1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   G1ErgoVerbose::initialize();
 175   if (PrintAdaptiveSizePolicy) {
 176     // Currently, we only use a single switch for all the heuristics.
 177     G1ErgoVerbose::set_enabled(true);
 178     // Given that we don't currently have a verboseness level
 179     // parameter, we'll hardcode this to high. This can be easily
 180     // changed in the future.
 181     G1ErgoVerbose::set_level(ErgoHigh);
 182   } else {
 183     G1ErgoVerbose::set_enabled(false);
 184   }
 185 
 186   // Verify PLAB sizes
 187   const size_t region_size = HeapRegion::GrainWords;
 188   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 189     char buffer[128];
 190     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 191                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 192     vm_exit_during_initialization(buffer);
 193   }
 194 
 195   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 196   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 197 
 198   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 199 
 200   int index = MIN2(_parallel_gc_threads - 1, 7);
 201 
 202   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 203   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 204   _young_cards_per_entry_ratio_seq->add(
 205                                   young_cards_per_entry_ratio_defaults[index]);
 206   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 207   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 208   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 209   _young_other_cost_per_region_ms_seq->add(
 210                                young_other_cost_per_region_ms_defaults[index]);
 211   _non_young_other_cost_per_region_ms_seq->add(
 212                            non_young_other_cost_per_region_ms_defaults[index]);
 213 
 214   // Below, we might need to calculate the pause time target based on
 215   // the pause interval. When we do so we are going to give G1 maximum
 216   // flexibility and allow it to do pauses when it needs to. So, we'll
 217   // arrange that the pause interval to be pause time target + 1 to
 218   // ensure that a) the pause time target is maximized with respect to
 219   // the pause interval and b) we maintain the invariant that pause
 220   // time target < pause interval. If the user does not want this
 221   // maximum flexibility, they will have to set the pause interval
 222   // explicitly.
 223 
 224   // First make sure that, if either parameter is set, its value is
 225   // reasonable.
 226   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 227     if (MaxGCPauseMillis < 1) {
 228       vm_exit_during_initialization("MaxGCPauseMillis should be "
 229                                     "greater than 0");
 230     }
 231   }
 232   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 233     if (GCPauseIntervalMillis < 1) {
 234       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 235                                     "greater than 0");
 236     }
 237   }
 238 
 239   // Then, if the pause time target parameter was not set, set it to
 240   // the default value.
 241   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 242     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 243       // The default pause time target in G1 is 200ms
 244       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 245     } else {
 246       // We do not allow the pause interval to be set without the
 247       // pause time target
 248       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 249                                     "without setting MaxGCPauseMillis");
 250     }
 251   }
 252 
 253   // Then, if the interval parameter was not set, set it according to
 254   // the pause time target (this will also deal with the case when the
 255   // pause time target is the default value).
 256   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 257     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 258   }
 259 
 260   // Finally, make sure that the two parameters are consistent.
 261   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 262     char buffer[256];
 263     jio_snprintf(buffer, 256,
 264                  "MaxGCPauseMillis (%u) should be less than "
 265                  "GCPauseIntervalMillis (%u)",
 266                  MaxGCPauseMillis, GCPauseIntervalMillis);
 267     vm_exit_during_initialization(buffer);
 268   }
 269 
 270   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 271   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 272   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 273 
 274   uintx confidence_perc = G1ConfidencePercent;
 275   // Put an artificial ceiling on this so that it's not set to a silly value.
 276   if (confidence_perc > 100) {
 277     confidence_perc = 100;
 278     warning("G1ConfidencePercent is set to a value that is too large, "
 279             "it's been updated to %u", confidence_perc);
 280   }
 281   _sigma = (double) confidence_perc / 100.0;
 282 
 283   // start conservatively (around 50ms is about right)
 284   _concurrent_mark_remark_times_ms->add(0.05);
 285   _concurrent_mark_cleanup_times_ms->add(0.20);
 286   _tenuring_threshold = MaxTenuringThreshold;
 287   // _max_survivor_regions will be calculated by
 288   // update_young_list_target_length() during initialization.
 289   _max_survivor_regions = 0;
 290 
 291   assert(GCTimeRatio > 0,
 292          "we should have set it to a default value set_g1_gc_flags() "
 293          "if a user set it to 0");
 294   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 295 
 296   uintx reserve_perc = G1ReservePercent;
 297   // Put an artificial ceiling on this so that it's not set to a silly value.
 298   if (reserve_perc > 50) {
 299     reserve_perc = 50;
 300     warning("G1ReservePercent is set to a value that is too large, "
 301             "it's been updated to %u", reserve_perc);
 302   }
 303   _reserve_factor = (double) reserve_perc / 100.0;
 304   // This will be set when the heap is expanded
 305   // for the first time during initialization.
 306   _reserve_regions = 0;
 307 
 308   initialize_all();
 309   _collectionSetChooser = new CollectionSetChooser();
 310   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 311 }
 312 
 313 void G1CollectorPolicy::initialize_flags() {
 314   set_min_alignment(HeapRegion::GrainBytes);
 315   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 316   set_max_alignment(MAX2(card_table_alignment, min_alignment()));
 317   if (SurvivorRatio < 1) {
 318     vm_exit_during_initialization("Invalid survivor ratio specified");
 319   }
 320   CollectorPolicy::initialize_flags();
 321 }
 322 
 323 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 324   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 325   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 326   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 327 
 328   if (FLAG_IS_CMDLINE(NewRatio)) {
 329     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 330       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 331     } else {
 332       _sizer_kind = SizerNewRatio;
 333       _adaptive_size = false;
 334       return;
 335     }
 336   }
 337 
 338   if (FLAG_IS_CMDLINE(NewSize)) {
 339     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 340                                      1U);
 341     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 342       _max_desired_young_length =
 343                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 344                                   1U);
 345       _sizer_kind = SizerMaxAndNewSize;
 346       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 347     } else {
 348       _sizer_kind = SizerNewSizeOnly;
 349     }
 350   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 351     _max_desired_young_length =
 352                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 353                                   1U);
 354     _sizer_kind = SizerMaxNewSizeOnly;
 355   }
 356 }
 357 
 358 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 359   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 360   return MAX2(1U, default_value);
 361 }
 362 
 363 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 364   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 365   return MAX2(1U, default_value);
 366 }
 367 
 368 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 369   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 370 
 371   switch (_sizer_kind) {
 372     case SizerDefaults:
 373       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 374       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 375       break;
 376     case SizerNewSizeOnly:
 377       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 378       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 379       break;
 380     case SizerMaxNewSizeOnly:
 381       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 382       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 383       break;
 384     case SizerMaxAndNewSize:
 385       // Do nothing. Values set on the command line, don't update them at runtime.
