
2052   // happen in asserts: DLD.)
2053   _reserved.set_word_size(0);
2054   _reserved.set_start((HeapWord*)heap_rs.base());
2055   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2056 
2057   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2058 
2059   // Create the gen rem set (and barrier set) for the entire reserved region.
2060   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2061   set_barrier_set(rem_set()->bs());
2062   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2063     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2064   } else {
2065     vm_exit_during_initialization("G1 requires a mod ref bs.");
2066     return JNI_ENOMEM;
2067   }
2068 
2069   // Also create a G1 rem set.
2070   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2071     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2072   } else {
2073     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2074     return JNI_ENOMEM;
2075   }
2076 
2077   // Carve out the G1 part of the heap.
2078 
2079   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2080   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2081                            g1_rs.size()/HeapWordSize);
2082 
2083   _g1_storage.initialize(g1_rs, 0);
2084   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2085   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2086                   (HeapWord*) _g1_reserved.end(),
2087                   _expansion_regions);
2088 
2089   // Do later initialization work for concurrent refinement.
2090   _cg1r->init();
2091 
2092   // 6843694 - ensure that the maximum region index can fit
2093   // in the remembered set structures.
2094   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2095   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2096 
2097   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2098   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2099   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2100             "too many cards per region");
2101 
2102   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2103 
2104   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2105                                              heap_word_size(init_byte_size));
2106 
2107   _g1h = this;
2108 
2109   _in_cset_fast_test_length = max_regions();
2110   _in_cset_fast_test_base =
2111                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2112 
2113   // We're biasing _in_cset_fast_test to avoid subtracting the
2114   // beginning of the heap every time we want to index; basically
2115   // it's the same with what we do with the card table.
2116   _in_cset_fast_test = _in_cset_fast_test_base -
2117                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2118 
2119   // Clear the _cset_fast_test bitmap in anticipation of adding
2120   // regions to the incremental collection set for the first
2121   // evacuation pause.
2122   clear_cset_fast_test();
2123 
2124   // Create the ConcurrentMark data structure and thread.
2125   // (Must do this late, so that "max_regions" is defined.)
2126   _cm = new ConcurrentMark(this, heap_rs);
2127   if (_cm == NULL || !_cm->completed_initialization()) {
2128     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2129     return JNI_ENOMEM;
2130   }
2131   _cmThread = _cm->cmThread();
2132 
2133   // Initialize the from_card cache structure of HeapRegionRemSet.
2134   HeapRegionRemSet::init_heap(max_regions());
2135 
2136   // Now expand into the initial heap size.
2137   if (!expand(init_byte_size)) {
2138     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2139     return JNI_ENOMEM;
2140   }
2141 
2142   // Perform any initialization actions delegated to the policy.
2143   g1_policy()->init();
2144 
2145   _refine_cte_cl =
2146     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2147                                     g1_rem_set(),
2148                                     concurrent_g1_refine());
2149   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2150 
2151   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2152                                                SATB_Q_FL_lock,
2153                                                G1SATBProcessCompletedThreshold,
2154                                                Shared_SATB_Q_lock);
2155 
2156   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2157                                                 DirtyCardQ_FL_lock,
2158                                                 concurrent_g1_refine()->yellow_zone(),
2159                                                 concurrent_g1_refine()->red_zone(),
2160                                                 Shared_DirtyCardQ_lock);
2161 
2162   if (G1DeferredRSUpdate) {
2163     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2164                                       DirtyCardQ_FL_lock,
2165                                       -1, // never trigger processing
2166                                       -1, // no limit on length
2167                                       Shared_DirtyCardQ_lock,
2168                                       &JavaThread::dirty_card_queue_set());
2169   }
2170 
2171   // Initialize the card queue set used to hold cards containing
2172   // references into the collection set.
2173   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2174                                              DirtyCardQ_FL_lock,
2175                                              -1, // never trigger processing
2176                                              -1, // no limit on length
2177                                              Shared_DirtyCardQ_lock,
2178                                              &JavaThread::dirty_card_queue_set());
2179 
2180   // In case we're keeping closure specialization stats, initialize those
2181   // counts and that mechanism.
2182   SpecializationStats::clear();
2183 
2184   // Here we allocate the dummy full region that is required by the
2185   // G1AllocRegion class. If we don't pass an address in the reserved
2186   // space here, lots of asserts fire.
2187 
2188   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2189                                              _g1_reserved.start());
2190   // We'll re-use the same region whether the alloc region will
2191   // require BOT updates or not and, if it doesn't, then a non-young
2192   // region will complain that it cannot support allocations without
2193   // BOT updates. So we'll tag the dummy region as young to avoid that.
2194   dummy_region->set_young();
2195   // Make sure it's full.
2196   dummy_region->set_top(dummy_region->end());
2197   G1AllocRegion::setup(this, dummy_region);
2198 
2199   init_mutator_alloc_region();
2200 
2201   // Do create of the monitoring and management support so that
2202   // values in the heap have been properly initialized.
2203   _g1mm = new G1MonitoringSupport(this);
2204 
2205   return JNI_OK;
2206 }
2207 
2208 void G1CollectedHeap::ref_processing_init() {
2209   // Reference processing in G1 currently works as follows:
2210   //
2211   // * There are two reference processor instances. One is
2212   //   used to record and process discovered references
2213   //   during concurrent marking; the other is used to
2214   //   record and process references during STW pauses
2215   //   (both full and incremental).
2216   // * Both ref processors need to 'span' the entire heap as
2217   //   the regions in the collection set may be dotted around.
2218   //
2219   // * For the concurrent marking ref processor:
2220   //   * Reference discovery is enabled at initial marking.
2221   //   * Reference discovery is disabled and the discovered
2222   //     references processed etc during remarking.
2223   //   * Reference discovery is MT (see below).
2224   //   * Reference discovery requires a barrier (see below).
2225   //   * Reference processing may or may not be MT
2226   //     (depending on the value of ParallelRefProcEnabled
2227   //     and ParallelGCThreads).
2228   //   * A full GC disables reference discovery by the CM
2229   //     ref processor and abandons any entries on it's
2230   //     discovered lists.
2231   //
2232   // * For the STW processor:
2233   //   * Non MT discovery is enabled at the start of a full GC.
2234   //   * Processing and enqueueing during a full GC is non-MT.
2235   //   * During a full GC, references are processed after marking.
2236   //
2237   //   * Discovery (may or may not be MT) is enabled at the start
2238   //     of an incremental evacuation pause.
2239   //   * References are processed near the end of a STW evacuation pause.
2240   //   * For both types of GC:
2241   //     * Discovery is atomic - i.e. not concurrent.
2242   //     * Reference discovery will not need a barrier.
2243 
2244   SharedHeap::ref_processing_init();
2245   MemRegion mr = reserved_region();
2246 
2247   // Concurrent Mark ref processor
2248   _ref_processor_cm =
2249     new ReferenceProcessor(mr,    // span
2250                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2251                                 // mt processing
2252                            (int) ParallelGCThreads,
2253                                 // degree of mt processing
2254                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2255                                 // mt discovery
2256                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2257                                 // degree of mt discovery
2258                            false,
2259                                 // Reference discovery is not atomic
2260                            &_is_alive_closure_cm,
2261                                 // is alive closure
2262                                 // (for efficiency/performance)
2263                            true);
2264                                 // Setting next fields of discovered
2265                                 // lists requires a barrier.
2266 
2267   // STW ref processor
2268   _ref_processor_stw =
2269     new ReferenceProcessor(mr,    // span
2270                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2271                                 // mt processing
2272                            MAX2((int)ParallelGCThreads, 1),
2273                                 // degree of mt processing
2274                            (ParallelGCThreads > 1),
2275                                 // mt discovery
2276                            MAX2((int)ParallelGCThreads, 1),
2277                                 // degree of mt discovery
2278                            true,
2279                                 // Reference discovery is atomic
2280                            &_is_alive_closure_stw,
2281                                 // is alive closure
2282                                 // (for efficiency/performance)
2283                            false);
2284                                 // Setting next fields of discovered
2285                                 // lists requires a barrier.
2286 }
2287 
2288 size_t G1CollectedHeap::capacity() const {
2289   return _g1_committed.byte_size();
2290 }
2291 
2292 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2293   assert(!hr->continuesHumongous(), "pre-condition");
2294   hr->reset_gc_time_stamp();
2295   if (hr->startsHumongous()) {
2296     uint first_index = hr->hrs_index() + 1;
2297     uint last_index = hr->last_hc_index();
2298     for (uint i = first_index; i < last_index; i += 1) {
2299       HeapRegion* chr = region_at(i);
2300       assert(chr->continuesHumongous(), "sanity");
2301       chr->reset_gc_time_stamp();
2302     }
2303   }
2304 }
2305 
2306 #ifndef PRODUCT
2307 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2308 private:
2309   unsigned _gc_time_stamp;
2310   bool _failures;
2311 
2312 public:
2313   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2314     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2315 
2316   virtual bool doHeapRegion(HeapRegion* hr) {
2317     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2318     if (_gc_time_stamp != region_gc_time_stamp) {
2319       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2320                              "expected %d", HR_FORMAT_PARAMS(hr),
2321                              region_gc_time_stamp, _gc_time_stamp);
2322       _failures = true;
2323     }
2324     return false;
2325   }
2326 
2327   bool failures() { return _failures; }
2328 };
2329 
2330 void G1CollectedHeap::check_gc_time_stamps() {
2331   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2332   heap_region_iterate(&cl);
2333   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2334 }
2335 #endif // PRODUCT
2336 
2337 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2338                                                  DirtyCardQueue* into_cset_dcq,
2339                                                  bool concurrent,
2340                                                  int worker_i) {
2341   // Clean cards in the hot card cache
2342   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2343   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2344 
2345   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2346   int n_completed_buffers = 0;
2347   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2348     n_completed_buffers++;
2349   }
2350   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2351   dcqs.clear_n_completed_buffers();
2352   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2353 }
2354 
2355 
2356 // Computes the sum of the storage used by the various regions.
2357 
2358 size_t G1CollectedHeap::used() const {
2359   assert(Heap_lock->owner() != NULL,
2360          "Should be owned on this thread's behalf.");
2361   size_t result = _summary_bytes_used;
2362   // Read only once in case it is set to NULL concurrently
2363   HeapRegion* hr = _mutator_alloc_region.get();
2364   if (hr != NULL)
2365     result += hr->used();
2366   return result;
2367 }
2368 
2369 size_t G1CollectedHeap::used_unlocked() const {
2370   size_t result = _summary_bytes_used;
2371   return result;
2372 }
2373 
2374 class SumUsedClosure: public HeapRegionClosure {
2375   size_t _used;
2376 public:
2377   SumUsedClosure() : _used(0) {}
2378   bool doHeapRegion(HeapRegion* r) {
2379     if (!r->continuesHumongous()) {
2380       _used += r->used();
2381     }
2382     return false;
2383   }
2384   size_t result() { return _used; }
2385 };
2386 
2387 size_t G1CollectedHeap::recalculate_used() const {
2388   SumUsedClosure blk;
2389   heap_region_iterate(&blk);
2390   return blk.result();
2391 }
2392 
2393 size_t G1CollectedHeap::unsafe_max_alloc() {
2394   if (free_regions() > 0) return HeapRegion::GrainBytes;
2395   // otherwise, is there space in the current allocation region?
2396 
2397   // We need to store the current allocation region in a local variable
2398   // here. The problem is that this method doesn't take any locks and
2399   // there may be other threads which overwrite the current allocation
2400   // region field. attempt_allocation(), for example, sets it to NULL
2401   // and this can happen *after* the NULL check here but before the call
2402   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2403   // to be a problem in the optimized build, since the two loads of the
2404   // current allocation region field are optimized away.
2405   HeapRegion* hr = _mutator_alloc_region.get();
2406   if (hr == NULL) {
2407     return 0;
2408   }
2409   return hr->free();
2410 }
2411 
2412 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2413   switch (cause) {
2414     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2415     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2416     case GCCause::_g1_humongous_allocation: return true;
2417     default:                                return false;
2418   }
2419 }
2420 
2421 #ifndef PRODUCT
2422 void G1CollectedHeap::allocate_dummy_regions() {
2423   // Let's fill up most of the region
2424   size_t word_size = HeapRegion::GrainWords - 1024;
2425   // And as a result the region we'll allocate will be humongous.
2426   guarantee(isHumongous(word_size), "sanity");
2427 
2428   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2429     // Let's use the existing mechanism for the allocation
2430     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2431     if (dummy_obj != NULL) {
2432       MemRegion mr(dummy_obj, word_size);
2433       CollectedHeap::fill_with_object(mr);
2434     } else {
2435       // If we can't allocate once, we probably cannot allocate
2436       // again. Let's get out of the loop.
2437       break;
2438     }
2439   }
2440 }
2441 #endif // !PRODUCT
2442 
2443 void G1CollectedHeap::increment_old_marking_cycles_started() {
2444   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2445     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2446     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2447     _old_marking_cycles_started, _old_marking_cycles_completed));
2448 
2449   _old_marking_cycles_started++;
2450 }
2451 
2452 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2453   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2454 
2455   // We assume that if concurrent == true, then the caller is a
2456   // concurrent thread that was joined the Suspendible Thread
2457   // Set. If there's ever a cheap way to check this, we should add an
2458   // assert here.
2459 
2460   // Given that this method is called at the end of a Full GC or of a
2461   // concurrent cycle, and those can be nested (i.e., a Full GC can
2462   // interrupt a concurrent cycle), the number of full collections
2463   // completed should be either one (in the case where there was no
2464   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2465   // behind the number of full collections started.
2466 
2467   // This is the case for the inner caller, i.e. a Full GC.
2468   assert(concurrent ||
2469          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2470          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2471          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2472                  "is inconsistent with _old_marking_cycles_completed = %u",
2473                  _old_marking_cycles_started, _old_marking_cycles_completed));
2474 
2475   // This is the case for the outer caller, i.e. the concurrent cycle.
2476   assert(!concurrent ||
2477          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2478          err_msg("for outer caller (concurrent cycle): "
2479                  "_old_marking_cycles_started = %u "
2480                  "is inconsistent with _old_marking_cycles_completed = %u",
2481                  _old_marking_cycles_started, _old_marking_cycles_completed));
2482 
2483   _old_marking_cycles_completed += 1;
2484 
2485   // We need to clear the "in_progress" flag in the CM thread before
2486   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2487   // is set) so that if a waiter requests another System.gc() it doesn't
2488   // incorrectly see that a marking cycle is still in progress.
2489   if (concurrent) {
2490     _cmThread->clear_in_progress();
2491   }
2492 
2493   // This notify_all() will ensure that a thread that called
2494   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2495   // and it's waiting for a full GC to finish will be woken up. It is
2496   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2497   FullGCCount_lock->notify_all();
2498 }
2499 
2500 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2501   _concurrent_cycle_started = true;
2502   _gc_timer_cm->register_gc_start(start_time);
2503 
2504   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2505   trace_heap_before_gc(_gc_tracer_cm);
2506 }
2507 
2508 void G1CollectedHeap::register_concurrent_cycle_end() {
2509   if (_concurrent_cycle_started) {
2510     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2511 
2512     if (_cm->has_aborted()) {
2513       _gc_tracer_cm->report_concurrent_mode_failure();
2514     }
2515     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2516 
2517     _concurrent_cycle_started = false;
2518   }
2519 }
2520 
2521 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2522   if (_concurrent_cycle_started) {
2523     trace_heap_after_gc(_gc_tracer_cm);
2524   }
2525 }
2526 
2527 G1YCType G1CollectedHeap::yc_type() {
2528   bool is_young = g1_policy()->gcs_are_young();
2529   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2530   bool is_during_mark = mark_in_progress();
2531 
2532   if (is_initial_mark) {
2533     return InitialMark;
2534   } else if (is_during_mark) {
2535     return DuringMark;
2536   } else if (is_young) {
2537     return Normal;
2538   } else {
2539     return Mixed;
2540   }
2541 }
2542 
2543 void G1CollectedHeap::collect(GCCause::Cause cause) {
2544   assert_heap_not_locked();
2545 
2546   unsigned int gc_count_before;
2547   unsigned int old_marking_count_before;
2548   bool retry_gc;
2549 
2550   do {
2551     retry_gc = false;
2552 
2553     {
2554       MutexLocker ml(Heap_lock);
2555 
2556       // Read the GC count while holding the Heap_lock
2557       gc_count_before = total_collections();
2558       old_marking_count_before = _old_marking_cycles_started;
2559     }
2560 
2561     if (should_do_concurrent_full_gc(cause)) {
2562       // Schedule an initial-mark evacuation pause that will start a
2563       // concurrent cycle. We're setting word_size to 0 which means that
2564       // we are not requesting a post-GC allocation.
2565       VM_G1IncCollectionPause op(gc_count_before,
2566                                  0,     /* word_size */
2567                                  true,  /* should_initiate_conc_mark */
2568                                  g1_policy()->max_pause_time_ms(),
2569                                  cause);
2570 
2571       VMThread::execute(&op);
2572       if (!op.pause_succeeded()) {
2573         if (old_marking_count_before == _old_marking_cycles_started) {
2574           retry_gc = op.should_retry_gc();
2575         } else {
2576           // A Full GC happened while we were trying to schedule the
2577           // initial-mark GC. No point in starting a new cycle given
2578           // that the whole heap was collected anyway.
2579         }
2580 
2581         if (retry_gc) {
2582           if (GC_locker::is_active_and_needs_gc()) {
2583             GC_locker::stall_until_clear();
2584           }
2585         }
2586       }
2587     } else {
2588       if (cause == GCCause::_gc_locker
2589           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2590 
2591         // Schedule a standard evacuation pause. We're setting word_size
2592         // to 0 which means that we are not requesting a post-GC allocation.
2593         VM_G1IncCollectionPause op(gc_count_before,
2594                                    0,     /* word_size */
2595                                    false, /* should_initiate_conc_mark */
2596                                    g1_policy()->max_pause_time_ms(),
2597                                    cause);
2598         VMThread::execute(&op);
2599       } else {
2600         // Schedule a Full GC.
2601         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2602         VMThread::execute(&op);
2603       }
2604     }
2605   } while (retry_gc);
2606 }
2607 
2608 bool G1CollectedHeap::is_in(const void* p) const {
2609   if (_g1_committed.contains(p)) {
2610     // Given that we know that p is in the committed space,
2611     // heap_region_containing_raw() should successfully
2612     // return the containing region.
2613     HeapRegion* hr = heap_region_containing_raw(p);
2614     return hr->is_in(p);
2615   } else {
2616     return false;
2617   }
2618 }
2619 
2620 // Iteration functions.
2621 
2622 // Iterates an OopClosure over all ref-containing fields of objects
2623 // within a HeapRegion.
2624 
2625 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2626   MemRegion _mr;
2627   ExtendedOopClosure* _cl;
2628 public:
2629   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2630     : _mr(mr), _cl(cl) {}
2631   bool doHeapRegion(HeapRegion* r) {
2632     if (!r->continuesHumongous()) {
2633       r->oop_iterate(_cl);
2634     }
2635     return false;
2636   }
2637 };
2638 
2639 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2640   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2641   heap_region_iterate(&blk);
2642 }
2643 
2644 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2645   IterateOopClosureRegionClosure blk(mr, cl);
2646   heap_region_iterate(&blk);
2647 }
2648 
2649 // Iterates an ObjectClosure over all objects within a HeapRegion.
2650 
2651 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2652   ObjectClosure* _cl;
2653 public:
2654   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2655   bool doHeapRegion(HeapRegion* r) {
2656     if (! r->continuesHumongous()) {
2657       r->object_iterate(_cl);
2658     }
2659     return false;
2660   }
2661 };
2662 
2663 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2664   IterateObjectClosureRegionClosure blk(cl);
2665   heap_region_iterate(&blk);
2666 }
2667 
2668 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2669   // FIXME: is this right?
2670   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2671 }
2672 
2673 // Calls a SpaceClosure on a HeapRegion.
2674 
2675 class SpaceClosureRegionClosure: public HeapRegionClosure {
2676   SpaceClosure* _cl;
2677 public:
2678   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2679   bool doHeapRegion(HeapRegion* r) {
2680     _cl->do_space(r);
2681     return false;
2682   }
2683 };
2684 
2685 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2686   SpaceClosureRegionClosure blk(cl);
2687   heap_region_iterate(&blk);
2688 }
2689 
2690 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2691   _hrs.iterate(cl);
2692 }
2693 
2694 void
2695 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2696                                                  uint worker_id,
2697                                                  uint no_of_par_workers,
2698                                                  jint claim_value) {
2699   const uint regions = n_regions();
2700   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2701                              no_of_par_workers :
2702                              1);
2703   assert(UseDynamicNumberOfGCThreads ||
2704          no_of_par_workers == workers()->total_workers(),
2705          "Non dynamic should use fixed number of workers");
2706   // try to spread out the starting points of the workers
2707   const HeapRegion* start_hr =
2708                         start_region_for_worker(worker_id, no_of_par_workers);
2709   const uint start_index = start_hr->hrs_index();
2710 
2711   // each worker will actually look at all regions
2712   for (uint count = 0; count < regions; ++count) {
2713     const uint index = (start_index + count) % regions;
2714     assert(0 <= index && index < regions, "sanity");
2715     HeapRegion* r = region_at(index);
2716     // we'll ignore "continues humongous" regions (we'll process them
2717     // when we come across their corresponding "start humongous"
2718     // region) and regions already claimed
2719     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2720       continue;
2721     }
2722     // OK, try to claim it
2723     if (r->claimHeapRegion(claim_value)) {
2724       // success!
2725       assert(!r->continuesHumongous(), "sanity");
2726       if (r->startsHumongous()) {
2727         // If the region is "starts humongous" we'll iterate over its
2728         // "continues humongous" first; in fact we'll do them
2729         // first. The order is important. In on case, calling the
2730         // closure on the "starts humongous" region might de-allocate
2731         // and clear all its "continues humongous" regions and, as a
2732         // result, we might end up processing them twice. So, we'll do
2733         // them first (notice: most closures will ignore them anyway) and
2734         // then we'll do the "starts humongous" region.
2735         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2736           HeapRegion* chr = region_at(ch_index);
2737 
2738           // if the region has already been claimed or it's not
2739           // "continues humongous" we're done
2740           if (chr->claim_value() == claim_value ||
2741               !chr->continuesHumongous()) {
2742             break;
2743           }
2744 
2745           // No one should have claimed it directly. We can given
2746           // that we claimed its "starts humongous" region.
2747           assert(chr->claim_value() != claim_value, "sanity");
2748           assert(chr->humongous_start_region() == r, "sanity");
2749 
2750           if (chr->claimHeapRegion(claim_value)) {
2751             // we should always be able to claim it; no one else should
2752             // be trying to claim this region
2753 
2754             bool res2 = cl->doHeapRegion(chr);
2755             assert(!res2, "Should not abort");
2756 
2757             // Right now, this holds (i.e., no closure that actually
2758             // does something with "continues humongous" regions
2759             // clears them). We might have to weaken it in the future,
2760             // but let's leave these two asserts here for extra safety.
2761             assert(chr->continuesHumongous(), "should still be the case");
2762             assert(chr->humongous_start_region() == r, "sanity");
2763           } else {
2764             guarantee(false, "we should not reach here");
2765           }
2766         }
2767       }
2768 
2769       assert(!r->continuesHumongous(), "sanity");
2770       bool res = cl->doHeapRegion(r);
2771       assert(!res, "Should not abort");
2772     }
2773   }
2774 }
2775 
2776 class ResetClaimValuesClosure: public HeapRegionClosure {
2777 public:
2778   bool doHeapRegion(HeapRegion* r) {
2779     r->set_claim_value(HeapRegion::InitialClaimValue);
2780     return false;
2781   }
2782 };
2783 
2784 void G1CollectedHeap::reset_heap_region_claim_values() {
2785   ResetClaimValuesClosure blk;
2786   heap_region_iterate(&blk);
2787 }
2788 
2789 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2790   ResetClaimValuesClosure blk;
2791   collection_set_iterate(&blk);
2792 }
2793 
2794 #ifdef ASSERT
2795 // This checks whether all regions in the heap have the correct claim
2796 // value. I also piggy-backed on this a check to ensure that the
2797 // humongous_start_region() information on "continues humongous"
2798 // regions is correct.
2799 
2800 class CheckClaimValuesClosure : public HeapRegionClosure {
2801 private:
2802   jint _claim_value;
2803   uint _failures;
2804   HeapRegion* _sh_region;
2805 
2806 public:
2807   CheckClaimValuesClosure(jint claim_value) :
2808     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2809   bool doHeapRegion(HeapRegion* r) {
2810     if (r->claim_value() != _claim_value) {
2811       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2812                              "claim value = %d, should be %d",
2813                              HR_FORMAT_PARAMS(r),
2814                              r->claim_value(), _claim_value);
2815       ++_failures;
2816     }
2817     if (!r->isHumongous()) {
2818       _sh_region = NULL;
2819     } else if (r->startsHumongous()) {
2820       _sh_region = r;
2821     } else if (r->continuesHumongous()) {
2822       if (r->humongous_start_region() != _sh_region) {
2823         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2824                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2825                                HR_FORMAT_PARAMS(r),
2826                                r->humongous_start_region(),
2827                                _sh_region);
2828         ++_failures;
2829       }
2830     }
2831     return false;
2832   }
2833   uint failures() { return _failures; }
2834 };
2835 
2836 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2837   CheckClaimValuesClosure cl(claim_value);
2838   heap_region_iterate(&cl);
2839   return cl.failures() == 0;
2840 }
2841 
2842 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2843 private:
2844   jint _claim_value;
2845   uint _failures;
2846 
2847 public:
2848   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2849     _claim_value(claim_value), _failures(0) { }
2850 
2851   uint failures() { return _failures; }
2852 
2853   bool doHeapRegion(HeapRegion* hr) {
2854     assert(hr->in_collection_set(), "how?");
2855     assert(!hr->isHumongous(), "H-region in CSet");
2856     if (hr->claim_value() != _claim_value) {
2857       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2858                              "claim value = %d, should be %d",
2859                              HR_FORMAT_PARAMS(hr),
2860                              hr->claim_value(), _claim_value);
2861       _failures += 1;
2862     }
2863     return false;
2864   }
2865 };
2866 
2867 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2868   CheckClaimValuesInCSetHRClosure cl(claim_value);
2869   collection_set_iterate(&cl);
2870   return cl.failures() == 0;
2871 }
2872 #endif // ASSERT
2873 
2874 // Clear the cached CSet starting regions and (more importantly)
2875 // the time stamps. Called when we reset the GC time stamp.
2876 void G1CollectedHeap::clear_cset_start_regions() {
2877   assert(_worker_cset_start_region != NULL, "sanity");
2878   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2879 
2880   int n_queues = MAX2((int)ParallelGCThreads, 1);
2881   for (int i = 0; i < n_queues; i++) {
2882     _worker_cset_start_region[i] = NULL;
2883     _worker_cset_start_region_time_stamp[i] = 0;
2884   }
2885 }
2886 
2887 // Given the id of a worker, obtain or calculate a suitable
2888 // starting region for iterating over the current collection set.
2889 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2890   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2891 
2892   HeapRegion* result = NULL;
2893   unsigned gc_time_stamp = get_gc_time_stamp();
2894 
2895   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2896     // Cached starting region for current worker was set
2897     // during the current pause - so it's valid.
2898     // Note: the cached starting heap region may be NULL
2899     // (when the collection set is empty).
2900     result = _worker_cset_start_region[worker_i];
2901     assert(result == NULL || result->in_collection_set(), "sanity");
2902     return result;
2903   }
2904 
2905   // The cached entry was not valid so let's calculate
2906   // a suitable starting heap region for this worker.
2907 
2908   // We want the parallel threads to start their collection
2909   // set iteration at different collection set regions to
2910   // avoid contention.
2911   // If we have:
2912   //          n collection set regions
2913   //          p threads
2914   // Then thread t will start at region floor ((t * n) / p)
2915 
2916   result = g1_policy()->collection_set();
2917   if (G1CollectedHeap::use_parallel_gc_threads()) {
2918     uint cs_size = g1_policy()->cset_region_length();
2919     uint active_workers = workers()->active_workers();
2920     assert(UseDynamicNumberOfGCThreads ||
2921              active_workers == workers()->total_workers(),
2922              "Unless dynamic should use total workers");
2923 
2924     uint end_ind   = (cs_size * worker_i) / active_workers;
2925     uint start_ind = 0;
2926 
2927     if (worker_i > 0 &&
2928         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2929       // Previous workers starting region is valid
2930       // so let's iterate from there
2931       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2932       result = _worker_cset_start_region[worker_i - 1];
2933     }
2934 
2935     for (uint i = start_ind; i < end_ind; i++) {
2936       result = result->next_in_collection_set();
2937     }
2938   }
2939 
2940   // Note: the calculated starting heap region may be NULL
2941   // (when the collection set is empty).
2942   assert(result == NULL || result->in_collection_set(), "sanity");
2943   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2944          "should be updated only once per pause");
2945   _worker_cset_start_region[worker_i] = result;
2946   OrderAccess::storestore();
2947   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2948   return result;
2949 }
2950 
2951 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2952                                                      uint no_of_par_workers) {
2953   uint worker_num =
2954            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2955   assert(UseDynamicNumberOfGCThreads ||
2956          no_of_par_workers == workers()->total_workers(),
2957          "Non dynamic should use fixed number of workers");
2958   const uint start_index = n_regions() * worker_i / worker_num;
2959   return region_at(start_index);
2960 }
2961 
2962 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2963   HeapRegion* r = g1_policy()->collection_set();
2964   while (r != NULL) {
2965     HeapRegion* next = r->next_in_collection_set();
2966     if (cl->doHeapRegion(r)) {
2967       cl->incomplete();
2968       return;
2969     }
2970     r = next;
2971   }
2972 }
2973 
2974 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2975                                                   HeapRegionClosure *cl) {
2976   if (r == NULL) {
2977     // The CSet is empty so there's nothing to do.
2978     return;
2979   }
2980 
2981   assert(r->in_collection_set(),
2982          "Start region must be a member of the collection set.");
2983   HeapRegion* cur = r;
2984   while (cur != NULL) {
2985     HeapRegion* next = cur->next_in_collection_set();
2986     if (cl->doHeapRegion(cur) && false) {
2987       cl->incomplete();
2988       return;
2989     }
2990     cur = next;
2991   }
2992   cur = g1_policy()->collection_set();
2993   while (cur != r) {
2994     HeapRegion* next = cur->next_in_collection_set();
2995     if (cl->doHeapRegion(cur) && false) {
2996       cl->incomplete();
2997       return;
2998     }
2999     cur = next;
3000   }
3001 }
3002 
3003 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3004   return n_regions() > 0 ? region_at(0) : NULL;
3005 }
3006 
3007 
3008 Space* G1CollectedHeap::space_containing(const void* addr) const {
3009   Space* res = heap_region_containing(addr);
3010   return res;
3011 }
3012 
3013 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3014   Space* sp = space_containing(addr);
3015   if (sp != NULL) {
3016     return sp->block_start(addr);
3017   }
3018   return NULL;
3019 }
3020 
3021 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3022   Space* sp = space_containing(addr);
3023   assert(sp != NULL, "block_size of address outside of heap");
3024   return sp->block_size(addr);
3025 }
3026 
3027 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3028   Space* sp = space_containing(addr);
3029   return sp->block_is_obj(addr);
3030 }
3031 
3032 bool G1CollectedHeap::supports_tlab_allocation() const {
3033   return true;
3034 }
3035 
3036 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3037   return HeapRegion::GrainBytes;
3038 }
3039 
3040 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3041   // Return the remaining space in the cur alloc region, but not less than
3042   // the min TLAB size.
3043 
3044   // Also, this value can be at most the humongous object threshold,
3045   // since we can't allow tlabs to grow big enough to accommodate
3046   // humongous objects.
3047 
3048   HeapRegion* hr = _mutator_alloc_region.get();
3049   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3050   if (hr == NULL) {
3051     return max_tlab_size;
3052   } else {
3053     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3054   }
3055 }
3056 
3057 size_t G1CollectedHeap::max_capacity() const {
3058   return _g1_reserved.byte_size();
3059 }
3060 
3061 jlong G1CollectedHeap::millis_since_last_gc() {
3062   // assert(false, "NYI");
3063   return 0;
3064 }
3065 
3066 void G1CollectedHeap::prepare_for_verify() {
3067   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3068     ensure_parsability(false);
3069   }
3070   g1_rem_set()->prepare_for_verify();
3071 }
3072 
3073 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3074                                               VerifyOption vo) {
3075   switch (vo) {
3076   case VerifyOption_G1UsePrevMarking:
3077     return hr->obj_allocated_since_prev_marking(obj);
3078   case VerifyOption_G1UseNextMarking:
3079     return hr->obj_allocated_since_next_marking(obj);
3080   case VerifyOption_G1UseMarkWord:
3081     return false;
3082   default:
3083     ShouldNotReachHere();
3084   }
3085   return false; // keep some compilers happy
3086 }
3087 
3088 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3089   switch (vo) {
3090   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3091   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3092   case VerifyOption_G1UseMarkWord:    return NULL;
3093   default:                            ShouldNotReachHere();
3094   }
3095   return NULL; // keep some compilers happy
3096 }
3097 
3098 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3099   switch (vo) {
3100   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3101   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3102   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3103   default:                            ShouldNotReachHere();
3104   }
3105   return false; // keep some compilers happy
3106 }
3107 
3108 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3109   switch (vo) {
3110   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3111   case VerifyOption_G1UseNextMarking: return "NTAMS";
3112   case VerifyOption_G1UseMarkWord:    return "NONE";
3113   default:                            ShouldNotReachHere();
3114   }
3115   return NULL; // keep some compilers happy
3116 }
3117 
3118 class VerifyLivenessOopClosure: public OopClosure {
3119   G1CollectedHeap* _g1h;
3120   VerifyOption _vo;
3121 public:
3122   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3123     _g1h(g1h), _vo(vo)
3124   { }
3125   void do_oop(narrowOop *p) { do_oop_work(p); }
3126   void do_oop(      oop *p) { do_oop_work(p); }
3127 
3128   template <class T> void do_oop_work(T *p) {
3129     oop obj = oopDesc::load_decode_heap_oop(p);
3130     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3131               "Dead object referenced by a not dead object");
3132   }
3133 };
3134 
3135 class VerifyObjsInRegionClosure: public ObjectClosure {
3136 private:
3137   G1CollectedHeap* _g1h;
3138   size_t _live_bytes;
3139   HeapRegion *_hr;
3140   VerifyOption _vo;
3141 public:
3142   // _vo == UsePrevMarking -> use "prev" marking information,
3143   // _vo == UseNextMarking -> use "next" marking information,
3144   // _vo == UseMarkWord    -> use mark word from object header.
3145   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3146     : _live_bytes(0), _hr(hr), _vo(vo) {
3147     _g1h = G1CollectedHeap::heap();
3148   }
3149   void do_object(oop o) {
3150     VerifyLivenessOopClosure isLive(_g1h, _vo);
3151     assert(o != NULL, "Huh?");
3152     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3153       // If the object is alive according to the mark word,
3154       // then verify that the marking information agrees.
3155       // Note we can't verify the contra-positive of the
3156       // above: if the object is dead (according to the mark
3157       // word), it may not be marked, or may have been marked
3158       // but has since became dead, or may have been allocated
3159       // since the last marking.