 386       break;
 387     case SizerNewRatio:
 388       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 389       _max_desired_young_length = _min_desired_young_length;
 390       break;
 391     default:
 392       ShouldNotReachHere();
 393   }
 394 
 395   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 396 }
 397 
 398 void G1CollectorPolicy::init() {
 399   // Set aside an initial future to_space.
 400   _g1 = G1CollectedHeap::heap();
 401 
 402   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 403 
 404   initialize_gc_policy_counters();
 405 
 406   if (adaptive_young_list_length()) {
 407     _young_list_fixed_length = 0;
 408   } else {
 409     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 410   }
 411   _free_regions_at_end_of_collection = _g1->free_regions();
 412   update_young_list_target_length();
 413 
 414   // We may immediately start allocating regions and placing them on the
 415   // collection set list. Initialize the per-collection set info
 416   start_incremental_cset_building();
 417 }
 418 
 419 // Create the jstat counters for the policy.
 420 void G1CollectorPolicy::initialize_gc_policy_counters() {
 421   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 422 }
 423 
 424 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 425                                          double base_time_ms,
 426                                          uint base_free_regions,
 427                                          double target_pause_time_ms) {
 428   if (young_length >= base_free_regions) {
 429     // end condition 1: not enough space for the young regions
 430     return false;
 431   }
 432 
 433   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 434   size_t bytes_to_copy =
 435                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 436   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 437   double young_other_time_ms = predict_young_other_time_ms(young_length);
 438   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 439   if (pause_time_ms > target_pause_time_ms) {
 440     // end condition 2: prediction is over the target pause time
 441     return false;
 442   }
 443 
 444   size_t free_bytes =
 445                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 446   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 447     // end condition 3: out-of-space (conservatively!)
 448     return false;
 449   }
 450 
 451   // success!
 452   return true;
 453 }
 454 
 455 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 456   // re-calculate the necessary reserve
 457   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 458   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 459   // smaller than 1.0) we'll get 1.
 460   _reserve_regions = (uint) ceil(reserve_regions_d);
 461 
 462   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 463 }
 464 
 465 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 466                                                        uint base_min_length) {
 467   uint desired_min_length = 0;
 468   if (adaptive_young_list_length()) {
 469     if (_alloc_rate_ms_seq->num() > 3) {
 470       double now_sec = os::elapsedTime();
 471       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 472       double alloc_rate_ms = predict_alloc_rate_ms();
 473       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 474     } else {
 475       // otherwise we don't have enough info to make the prediction
 476     }
 477   }
 478   desired_min_length += base_min_length;
 479   // make sure we don't go below any user-defined minimum bound
 480   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 481 }
 482 
 483 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 484   // Here, we might want to also take into account any additional
 485   // constraints (i.e., user-defined minimum bound). Currently, we
 486   // effectively don't set this bound.
 487   return _young_gen_sizer->max_desired_young_length();
 488 }
 489 
 490 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 491   if (rs_lengths == (size_t) -1) {
 492     // if it's set to the default value (-1), we should predict it;
 493     // otherwise, use the given value.
 494     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 495   }
 496 
 497   // Calculate the absolute and desired min bounds.
 498 
 499   // This is how many young regions we already have (currently: the survivors).
 500   uint base_min_length = recorded_survivor_regions();
 501   // This is the absolute minimum young length, which ensures that we
 502   // can allocate one eden region in the worst-case.
 503   uint absolute_min_length = base_min_length + 1;
 504   uint desired_min_length =
 505                      calculate_young_list_desired_min_length(base_min_length);
 506   if (desired_min_length < absolute_min_length) {
 507     desired_min_length = absolute_min_length;
 508   }
 509 
 510   // Calculate the absolute and desired max bounds.
 511 
 512   // We will try our best not to "eat" into the reserve.
 513   uint absolute_max_length = 0;
 514   if (_free_regions_at_end_of_collection > _reserve_regions) {
 515     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 516   }
 517   uint desired_max_length = calculate_young_list_desired_max_length();
 518   if (desired_max_length > absolute_max_length) {
 519     desired_max_length = absolute_max_length;
 520   }
 521 
 522   uint young_list_target_length = 0;
 523   if (adaptive_young_list_length()) {
 524     if (gcs_are_young()) {
 525       young_list_target_length =
 526                         calculate_young_list_target_length(rs_lengths,
 527                                                            base_min_length,
 528                                                            desired_min_length,
 529                                                            desired_max_length);
 530       _rs_lengths_prediction = rs_lengths;
 531     } else {
 532       // Don't calculate anything and let the code below bound it to
 533       // the desired_min_length, i.e., do the next GC as soon as
 534       // possible to maximize how many old regions we can add to it.
 535     }
 536   } else {
 537     // The user asked for a fixed young gen so we'll fix the young gen
 538     // whether the next GC is young or mixed.
 539     young_list_target_length = _young_list_fixed_length;
 540   }
 541 
 542   // Make sure we don't go over the desired max length, nor under the
 543   // desired min length. In case they clash, desired_min_length wins
 544   // which is why that test is second.