3160       if (_vo == VerifyOption_G1UseMarkWord) {
3161         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3162       }
3163 
3164       o->oop_iterate_no_header(&isLive);
3165       if (!_hr->obj_allocated_since_prev_marking(o)) {
3166         size_t obj_size = o->size();    // Make sure we don't overflow
3167         _live_bytes += (obj_size * HeapWordSize);
3168       }
3169     }
3170   }
3171   size_t live_bytes() { return _live_bytes; }
3172 };
3173 
3174 class PrintObjsInRegionClosure : public ObjectClosure {
3175   HeapRegion *_hr;
3176   G1CollectedHeap *_g1;
3177 public:
3178   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3179     _g1 = G1CollectedHeap::heap();
3180   };
3181 
3182   void do_object(oop o) {
3183     if (o != NULL) {
3184       HeapWord *start = (HeapWord *) o;
3185       size_t word_sz = o->size();
3186       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3187                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3188                           (void*) o, word_sz,
3189                           _g1->isMarkedPrev(o),
3190                           _g1->isMarkedNext(o),
3191                           _hr->obj_allocated_since_prev_marking(o));
3192       HeapWord *end = start + word_sz;
3193       HeapWord *cur;
3194       int *val;
3195       for (cur = start; cur < end; cur++) {
3196         val = (int *) cur;
3197         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3198       }
3199     }
3200   }
3201 };
3202 
3203 class VerifyRegionClosure: public HeapRegionClosure {
3204 private:
3205   bool             _par;
3206   VerifyOption     _vo;
3207   bool             _failures;
3208 public:
3209   // _vo == UsePrevMarking -> use "prev" marking information,
3210   // _vo == UseNextMarking -> use "next" marking information,
3211   // _vo == UseMarkWord    -> use mark word from object header.
3212   VerifyRegionClosure(bool par, VerifyOption vo)
3213     : _par(par),
3214       _vo(vo),
3215       _failures(false) {}
3216 
3217   bool failures() {
3218     return _failures;
3219   }
3220 
3221   bool doHeapRegion(HeapRegion* r) {
3222     if (!r->continuesHumongous()) {
3223       bool failures = false;
3224       r->verify(_vo, &failures);
3225       if (failures) {
3226         _failures = true;
3227       } else {
3228         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3229         r->object_iterate(&not_dead_yet_cl);
3230         if (_vo != VerifyOption_G1UseNextMarking) {
3231           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3232             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3233                                    "max_live_bytes "SIZE_FORMAT" "
3234                                    "< calculated "SIZE_FORMAT,
3235                                    r->bottom(), r->end(),
3236                                    r->max_live_bytes(),
3237                                  not_dead_yet_cl.live_bytes());
3238             _failures = true;
3239           }
3240         } else {
3241           // When vo == UseNextMarking we cannot currently do a sanity
3242           // check on the live bytes as the calculation has not been
3243           // finalized yet.
3244         }
3245       }
3246     }
3247     return false; // stop the region iteration if we hit a failure
3248   }
3249 };
3250 
3251 class YoungRefCounterClosure : public OopClosure {
3252   G1CollectedHeap* _g1h;
3253   int              _count;
3254  public:
3255   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3256   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3257   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3258 
3259   int count() { return _count; }
3260   void reset_count() { _count = 0; };
3261 };
3262 
3263 class VerifyKlassClosure: public KlassClosure {
3264   YoungRefCounterClosure _young_ref_counter_closure;
3265   OopClosure *_oop_closure;
3266  public:
3267   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3268   void do_klass(Klass* k) {
3269     k->oops_do(_oop_closure);
3270 
3271     _young_ref_counter_closure.reset_count();
3272     k->oops_do(&_young_ref_counter_closure);
3273     if (_young_ref_counter_closure.count() > 0) {
3274       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3275     }
3276   }
3277 };
3278 
3279 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3280 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3281 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3282 //       we can change this closure to extend the simpler OopClosure.
3283 class VerifyRootsClosure: public OopsInGenClosure {
3284 private:
3285   G1CollectedHeap* _g1h;
3286   VerifyOption     _vo;
3287   bool             _failures;
3288 public:
3289   // _vo == UsePrevMarking -> use "prev" marking information,
3290   // _vo == UseNextMarking -> use "next" marking information,
3291   // _vo == UseMarkWord    -> use mark word from object header.
3292   VerifyRootsClosure(VerifyOption vo) :
3293     _g1h(G1CollectedHeap::heap()),
3294     _vo(vo),
3295     _failures(false) { }
3296 
3297   bool failures() { return _failures; }
3298 
3299   template <class T> void do_oop_nv(T* p) {
3300     T heap_oop = oopDesc::load_heap_oop(p);
3301     if (!oopDesc::is_null(heap_oop)) {
3302       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3303       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3304         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3305                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3306         if (_vo == VerifyOption_G1UseMarkWord) {
3307           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3308         }
3309         obj->print_on(gclog_or_tty);
3310         _failures = true;
3311       }
3312     }
3313   }
3314 
3315   void do_oop(oop* p)       { do_oop_nv(p); }
3316   void do_oop(narrowOop* p) { do_oop_nv(p); }
3317 };
3318 
3319 // This is the task used for parallel heap verification.
3320 
3321 class G1ParVerifyTask: public AbstractGangTask {
3322 private:
3323   G1CollectedHeap* _g1h;
3324   VerifyOption     _vo;
3325   bool             _failures;
3326 
3327 public:
3328   // _vo == UsePrevMarking -> use "prev" marking information,
3329   // _vo == UseNextMarking -> use "next" marking information,
3330   // _vo == UseMarkWord    -> use mark word from object header.
3331   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3332     AbstractGangTask("Parallel verify task"),
3333     _g1h(g1h),
3334     _vo(vo),
3335     _failures(false) { }
3336 
3337   bool failures() {
3338     return _failures;
3339   }
3340 
3341   void work(uint worker_id) {
3342     HandleMark hm;
3343     VerifyRegionClosure blk(true, _vo);
3344     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3345                                           _g1h->workers()->active_workers(),
3346                                           HeapRegion::ParVerifyClaimValue);
3347     if (blk.failures()) {
3348       _failures = true;
3349     }
3350   }
3351 };
3352 
3353 void G1CollectedHeap::verify(bool silent) {
3354   verify(silent, VerifyOption_G1UsePrevMarking);
3355 }
3356 
3357 void G1CollectedHeap::verify(bool silent,
3358                              VerifyOption vo) {
3359   if (SafepointSynchronize::is_at_safepoint()) {
3360     if (!silent) { gclog_or_tty->print("Roots "); }
3361     VerifyRootsClosure rootsCl(vo);
3362 
3363     assert(Thread::current()->is_VM_thread(),
3364            "Expected to be executed serially by the VM thread at this point");
3365 
3366     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3367     VerifyKlassClosure klassCl(this, &rootsCl);
3368 
3369     // We apply the relevant closures to all the oops in the
3370     // system dictionary, the string table and the code cache.
3371     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3372 
3373     // Need cleared claim bits for the strong roots processing
3374     ClassLoaderDataGraph::clear_claimed_marks();
3375 
3376     process_strong_roots(true,      // activate StrongRootsScope
3377                          false,     // we set "is scavenging" to false,
3378                                     // so we don't reset the dirty cards.
3379                          ScanningOption(so),  // roots scanning options
3380                          &rootsCl,
3381                          &blobsCl,
3382                          &klassCl
3383                          );
3384 
3385     bool failures = rootsCl.failures();
3386 
3387     if (vo != VerifyOption_G1UseMarkWord) {
3388       // If we're verifying during a full GC then the region sets
3389       // will have been torn down at the start of the GC. Therefore
3390       // verifying the region sets will fail. So we only verify
3391       // the region sets when not in a full GC.
3392       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3393       verify_region_sets();
3394     }
3395 
3396     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3397     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3398       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3399              "sanity check");
3400 
3401       G1ParVerifyTask task(this, vo);
3402       assert(UseDynamicNumberOfGCThreads ||
3403         workers()->active_workers() == workers()->total_workers(),
3404         "If not dynamic should be using all the workers");
3405       int n_workers = workers()->active_workers();
3406       set_par_threads(n_workers);
3407       workers()->run_task(&task);
3408       set_par_threads(0);
3409       if (task.failures()) {
3410         failures = true;
3411       }
3412 
3413       // Checks that the expected amount of parallel work was done.
3414       // The implication is that n_workers is > 0.
3415       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3416              "sanity check");
3417 
3418       reset_heap_region_claim_values();
3419 
3420       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3421              "sanity check");
3422     } else {
3423       VerifyRegionClosure blk(false, vo);
3424       heap_region_iterate(&blk);
3425       if (blk.failures()) {
3426         failures = true;
3427       }
3428     }
3429     if (!silent) gclog_or_tty->print("RemSet ");
3430     rem_set()->verify();
3431 
3432     if (failures) {
3433       gclog_or_tty->print_cr("Heap:");
3434       // It helps to have the per-region information in the output to
3435       // help us track down what went wrong. This is why we call
3436       // print_extended_on() instead of print_on().
3437       print_extended_on(gclog_or_tty);
3438       gclog_or_tty->print_cr("");
3439 #ifndef PRODUCT
3440       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3441         concurrent_mark()->print_reachable("at-verification-failure",
3442                                            vo, false /* all */);
3443       }
3444 #endif
3445       gclog_or_tty->flush();
3446     }
3447     guarantee(!failures, "there should not have been any failures");
3448   } else {
3449     if (!silent)
3450       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3451   }
3452 }
3453 
3454 class PrintRegionClosure: public HeapRegionClosure {
3455   outputStream* _st;
3456 public:
3457   PrintRegionClosure(outputStream* st) : _st(st) {}
3458   bool doHeapRegion(HeapRegion* r) {
3459     r->print_on(_st);
3460     return false;
3461   }
3462 };
3463 
3464 void G1CollectedHeap::print_on(outputStream* st) const {
3465   st->print(" %-20s", "garbage-first heap");
3466   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3467             capacity()/K, used_unlocked()/K);
3468   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3469             _g1_storage.low_boundary(),
3470             _g1_storage.high(),
3471             _g1_storage.high_boundary());
3472   st->cr();
3473   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3474   uint young_regions = _young_list->length();
3475   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3476             (size_t) young_regions * HeapRegion::GrainBytes / K);
3477   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3478   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3479             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3480   st->cr();
3481   MetaspaceAux::print_on(st);
3482 }
3483 
3484 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3485   print_on(st);
3486 
3487   // Print the per-region information.
3488   st->cr();
3489   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3490                "HS=humongous(starts), HC=humongous(continues), "
3491                "CS=collection set, F=free, TS=gc time stamp, "
3492                "PTAMS=previous top-at-mark-start, "
3493                "NTAMS=next top-at-mark-start)");
3494   PrintRegionClosure blk(st);
3495   heap_region_iterate(&blk);
3496 }
3497 
3498 void G1CollectedHeap::print_on_error(outputStream* st) const {
3499   this->CollectedHeap::print_on_error(st);
3500 
3501   if (_cm != NULL) {
3502     st->cr();
3503     _cm->print_on_error(st);
3504   }
3505 }
3506 
3507 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3508   if (G1CollectedHeap::use_parallel_gc_threads()) {
3509     workers()->print_worker_threads_on(st);
3510   }
3511   _cmThread->print_on(st);
3512   st->cr();
3513   _cm->print_worker_threads_on(st);
3514   _cg1r->print_worker_threads_on(st);
3515 }
3516 
3517 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3518   if (G1CollectedHeap::use_parallel_gc_threads()) {
3519     workers()->threads_do(tc);
3520   }
3521   tc->do_thread(_cmThread);
3522   _cg1r->threads_do(tc);
3523 }
3524 
3525 void G1CollectedHeap::print_tracing_info() const {
3526   // We'll overload this to mean "trace GC pause statistics."
3527   if (TraceGen0Time || TraceGen1Time) {
3528     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3529     // to that.
3530     g1_policy()->print_tracing_info();
3531   }
3532   if (G1SummarizeRSetStats) {
3533     g1_rem_set()->print_summary_info();
3534   }
3535   if (G1SummarizeConcMark) {
3536     concurrent_mark()->print_summary_info();
3537   }
3538   g1_policy()->print_yg_surv_rate_info();
3539   SpecializationStats::print();
3540 }
3541 
3542 #ifndef PRODUCT
3543 // Helpful for debugging RSet issues.
3544 
3545 class PrintRSetsClosure : public HeapRegionClosure {
3546 private:
3547   const char* _msg;
3548   size_t _occupied_sum;
3549 
3550 public:
3551   bool doHeapRegion(HeapRegion* r) {
3552     HeapRegionRemSet* hrrs = r->rem_set();
3553     size_t occupied = hrrs->occupied();
3554     _occupied_sum += occupied;
3555 
3556     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3557                            HR_FORMAT_PARAMS(r));
3558     if (occupied == 0) {
3559       gclog_or_tty->print_cr("  RSet is empty");
3560     } else {
3561       hrrs->print();
3562     }
3563     gclog_or_tty->print_cr("----------");
3564     return false;
3565   }
3566 
3567   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3568     gclog_or_tty->cr();
3569     gclog_or_tty->print_cr("========================================");
3570     gclog_or_tty->print_cr(msg);
3571     gclog_or_tty->cr();
3572   }
3573 
3574   ~PrintRSetsClosure() {
3575     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3576     gclog_or_tty->print_cr("========================================");
3577     gclog_or_tty->cr();
3578   }
3579 };
3580 
3581 void G1CollectedHeap::print_cset_rsets() {
3582   PrintRSetsClosure cl("Printing CSet RSets");
3583   collection_set_iterate(&cl);
3584 }
3585 
3586 void G1CollectedHeap::print_all_rsets() {
3587   PrintRSetsClosure cl("Printing All RSets");;
3588   heap_region_iterate(&cl);
3589 }
3590 #endif // PRODUCT
3591 
3592 G1CollectedHeap* G1CollectedHeap::heap() {
3593   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3594          "not a garbage-first heap");
3595   return _g1h;
3596 }
3597 
3598 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3599   // always_do_update_barrier = false;
3600   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3601   // Call allocation profiler
3602   AllocationProfiler::iterate_since_last_gc();
3603   // Fill TLAB's and such
3604   ensure_parsability(true);
3605 }
3606 
3607 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3608   // FIXME: what is this about?
3609   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3610   // is set.
3611   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3612                         "derived pointer present"));
3613   // always_do_update_barrier = true;
3614 
3615   // We have just completed a GC. Update the soft reference
3616   // policy with the new heap occupancy
3617   Universe::update_heap_info_at_gc();
3618 }
3619 
3620 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3621                                                unsigned int gc_count_before,
3622                                                bool* succeeded) {
3623   assert_heap_not_locked_and_not_at_safepoint();
3624   g1_policy()->record_stop_world_start();
3625   VM_G1IncCollectionPause op(gc_count_before,
3626                              word_size,
3627                              false, /* should_initiate_conc_mark */
3628                              g1_policy()->max_pause_time_ms(),
3629                              GCCause::_g1_inc_collection_pause);
3630   VMThread::execute(&op);
3631 
3632   HeapWord* result = op.result();
3633   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3634   assert(result == NULL || ret_succeeded,
3635          "the result should be NULL if the VM did not succeed");
3636   *succeeded = ret_succeeded;
3637 
3638   assert_heap_not_locked();
3639   return result;
3640 }
3641 
3642 void
3643 G1CollectedHeap::doConcurrentMark() {
3644   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3645   if (!_cmThread->in_progress()) {
3646     _cmThread->set_started();
3647     CGC_lock->notify();
3648   }
3649 }
3650 
3651 size_t G1CollectedHeap::pending_card_num() {
3652   size_t extra_cards = 0;
3653   JavaThread *curr = Threads::first();
3654   while (curr != NULL) {
3655     DirtyCardQueue& dcq = curr->dirty_card_queue();
3656     extra_cards += dcq.size();
3657     curr = curr->next();
3658   }
3659   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3660   size_t buffer_size = dcqs.buffer_size();
3661   size_t buffer_num = dcqs.completed_buffers_num();
3662 
3663   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3664   // in bytes - not the number of 'entries'. We need to convert
3665   // into a number of cards.
3666   return (buffer_size * buffer_num + extra_cards) / oopSize;
3667 }
3668 
3669 size_t G1CollectedHeap::cards_scanned() {
3670   return g1_rem_set()->cardsScanned();
3671 }
3672 
3673 void
3674 G1CollectedHeap::setup_surviving_young_words() {
3675   assert(_surviving_young_words == NULL, "pre-condition");
3676   uint array_length = g1_policy()->young_cset_region_length();
3677   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3678   if (_surviving_young_words == NULL) {
3679     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3680                           "Not enough space for young surv words summary.");
3681   }
3682   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3683 #ifdef ASSERT
3684   for (uint i = 0;  i < array_length; ++i) {
3685     assert( _surviving_young_words[i] == 0, "memset above" );
3686   }
3687 #endif // !ASSERT
3688 }
3689 
3690 void
3691 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3692   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3693   uint array_length = g1_policy()->young_cset_region_length();
3694   for (uint i = 0; i < array_length; ++i) {
3695     _surviving_young_words[i] += surv_young_words[i];
3696   }
3697 }
3698 
3699 void
3700 G1CollectedHeap::cleanup_surviving_young_words() {
3701   guarantee( _surviving_young_words != NULL, "pre-condition" );
3702   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3703   _surviving_young_words = NULL;
3704 }
3705 
3706 #ifdef ASSERT
3707 class VerifyCSetClosure: public HeapRegionClosure {
3708 public:
3709   bool doHeapRegion(HeapRegion* hr) {
3710     // Here we check that the CSet region's RSet is ready for parallel
3711     // iteration. The fields that we'll verify are only manipulated
3712     // when the region is part of a CSet and is collected. Afterwards,
3713     // we reset these fields when we clear the region's RSet (when the
3714     // region is freed) so they are ready when the region is
3715     // re-allocated. The only exception to this is if there's an
3716     // evacuation failure and instead of freeing the region we leave
3717     // it in the heap. In that case, we reset these fields during
3718     // evacuation failure handling.
3719     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3720 
3721     // Here's a good place to add any other checks we'd like to
3722     // perform on CSet regions.
3723     return false;
3724   }
3725 };
3726 #endif // ASSERT
3727 
3728 #if TASKQUEUE_STATS
3729 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3730   st->print_raw_cr("GC Task Stats");
3731   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3732   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3733 }
3734 
3735 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3736   print_taskqueue_stats_hdr(st);
3737 
3738   TaskQueueStats totals;
3739   const int n = workers() != NULL ? workers()->total_workers() : 1;
3740   for (int i = 0; i < n; ++i) {
3741     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3742     totals += task_queue(i)->stats;
3743   }
3744   st->print_raw("tot "); totals.print(st); st->cr();
3745 
3746   DEBUG_ONLY(totals.verify());
3747 }
3748 
3749 void G1CollectedHeap::reset_taskqueue_stats() {
3750   const int n = workers() != NULL ? workers()->total_workers() : 1;
3751   for (int i = 0; i < n; ++i) {
3752     task_queue(i)->stats.reset();
3753   }
3754 }
3755 #endif // TASKQUEUE_STATS
3756 
3757 void G1CollectedHeap::log_gc_header() {
3758   if (!G1Log::fine()) {
3759     return;
3760   }
3761 
3762   gclog_or_tty->date_stamp(PrintGCDateStamps);
3763   gclog_or_tty->stamp(PrintGCTimeStamps);
3764 
3765   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3766     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3767     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3768 
3769   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3770 }
3771 
3772 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3773   if (!G1Log::fine()) {
3774     return;
3775   }
3776 
3777   if (G1Log::finer()) {
3778     if (evacuation_failed()) {
3779       gclog_or_tty->print(" (to-space exhausted)");
3780     }
3781     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3782     g1_policy()->phase_times()->note_gc_end();
3783     g1_policy()->phase_times()->print(pause_time_sec);
3784     g1_policy()->print_detailed_heap_transition();
3785   } else {
3786     if (evacuation_failed()) {
3787       gclog_or_tty->print("--");
3788     }
3789     g1_policy()->print_heap_transition();
3790     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3791   }
3792   gclog_or_tty->flush();
3793 }
3794 
3795 bool
3796 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3797   assert_at_safepoint(true /* should_be_vm_thread */);
3798   guarantee(!is_gc_active(), "collection is not reentrant");
3799 
3800   if (GC_locker::check_active_before_gc()) {
3801     return false;
3802   }
3803 
3804   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3805 
3806   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3807 
3808   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3809   ResourceMark rm;
3810 
3811   print_heap_before_gc();
3812   trace_heap_before_gc(_gc_tracer_stw);
3813 
3814   HRSPhaseSetter x(HRSPhaseEvacuation);
3815   verify_region_sets_optional();
3816   verify_dirty_young_regions();
3817 
3818   // This call will decide whether this pause is an initial-mark
3819   // pause. If it is, during_initial_mark_pause() will return true
3820   // for the duration of this pause.
3821   g1_policy()->decide_on_conc_mark_initiation();
3822 
3823   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3824   assert(!g1_policy()->during_initial_mark_pause() ||
3825           g1_policy()->gcs_are_young(), "sanity");
3826 
3827   // We also do not allow mixed GCs during marking.
3828   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3829 
3830   // Record whether this pause is an initial mark. When the current
3831   // thread has completed its logging output and it's safe to signal
3832   // the CM thread, the flag's value in the policy has been reset.
3833   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3834 
3835   // Inner scope for scope based logging, timers, and stats collection
3836   {
3837     EvacuationInfo evacuation_info;
3838 
3839     if (g1_policy()->during_initial_mark_pause()) {
3840       // We are about to start a marking cycle, so we increment the
3841       // full collection counter.
3842       increment_old_marking_cycles_started();
3843       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3844     }
3845 
3846     _gc_tracer_stw->report_yc_type(yc_type());
3847 
3848     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3849 
3850     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3851                                 workers()->active_workers() : 1);
3852     double pause_start_sec = os::elapsedTime();
3853     g1_policy()->phase_times()->note_gc_start(active_workers);
3854     log_gc_header();
3855 
3856     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3857     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3858 
3859     // If the secondary_free_list is not empty, append it to the
3860     // free_list. No need to wait for the cleanup operation to finish;
3861     // the region allocation code will check the secondary_free_list
3862     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3863     // set, skip this step so that the region allocation code has to
3864     // get entries from the secondary_free_list.
3865     if (!G1StressConcRegionFreeing) {
3866       append_secondary_free_list_if_not_empty_with_lock();
3867     }
3868 
3869     assert(check_young_list_well_formed(),
3870       "young list should be well formed");
3871 
3872     // Don't dynamically change the number of GC threads this early.  A value of
3873     // 0 is used to indicate serial work.  When parallel work is done,
3874     // it will be set.
3875 
3876     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3877       IsGCActiveMark x;
3878 
3879       gc_prologue(false);
3880       increment_total_collections(false /* full gc */);
3881       increment_gc_time_stamp();
3882 
3883       verify_before_gc();
3884 
3885       COMPILER2_PRESENT(DerivedPointerTable::clear());
3886 
3887       // Please see comment in g1CollectedHeap.hpp and
3888       // G1CollectedHeap::ref_processing_init() to see how
3889       // reference processing currently works in G1.
3890 
3891       // Enable discovery in the STW reference processor
3892       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3893                                             true /*verify_no_refs*/);
3894 
3895       {
3896         // We want to temporarily turn off discovery by the
3897         // CM ref processor, if necessary, and turn it back on
3898         // on again later if we do. Using a scoped
3899         // NoRefDiscovery object will do this.
3900         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3901 
3902         // Forget the current alloc region (we might even choose it to be part
3903         // of the collection set!).
3904         release_mutator_alloc_region();
3905 
3906         // We should call this after we retire the mutator alloc
3907         // region(s) so that all the ALLOC / RETIRE events are generated
3908         // before the start GC event.
3909         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3910 
3911         // This timing is only used by the ergonomics to handle our pause target.
3912         // It is unclear why this should not include the full pause. We will
3913         // investigate this in CR 7178365.
3914         //
3915         // Preserving the old comment here if that helps the investigation:
3916         //
3917         // The elapsed time induced by the start time below deliberately elides
3918         // the possible verification above.
3919         double sample_start_time_sec = os::elapsedTime();
3920 
3921 #if YOUNG_LIST_VERBOSE
3922         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3923         _young_list->print();
3924         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3925 #endif // YOUNG_LIST_VERBOSE
3926 
3927         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3928 
3929         double scan_wait_start = os::elapsedTime();
3930         // We have to wait until the CM threads finish scanning the
3931         // root regions as it's the only way to ensure that all the
3932         // objects on them have been correctly scanned before we start
3933         // moving them during the GC.
3934         bool waited = _cm->root_regions()->wait_until_scan_finished();
3935         double wait_time_ms = 0.0;
3936         if (waited) {
3937           double scan_wait_end = os::elapsedTime();
3938           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3939         }
3940         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3941 
3942 #if YOUNG_LIST_VERBOSE
3943         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3944         _young_list->print();
3945 #endif // YOUNG_LIST_VERBOSE
3946 
3947         if (g1_policy()->during_initial_mark_pause()) {
3948           concurrent_mark()->checkpointRootsInitialPre();
3949         }
3950 
3951 #if YOUNG_LIST_VERBOSE
3952         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3953         _young_list->print();
3954         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3955 #endif // YOUNG_LIST_VERBOSE
3956 
3957         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3958 
3959         _cm->note_start_of_gc();
3960         // We should not verify the per-thread SATB buffers given that
3961         // we have not filtered them yet (we'll do so during the
3962         // GC). We also call this after finalize_cset() to
3963         // ensure that the CSet has been finalized.
3964         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3965                                  true  /* verify_enqueued_buffers */,
3966                                  false /* verify_thread_buffers */,
3967                                  true  /* verify_fingers */);
3968 
3969         if (_hr_printer.is_active()) {
3970           HeapRegion* hr = g1_policy()->collection_set();
3971           while (hr != NULL) {
3972             G1HRPrinter::RegionType type;
3973             if (!hr->is_young()) {
3974               type = G1HRPrinter::Old;
3975             } else if (hr->is_survivor()) {
3976               type = G1HRPrinter::Survivor;
3977             } else {
3978               type = G1HRPrinter::Eden;
3979             }
3980             _hr_printer.cset(hr);
3981             hr = hr->next_in_collection_set();
3982           }
3983         }
3984 
3985 #ifdef ASSERT
3986         VerifyCSetClosure cl;
3987         collection_set_iterate(&cl);
3988 #endif // ASSERT
3989 
3990         setup_surviving_young_words();
3991 
3992         // Initialize the GC alloc regions.
3993         init_gc_alloc_regions(evacuation_info);
3994 
3995         // Actually do the work...
3996         evacuate_collection_set(evacuation_info);
3997 
3998         // We do this to mainly verify the per-thread SATB buffers
3999         // (which have been filtered by now) since we didn't verify
4000         // them earlier. No point in re-checking the stacks / enqueued
4001         // buffers given that the CSet has not changed since last time
4002         // we checked.
4003         _cm->verify_no_cset_oops(false /* verify_stacks */,
4004                                  false /* verify_enqueued_buffers */,
4005                                  true  /* verify_thread_buffers */,
4006                                  true  /* verify_fingers */);
4007 
4008         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4009         g1_policy()->clear_collection_set();
4010 
4011         cleanup_surviving_young_words();
4012 
4013         // Start a new incremental collection set for the next pause.
4014         g1_policy()->start_incremental_cset_building();
4015 
4016         // Clear the _cset_fast_test bitmap in anticipation of adding
4017         // regions to the incremental collection set for the next
4018         // evacuation pause.
4019         clear_cset_fast_test();
4020 
4021         _young_list->reset_sampled_info();
4022 
4023         // Don't check the whole heap at this point as the
4024         // GC alloc regions from this pause have been tagged
4025         // as survivors and moved on to the survivor list.
4026         // Survivor regions will fail the !is_young() check.
4027         assert(check_young_list_empty(false /* check_heap */),
4028           "young list should be empty");
4029 
4030 #if YOUNG_LIST_VERBOSE
4031         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4032         _young_list->print();
4033 #endif // YOUNG_LIST_VERBOSE
4034 
4035         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4036                                              _young_list->first_survivor_region(),
4037                                              _young_list->last_survivor_region());
4038 
4039         _young_list->reset_auxilary_lists();
4040 
4041         if (evacuation_failed()) {
4042           _summary_bytes_used = recalculate_used();
4043           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4044           for (uint i = 0; i < n_queues; i++) {
4045             if (_evacuation_failed_info_array[i].has_failed()) {
4046               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4047             }
4048           }
4049         } else {
4050           // The "used" of the the collection set have already been subtracted
4051           // when they were freed.  Add in the bytes evacuated.
4052           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4053         }
4054 
4055         if (g1_policy()->during_initial_mark_pause()) {
4056           // We have to do this before we notify the CM threads that
4057           // they can start working to make sure that all the
4058           // appropriate initialization is done on the CM object.
4059           concurrent_mark()->checkpointRootsInitialPost();
4060           set_marking_started();
4061           // Note that we don't actually trigger the CM thread at
4062           // this point. We do that later when we're sure that
4063           // the current thread has completed its logging output.
4064         }
4065 
4066         allocate_dummy_regions();
4067 
4068 #if YOUNG_LIST_VERBOSE
4069         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4070         _young_list->print();
4071         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4072 #endif // YOUNG_LIST_VERBOSE
4073 
4074         init_mutator_alloc_region();
4075 
4076         {
4077           size_t expand_bytes = g1_policy()->expansion_amount();
4078           if (expand_bytes > 0) {
4079             size_t bytes_before = capacity();
4080             // No need for an ergo verbose message here,
4081             // expansion_amount() does this when it returns a value > 0.
4082             if (!expand(expand_bytes)) {
4083               // We failed to expand the heap so let's verify that
4084               // committed/uncommitted amount match the backing store
4085               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4086               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4087             }
4088           }
4089         }
4090 
4091         // We redo the verification but now wrt to the new CSet which
4092         // has just got initialized after the previous CSet was freed.
4093         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4094                                  true  /* verify_enqueued_buffers */,
4095                                  true  /* verify_thread_buffers */,
4096                                  true  /* verify_fingers */);
4097         _cm->note_end_of_gc();
4098 
4099         // This timing is only used by the ergonomics to handle our pause target.
4100         // It is unclear why this should not include the full pause. We will
4101         // investigate this in CR 7178365.
4102         double sample_end_time_sec = os::elapsedTime();
4103         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4104         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4105 
4106         MemoryService::track_memory_usage();
4107 
4108         // In prepare_for_verify() below we'll need to scan the deferred
4109         // update buffers to bring the RSets up-to-date if
4110         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4111         // the update buffers we'll probably need to scan cards on the
4112         // regions we just allocated to (i.e., the GC alloc
4113         // regions). However, during the last GC we called
4114         // set_saved_mark() on all the GC alloc regions, so card
4115         // scanning might skip the [saved_mark_word()...top()] area of
4116         // those regions (i.e., the area we allocated objects into
4117         // during the last GC). But it shouldn't. Given that
4118         // saved_mark_word() is conditional on whether the GC time stamp
4119         // on the region is current or not, by incrementing the GC time
4120         // stamp here we invalidate all the GC time stamps on all the
4121         // regions and saved_mark_word() will simply return top() for
4122         // all the regions. This is a nicer way of ensuring this rather
4123         // than iterating over the regions and fixing them. In fact, the
4124         // GC time stamp increment here also ensures that
4125         // saved_mark_word() will return top() between pauses, i.e.,
4126         // during concurrent refinement. So we don't need the
4127         // is_gc_active() check to decided which top to use when
4128         // scanning cards (see CR 7039627).
4129         increment_gc_time_stamp();
4130 
4131         verify_after_gc();
4132 
4133         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4134         ref_processor_stw()->verify_no_references_recorded();
4135 
4136         // CM reference discovery will be re-enabled if necessary.
4137       }
4138 
4139       // We should do this after we potentially expand the heap so
4140       // that all the COMMIT events are generated before the end GC
4141       // event, and after we retire the GC alloc regions so that all
4142       // RETIRE events are generated before the end GC event.
4143       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4144 
4145       if (mark_in_progress()) {
4146         concurrent_mark()->update_g1_committed();
4147       }
4148 
4149 #ifdef TRACESPINNING
4150       ParallelTaskTerminator::print_termination_counts();
4151 #endif
4152 
4153       gc_epilogue(false);
4154     }
4155 
4156     // Print the remainder of the GC log output.
4157     log_gc_footer(os::elapsedTime() - pause_start_sec);
4158 
4159     // It is not yet to safe to tell the concurrent mark to
4160     // start as we have some optional output below. We don't want the
4161     // output from the concurrent mark thread interfering with this
4162     // logging output either.
4163 
4164     _hrs.verify_optional();
4165     verify_region_sets_optional();
4166 
4167     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4168     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4169 
4170     print_heap_after_gc();
4171     trace_heap_after_gc(_gc_tracer_stw);
4172 
4173     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4174     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4175     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4176     // before any GC notifications are raised.
4177     g1mm()->update_sizes();
4178 
4179     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4180     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4181     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4182     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4183   }
4184 
4185   if (G1SummarizeRSetStats &&
4186       (G1SummarizeRSetStatsPeriod > 0) &&
4187       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4188     g1_rem_set()->print_summary_info();
4189   }
4190   // It should now be safe to tell the concurrent mark thread to start
4191   // without its logging output interfering with the logging output
4192   // that came from the pause.
4193 
4194   if (should_start_conc_mark) {
4195     // CAUTION: after the doConcurrentMark() call below,
4196     // the concurrent marking thread(s) could be running
4197     // concurrently with us. Make sure that anything after
4198     // this point does not assume that we are the only GC thread
4199     // running. Note: of course, the actual marking work will
4200     // not start until the safepoint itself is released in
4201     // ConcurrentGCThread::safepoint_desynchronize().
4202     doConcurrentMark();
4203   }
4204 
4205   return true;
4206 }
4207 
4208 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4209 {
4210   size_t gclab_word_size;
4211   switch (purpose) {
4212     case GCAllocForSurvived:
4213       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4214       break;
4215     case GCAllocForTenured:
4216       gclab_word_size = _old_plab_stats.desired_plab_sz();
4217       break;
4218     default:
4219       assert(false, "unknown GCAllocPurpose");
4220       gclab_word_size = _old_plab_stats.desired_plab_sz();
4221       break;
4222   }
4223 
4224   // Prevent humongous PLAB sizes for two reasons:
4225   // * PLABs are allocated using a similar paths as oops, but should
4226   //   never be in a humongous region
4227   // * Allowing humongous PLABs needlessly churns the region free lists
4228   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4229 }
4230 
4231 void G1CollectedHeap::init_mutator_alloc_region() {
4232   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4233   _mutator_alloc_region.init();
4234 }
4235 
4236 void G1CollectedHeap::release_mutator_alloc_region() {
4237   _mutator_alloc_region.release();
4238   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4239 }
4240 
4241 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4242   assert_at_safepoint(true /* should_be_vm_thread */);
4243 
4244   _survivor_gc_alloc_region.init();
4245   _old_gc_alloc_region.init();
4246   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4247   _retained_old_gc_alloc_region = NULL;
4248 
4249   // We will discard the current GC alloc region if:
4250   // a) it's in the collection set (it can happen!),
4251   // b) it's already full (no point in using it),
4252   // c) it's empty (this means that it was emptied during
4253   // a cleanup and it should be on the free list now), or
4254   // d) it's humongous (this means that it was emptied
4255   // during a cleanup and was added to the free list, but
4256   // has been subsequently used to allocate a humongous
4257   // object that may be less than the region size).
4258   if (retained_region != NULL &&
4259       !retained_region->in_collection_set() &&
4260       !(retained_region->top() == retained_region->end()) &&
4261       !retained_region->is_empty() &&
4262       !retained_region->isHumongous()) {
4263     retained_region->set_saved_mark();
4264     // The retained region was added to the old region set when it was
4265     // retired. We have to remove it now, since we don't allow regions
4266     // we allocate to in the region sets. We'll re-add it later, when
4267     // it's retired again.
4268     _old_set.remove(retained_region);
4269     bool during_im = g1_policy()->during_initial_mark_pause();
4270     retained_region->note_start_of_copying(during_im);
4271     _old_gc_alloc_region.set(retained_region);
4272     _hr_printer.reuse(retained_region);
4273     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4274   }
4275 }
4276 
4277 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4278   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4279                                          _old_gc_alloc_region.count());
4280   _survivor_gc_alloc_region.release();
4281   // If we have an old GC alloc region to release, we'll save it in
4282   // _retained_old_gc_alloc_region. If we don't
4283   // _retained_old_gc_alloc_region will become NULL. This is what we
4284   // want either way so no reason to check explicitly for either
4285   // condition.