 545   if (young_list_target_length > desired_max_length) {
 546     young_list_target_length = desired_max_length;
 547   }
 548   if (young_list_target_length < desired_min_length) {
 549     young_list_target_length = desired_min_length;
 550   }
 551 
 552   assert(young_list_target_length > recorded_survivor_regions(),
 553          "we should be able to allocate at least one eden region");
 554   assert(young_list_target_length >= absolute_min_length, "post-condition");
 555   _young_list_target_length = young_list_target_length;
 556 
 557   update_max_gc_locker_expansion();
 558 }
 559 
 560 uint
 561 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 562                                                      uint base_min_length,
 563                                                      uint desired_min_length,
 564                                                      uint desired_max_length) {
 565   assert(adaptive_young_list_length(), "pre-condition");
 566   assert(gcs_are_young(), "only call this for young GCs");
 567 
 568   // In case some edge-condition makes the desired max length too small...
 569   if (desired_max_length <= desired_min_length) {
 570     return desired_min_length;
 571   }
 572 
 573   // We'll adjust min_young_length and max_young_length not to include
 574   // the already allocated young regions (i.e., so they reflect the
 575   // min and max eden regions we'll allocate). The base_min_length
 576   // will be reflected in the predictions by the
 577   // survivor_regions_evac_time prediction.
 578   assert(desired_min_length > base_min_length, "invariant");
 579   uint min_young_length = desired_min_length - base_min_length;
 580   assert(desired_max_length > base_min_length, "invariant");
 581   uint max_young_length = desired_max_length - base_min_length;
 582 
 583   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 584   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 585   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 586   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 587   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 588   double base_time_ms =
 589     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 590     survivor_regions_evac_time;
 591   uint available_free_regions = _free_regions_at_end_of_collection;
 592   uint base_free_regions = 0;
 593   if (available_free_regions > _reserve_regions) {
 594     base_free_regions = available_free_regions - _reserve_regions;
 595   }
 596 
 597   // Here, we will make sure that the shortest young length that
 598   // makes sense fits within the target pause time.
 599 
 600   if (predict_will_fit(min_young_length, base_time_ms,
 601                        base_free_regions, target_pause_time_ms)) {
 602     // The shortest young length will fit into the target pause time;
 603     // we'll now check whether the absolute maximum number of young
 604     // regions will fit in the target pause time. If not, we'll do
 605     // a binary search between min_young_length and max_young_length.
 606     if (predict_will_fit(max_young_length, base_time_ms,
 607                          base_free_regions, target_pause_time_ms)) {
 608       // The maximum young length will fit into the target pause time.
 609       // We are done so set min young length to the maximum length (as
 610       // the result is assumed to be returned in min_young_length).
 611       min_young_length = max_young_length;
 612     } else {
 613       // The maximum possible number of young regions will not fit within
 614       // the target pause time so we'll search for the optimal
 615       // length. The loop invariants are:
 616       //
 617       // min_young_length < max_young_length
 618       // min_young_length is known to fit into the target pause time
 619       // max_young_length is known not to fit into the target pause time
 620       //
 621       // Going into the loop we know the above hold as we've just
 622       // checked them. Every time around the loop we check whether
 623       // the middle value between min_young_length and
 624       // max_young_length fits into the target pause time. If it
 625       // does, it becomes the new min. If it doesn't, it becomes
 626       // the new max. This way we maintain the loop invariants.
 627 
 628       assert(min_young_length < max_young_length, "invariant");
 629       uint diff = (max_young_length - min_young_length) / 2;
 630       while (diff > 0) {
 631         uint young_length = min_young_length + diff;
 632         if (predict_will_fit(young_length, base_time_ms,
 633                              base_free_regions, target_pause_time_ms)) {
 634           min_young_length = young_length;
 635         } else {
 636           max_young_length = young_length;
 637         }
 638         assert(min_young_length <  max_young_length, "invariant");
 639         diff = (max_young_length - min_young_length) / 2;
 640       }
 641       // The results is min_young_length which, according to the
 642       // loop invariants, should fit within the target pause time.
 643 
 644       // These are the post-conditions of the binary search above:
 645       assert(min_young_length < max_young_length,
 646              "otherwise we should have discovered that max_young_length "
 647              "fits into the pause target and not done the binary search");
 648       assert(predict_will_fit(min_young_length, base_time_ms,
 649                               base_free_regions, target_pause_time_ms),
 650              "min_young_length, the result of the binary search, should "
 651              "fit into the pause target");
 652       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 653                                base_free_regions, target_pause_time_ms),
 654              "min_young_length, the result of the binary search, should be "
 655              "optimal, so no larger length should fit into the pause target");
 656     }
 657   } else {
 658     // Even the minimum length doesn't fit into the pause time
 659     // target, return it as the result nevertheless.
 660   }
 661   return base_min_length + min_young_length;
 662 }
 663 
 664 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 665   double survivor_regions_evac_time = 0.0;
 666   for (HeapRegion * r = _recorded_survivor_head;
 667        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 668        r = r->get_next_young_region()) {
 669     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 670   }
 671   return survivor_regions_evac_time;
 672 }
 673 
 674 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 675   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 676 
 677   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 678   if (rs_lengths > _rs_lengths_prediction) {
 679     // add 10% to avoid having to recalculate often
 680     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 681     update_young_list_target_length(rs_lengths_prediction);
 682   }
 683 }
 684 
 685 
 686 
 687 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 688                                                bool is_tlab,
 689                                                bool* gc_overhead_limit_was_exceeded) {
 690   guarantee(false, "Not using this policy feature yet.");
 691   return NULL;
 692 }
 693 
 694 // This method controls how a collector handles one or more
 695 // of its generations being fully allocated.