4286   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4287 
4288   if (ResizePLAB) {
4289     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4290     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4291   }
4292 }
4293 
4294 void G1CollectedHeap::abandon_gc_alloc_regions() {
4295   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4296   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4297   _retained_old_gc_alloc_region = NULL;
4298 }
4299 
4300 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4301   _drain_in_progress = false;
4302   set_evac_failure_closure(cl);
4303   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4304 }
4305 
4306 void G1CollectedHeap::finalize_for_evac_failure() {
4307   assert(_evac_failure_scan_stack != NULL &&
4308          _evac_failure_scan_stack->length() == 0,
4309          "Postcondition");
4310   assert(!_drain_in_progress, "Postcondition");
4311   delete _evac_failure_scan_stack;
4312   _evac_failure_scan_stack = NULL;
4313 }
4314 
4315 void G1CollectedHeap::remove_self_forwarding_pointers() {
4316   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4317 
4318   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4319 
4320   if (G1CollectedHeap::use_parallel_gc_threads()) {
4321     set_par_threads();
4322     workers()->run_task(&rsfp_task);
4323     set_par_threads(0);
4324   } else {
4325     rsfp_task.work(0);
4326   }
4327 
4328   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4329 
4330   // Reset the claim values in the regions in the collection set.
4331   reset_cset_heap_region_claim_values();
4332 
4333   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4334 
4335   // Now restore saved marks, if any.
4336   assert(_objs_with_preserved_marks.size() ==
4337             _preserved_marks_of_objs.size(), "Both or none.");
4338   while (!_objs_with_preserved_marks.is_empty()) {
4339     oop obj = _objs_with_preserved_marks.pop();
4340     markOop m = _preserved_marks_of_objs.pop();
4341     obj->set_mark(m);
4342   }
4343   _objs_with_preserved_marks.clear(true);
4344   _preserved_marks_of_objs.clear(true);
4345 }
4346 
4347 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4348   _evac_failure_scan_stack->push(obj);
4349 }
4350 
4351 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4352   assert(_evac_failure_scan_stack != NULL, "precondition");
4353 
4354   while (_evac_failure_scan_stack->length() > 0) {
4355      oop obj = _evac_failure_scan_stack->pop();
4356      _evac_failure_closure->set_region(heap_region_containing(obj));
4357      obj->oop_iterate_backwards(_evac_failure_closure);
4358   }
4359 }
4360 
4361 oop
4362 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4363                                                oop old) {
4364   assert(obj_in_cs(old),
4365          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4366                  (HeapWord*) old));
4367   markOop m = old->mark();
4368   oop forward_ptr = old->forward_to_atomic(old);
4369   if (forward_ptr == NULL) {
4370     // Forward-to-self succeeded.
4371     assert(_par_scan_state != NULL, "par scan state");
4372     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4373     uint queue_num = _par_scan_state->queue_num();
4374 
4375     _evacuation_failed = true;
4376     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4377     if (_evac_failure_closure != cl) {
4378       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4379       assert(!_drain_in_progress,
4380              "Should only be true while someone holds the lock.");
4381       // Set the global evac-failure closure to the current thread's.
4382       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4383       set_evac_failure_closure(cl);
4384       // Now do the common part.
4385       handle_evacuation_failure_common(old, m);
4386       // Reset to NULL.
4387       set_evac_failure_closure(NULL);
4388     } else {
4389       // The lock is already held, and this is recursive.
4390       assert(_drain_in_progress, "This should only be the recursive case.");
4391       handle_evacuation_failure_common(old, m);
4392     }
4393     return old;
4394   } else {
4395     // Forward-to-self failed. Either someone else managed to allocate
4396     // space for this object (old != forward_ptr) or they beat us in
4397     // self-forwarding it (old == forward_ptr).
4398     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4399            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4400                    "should not be in the CSet",
4401                    (HeapWord*) old, (HeapWord*) forward_ptr));
4402     return forward_ptr;
4403   }
4404 }
4405 
4406 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4407   preserve_mark_if_necessary(old, m);
4408 
4409   HeapRegion* r = heap_region_containing(old);
4410   if (!r->evacuation_failed()) {
4411     r->set_evacuation_failed(true);
4412     _hr_printer.evac_failure(r);
4413   }
4414 
4415   push_on_evac_failure_scan_stack(old);
4416 
4417   if (!_drain_in_progress) {
4418     // prevent recursion in copy_to_survivor_space()
4419     _drain_in_progress = true;
4420     drain_evac_failure_scan_stack();
4421     _drain_in_progress = false;
4422   }
4423 }
4424 
4425 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4426   assert(evacuation_failed(), "Oversaving!");
4427   // We want to call the "for_promotion_failure" version only in the
4428   // case of a promotion failure.
4429   if (m->must_be_preserved_for_promotion_failure(obj)) {
4430     _objs_with_preserved_marks.push(obj);
4431     _preserved_marks_of_objs.push(m);
4432   }
4433 }
4434 
4435 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4436                                                   size_t word_size) {
4437   if (purpose == GCAllocForSurvived) {
4438     HeapWord* result = survivor_attempt_allocation(word_size);
4439     if (result != NULL) {
4440       return result;
4441     } else {
4442       // Let's try to allocate in the old gen in case we can fit the
4443       // object there.
4444       return old_attempt_allocation(word_size);
4445     }
4446   } else {
4447     assert(purpose ==  GCAllocForTenured, "sanity");
4448     HeapWord* result = old_attempt_allocation(word_size);
4449     if (result != NULL) {
4450       return result;
4451     } else {
4452       // Let's try to allocate in the survivors in case we can fit the
4453       // object there.
4454       return survivor_attempt_allocation(word_size);
4455     }
4456   }
4457 
4458   ShouldNotReachHere();
4459   // Trying to keep some compilers happy.
4460   return NULL;
4461 }
4462 
4463 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4464   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4465 
4466 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4467   : _g1h(g1h),
4468     _refs(g1h->task_queue(queue_num)),
4469     _dcq(&g1h->dirty_card_queue_set()),
4470     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4471     _g1_rem(g1h->g1_rem_set()),
4472     _hash_seed(17), _queue_num(queue_num),
4473     _term_attempts(0),
4474     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4475     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4476     _age_table(false),
4477     _strong_roots_time(0), _term_time(0),
4478     _alloc_buffer_waste(0), _undo_waste(0) {
4479   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4480   // we "sacrifice" entry 0 to keep track of surviving bytes for
4481   // non-young regions (where the age is -1)
4482   // We also add a few elements at the beginning and at the end in
4483   // an attempt to eliminate cache contention
4484   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4485   uint array_length = PADDING_ELEM_NUM +
4486                       real_length +
4487                       PADDING_ELEM_NUM;
4488   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4489   if (_surviving_young_words_base == NULL)
4490     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4491                           "Not enough space for young surv histo.");
4492   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4493   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4494 
4495   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4496   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4497 
4498   _start = os::elapsedTime();
4499 }
4500 
4501 void
4502 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4503 {
4504   st->print_raw_cr("GC Termination Stats");
4505   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4506                    " ------waste (KiB)------");
4507   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4508                    "  total   alloc    undo");
4509   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4510                    " ------- ------- -------");
4511 }
4512 
4513 void
4514 G1ParScanThreadState::print_termination_stats(int i,
4515                                               outputStream* const st) const
4516 {
4517   const double elapsed_ms = elapsed_time() * 1000.0;
4518   const double s_roots_ms = strong_roots_time() * 1000.0;
4519   const double term_ms    = term_time() * 1000.0;
4520   st->print_cr("%3d %9.2f %9.2f %6.2f "
4521                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4522                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4523                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4524                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4525                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4526                alloc_buffer_waste() * HeapWordSize / K,
4527                undo_waste() * HeapWordSize / K);
4528 }
4529 
4530 #ifdef ASSERT
4531 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4532   assert(ref != NULL, "invariant");
4533   assert(UseCompressedOops, "sanity");
4534   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4535   oop p = oopDesc::load_decode_heap_oop(ref);
4536   assert(_g1h->is_in_g1_reserved(p),
4537          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4538   return true;
4539 }
4540 
4541 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4542   assert(ref != NULL, "invariant");
4543   if (has_partial_array_mask(ref)) {
4544     // Must be in the collection set--it's already been copied.
4545     oop p = clear_partial_array_mask(ref);
4546     assert(_g1h->obj_in_cs(p),
4547            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4548   } else {
4549     oop p = oopDesc::load_decode_heap_oop(ref);
4550     assert(_g1h->is_in_g1_reserved(p),
4551            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4552   }
4553   return true;
4554 }
4555 
4556 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4557   if (ref.is_narrow()) {
4558     return verify_ref((narrowOop*) ref);
4559   } else {
4560     return verify_ref((oop*) ref);
4561   }
4562 }
4563 #endif // ASSERT
4564 
4565 void G1ParScanThreadState::trim_queue() {
4566   assert(_evac_cl != NULL, "not set");
4567   assert(_evac_failure_cl != NULL, "not set");
4568   assert(_partial_scan_cl != NULL, "not set");
4569 
4570   StarTask ref;
4571   do {
4572     // Drain the overflow stack first, so other threads can steal.
4573     while (refs()->pop_overflow(ref)) {
4574       deal_with_reference(ref);
4575     }
4576 
4577     while (refs()->pop_local(ref)) {
4578       deal_with_reference(ref);
4579     }
4580   } while (!refs()->is_empty());
4581 }
4582 
4583 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4584                                      G1ParScanThreadState* par_scan_state) :
4585   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4586   _par_scan_state(par_scan_state),
4587   _worker_id(par_scan_state->queue_num()),
4588   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4589   _mark_in_progress(_g1->mark_in_progress()) { }
4590 
4591 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4592 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4593 #ifdef ASSERT
4594   HeapRegion* hr = _g1->heap_region_containing(obj);
4595   assert(hr != NULL, "sanity");
4596   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4597 #endif // ASSERT
4598 
4599   // We know that the object is not moving so it's safe to read its size.
4600   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4601 }
4602 
4603 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4604 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4605   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4606 #ifdef ASSERT
4607   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4608   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4609   assert(from_obj != to_obj, "should not be self-forwarded");
4610 
4611   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4612   assert(from_hr != NULL, "sanity");
4613   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4614 
4615   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4616   assert(to_hr != NULL, "sanity");
4617   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4618 #endif // ASSERT
4619 
4620   // The object might be in the process of being copied by another
4621   // worker so we cannot trust that its to-space image is
4622   // well-formed. So we have to read its size from its from-space
4623   // image which we know should not be changing.
4624   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4625 }
4626 
4627 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4628 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4629   ::copy_to_survivor_space(oop old) {
4630   size_t word_sz = old->size();
4631   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4632   // +1 to make the -1 indexes valid...
4633   int       young_index = from_region->young_index_in_cset()+1;
4634   assert( (from_region->is_young() && young_index >  0) ||
4635          (!from_region->is_young() && young_index == 0), "invariant" );
4636   G1CollectorPolicy* g1p = _g1->g1_policy();
4637   markOop m = old->mark();
4638   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4639                                            : m->age();
4640   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4641                                                              word_sz);
4642   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4643 #ifndef PRODUCT
4644   // Should this evacuation fail?
4645   if (_g1->evacuation_should_fail()) {
4646     if (obj_ptr != NULL) {
4647       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4648       obj_ptr = NULL;
4649     }
4650   }
4651 #endif // !PRODUCT
4652 
4653   if (obj_ptr == NULL) {
4654     // This will either forward-to-self, or detect that someone else has
4655     // installed a forwarding pointer.
4656     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4657   }
4658 
4659   oop obj = oop(obj_ptr);
4660 
4661   // We're going to allocate linearly, so might as well prefetch ahead.
4662   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4663 
4664   oop forward_ptr = old->forward_to_atomic(obj);
4665   if (forward_ptr == NULL) {
4666     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4667     if (g1p->track_object_age(alloc_purpose)) {
4668       // We could simply do obj->incr_age(). However, this causes a
4669       // performance issue. obj->incr_age() will first check whether
4670       // the object has a displaced mark by checking its mark word;
4671       // getting the mark word from the new location of the object
4672       // stalls. So, given that we already have the mark word and we
4673       // are about to install it anyway, it's better to increase the
4674       // age on the mark word, when the object does not have a
4675       // displaced mark word. We're not expecting many objects to have
4676       // a displaced marked word, so that case is not optimized
4677       // further (it could be...) and we simply call obj->incr_age().
4678 
4679       if (m->has_displaced_mark_helper()) {
4680         // in this case, we have to install the mark word first,
4681         // otherwise obj looks to be forwarded (the old mark word,
4682         // which contains the forward pointer, was copied)
4683         obj->set_mark(m);
4684         obj->incr_age();
4685       } else {
4686         m = m->incr_age();
4687         obj->set_mark(m);
4688       }
4689       _par_scan_state->age_table()->add(obj, word_sz);
4690     } else {
4691       obj->set_mark(m);
4692     }
4693 
4694     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4695     surv_young_words[young_index] += word_sz;
4696 
4697     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4698       // We keep track of the next start index in the length field of
4699       // the to-space object. The actual length can be found in the
4700       // length field of the from-space object.
4701       arrayOop(obj)->set_length(0);
4702       oop* old_p = set_partial_array_mask(old);
4703       _par_scan_state->push_on_queue(old_p);
4704     } else {
4705       // No point in using the slower heap_region_containing() method,
4706       // given that we know obj is in the heap.
4707       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4708       obj->oop_iterate_backwards(&_scanner);
4709     }
4710   } else {
4711     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4712     obj = forward_ptr;
4713   }
4714   return obj;
4715 }
4716 
4717 template <class T>
4718 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4719   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4720     _scanned_klass->record_modified_oops();
4721   }
4722 }
4723 
4724 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4725 template <class T>
4726 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4727 ::do_oop_work(T* p) {
4728   oop obj = oopDesc::load_decode_heap_oop(p);
4729   assert(barrier != G1BarrierRS || obj != NULL,
4730          "Precondition: G1BarrierRS implies obj is non-NULL");
4731 
4732   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4733 
4734   // here the null check is implicit in the cset_fast_test() test
4735   if (_g1->in_cset_fast_test(obj)) {
4736     oop forwardee;
4737     if (obj->is_forwarded()) {
4738       forwardee = obj->forwardee();
4739     } else {
4740       forwardee = copy_to_survivor_space(obj);
4741     }
4742     assert(forwardee != NULL, "forwardee should not be NULL");
4743     oopDesc::encode_store_heap_oop(p, forwardee);
4744     if (do_mark_object && forwardee != obj) {
4745       // If the object is self-forwarded we don't need to explicitly
4746       // mark it, the evacuation failure protocol will do so.
4747       mark_forwarded_object(obj, forwardee);
4748     }
4749 
4750     // When scanning the RS, we only care about objs in CS.
4751     if (barrier == G1BarrierRS) {
4752       _par_scan_state->update_rs(_from, p, _worker_id);
4753     } else if (barrier == G1BarrierKlass) {
4754       do_klass_barrier(p, forwardee);
4755     }
4756   } else {
4757     // The object is not in collection set. If we're a root scanning
4758     // closure during an initial mark pause (i.e. do_mark_object will
4759     // be true) then attempt to mark the object.
4760     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4761       mark_object(obj);
4762     }
4763   }
4764 
4765   if (barrier == G1BarrierEvac && obj != NULL) {
4766     _par_scan_state->update_rs(_from, p, _worker_id);
4767   }
4768 
4769   if (do_gen_barrier && obj != NULL) {
4770     par_do_barrier(p);
4771   }
4772 }
4773 
4774 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4775 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4776 
4777 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4778   assert(has_partial_array_mask(p), "invariant");
4779   oop from_obj = clear_partial_array_mask(p);
4780 
4781   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4782   assert(from_obj->is_objArray(), "must be obj array");
4783   objArrayOop from_obj_array = objArrayOop(from_obj);
4784   // The from-space object contains the real length.
4785   int length                 = from_obj_array->length();
4786 
4787   assert(from_obj->is_forwarded(), "must be forwarded");
4788   oop to_obj                 = from_obj->forwardee();
4789   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4790   objArrayOop to_obj_array   = objArrayOop(to_obj);
4791   // We keep track of the next start index in the length field of the
4792   // to-space object.
4793   int next_index             = to_obj_array->length();
4794   assert(0 <= next_index && next_index < length,
4795          err_msg("invariant, next index: %d, length: %d", next_index, length));
4796 
4797   int start                  = next_index;
4798   int end                    = length;
4799   int remainder              = end - start;
4800   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4801   if (remainder > 2 * ParGCArrayScanChunk) {
4802     end = start + ParGCArrayScanChunk;
4803     to_obj_array->set_length(end);
4804     // Push the remainder before we process the range in case another
4805     // worker has run out of things to do and can steal it.
4806     oop* from_obj_p = set_partial_array_mask(from_obj);
4807     _par_scan_state->push_on_queue(from_obj_p);
4808   } else {
4809     assert(length == end, "sanity");
4810     // We'll process the final range for this object. Restore the length
4811     // so that the heap remains parsable in case of evacuation failure.
4812     to_obj_array->set_length(end);
4813   }
4814   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4815   // Process indexes [start,end). It will also process the header
4816   // along with the first chunk (i.e., the chunk with start == 0).
4817   // Note that at this point the length field of to_obj_array is not
4818   // correct given that we are using it to keep track of the next
4819   // start index. oop_iterate_range() (thankfully!) ignores the length
4820   // field and only relies on the start / end parameters.  It does
4821   // however return the size of the object which will be incorrect. So
4822   // we have to ignore it even if we wanted to use it.