 696 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 697                                                        bool is_tlab) {
 698   guarantee(false, "Not using this policy feature yet.");
 699   return NULL;
 700 }
 701 
 702 
 703 #ifndef PRODUCT
 704 bool G1CollectorPolicy::verify_young_ages() {
 705   HeapRegion* head = _g1->young_list()->first_region();
 706   return
 707     verify_young_ages(head, _short_lived_surv_rate_group);
 708   // also call verify_young_ages on any additional surv rate groups
 709 }
 710 
 711 bool
 712 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 713                                      SurvRateGroup *surv_rate_group) {
 714   guarantee( surv_rate_group != NULL, "pre-condition" );
 715 
 716   const char* name = surv_rate_group->name();
 717   bool ret = true;
 718   int prev_age = -1;
 719 
 720   for (HeapRegion* curr = head;
 721        curr != NULL;
 722        curr = curr->get_next_young_region()) {
 723     SurvRateGroup* group = curr->surv_rate_group();
 724     if (group == NULL && !curr->is_survivor()) {
 725       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 726       ret = false;
 727     }
 728 
 729     if (surv_rate_group == group) {
 730       int age = curr->age_in_surv_rate_group();
 731 
 732       if (age < 0) {
 733         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 734         ret = false;
 735       }
 736 
 737       if (age <= prev_age) {
 738         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 739                                "(%d, %d)", name, age, prev_age);
 740         ret = false;
 741       }
 742       prev_age = age;
 743     }
 744   }
 745 
 746   return ret;
 747 }
 748 #endif // PRODUCT
 749 
 750 void G1CollectorPolicy::record_full_collection_start() {
 751   _full_collection_start_sec = os::elapsedTime();
 752   record_heap_size_info_at_start(true /* full */);
 753   // Release the future to-space so that it is available for compaction into.
 754   _g1->set_full_collection();
 755 }
 756 
 757 void G1CollectorPolicy::record_full_collection_end() {
 758   // Consider this like a collection pause for the purposes of allocation
 759   // since last pause.
 760   double end_sec = os::elapsedTime();
 761   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 762   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 763 
 764   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 765 
 766   update_recent_gc_times(end_sec, full_gc_time_ms);
 767 
 768   _g1->clear_full_collection();
 769 
 770   // "Nuke" the heuristics that control the young/mixed GC
 771   // transitions and make sure we start with young GCs after the Full GC.
 772   set_gcs_are_young(true);
 773   _last_young_gc = false;
 774   clear_initiate_conc_mark_if_possible();
 775   clear_during_initial_mark_pause();
 776   _in_marking_window = false;
 777   _in_marking_window_im = false;
 778 
 779   _short_lived_surv_rate_group->start_adding_regions();
 780   // also call this on any additional surv rate groups
 781 
 782   record_survivor_regions(0, NULL, NULL);
 783 
 784   _free_regions_at_end_of_collection = _g1->free_regions();
 785   // Reset survivors SurvRateGroup.
 786   _survivor_surv_rate_group->reset();
 787   update_young_list_target_length();
 788   _collectionSetChooser->clear();
 789 }
 790 
 791 void G1CollectorPolicy::record_stop_world_start() {
 792   _stop_world_start = os::elapsedTime();
 793 }
 794 
 795 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 796   // We only need to do this here as the policy will only be applied
 797   // to the GC we're about to start. so, no point is calculating this
 798   // every time we calculate / recalculate the target young length.
 799   update_survivors_policy();
 800 
 801   assert(_g1->used() == _g1->recalculate_used(),
 802          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 803                  _g1->used(), _g1->recalculate_used()));
 804 
 805   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 806   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 807   _stop_world_start = 0.0;
 808 
 809   record_heap_size_info_at_start(false /* full */);
 810 
 811   phase_times()->record_cur_collection_start_sec(start_time_sec);
 812   _pending_cards = _g1->pending_card_num();
 813 
 814   _collection_set_bytes_used_before = 0;
 815   _bytes_copied_during_gc = 0;
 816 
 817   _last_gc_was_young = false;
 818 
 819   // do that for any other surv rate groups
 820   _short_lived_surv_rate_group->stop_adding_regions();
 821   _survivors_age_table.clear();
 822 
 823   assert( verify_young_ages(), "region age verification" );
 824 }
 825 
 826 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 827                                                    mark_init_elapsed_time_ms) {
 828   _during_marking = true;
 829   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 830   clear_during_initial_mark_pause();
 831   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 832 }
 833 
 834 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 835   _mark_remark_start_sec = os::elapsedTime();
 836   _during_marking = false;
 837 }
 838 
 839 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 840   double end_time_sec = os::elapsedTime();
 841   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 842   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 843   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 844   _prev_collection_pause_end_ms += elapsed_time_ms;
 845 
 846   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 847 }
 848 
 849 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 850   _mark_cleanup_start_sec = os::elapsedTime();
 851 }
 852 
 853 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 854   _last_young_gc = true;
 855   _in_marking_window = false;
 856 }
 857 
 858 void G1CollectorPolicy::record_concurrent_pause() {
 859   if (_stop_world_start > 0.0) {
 860     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 861     _trace_gen0_time_data.record_yield_time(yield_ms);
 862   }
 863 }
 864 
 865 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 866   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 867     return false;
 868   }
 869 
 870   size_t marking_initiating_used_threshold =
 871     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 872   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 873   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 874 
 875   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 876     if (gcs_are_young()) {
 877       ergo_verbose5(ErgoConcCycles,
 878         "request concurrent cycle initiation",
 879         ergo_format_reason("occupancy higher than threshold")
 880         ergo_format_byte("occupancy")
 881         ergo_format_byte("allocation request")
 882         ergo_format_byte_perc("threshold")
 883         ergo_format_str("source"),
 884         cur_used_bytes,
 885         alloc_byte_size,
 886         marking_initiating_used_threshold,
 887         (double) InitiatingHeapOccupancyPercent,
 888         source);
 889       return true;
 890     } else {
 891       ergo_verbose5(ErgoConcCycles,
 892         "do not request concurrent cycle initiation",
 893         ergo_format_reason("still doing mixed collections")
 894         ergo_format_byte("occupancy")
 895         ergo_format_byte("allocation request")
 896         ergo_format_byte_perc("threshold")
 897         ergo_format_str("source"),
 898         cur_used_bytes,
 899         alloc_byte_size,
 900         marking_initiating_used_threshold,
 901         (double) InitiatingHeapOccupancyPercent,
 902         source);
 903     }
 904   }
 905 
 906   return false;
 907 }
 908 
 909 // Anything below that is considered to be zero
 910 #define MIN_TIMER_GRANULARITY 0.0000001
 911 
 912 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 913   double end_time_sec = os::elapsedTime();
 914   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 915          "otherwise, the subtraction below does not make sense");
 916   size_t rs_size =
 917             _cur_collection_pause_used_regions_at_start - cset_region_length();
 918   size_t cur_used_bytes = _g1->used();
 919   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 920   bool last_pause_included_initial_mark = false;
 921   bool update_stats = !_g1->evacuation_failed();
 922 
 923 #ifndef PRODUCT
 924   if (G1YoungSurvRateVerbose) {
 925     gclog_or_tty->print_cr("");
 926     _short_lived_surv_rate_group->print();
 927     // do that for any other surv rate groups too
 928   }
 929 #endif // PRODUCT
 930 
 931   last_pause_included_initial_mark = during_initial_mark_pause();
 932   if (last_pause_included_initial_mark) {
 933     record_concurrent_mark_init_end(0.0);
 934   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
 935     // Note: this might have already been set, if during the last
 936     // pause we decided to start a cycle but at the beginning of
 937     // this pause we decided to postpone it. That's OK.
 938     set_initiate_conc_mark_if_possible();
 939   }
 940 
 941   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 942                           end_time_sec, false);
 943 
 944   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 945   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 946 
 947   if (update_stats) {
 948     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 949     // this is where we update the allocation rate of the application
 950     double app_time_ms =
 951       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 952     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 953       // This usually happens due to the timer not having the required
 954       // granularity. Some Linuxes are the usual culprits.
 955       // We'll just set it to something (arbitrarily) small.
 956       app_time_ms = 1.0;
 957     }
 958     // We maintain the invariant that all objects allocated by mutator
 959     // threads will be allocated out of eden regions. So, we can use
 960     // the eden region number allocated since the previous GC to
 961     // calculate the application's allocate rate. The only exception
 962     // to that is humongous objects that are allocated separately. But
 963     // given that humongous object allocations do not really affect
 964     // either the pause's duration nor when the next pause will take
 965     // place we can safely ignore them here.
 966     uint regions_allocated = eden_cset_region_length();
 967     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 968     _alloc_rate_ms_seq->add(alloc_rate_ms);
 969 
 970     double interval_ms =
 971       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 972     update_recent_gc_times(end_time_sec, pause_time_ms);
 973     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 974     if (recent_avg_pause_time_ratio() < 0.0 ||
 975         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 976 #ifndef PRODUCT
 977       // Dump info to allow post-facto debugging
 978       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 979       gclog_or_tty->print_cr("-------------------------------------------");
 980       gclog_or_tty->print_cr("Recent GC Times (ms):");
 981       _recent_gc_times_ms->dump();
 982       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 983       _recent_prev_end_times_for_all_gcs_sec->dump();
 984       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 985                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 986       // In debug mode, terminate the JVM if the user wants to debug at this point.
 987       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 988 #endif  // !PRODUCT
 989       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 990       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 991       if (_recent_avg_pause_time_ratio < 0.0) {
 992         _recent_avg_pause_time_ratio = 0.0;
 993       } else {
 994         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 995         _recent_avg_pause_time_ratio = 1.0;
 996       }
 997     }
 998   }
 999 
1000   bool new_in_marking_window = _in_marking_window;
1001   bool new_in_marking_window_im = false;
1002   if (during_initial_mark_pause()) {
1003     new_in_marking_window = true;
1004     new_in_marking_window_im = true;
1005   }
1006 
1007   if (_last_young_gc) {
1008     // This is supposed to to be the "last young GC" before we start
1009     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1010 
1011     if (!last_pause_included_initial_mark) {
1012       if (next_gc_should_be_mixed("start mixed GCs",
1013                                   "do not start mixed GCs")) {
1014         set_gcs_are_young(false);
1015       }
1016     } else {
1017       ergo_verbose0(ErgoMixedGCs,
1018                     "do not start mixed GCs",
1019                     ergo_format_reason("concurrent cycle is about to start"));
1020     }
1021     _last_young_gc = false;
1022   }
1023 
1024   if (!_last_gc_was_young) {
1025     // This is a mixed GC. Here we decide whether to continue doing
1026     // mixed GCs or not.
1027 
1028     if (!next_gc_should_be_mixed("continue mixed GCs",
1029                                  "do not continue mixed GCs")) {
1030       set_gcs_are_young(true);
1031     }
1032   }
1033 
1034   _short_lived_surv_rate_group->start_adding_regions();
1035   // do that for any other surv rate groupsx
1036 
1037   if (update_stats) {
1038     double cost_per_card_ms = 0.0;
1039     if (_pending_cards > 0) {
1040       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1041       _cost_per_card_ms_seq->add(cost_per_card_ms);
1042     }
1043 
1044     size_t cards_scanned = _g1->cards_scanned();
1045 
1046     double cost_per_entry_ms = 0.0;
1047     if (cards_scanned > 10) {
1048       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1049       if (_last_gc_was_young) {
1050         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1051       } else {
1052         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1053       }
1054     }
1055 
1056     if (_max_rs_lengths > 0) {
1057       double cards_per_entry_ratio =
1058         (double) cards_scanned / (double) _max_rs_lengths;
1059       if (_last_gc_was_young) {
1060         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1061       } else {
1062         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1063       }
1064     }
1065 
1066     // This is defensive. For a while _max_rs_lengths could get
1067     // smaller than _recorded_rs_lengths which was causing
1068     // rs_length_diff to get very large and mess up the RSet length
1069     // predictions. The reason was unsafe concurrent updates to the
1070     // _inc_cset_recorded_rs_lengths field which the code below guards
1071     // against (see CR 7118202). This bug has now been fixed (see CR
1072     // 7119027). However, I'm still worried that
1073     // _inc_cset_recorded_rs_lengths might still end up somewhat
1074     // inaccurate. The concurrent refinement thread calculates an
1075     // RSet's length concurrently with other CR threads updating it
1076     // which might cause it to calculate the length incorrectly (if,
1077     // say, it's in mid-coarsening). So I'll leave in the defensive
1078     // conditional below just in case.