4823   to_obj_array->oop_iterate_range(&_scanner, start, end);
4824 }
4825 
4826 class G1ParEvacuateFollowersClosure : public VoidClosure {
4827 protected:
4828   G1CollectedHeap*              _g1h;
4829   G1ParScanThreadState*         _par_scan_state;
4830   RefToScanQueueSet*            _queues;
4831   ParallelTaskTerminator*       _terminator;
4832 
4833   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4834   RefToScanQueueSet*      queues()         { return _queues; }
4835   ParallelTaskTerminator* terminator()     { return _terminator; }
4836 
4837 public:
4838   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4839                                 G1ParScanThreadState* par_scan_state,
4840                                 RefToScanQueueSet* queues,
4841                                 ParallelTaskTerminator* terminator)
4842     : _g1h(g1h), _par_scan_state(par_scan_state),
4843       _queues(queues), _terminator(terminator) {}
4844 
4845   void do_void();
4846 
4847 private:
4848   inline bool offer_termination();
4849 };
4850 
4851 bool G1ParEvacuateFollowersClosure::offer_termination() {
4852   G1ParScanThreadState* const pss = par_scan_state();
4853   pss->start_term_time();
4854   const bool res = terminator()->offer_termination();
4855   pss->end_term_time();
4856   return res;
4857 }
4858 
4859 void G1ParEvacuateFollowersClosure::do_void() {
4860   StarTask stolen_task;
4861   G1ParScanThreadState* const pss = par_scan_state();
4862   pss->trim_queue();
4863 
4864   do {
4865     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4866       assert(pss->verify_task(stolen_task), "sanity");
4867       if (stolen_task.is_narrow()) {
4868         pss->deal_with_reference((narrowOop*) stolen_task);
4869       } else {
4870         pss->deal_with_reference((oop*) stolen_task);
4871       }
4872 
4873       // We've just processed a reference and we might have made
4874       // available new entries on the queues. So we have to make sure
4875       // we drain the queues as necessary.
4876       pss->trim_queue();
4877     }
4878   } while (!offer_termination());
4879 
4880   pss->retire_alloc_buffers();
4881 }
4882 
4883 class G1KlassScanClosure : public KlassClosure {
4884  G1ParCopyHelper* _closure;
4885  bool             _process_only_dirty;
4886  int              _count;
4887  public:
4888   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4889       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4890   void do_klass(Klass* klass) {
4891     // If the klass has not been dirtied we know that there's
4892     // no references into  the young gen and we can skip it.
4893    if (!_process_only_dirty || klass->has_modified_oops()) {
4894       // Clean the klass since we're going to scavenge all the metadata.
4895       klass->clear_modified_oops();
4896 
4897       // Tell the closure that this klass is the Klass to scavenge
4898       // and is the one to dirty if oops are left pointing into the young gen.
4899       _closure->set_scanned_klass(klass);
4900 
4901       klass->oops_do(_closure);
4902 
4903       _closure->set_scanned_klass(NULL);
4904     }
4905     _count++;
4906   }
4907 };
4908 
4909 class G1ParTask : public AbstractGangTask {
4910 protected:
4911   G1CollectedHeap*       _g1h;
4912   RefToScanQueueSet      *_queues;
4913   ParallelTaskTerminator _terminator;
4914   uint _n_workers;
4915 
4916   Mutex _stats_lock;
4917   Mutex* stats_lock() { return &_stats_lock; }
4918 
4919   size_t getNCards() {
4920     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4921       / G1BlockOffsetSharedArray::N_bytes;
4922   }
4923 
4924 public:
4925   G1ParTask(G1CollectedHeap* g1h,
4926             RefToScanQueueSet *task_queues)
4927     : AbstractGangTask("G1 collection"),
4928       _g1h(g1h),
4929       _queues(task_queues),
4930       _terminator(0, _queues),
4931       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4932   {}
4933 
4934   RefToScanQueueSet* queues() { return _queues; }
4935 
4936   RefToScanQueue *work_queue(int i) {
4937     return queues()->queue(i);
4938   }
4939 
4940   ParallelTaskTerminator* terminator() { return &_terminator; }
4941 
4942   virtual void set_for_termination(int active_workers) {
4943     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4944     // in the young space (_par_seq_tasks) in the G1 heap
4945     // for SequentialSubTasksDone.
4946     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4947     // both of which need setting by set_n_termination().
4948     _g1h->SharedHeap::set_n_termination(active_workers);
4949     _g1h->set_n_termination(active_workers);
4950     terminator()->reset_for_reuse(active_workers);
4951     _n_workers = active_workers;
4952   }
4953 
4954   void work(uint worker_id) {
4955     if (worker_id >= _n_workers) return;  // no work needed this round
4956 
4957     double start_time_ms = os::elapsedTime() * 1000.0;
4958     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4959 
4960     {
4961       ResourceMark rm;
4962       HandleMark   hm;
4963 
4964       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4965 
4966       G1ParScanThreadState            pss(_g1h, worker_id);
4967       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4968       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4969       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4970 
4971       pss.set_evac_closure(&scan_evac_cl);
4972       pss.set_evac_failure_closure(&evac_failure_cl);
4973       pss.set_partial_scan_closure(&partial_scan_cl);
4974 
4975       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4976       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4977 
4978       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4979       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4980 
4981       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4982       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4983       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4984 
4985       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4986       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4987 
4988       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4989         // We also need to mark copied objects.
4990         scan_root_cl = &scan_mark_root_cl;
4991         scan_klasses_cl = &scan_mark_klasses_cl_s;
4992       }
4993 
4994       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4995 
4996       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4997 
4998       pss.start_strong_roots();
4999       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5000                                     SharedHeap::ScanningOption(so),
5001                                     scan_root_cl,
5002                                     &push_heap_rs_cl,
5003                                     scan_klasses_cl,
5004                                     worker_id);
5005       pss.end_strong_roots();
5006 
5007       {
5008         double start = os::elapsedTime();
5009         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5010         evac.do_void();
5011         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5012         double term_ms = pss.term_time()*1000.0;
5013         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5014         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5015       }
5016       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5017       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5018 
5019       if (ParallelGCVerbose) {
5020         MutexLocker x(stats_lock());
5021         pss.print_termination_stats(worker_id);
5022       }
5023 
5024       assert(pss.refs()->is_empty(), "should be empty");
5025 
5026       // Close the inner scope so that the ResourceMark and HandleMark
5027       // destructors are executed here and are included as part of the
5028       // "GC Worker Time".
5029     }
5030 
5031     double end_time_ms = os::elapsedTime() * 1000.0;
5032     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5033   }
5034 };
5035 
5036 // *** Common G1 Evacuation Stuff
5037 
5038 // Closures that support the filtering of CodeBlobs scanned during
5039 // external root scanning.
5040 
5041 // Closure applied to reference fields in code blobs (specifically nmethods)
5042 // to determine whether an nmethod contains references that point into
5043 // the collection set. Used as a predicate when walking code roots so
5044 // that only nmethods that point into the collection set are added to the
5045 // 'marked' list.
5046 
5047 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5048 
5049   class G1PointsIntoCSOopClosure : public OopClosure {
5050     G1CollectedHeap* _g1;
5051     bool _points_into_cs;
5052   public:
5053     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5054       _g1(g1), _points_into_cs(false) { }
5055 
5056     bool points_into_cs() const { return _points_into_cs; }
5057 
5058     template <class T>
5059     void do_oop_nv(T* p) {
5060       if (!_points_into_cs) {
5061         T heap_oop = oopDesc::load_heap_oop(p);
5062         if (!oopDesc::is_null(heap_oop) &&
5063             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5064           _points_into_cs = true;
5065         }
5066       }
5067     }
5068 
5069     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5070     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5071   };
5072 
5073   G1CollectedHeap* _g1;
5074 
5075 public:
5076   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5077     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5078 
5079   virtual void do_code_blob(CodeBlob* cb) {
5080     nmethod* nm = cb->as_nmethod_or_null();
5081     if (nm != NULL && !(nm->test_oops_do_mark())) {
5082       G1PointsIntoCSOopClosure predicate_cl(_g1);
5083       nm->oops_do(&predicate_cl);
5084 
5085       if (predicate_cl.points_into_cs()) {
5086         // At least one of the reference fields or the oop relocations
5087         // in the nmethod points into the collection set. We have to
5088         // 'mark' this nmethod.
5089         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5090         // or MarkingCodeBlobClosure::do_code_blob() change.
5091         if (!nm->test_set_oops_do_mark()) {
5092           do_newly_marked_nmethod(nm);
5093         }
5094       }
5095     }
5096   }
5097 };
5098 
5099 // This method is run in a GC worker.
5100 
5101 void
5102 G1CollectedHeap::
5103 g1_process_strong_roots(bool is_scavenging,
5104                         ScanningOption so,
5105                         OopClosure* scan_non_heap_roots,
5106                         OopsInHeapRegionClosure* scan_rs,
5107                         G1KlassScanClosure* scan_klasses,
5108                         int worker_i) {
5109 
5110   // First scan the strong roots
5111   double ext_roots_start = os::elapsedTime();
5112   double closure_app_time_sec = 0.0;
5113 
5114   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5115 
5116   // Walk the code cache w/o buffering, because StarTask cannot handle
5117   // unaligned oop locations.
5118   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5119 
5120   process_strong_roots(false, // no scoping; this is parallel code
5121                        is_scavenging, so,
5122                        &buf_scan_non_heap_roots,
5123                        &eager_scan_code_roots,
5124                        scan_klasses
5125                        );
5126 
5127   // Now the CM ref_processor roots.
5128   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5129     // We need to treat the discovered reference lists of the
5130     // concurrent mark ref processor as roots and keep entries
5131     // (which are added by the marking threads) on them live
5132     // until they can be processed at the end of marking.
5133     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5134   }
5135 
5136   // Finish up any enqueued closure apps (attributed as object copy time).
5137   buf_scan_non_heap_roots.done();
5138 
5139   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5140 
5141   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5142 
5143   double ext_root_time_ms =
5144     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5145 
5146   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5147 
5148   // During conc marking we have to filter the per-thread SATB buffers
5149   // to make sure we remove any oops into the CSet (which will show up
5150   // as implicitly live).
5151   double satb_filtering_ms = 0.0;
5152   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5153     if (mark_in_progress()) {
5154       double satb_filter_start = os::elapsedTime();
5155 
5156       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5157 
5158       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5159     }
5160   }
5161   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5162 
5163   // Now scan the complement of the collection set.
5164   if (scan_rs != NULL) {
5165     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5166   }
5167   _process_strong_tasks->all_tasks_completed();
5168 }
5169 
5170 void
5171 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5172   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5173   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5174 }
5175 
5176 // Weak Reference Processing support
5177 
5178 // An always "is_alive" closure that is used to preserve referents.
5179 // If the object is non-null then it's alive.  Used in the preservation
5180 // of referent objects that are pointed to by reference objects
5181 // discovered by the CM ref processor.
5182 class G1AlwaysAliveClosure: public BoolObjectClosure {
5183   G1CollectedHeap* _g1;
5184 public:
5185   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5186   bool do_object_b(oop p) {
5187     if (p != NULL) {
5188       return true;
5189     }
5190     return false;
5191   }
5192 };
5193 
5194 bool G1STWIsAliveClosure::do_object_b(oop p) {
5195   // An object is reachable if it is outside the collection set,
5196   // or is inside and copied.
5197   return !_g1->obj_in_cs(p) || p->is_forwarded();
5198 }
5199 
5200 // Non Copying Keep Alive closure
5201 class G1KeepAliveClosure: public OopClosure {
5202   G1CollectedHeap* _g1;
5203 public:
5204   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5205   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5206   void do_oop(      oop* p) {
5207     oop obj = *p;
5208 
5209     if (_g1->obj_in_cs(obj)) {
5210       assert( obj->is_forwarded(), "invariant" );
5211       *p = obj->forwardee();
5212     }
5213   }
5214 };
5215 
5216 // Copying Keep Alive closure - can be called from both
5217 // serial and parallel code as long as different worker
5218 // threads utilize different G1ParScanThreadState instances
5219 // and different queues.
5220 
5221 class G1CopyingKeepAliveClosure: public OopClosure {
5222   G1CollectedHeap*         _g1h;
5223   OopClosure*              _copy_non_heap_obj_cl;
5224   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5225   G1ParScanThreadState*    _par_scan_state;
5226 
5227 public:
5228   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5229                             OopClosure* non_heap_obj_cl,
5230                             OopsInHeapRegionClosure* metadata_obj_cl,
5231                             G1ParScanThreadState* pss):
5232     _g1h(g1h),
5233     _copy_non_heap_obj_cl(non_heap_obj_cl),
5234     _copy_metadata_obj_cl(metadata_obj_cl),
5235     _par_scan_state(pss)
5236   {}
5237 
5238   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5239   virtual void do_oop(      oop* p) { do_oop_work(p); }
5240 
5241   template <class T> void do_oop_work(T* p) {
5242     oop obj = oopDesc::load_decode_heap_oop(p);
5243 
5244     if (_g1h->obj_in_cs(obj)) {
5245       // If the referent object has been forwarded (either copied
5246       // to a new location or to itself in the event of an
5247       // evacuation failure) then we need to update the reference
5248       // field and, if both reference and referent are in the G1
5249       // heap, update the RSet for the referent.
5250       //
5251       // If the referent has not been forwarded then we have to keep
5252       // it alive by policy. Therefore we have copy the referent.
5253       //
5254       // If the reference field is in the G1 heap then we can push
5255       // on the PSS queue. When the queue is drained (after each
5256       // phase of reference processing) the object and it's followers
5257       // will be copied, the reference field set to point to the
5258       // new location, and the RSet updated. Otherwise we need to
5259       // use the the non-heap or metadata closures directly to copy
5260       // the referent object and update the pointer, while avoiding
5261       // updating the RSet.
5262 
5263       if (_g1h->is_in_g1_reserved(p)) {
5264         _par_scan_state->push_on_queue(p);
5265       } else {
5266         assert(!ClassLoaderDataGraph::contains((address)p),
5267                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5268                               PTR_FORMAT, p));
5269           _copy_non_heap_obj_cl->do_oop(p);
5270         }
5271       }
5272     }
5273 };
5274 
5275 // Serial drain queue closure. Called as the 'complete_gc'
5276 // closure for each discovered list in some of the
5277 // reference processing phases.
5278 
5279 class G1STWDrainQueueClosure: public VoidClosure {
5280 protected:
5281   G1CollectedHeap* _g1h;
5282   G1ParScanThreadState* _par_scan_state;
5283 
5284   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5285 
5286 public:
5287   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5288     _g1h(g1h),
5289     _par_scan_state(pss)
5290   { }
5291 
5292   void do_void() {
5293     G1ParScanThreadState* const pss = par_scan_state();
5294     pss->trim_queue();
5295   }
5296 };
5297 
5298 // Parallel Reference Processing closures
5299 
5300 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5301 // processing during G1 evacuation pauses.
5302 
5303 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5304 private:
5305   G1CollectedHeap*   _g1h;
5306   RefToScanQueueSet* _queues;
5307   FlexibleWorkGang*  _workers;
5308   int                _active_workers;
5309 
5310 public:
5311   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5312                         FlexibleWorkGang* workers,
5313                         RefToScanQueueSet *task_queues,
5314                         int n_workers) :
5315     _g1h(g1h),
5316     _queues(task_queues),
5317     _workers(workers),
5318     _active_workers(n_workers)
5319   {
5320     assert(n_workers > 0, "shouldn't call this otherwise");
5321   }
5322 
5323   // Executes the given task using concurrent marking worker threads.
5324   virtual void execute(ProcessTask& task);
5325   virtual void execute(EnqueueTask& task);
5326 };
5327 
5328 // Gang task for possibly parallel reference processing
5329 
5330 class G1STWRefProcTaskProxy: public AbstractGangTask {
5331   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5332   ProcessTask&     _proc_task;
5333   G1CollectedHeap* _g1h;
5334   RefToScanQueueSet *_task_queues;
5335   ParallelTaskTerminator* _terminator;
5336 
5337 public:
5338   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5339                      G1CollectedHeap* g1h,
5340                      RefToScanQueueSet *task_queues,
5341                      ParallelTaskTerminator* terminator) :
5342     AbstractGangTask("Process reference objects in parallel"),
5343     _proc_task(proc_task),
5344     _g1h(g1h),
5345     _task_queues(task_queues),
5346     _terminator(terminator)
5347   {}
5348 
5349   virtual void work(uint worker_id) {
5350     // The reference processing task executed by a single worker.
5351     ResourceMark rm;
5352     HandleMark   hm;
5353 
5354     G1STWIsAliveClosure is_alive(_g1h);
5355 
5356     G1ParScanThreadState pss(_g1h, worker_id);
5357 
5358     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5359     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5360     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5361 
5362     pss.set_evac_closure(&scan_evac_cl);
5363     pss.set_evac_failure_closure(&evac_failure_cl);
5364     pss.set_partial_scan_closure(&partial_scan_cl);
5365 
5366     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5367     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5368 
5369     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5370     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5371 
5372     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5373     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5374 
5375     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5376       // We also need to mark copied objects.
5377       copy_non_heap_cl = &copy_mark_non_heap_cl;
5378       copy_metadata_cl = &copy_mark_metadata_cl;
5379     }
5380 
5381     // Keep alive closure.
5382     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5383 
5384     // Complete GC closure
5385     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5386 
5387     // Call the reference processing task's work routine.
5388     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5389 
5390     // Note we cannot assert that the refs array is empty here as not all
5391     // of the processing tasks (specifically phase2 - pp2_work) execute
5392     // the complete_gc closure (which ordinarily would drain the queue) so
5393     // the queue may not be empty.
5394   }
5395 };
5396 
5397 // Driver routine for parallel reference processing.
5398 // Creates an instance of the ref processing gang
5399 // task and has the worker threads execute it.
5400 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5401   assert(_workers != NULL, "Need parallel worker threads.");
5402 
5403   ParallelTaskTerminator terminator(_active_workers, _queues);
5404   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5405 
5406   _g1h->set_par_threads(_active_workers);
5407   _workers->run_task(&proc_task_proxy);
5408   _g1h->set_par_threads(0);
5409 }
5410 
5411 // Gang task for parallel reference enqueueing.
5412 
5413 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5414   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5415   EnqueueTask& _enq_task;
5416 
5417 public:
5418   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5419     AbstractGangTask("Enqueue reference objects in parallel"),
5420     _enq_task(enq_task)
5421   { }
5422 
5423   virtual void work(uint worker_id) {
5424     _enq_task.work(worker_id);
5425   }
5426 };
5427 
5428 // Driver routine for parallel reference enqueueing.
5429 // Creates an instance of the ref enqueueing gang
5430 // task and has the worker threads execute it.
5431 
5432 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5433   assert(_workers != NULL, "Need parallel worker threads.");
5434 
5435   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5436 
5437   _g1h->set_par_threads(_active_workers);
5438   _workers->run_task(&enq_task_proxy);
5439   _g1h->set_par_threads(0);
5440 }
5441 
5442 // End of weak reference support closures
5443 
5444 // Abstract task used to preserve (i.e. copy) any referent objects
5445 // that are in the collection set and are pointed to by reference
5446 // objects discovered by the CM ref processor.
5447 
5448 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5449 protected:
5450   G1CollectedHeap* _g1h;
5451   RefToScanQueueSet      *_queues;
5452   ParallelTaskTerminator _terminator;
5453   uint _n_workers;
5454 
5455 public:
5456   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5457     AbstractGangTask("ParPreserveCMReferents"),
5458     _g1h(g1h),
5459     _queues(task_queues),
5460     _terminator(workers, _queues),
5461     _n_workers(workers)
5462   { }
5463 
5464   void work(uint worker_id) {
5465     ResourceMark rm;
5466     HandleMark   hm;
5467 
5468     G1ParScanThreadState            pss(_g1h, worker_id);
5469     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5470     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5471     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5472 
5473     pss.set_evac_closure(&scan_evac_cl);
5474     pss.set_evac_failure_closure(&evac_failure_cl);
5475     pss.set_partial_scan_closure(&partial_scan_cl);
5476 
5477     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5478 
5479 
5480     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5481     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5482 
5483     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5484     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5485 
5486     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5487     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5488 
5489     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5490       // We also need to mark copied objects.
5491       copy_non_heap_cl = &copy_mark_non_heap_cl;
5492       copy_metadata_cl = &copy_mark_metadata_cl;
5493     }
5494 
5495     // Is alive closure
5496     G1AlwaysAliveClosure always_alive(_g1h);
5497 
5498     // Copying keep alive closure. Applied to referent objects that need
5499     // to be copied.
5500     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5501 
5502     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5503 
5504     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5505     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5506 
5507     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5508     // So this must be true - but assert just in case someone decides to
5509     // change the worker ids.
5510     assert(0 <= worker_id && worker_id < limit, "sanity");
5511     assert(!rp->discovery_is_atomic(), "check this code");
5512 
5513     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5514     for (uint idx = worker_id; idx < limit; idx += stride) {
5515       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5516 
5517       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5518       while (iter.has_next()) {
5519         // Since discovery is not atomic for the CM ref processor, we
5520         // can see some null referent objects.
5521         iter.load_ptrs(DEBUG_ONLY(true));
5522         oop ref = iter.obj();
5523 
5524         // This will filter nulls.
5525         if (iter.is_referent_alive()) {
5526           iter.make_referent_alive();
5527         }
5528         iter.move_to_next();
5529       }
5530     }
5531 
5532     // Drain the queue - which may cause stealing
5533     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5534     drain_queue.do_void();
5535     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5536     assert(pss.refs()->is_empty(), "should be");
5537   }
5538 };
5539 
5540 // Weak Reference processing during an evacuation pause (part 1).
5541 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5542   double ref_proc_start = os::elapsedTime();
5543 
5544   ReferenceProcessor* rp = _ref_processor_stw;
5545   assert(rp->discovery_enabled(), "should have been enabled");
5546 
5547   // Any reference objects, in the collection set, that were 'discovered'
5548   // by the CM ref processor should have already been copied (either by
5549   // applying the external root copy closure to the discovered lists, or
5550   // by following an RSet entry).
5551   //
5552   // But some of the referents, that are in the collection set, that these
5553   // reference objects point to may not have been copied: the STW ref
5554   // processor would have seen that the reference object had already
5555   // been 'discovered' and would have skipped discovering the reference,
5556   // but would not have treated the reference object as a regular oop.
5557   // As a result the copy closure would not have been applied to the
5558   // referent object.
5559   //
5560   // We need to explicitly copy these referent objects - the references
5561   // will be processed at the end of remarking.
5562   //
5563   // We also need to do this copying before we process the reference
5564   // objects discovered by the STW ref processor in case one of these
5565   // referents points to another object which is also referenced by an
5566   // object discovered by the STW ref processor.
5567 
5568   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5569            no_of_gc_workers == workers()->active_workers(),
5570            "Need to reset active GC workers");
5571 
5572   set_par_threads(no_of_gc_workers);
5573   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5574                                                  no_of_gc_workers,
5575                                                  _task_queues);
5576 
5577   if (G1CollectedHeap::use_parallel_gc_threads()) {
5578     workers()->run_task(&keep_cm_referents);
5579   } else {
5580     keep_cm_referents.work(0);
5581   }
5582 
5583   set_par_threads(0);
5584 
5585   // Closure to test whether a referent is alive.
5586   G1STWIsAliveClosure is_alive(this);
5587 
5588   // Even when parallel reference processing is enabled, the processing
5589   // of JNI refs is serial and performed serially by the current thread
5590   // rather than by a worker. The following PSS will be used for processing
5591   // JNI refs.
5592 
5593   // Use only a single queue for this PSS.
5594   G1ParScanThreadState pss(this, 0);
5595 
5596   // We do not embed a reference processor in the copying/scanning
5597   // closures while we're actually processing the discovered
5598   // reference objects.
5599   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5600   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5601   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5602 
5603   pss.set_evac_closure(&scan_evac_cl);
5604   pss.set_evac_failure_closure(&evac_failure_cl);
5605   pss.set_partial_scan_closure(&partial_scan_cl);
5606 
5607   assert(pss.refs()->is_empty(), "pre-condition");
5608 
5609   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5610   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5611 
5612   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5613   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5614 
5615   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5616   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5617 
5618   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5619     // We also need to mark copied objects.
5620     copy_non_heap_cl = &copy_mark_non_heap_cl;
5621     copy_metadata_cl = &copy_mark_metadata_cl;
5622   }
5623 
5624   // Keep alive closure.
5625   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5626 
5627   // Serial Complete GC closure
5628   G1STWDrainQueueClosure drain_queue(this, &pss);
5629 
5630   // Setup the soft refs policy...
5631   rp->setup_policy(false);
5632 
5633   ReferenceProcessorStats stats;
5634   if (!rp->processing_is_mt()) {
5635     // Serial reference processing...
5636     stats = rp->process_discovered_references(&is_alive,
5637                                               &keep_alive,
5638                                               &drain_queue,
5639                                               NULL,
5640                                               _gc_timer_stw);
5641   } else {
5642     // Parallel reference processing
5643     assert(rp->num_q() == no_of_gc_workers, "sanity");
5644     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5645 
5646     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5647     stats = rp->process_discovered_references(&is_alive,
5648                                               &keep_alive,
5649                                               &drain_queue,
5650                                               &par_task_executor,
5651                                               _gc_timer_stw);
5652   }
5653 
5654   _gc_tracer_stw->report_gc_reference_stats(stats);
5655   // We have completed copying any necessary live referent objects
5656   // (that were not copied during the actual pause) so we can
5657   // retire any active alloc buffers
5658   pss.retire_alloc_buffers();
5659   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5660 
5661   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5662   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5663 }
5664 
5665 // Weak Reference processing during an evacuation pause (part 2).
5666 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5667   double ref_enq_start = os::elapsedTime();
5668 
5669   ReferenceProcessor* rp = _ref_processor_stw;
5670   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5671 
5672   // Now enqueue any remaining on the discovered lists on to
5673   // the pending list.
5674   if (!rp->processing_is_mt()) {
5675     // Serial reference processing...
5676     rp->enqueue_discovered_references();
5677   } else {
5678     // Parallel reference enqueueing
5679 
5680     assert(no_of_gc_workers == workers()->active_workers(),
5681            "Need to reset active workers");
5682     assert(rp->num_q() == no_of_gc_workers, "sanity");
5683     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5684 
5685     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5686     rp->enqueue_discovered_references(&par_task_executor);
5687   }
5688 
5689   rp->verify_no_references_recorded();
5690   assert(!rp->discovery_enabled(), "should have been disabled");
5691 
5692   // FIXME
5693   // CM's reference processing also cleans up the string and symbol tables.
5694   // Should we do that here also? We could, but it is a serial operation
5695   // and could significantly increase the pause time.
5696 
5697   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5698   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5699 }
5700 
5701 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5702   _expand_heap_after_alloc_failure = true;
5703   _evacuation_failed = false;
5704 
5705   // Should G1EvacuationFailureALot be in effect for this GC?
5706   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5707 
5708   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5709 
5710   // Disable the hot card cache.
5711   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5712   hot_card_cache->reset_hot_cache_claimed_index();
5713   hot_card_cache->set_use_cache(false);
5714 
5715   uint n_workers;
5716   if (G1CollectedHeap::use_parallel_gc_threads()) {
5717     n_workers =
5718       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5719                                      workers()->active_workers(),
5720                                      Threads::number_of_non_daemon_threads());
5721     assert(UseDynamicNumberOfGCThreads ||
5722            n_workers == workers()->total_workers(),
5723            "If not dynamic should be using all the  workers");
5724     workers()->set_active_workers(n_workers);
5725     set_par_threads(n_workers);
5726   } else {
5727     assert(n_par_threads() == 0,
5728            "Should be the original non-parallel value");
5729     n_workers = 1;
5730   }
5731 
5732   G1ParTask g1_par_task(this, _task_queues);
5733 
5734   init_for_evac_failure(NULL);
5735 
5736   rem_set()->prepare_for_younger_refs_iterate(true);
5737 
5738   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5739   double start_par_time_sec = os::elapsedTime();
5740   double end_par_time_sec;
5741 
5742   {
5743     StrongRootsScope srs(this);
5744 
5745     if (G1CollectedHeap::use_parallel_gc_threads()) {
5746       // The individual threads will set their evac-failure closures.
5747       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5748       // These tasks use ShareHeap::_process_strong_tasks
5749       assert(UseDynamicNumberOfGCThreads ||
5750              workers()->active_workers() == workers()->total_workers(),
5751              "If not dynamic should be using all the  workers");
5752       workers()->run_task(&g1_par_task);
5753     } else {
5754       g1_par_task.set_for_termination(n_workers);
5755       g1_par_task.work(0);
5756     }
5757     end_par_time_sec = os::elapsedTime();
5758 
5759     // Closing the inner scope will execute the destructor
5760     // for the StrongRootsScope object. We record the current
5761     // elapsed time before closing the scope so that time
5762     // taken for the SRS destructor is NOT included in the
5763     // reported parallel time.
5764   }
5765 
5766   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5767   g1_policy()->phase_times()->record_par_time(par_time_ms);
5768 
5769   double code_root_fixup_time_ms =
5770         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5771   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5772 
5773   set_par_threads(0);
5774 
5775   // Process any discovered reference objects - we have
5776   // to do this _before_ we retire the GC alloc regions
5777   // as we may have to copy some 'reachable' referent
5778   // objects (and their reachable sub-graphs) that were
5779   // not copied during the pause.
5780   process_discovered_references(n_workers);
5781 
5782   // Weak root processing.
5783   // Note: when JSR 292 is enabled and code blobs can contain
5784   // non-perm oops then we will need to process the code blobs
5785   // here too.
5786   {
5787     G1STWIsAliveClosure is_alive(this);
5788     G1KeepAliveClosure keep_alive(this);
5789     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5790   }
5791 
5792   release_gc_alloc_regions(n_workers, evacuation_info);
5793   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5794 
5795   // Reset and re-enable the hot card cache.
5796   // Note the counts for the cards in the regions in the
5797   // collection set are reset when the collection set is freed.
5798   hot_card_cache->reset_hot_cache();
5799   hot_card_cache->set_use_cache(true);
5800 
5801   finalize_for_evac_failure();
5802 
5803   if (evacuation_failed()) {
5804     remove_self_forwarding_pointers();
5805 
5806     // Reset the G1EvacuationFailureALot counters and flags
5807     // Note: the values are reset only when an actual
5808     // evacuation failure occurs.
5809     NOT_PRODUCT(reset_evacuation_should_fail();)
5810   }
5811 
5812   // Enqueue any remaining references remaining on the STW
5813   // reference processor's discovered lists. We need to do
5814   // this after the card table is cleaned (and verified) as
5815   // the act of enqueueing entries on to the pending list
5816   // will log these updates (and dirty their associated
5817   // cards). We need these updates logged to update any
5818   // RSets.
5819   enqueue_discovered_references(n_workers);
5820 
5821   if (G1DeferredRSUpdate) {
5822     RedirtyLoggedCardTableEntryFastClosure redirty;
5823     dirty_card_queue_set().set_closure(&redirty);
5824     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5825 
5826     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5827     dcq.merge_bufferlists(&dirty_card_queue_set());
5828     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5829   }
5830   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5831 }
5832 
5833 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5834                                      size_t* pre_used,
5835                                      FreeRegionList* free_list,
5836                                      OldRegionSet* old_proxy_set,
5837                                      HumongousRegionSet* humongous_proxy_set,
5838                                      HRRSCleanupTask* hrrs_cleanup_task,
5839                                      bool par) {
5840   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5841     if (hr->isHumongous()) {
5842       assert(hr->startsHumongous(), "we should only see starts humongous");
5843       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5844     } else {
5845       _old_set.remove_with_proxy(hr, old_proxy_set);
5846       free_region(hr, pre_used, free_list, par);
5847     }
5848   } else {
5849     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5850   }
5851 }
5852 
5853 void G1CollectedHeap::free_region(HeapRegion* hr,
5854                                   size_t* pre_used,
5855                                   FreeRegionList* free_list,
5856                                   bool par) {
5857   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5858   assert(!hr->is_empty(), "the region should not be empty");
5859   assert(free_list != NULL, "pre-condition");
5860 
5861   // Clear the card counts for this region.
5862   // Note: we only need to do this if the region is not young
5863   // (since we don't refine cards in young regions).
5864   if (!hr->is_young()) {
5865     _cg1r->hot_card_cache()->reset_card_counts(hr);
5866   }
5867   *pre_used += hr->used();
5868   hr->hr_clear(par, true /* clear_space */);
5869   free_list->add_as_head(hr);
5870 }
5871 
5872 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5873                                      size_t* pre_used,
5874                                      FreeRegionList* free_list,
5875                                      HumongousRegionSet* humongous_proxy_set,
5876                                      bool par) {
5877   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5878   assert(free_list != NULL, "pre-condition");
5879   assert(humongous_proxy_set != NULL, "pre-condition");
5880 
5881   size_t hr_used = hr->used();
5882   size_t hr_capacity = hr->capacity();
5883   size_t hr_pre_used = 0;
5884   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5885   // We need to read this before we make the region non-humongous,
5886   // otherwise the information will be gone.
5887   uint last_index = hr->last_hc_index();
5888   hr->set_notHumongous();
5889   free_region(hr, &hr_pre_used, free_list, par);
5890 
5891   uint i = hr->hrs_index() + 1;
5892   while (i < last_index) {
5893     HeapRegion* curr_hr = region_at(i);
5894     assert(curr_hr->continuesHumongous(), "invariant");
5895     curr_hr->set_notHumongous();
5896     free_region(curr_hr, &hr_pre_used, free_list, par);
5897     i += 1;
5898   }
5899   assert(hr_pre_used == hr_used,
5900          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5901                  "should be the same", hr_pre_used, hr_used));
5902   *pre_used += hr_pre_used;
5903 }
5904 
5905 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5906                                        FreeRegionList* free_list,
5907                                        OldRegionSet* old_proxy_set,
5908                                        HumongousRegionSet* humongous_proxy_set,
5909                                        bool par) {
5910   if (pre_used > 0) {
5911     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5912     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5913     assert(_summary_bytes_used >= pre_used,
5914            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5915                    "should be >= pre_used: "SIZE_FORMAT,
5916                    _summary_bytes_used, pre_used));
5917     _summary_bytes_used -= pre_used;
5918   }
5919   if (free_list != NULL && !free_list->is_empty()) {
5920     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5921     _free_list.add_as_head(free_list);
5922   }
5923   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5924     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5925     _old_set.update_from_proxy(old_proxy_set);
5926   }
5927   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5928     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5929     _humongous_set.update_from_proxy(humongous_proxy_set);
5930   }
5931 }
5932 
5933 class G1ParCleanupCTTask : public AbstractGangTask {
5934   CardTableModRefBS* _ct_bs;
5935   G1CollectedHeap* _g1h;
5936   HeapRegion* volatile _su_head;
5937 public:
5938   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5939                      G1CollectedHeap* g1h) :
5940     AbstractGangTask("G1 Par Cleanup CT Task"),
5941     _ct_bs(ct_bs), _g1h(g1h) { }
5942 
5943   void work(uint worker_id) {
5944     HeapRegion* r;
5945     while (r = _g1h->pop_dirty_cards_region()) {
5946       clear_cards(r);
5947     }
5948   }
5949 
5950   void clear_cards(HeapRegion* r) {
5951     // Cards of the survivors should have already been dirtied.
5952     if (!r->is_survivor()) {
5953       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5954     }
5955   }
5956 };
5957 
5958 #ifndef PRODUCT
5959 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5960   G1CollectedHeap* _g1h;
5961   CardTableModRefBS* _ct_bs;
5962 public:
5963   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5964     : _g1h(g1h), _ct_bs(ct_bs) { }
5965   virtual bool doHeapRegion(HeapRegion* r) {
5966     if (r->is_survivor()) {
5967       _g1h->verify_dirty_region(r);
5968     } else {
5969       _g1h->verify_not_dirty_region(r);
5970     }
5971     return false;
5972   }
5973 };
5974 
5975 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5976   // All of the region should be clean.
5977   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5978   MemRegion mr(hr->bottom(), hr->end());
5979   ct_bs->verify_not_dirty_region(mr);
5980 }
5981 
5982 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5983   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5984   // dirty allocated blocks as they allocate them. The thread that
5985   // retires each region and replaces it with a new one will do a
5986   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5987   // not dirty that area (one less thing to have to do while holding
5988   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5989   // is dirty.
5990   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5991   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5992   ct_bs->verify_dirty_region(mr);
5993 }
5994 
5995 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5996   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5997   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5998     verify_dirty_region(hr);
5999   }
6000 }
6001 
6002 void G1CollectedHeap::verify_dirty_young_regions() {
6003   verify_dirty_young_list(_young_list->first_region());
6004 }
6005 #endif
6006 
6007 void G1CollectedHeap::cleanUpCardTable() {
6008   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
6009   double start = os::elapsedTime();
6010 
6011   {
6012     // Iterate over the dirty cards region list.