1079     size_t rs_length_diff = 0;
1080     if (_max_rs_lengths > _recorded_rs_lengths) {
1081       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1082     }
1083     _rs_length_diff_seq->add((double) rs_length_diff);
1084 
1085     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1086     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1087     double cost_per_byte_ms = 0.0;
1088 
1089     if (copied_bytes > 0) {
1090       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1091       if (_in_marking_window) {
1092         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1093       } else {
1094         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1095       }
1096     }
1097 
1098     double all_other_time_ms = pause_time_ms -
1099       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1100       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1101 
1102     double young_other_time_ms = 0.0;
1103     if (young_cset_region_length() > 0) {
1104       young_other_time_ms =
1105         phase_times()->young_cset_choice_time_ms() +
1106         phase_times()->young_free_cset_time_ms();
1107       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1108                                           (double) young_cset_region_length());
1109     }
1110     double non_young_other_time_ms = 0.0;
1111     if (old_cset_region_length() > 0) {
1112       non_young_other_time_ms =
1113         phase_times()->non_young_cset_choice_time_ms() +
1114         phase_times()->non_young_free_cset_time_ms();
1115 
1116       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1117                                             (double) old_cset_region_length());
1118     }
1119 
1120     double constant_other_time_ms = all_other_time_ms -
1121       (young_other_time_ms + non_young_other_time_ms);
1122     _constant_other_time_ms_seq->add(constant_other_time_ms);
1123 
1124     double survival_ratio = 0.0;
1125     if (_collection_set_bytes_used_before > 0) {
1126       survival_ratio = (double) _bytes_copied_during_gc /
1127                                    (double) _collection_set_bytes_used_before;
1128     }
1129 
1130     _pending_cards_seq->add((double) _pending_cards);
1131     _rs_lengths_seq->add((double) _max_rs_lengths);
1132   }
1133 
1134   _in_marking_window = new_in_marking_window;
1135   _in_marking_window_im = new_in_marking_window_im;
1136   _free_regions_at_end_of_collection = _g1->free_regions();
1137   update_young_list_target_length();
1138 
1139   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1140   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1141   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1142                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1143 
1144   _collectionSetChooser->verify();
1145 }
1146 
1147 #define EXT_SIZE_FORMAT "%.1f%s"
1148 #define EXT_SIZE_PARAMS(bytes)                                  \
1149   byte_size_in_proper_unit((double)(bytes)),                    \
1150   proper_unit_for_byte_size((bytes))
1151 
1152 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1153   YoungList* young_list = _g1->young_list();
1154   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1155   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1156   _heap_capacity_bytes_before_gc = _g1->capacity();
1157   _heap_used_bytes_before_gc = _g1->used();
1158   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1159 
1160   _eden_capacity_bytes_before_gc =
1161          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1162 
1163   if (full) {
1164     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1165   }
1166 }
1167 
1168 void G1CollectorPolicy::print_heap_transition() {
1169   _g1->print_size_transition(gclog_or_tty,
1170                              _heap_used_bytes_before_gc,
1171                              _g1->used(),
1172                              _g1->capacity());
1173 }
1174 
1175 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1176   YoungList* young_list = _g1->young_list();
1177 
1178   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1179   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1180   size_t heap_used_bytes_after_gc = _g1->used();
1181 
1182   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1183   size_t eden_capacity_bytes_after_gc =
1184     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1185 
1186   gclog_or_tty->print(
1187     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1188     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1189     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1190     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1191     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1192     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1193     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1194     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1195     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1196     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1197     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1198     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1199     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1200     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1201 
1202   if (full) {
1203     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1204   }
1205 
1206   gclog_or_tty->cr();
1207 }
1208 
1209 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1210                                                      double update_rs_processed_buffers,
1211                                                      double goal_ms) {
1212   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1213   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1214 
1215   if (G1UseAdaptiveConcRefinement) {
1216     const int k_gy = 3, k_gr = 6;
1217     const double inc_k = 1.1, dec_k = 0.9;
1218 
1219     int g = cg1r->green_zone();
1220     if (update_rs_time > goal_ms) {
1221       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1222     } else {
1223       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1224         g = (int)MAX2(g * inc_k, g + 1.0);
1225       }
1226     }
1227     // Change the refinement threads params
1228     cg1r->set_green_zone(g);
1229     cg1r->set_yellow_zone(g * k_gy);
1230     cg1r->set_red_zone(g * k_gr);
1231     cg1r->reinitialize_threads();
1232 
1233     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1234     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1235                                     cg1r->yellow_zone());
1236     // Change the barrier params
1237     dcqs.set_process_completed_threshold(processing_threshold);
1238     dcqs.set_max_completed_queue(cg1r->red_zone());
1239   }
1240 
1241   int curr_queue_size = dcqs.completed_buffers_num();
1242   if (curr_queue_size >= cg1r->yellow_zone()) {
1243     dcqs.set_completed_queue_padding(curr_queue_size);
1244   } else {
1245     dcqs.set_completed_queue_padding(0);
1246   }
1247   dcqs.notify_if_necessary();
1248 }
1249 
1250 double
1251 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1252                                                 size_t scanned_cards) {
1253   return
1254     predict_rs_update_time_ms(pending_cards) +
1255     predict_rs_scan_time_ms(scanned_cards) +
1256     predict_constant_other_time_ms();
1257 }
1258 
1259 double
1260 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1261   size_t rs_length = predict_rs_length_diff();
1262   size_t card_num;
1263   if (gcs_are_young()) {
1264     card_num = predict_young_card_num(rs_length);
1265   } else {
1266     card_num = predict_non_young_card_num(rs_length);
1267   }
1268   return predict_base_elapsed_time_ms(pending_cards, card_num);
1269 }
1270 
1271 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1272   size_t bytes_to_copy;
1273   if (hr->is_marked())
1274     bytes_to_copy = hr->max_live_bytes();
1275   else {
1276     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1277     int age = hr->age_in_surv_rate_group();
1278     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1279     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1280   }
1281   return bytes_to_copy;
1282 }
1283 
1284 double
1285 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1286                                                   bool for_young_gc) {
1287   size_t rs_length = hr->rem_set()->occupied();
1288   size_t card_num;
1289 
1290   // Predicting the number of cards is based on which type of GC
1291   // we're predicting for.
1292   if (for_young_gc) {
1293     card_num = predict_young_card_num(rs_length);
1294   } else {
1295     card_num = predict_non_young_card_num(rs_length);
1296   }
1297   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1298 
1299   double region_elapsed_time_ms =
1300     predict_rs_scan_time_ms(card_num) +
1301     predict_object_copy_time_ms(bytes_to_copy);
1302 
1303   // The prediction of the "other" time for this region is based
1304   // upon the region type and NOT the GC type.
1305   if (hr->is_young()) {
1306     region_elapsed_time_ms += predict_young_other_time_ms(1);
1307   } else {
1308     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1309   }
1310   return region_elapsed_time_ms;
1311 }
1312 
1313 void
1314 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1315                                             uint survivor_cset_region_length) {
1316   _eden_cset_region_length     = eden_cset_region_length;
1317   _survivor_cset_region_length = survivor_cset_region_length;
1318   _old_cset_region_length      = 0;
1319 }
1320 
1321 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1322   _recorded_rs_lengths = rs_lengths;
1323 }
1324 
1325 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1326                                                double elapsed_ms) {
1327   _recent_gc_times_ms->add(elapsed_ms);
1328   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1329   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1330 }
1331 
1332 size_t G1CollectorPolicy::expansion_amount() {
1333   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1334   double threshold = _gc_overhead_perc;
1335   if (recent_gc_overhead > threshold) {
1336     // We will double the existing space, or take
1337     // G1ExpandByPercentOfAvailable % of the available expansion
1338     // space, whichever is smaller, bounded below by a minimum
1339     // expansion (unless that's all that's left.)
1340     const size_t min_expand_bytes = 1*M;
1341     size_t reserved_bytes = _g1->max_capacity();
1342     size_t committed_bytes = _g1->capacity();
1343     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1344     size_t expand_bytes;
1345     size_t expand_bytes_via_pct =
1346       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1347     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1348     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1349     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1350 
1351     ergo_verbose5(ErgoHeapSizing,
1352                   "attempt heap expansion",
1353                   ergo_format_reason("recent GC overhead higher than "
1354                                      "threshold after GC")
1355                   ergo_format_perc("recent GC overhead")
1356                   ergo_format_perc("threshold")
1357                   ergo_format_byte("uncommitted")
1358                   ergo_format_byte_perc("calculated expansion amount"),
1359                   recent_gc_overhead, threshold,
1360                   uncommitted_bytes,
1361                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1362 
1363     return expand_bytes;
1364   } else {
1365     return 0;
1366   }
1367 }
1368 
1369 void G1CollectorPolicy::print_tracing_info() const {
1370   _trace_gen0_time_data.print();
1371   _trace_gen1_time_data.print();
1372 }
1373 
1374 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1375 #ifndef PRODUCT
1376   _short_lived_surv_rate_group->print_surv_rate_summary();
1377   // add this call for any other surv rate groups
1378 #endif // PRODUCT
1379 }
1380 
1381 uint G1CollectorPolicy::max_regions(int purpose) {
1382   switch (purpose) {
1383     case GCAllocForSurvived:
1384       return _max_survivor_regions;
1385     case GCAllocForTenured:
1386       return REGIONS_UNLIMITED;
1387     default:
1388       ShouldNotReachHere();
1389       return REGIONS_UNLIMITED;
1390   };
1391 }
1392 
1393 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1394   uint expansion_region_num = 0;
1395   if (GCLockerEdenExpansionPercent > 0) {
1396     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1397     double expansion_region_num_d = perc * (double) _young_list_target_length;
1398     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1399     // less than 1.0) we'll get 1.
1400     expansion_region_num = (uint) ceil(expansion_region_num_d);
1401   } else {
1402     assert(expansion_region_num == 0, "sanity");
1403   }
1404   _young_list_max_length = _young_list_target_length + expansion_region_num;
1405   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1406 }
1407 
1408 // Calculates survivor space parameters.
1409 void G1CollectorPolicy::update_survivors_policy() {
1410   double max_survivor_regions_d =
1411                  (double) _young_list_target_length / (double) SurvivorRatio;
1412   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1413   // smaller than 1.0) we'll get 1.
1414   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1415 
1416   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1417         HeapRegion::GrainWords * _max_survivor_regions);
1418 }
1419 
1420 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1421                                                      GCCause::Cause gc_cause) {
1422   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1423   if (!during_cycle) {
1424     ergo_verbose1(ErgoConcCycles,
1425                   "request concurrent cycle initiation",
1426                   ergo_format_reason("requested by GC cause")
1427                   ergo_format_str("GC cause"),
1428                   GCCause::to_string(gc_cause));
1429     set_initiate_conc_mark_if_possible();
1430     return true;
1431   } else {
1432     ergo_verbose1(ErgoConcCycles,
1433                   "do not request concurrent cycle initiation",
1434                   ergo_format_reason("concurrent cycle already in progress")
1435                   ergo_format_str("GC cause"),
1436                   GCCause::to_string(gc_cause));
1437     return false;
1438   }
1439 }
1440 
1441 void
1442 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1443   // We are about to decide on whether this pause will be an
1444   // initial-mark pause.
1445 
1446   // First, during_initial_mark_pause() should not be already set. We
1447   // will set it here if we have to. However, it should be cleared by
1448   // the end of the pause (it's only set for the duration of an
1449   // initial-mark pause).
1450   assert(!during_initial_mark_pause(), "pre-condition");
1451 
1452   if (initiate_conc_mark_if_possible()) {
1453     // We had noticed on a previous pause that the heap occupancy has
1454     // gone over the initiating threshold and we should start a
1455     // concurrent marking cycle. So we might initiate one.
1456 
1457     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1458     if (!during_cycle) {
1459       // The concurrent marking thread is not "during a cycle", i.e.,
1460       // it has completed the last one. So we can go ahead and
1461       // initiate a new cycle.
1462 
1463       set_during_initial_mark_pause();
1464       // We do not allow mixed GCs during marking.