6013     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6014 
6015     if (G1CollectedHeap::use_parallel_gc_threads()) {
6016       set_par_threads();
6017       workers()->run_task(&cleanup_task);
6018       set_par_threads(0);
6019     } else {
6020       while (_dirty_cards_region_list) {
6021         HeapRegion* r = _dirty_cards_region_list;
6022         cleanup_task.clear_cards(r);
6023         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6024         if (_dirty_cards_region_list == r) {
6025           // The last region.
6026           _dirty_cards_region_list = NULL;
6027         }
6028         r->set_next_dirty_cards_region(NULL);
6029       }
6030     }
6031 #ifndef PRODUCT
6032     if (G1VerifyCTCleanup || VerifyAfterGC) {
6033       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6034       heap_region_iterate(&cleanup_verifier);
6035     }
6036 #endif
6037   }
6038 
6039   double elapsed = os::elapsedTime() - start;
6040   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6041 }
6042 
6043 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6044   size_t pre_used = 0;
6045   FreeRegionList local_free_list("Local List for CSet Freeing");
6046 
6047   double young_time_ms     = 0.0;
6048   double non_young_time_ms = 0.0;
6049 
6050   // Since the collection set is a superset of the the young list,
6051   // all we need to do to clear the young list is clear its
6052   // head and length, and unlink any young regions in the code below
6053   _young_list->clear();
6054 
6055   G1CollectorPolicy* policy = g1_policy();
6056 
6057   double start_sec = os::elapsedTime();
6058   bool non_young = true;
6059 
6060   HeapRegion* cur = cs_head;
6061   int age_bound = -1;
6062   size_t rs_lengths = 0;
6063 
6064   while (cur != NULL) {
6065     assert(!is_on_master_free_list(cur), "sanity");
6066     if (non_young) {
6067       if (cur->is_young()) {
6068         double end_sec = os::elapsedTime();
6069         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6070         non_young_time_ms += elapsed_ms;
6071 
6072         start_sec = os::elapsedTime();
6073         non_young = false;
6074       }
6075     } else {
6076       if (!cur->is_young()) {
6077         double end_sec = os::elapsedTime();
6078         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6079         young_time_ms += elapsed_ms;
6080 
6081         start_sec = os::elapsedTime();
6082         non_young = true;
6083       }
6084     }
6085 
6086     rs_lengths += cur->rem_set()->occupied();
6087 
6088     HeapRegion* next = cur->next_in_collection_set();
6089     assert(cur->in_collection_set(), "bad CS");
6090     cur->set_next_in_collection_set(NULL);
6091     cur->set_in_collection_set(false);
6092 
6093     if (cur->is_young()) {
6094       int index = cur->young_index_in_cset();
6095       assert(index != -1, "invariant");
6096       assert((uint) index < policy->young_cset_region_length(), "invariant");
6097       size_t words_survived = _surviving_young_words[index];
6098       cur->record_surv_words_in_group(words_survived);
6099 
6100       // At this point the we have 'popped' cur from the collection set
6101       // (linked via next_in_collection_set()) but it is still in the
6102       // young list (linked via next_young_region()). Clear the
6103       // _next_young_region field.
6104       cur->set_next_young_region(NULL);
6105     } else {
6106       int index = cur->young_index_in_cset();
6107       assert(index == -1, "invariant");
6108     }
6109 
6110     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6111             (!cur->is_young() && cur->young_index_in_cset() == -1),
6112             "invariant" );
6113 
6114     if (!cur->evacuation_failed()) {
6115       MemRegion used_mr = cur->used_region();
6116 
6117       // And the region is empty.
6118       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6119       free_region(cur, &pre_used, &local_free_list, false /* par */);
6120     } else {
6121       cur->uninstall_surv_rate_group();
6122       if (cur->is_young()) {
6123         cur->set_young_index_in_cset(-1);
6124       }
6125       cur->set_not_young();
6126       cur->set_evacuation_failed(false);
6127       // The region is now considered to be old.
6128       _old_set.add(cur);
6129       evacuation_info.increment_collectionset_used_after(cur->used());
6130     }
6131     cur = next;
6132   }
6133 
6134   evacuation_info.set_regions_freed(local_free_list.length());
6135   policy->record_max_rs_lengths(rs_lengths);
6136   policy->cset_regions_freed();
6137 
6138   double end_sec = os::elapsedTime();
6139   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6140 
6141   if (non_young) {
6142     non_young_time_ms += elapsed_ms;
6143   } else {
6144     young_time_ms += elapsed_ms;
6145   }
6146 
6147   update_sets_after_freeing_regions(pre_used, &local_free_list,
6148                                     NULL /* old_proxy_set */,
6149                                     NULL /* humongous_proxy_set */,
6150                                     false /* par */);
6151   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6152   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6153 }
6154 
6155 // This routine is similar to the above but does not record
6156 // any policy statistics or update free lists; we are abandoning
6157 // the current incremental collection set in preparation of a
6158 // full collection. After the full GC we will start to build up
6159 // the incremental collection set again.
6160 // This is only called when we're doing a full collection
6161 // and is immediately followed by the tearing down of the young list.
6162 
6163 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6164   HeapRegion* cur = cs_head;
6165 
6166   while (cur != NULL) {
6167     HeapRegion* next = cur->next_in_collection_set();
6168     assert(cur->in_collection_set(), "bad CS");
6169     cur->set_next_in_collection_set(NULL);
6170     cur->set_in_collection_set(false);
6171     cur->set_young_index_in_cset(-1);
6172     cur = next;
6173   }
6174 }
6175 
6176 void G1CollectedHeap::set_free_regions_coming() {
6177   if (G1ConcRegionFreeingVerbose) {
6178     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6179                            "setting free regions coming");
6180   }
6181 
6182   assert(!free_regions_coming(), "pre-condition");
6183   _free_regions_coming = true;
6184 }
6185 
6186 void G1CollectedHeap::reset_free_regions_coming() {
6187   assert(free_regions_coming(), "pre-condition");
6188 
6189   {
6190     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6191     _free_regions_coming = false;
6192     SecondaryFreeList_lock->notify_all();
6193   }
6194 
6195   if (G1ConcRegionFreeingVerbose) {
6196     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6197                            "reset free regions coming");
6198   }
6199 }
6200 
6201 void G1CollectedHeap::wait_while_free_regions_coming() {
6202   // Most of the time we won't have to wait, so let's do a quick test
6203   // first before we take the lock.
6204   if (!free_regions_coming()) {
6205     return;
6206   }
6207 
6208   if (G1ConcRegionFreeingVerbose) {
6209     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6210                            "waiting for free regions");
6211   }
6212 
6213   {
6214     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6215     while (free_regions_coming()) {
6216       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6217     }
6218   }
6219 
6220   if (G1ConcRegionFreeingVerbose) {
6221     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6222                            "done waiting for free regions");
6223   }
6224 }
6225 
6226 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6227   assert(heap_lock_held_for_gc(),
6228               "the heap lock should already be held by or for this thread");
6229   _young_list->push_region(hr);
6230 }
6231 
6232 class NoYoungRegionsClosure: public HeapRegionClosure {
6233 private:
6234   bool _success;
6235 public:
6236   NoYoungRegionsClosure() : _success(true) { }
6237   bool doHeapRegion(HeapRegion* r) {
6238     if (r->is_young()) {
6239       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6240                              r->bottom(), r->end());
6241       _success = false;
6242     }
6243     return false;
6244   }
6245   bool success() { return _success; }
6246 };
6247 
6248 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6249   bool ret = _young_list->check_list_empty(check_sample);
6250 
6251   if (check_heap) {
6252     NoYoungRegionsClosure closure;
6253     heap_region_iterate(&closure);
6254     ret = ret && closure.success();
6255   }
6256 
6257   return ret;
6258 }
6259 
6260 class TearDownRegionSetsClosure : public HeapRegionClosure {
6261 private:
6262   OldRegionSet *_old_set;
6263 
6264 public:
6265   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6266 
6267   bool doHeapRegion(HeapRegion* r) {
6268     if (r->is_empty()) {
6269       // We ignore empty regions, we'll empty the free list afterwards
6270     } else if (r->is_young()) {
6271       // We ignore young regions, we'll empty the young list afterwards
6272     } else if (r->isHumongous()) {
6273       // We ignore humongous regions, we're not tearing down the
6274       // humongous region set
6275     } else {
6276       // The rest should be old
6277       _old_set->remove(r);
6278     }
6279     return false;
6280   }
6281 
6282   ~TearDownRegionSetsClosure() {
6283     assert(_old_set->is_empty(), "post-condition");
6284   }
6285 };
6286 
6287 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6288   assert_at_safepoint(true /* should_be_vm_thread */);
6289 
6290   if (!free_list_only) {
6291     TearDownRegionSetsClosure cl(&_old_set);
6292     heap_region_iterate(&cl);
6293 
6294     // Need to do this after the heap iteration to be able to
6295     // recognize the young regions and ignore them during the iteration.
6296     _young_list->empty_list();
6297   }
6298   _free_list.remove_all();
6299 }
6300 
6301 class RebuildRegionSetsClosure : public HeapRegionClosure {
6302 private:
6303   bool            _free_list_only;
6304   OldRegionSet*   _old_set;
6305   FreeRegionList* _free_list;
6306   size_t          _total_used;
6307 
6308 public:
6309   RebuildRegionSetsClosure(bool free_list_only,
6310                            OldRegionSet* old_set, FreeRegionList* free_list) :
6311     _free_list_only(free_list_only),
6312     _old_set(old_set), _free_list(free_list), _total_used(0) {
6313     assert(_free_list->is_empty(), "pre-condition");
6314     if (!free_list_only) {
6315       assert(_old_set->is_empty(), "pre-condition");
6316     }
6317   }
6318 
6319   bool doHeapRegion(HeapRegion* r) {
6320     if (r->continuesHumongous()) {
6321       return false;
6322     }
6323 
6324     if (r->is_empty()) {
6325       // Add free regions to the free list
6326       _free_list->add_as_tail(r);
6327     } else if (!_free_list_only) {
6328       assert(!r->is_young(), "we should not come across young regions");
6329 
6330       if (r->isHumongous()) {
6331         // We ignore humongous regions, we left the humongous set unchanged
6332       } else {
6333         // The rest should be old, add them to the old set
6334         _old_set->add(r);
6335       }
6336       _total_used += r->used();
6337     }
6338 
6339     return false;
6340   }
6341 
6342   size_t total_used() {
6343     return _total_used;
6344   }
6345 };
6346 
6347 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6348   assert_at_safepoint(true /* should_be_vm_thread */);
6349 
6350   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6351   heap_region_iterate(&cl);
6352 
6353   if (!free_list_only) {
6354     _summary_bytes_used = cl.total_used();
6355   }
6356   assert(_summary_bytes_used == recalculate_used(),
6357          err_msg("inconsistent _summary_bytes_used, "
6358                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6359                  _summary_bytes_used, recalculate_used()));
6360 }
6361 
6362 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6363   _refine_cte_cl->set_concurrent(concurrent);
6364 }
6365 
6366 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6367   HeapRegion* hr = heap_region_containing(p);
6368   if (hr == NULL) {
6369     return false;
6370   } else {
6371     return hr->is_in(p);
6372   }
6373 }
6374 
6375 // Methods for the mutator alloc region
6376 
6377 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6378                                                       bool force) {
6379   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6380   assert(!force || g1_policy()->can_expand_young_list(),
6381          "if force is true we should be able to expand the young list");
6382   bool young_list_full = g1_policy()->is_young_list_full();
6383   if (force || !young_list_full) {
6384     HeapRegion* new_alloc_region = new_region(word_size,
6385                                               false /* do_expand */);
6386     if (new_alloc_region != NULL) {
6387       set_region_short_lived_locked(new_alloc_region);
6388       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6389       return new_alloc_region;
6390     }
6391   }
6392   return NULL;
6393 }
6394 
6395 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6396                                                   size_t allocated_bytes) {
6397   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6398   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6399 
6400   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6401   _summary_bytes_used += allocated_bytes;
6402   _hr_printer.retire(alloc_region);
6403   // We update the eden sizes here, when the region is retired,
6404   // instead of when it's allocated, since this is the point that its
6405   // used space has been recored in _summary_bytes_used.
6406   g1mm()->update_eden_size();
6407 }
6408 
6409 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6410                                                     bool force) {
6411   return _g1h->new_mutator_alloc_region(word_size, force);
6412 }
6413 
6414 void G1CollectedHeap::set_par_threads() {
6415   // Don't change the number of workers.  Use the value previously set
6416   // in the workgroup.
6417   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6418   uint n_workers = workers()->active_workers();
6419   assert(UseDynamicNumberOfGCThreads ||
6420            n_workers == workers()->total_workers(),
6421       "Otherwise should be using the total number of workers");
6422   if (n_workers == 0) {
6423     assert(false, "Should have been set in prior evacuation pause.");
6424     n_workers = ParallelGCThreads;
6425     workers()->set_active_workers(n_workers);
6426   }
6427   set_par_threads(n_workers);
6428 }
6429 
6430 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6431                                        size_t allocated_bytes) {
6432   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6433 }
6434 
6435 // Methods for the GC alloc regions
6436 
6437 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6438                                                  uint count,
6439                                                  GCAllocPurpose ap) {
6440   assert(FreeList_lock->owned_by_self(), "pre-condition");
6441 
6442   if (count < g1_policy()->max_regions(ap)) {
6443     HeapRegion* new_alloc_region = new_region(word_size,
6444                                               true /* do_expand */);
6445     if (new_alloc_region != NULL) {
6446       // We really only need to do this for old regions given that we
6447       // should never scan survivors. But it doesn't hurt to do it
6448       // for survivors too.
6449       new_alloc_region->set_saved_mark();
6450       if (ap == GCAllocForSurvived) {
6451         new_alloc_region->set_survivor();
6452         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6453       } else {
6454         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6455       }
6456       bool during_im = g1_policy()->during_initial_mark_pause();
6457       new_alloc_region->note_start_of_copying(during_im);
6458       return new_alloc_region;
6459     } else {
6460       g1_policy()->note_alloc_region_limit_reached(ap);
6461     }
6462   }
6463   return NULL;
6464 }
6465 
6466 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6467                                              size_t allocated_bytes,
6468                                              GCAllocPurpose ap) {
6469   bool during_im = g1_policy()->during_initial_mark_pause();
6470   alloc_region->note_end_of_copying(during_im);
6471   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6472   if (ap == GCAllocForSurvived) {
6473     young_list()->add_survivor_region(alloc_region);
6474   } else {
6475     _old_set.add(alloc_region);
6476   }
6477   _hr_printer.retire(alloc_region);
6478 }
6479 
6480 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6481                                                        bool force) {
6482   assert(!force, "not supported for GC alloc regions");
6483   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6484 }
6485 
6486 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6487                                           size_t allocated_bytes) {
6488   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6489                                GCAllocForSurvived);
6490 }
6491 
6492 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6493                                                   bool force) {
6494   assert(!force, "not supported for GC alloc regions");
6495   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6496 }
6497 
6498 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6499                                      size_t allocated_bytes) {
6500   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6501                                GCAllocForTenured);
6502 }
6503 // Heap region set verification
6504 
6505 class VerifyRegionListsClosure : public HeapRegionClosure {
6506 private:
6507   FreeRegionList*     _free_list;
6508   OldRegionSet*       _old_set;
6509   HumongousRegionSet* _humongous_set;
6510   uint                _region_count;
6511 
6512 public:
6513   VerifyRegionListsClosure(OldRegionSet* old_set,
6514                            HumongousRegionSet* humongous_set,
6515                            FreeRegionList* free_list) :
6516     _old_set(old_set), _humongous_set(humongous_set),
6517     _free_list(free_list), _region_count(0) { }
6518 
6519   uint region_count() { return _region_count; }
6520 
6521   bool doHeapRegion(HeapRegion* hr) {
6522     _region_count += 1;
6523 
6524     if (hr->continuesHumongous()) {
6525       return false;
6526     }
6527 
6528     if (hr->is_young()) {
6529       // TODO
6530     } else if (hr->startsHumongous()) {
6531       _humongous_set->verify_next_region(hr);
6532     } else if (hr->is_empty()) {
6533       _free_list->verify_next_region(hr);
6534     } else {
6535       _old_set->verify_next_region(hr);
6536     }
6537     return false;
6538   }
6539 };
6540 
6541 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6542                                              HeapWord* bottom) {
6543   HeapWord* end = bottom + HeapRegion::GrainWords;
6544   MemRegion mr(bottom, end);
6545   assert(_g1_reserved.contains(mr), "invariant");
6546   // This might return NULL if the allocation fails
6547   return new HeapRegion(hrs_index, _bot_shared, mr);
6548 }
6549 
6550 void G1CollectedHeap::verify_region_sets() {
6551   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6552 
6553   // First, check the explicit lists.
6554   _free_list.verify();
6555   {
6556     // Given that a concurrent operation might be adding regions to
6557     // the secondary free list we have to take the lock before
6558     // verifying it.
6559     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6560     _secondary_free_list.verify();
6561   }
6562   _old_set.verify();
6563   _humongous_set.verify();
6564 
6565   // If a concurrent region freeing operation is in progress it will
6566   // be difficult to correctly attributed any free regions we come
6567   // across to the correct free list given that they might belong to
6568   // one of several (free_list, secondary_free_list, any local lists,
6569   // etc.). So, if that's the case we will skip the rest of the
6570   // verification operation. Alternatively, waiting for the concurrent
6571   // operation to complete will have a non-trivial effect on the GC's
6572   // operation (no concurrent operation will last longer than the
6573   // interval between two calls to verification) and it might hide
6574   // any issues that we would like to catch during testing.
6575   if (free_regions_coming()) {
6576     return;
6577   }
6578 
6579   // Make sure we append the secondary_free_list on the free_list so
6580   // that all free regions we will come across can be safely
6581   // attributed to the free_list.
6582   append_secondary_free_list_if_not_empty_with_lock();
6583 
6584   // Finally, make sure that the region accounting in the lists is
6585   // consistent with what we see in the heap.
6586   _old_set.verify_start();
6587   _humongous_set.verify_start();
6588   _free_list.verify_start();
6589 
6590   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6591   heap_region_iterate(&cl);
6592 
6593   _old_set.verify_end();
6594   _humongous_set.verify_end();
6595   _free_list.verify_end();
6596 }