1465       if (!gcs_are_young()) {
1466         set_gcs_are_young(true);
1467         ergo_verbose0(ErgoMixedGCs,
1468                       "end mixed GCs",
1469                       ergo_format_reason("concurrent cycle is about to start"));
1470       }
1471 
1472       // And we can now clear initiate_conc_mark_if_possible() as
1473       // we've already acted on it.
1474       clear_initiate_conc_mark_if_possible();
1475 
1476       ergo_verbose0(ErgoConcCycles,
1477                   "initiate concurrent cycle",
1478                   ergo_format_reason("concurrent cycle initiation requested"));
1479     } else {
1480       // The concurrent marking thread is still finishing up the
1481       // previous cycle. If we start one right now the two cycles
1482       // overlap. In particular, the concurrent marking thread might
1483       // be in the process of clearing the next marking bitmap (which
1484       // we will use for the next cycle if we start one). Starting a
1485       // cycle now will be bad given that parts of the marking
1486       // information might get cleared by the marking thread. And we
1487       // cannot wait for the marking thread to finish the cycle as it
1488       // periodically yields while clearing the next marking bitmap
1489       // and, if it's in a yield point, it's waiting for us to
1490       // finish. So, at this point we will not start a cycle and we'll
1491       // let the concurrent marking thread complete the last one.
1492       ergo_verbose0(ErgoConcCycles,
1493                     "do not initiate concurrent cycle",
1494                     ergo_format_reason("concurrent cycle already in progress"));
1495     }
1496   }
1497 }
1498 
1499 class KnownGarbageClosure: public HeapRegionClosure {
1500   G1CollectedHeap* _g1h;
1501   CollectionSetChooser* _hrSorted;
1502 
1503 public:
1504   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1505     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1506 
1507   bool doHeapRegion(HeapRegion* r) {
1508     // We only include humongous regions in collection
1509     // sets when concurrent mark shows that their contained object is
1510     // unreachable.
1511 
1512     // Do we have any marking information for this region?
1513     if (r->is_marked()) {
1514       // We will skip any region that's currently used as an old GC
1515       // alloc region (we should not consider those for collection
1516       // before we fill them up).
1517       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1518         _hrSorted->add_region(r);
1519       }
1520     }
1521     return false;
1522   }
1523 };
1524 
1525 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1526   G1CollectedHeap* _g1h;
1527   CSetChooserParUpdater _cset_updater;
1528 
1529 public:
1530   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1531                            uint chunk_size) :
1532     _g1h(G1CollectedHeap::heap()),
1533     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1534 
1535   bool doHeapRegion(HeapRegion* r) {
1536     // Do we have any marking information for this region?
1537     if (r->is_marked()) {
1538       // We will skip any region that's currently used as an old GC
1539       // alloc region (we should not consider those for collection
1540       // before we fill them up).
1541       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1542         _cset_updater.add_region(r);
1543       }
1544     }
1545     return false;
1546   }
1547 };
1548 
1549 class ParKnownGarbageTask: public AbstractGangTask {
1550   CollectionSetChooser* _hrSorted;
1551   uint _chunk_size;
1552   G1CollectedHeap* _g1;
1553 public:
1554   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1555     AbstractGangTask("ParKnownGarbageTask"),
1556     _hrSorted(hrSorted), _chunk_size(chunk_size),
1557     _g1(G1CollectedHeap::heap()) { }
1558 
1559   void work(uint worker_id) {
1560     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1561 
1562     // Back to zero for the claim value.
1563     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1564                                          _g1->workers()->active_workers(),
1565                                          HeapRegion::InitialClaimValue);
1566   }
1567 };
1568 
1569 void
1570 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1571   _collectionSetChooser->clear();
1572 
1573   uint region_num = _g1->n_regions();
1574   if (G1CollectedHeap::use_parallel_gc_threads()) {
1575     const uint OverpartitionFactor = 4;
1576     uint WorkUnit;
1577     // The use of MinChunkSize = 8 in the original code
1578     // causes some assertion failures when the total number of
1579     // region is less than 8.  The code here tries to fix that.
1580     // Should the original code also be fixed?
1581     if (no_of_gc_threads > 0) {
1582       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1583       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1584                       MinWorkUnit);
1585     } else {
1586       assert(no_of_gc_threads > 0,
1587         "The active gc workers should be greater than 0");
1588       // In a product build do something reasonable to avoid a crash.
1589       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1590       WorkUnit =
1591         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1592              MinWorkUnit);
1593     }
1594     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1595                                                            WorkUnit);
1596     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1597                                             (int) WorkUnit);
1598     _g1->workers()->run_task(&parKnownGarbageTask);
1599 
1600     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1601            "sanity check");
1602   } else {
1603     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1604     _g1->heap_region_iterate(&knownGarbagecl);
1605   }
1606 
1607   _collectionSetChooser->sort_regions();
1608 
1609   double end_sec = os::elapsedTime();
1610   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1611   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1612   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1613   _prev_collection_pause_end_ms += elapsed_time_ms;
1614   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1615 }
1616 
1617 // Add the heap region at the head of the non-incremental collection set
1618 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1619   assert(_inc_cset_build_state == Active, "Precondition");
1620   assert(!hr->is_young(), "non-incremental add of young region");
1621 
1622   assert(!hr->in_collection_set(), "should not already be in the CSet");
1623   hr->set_in_collection_set(true);
1624   hr->set_next_in_collection_set(_collection_set);
1625   _collection_set = hr;
1626   _collection_set_bytes_used_before += hr->used();
1627   _g1->register_region_with_in_cset_fast_test(hr);
1628   size_t rs_length = hr->rem_set()->occupied();
1629   _recorded_rs_lengths += rs_length;
1630   _old_cset_region_length += 1;
1631 }
1632 
1633 // Initialize the per-collection-set information
1634 void G1CollectorPolicy::start_incremental_cset_building() {
1635   assert(_inc_cset_build_state == Inactive, "Precondition");
1636 
1637   _inc_cset_head = NULL;
1638   _inc_cset_tail = NULL;
1639   _inc_cset_bytes_used_before = 0;
1640 
1641   _inc_cset_max_finger = 0;
1642   _inc_cset_recorded_rs_lengths = 0;
1643   _inc_cset_recorded_rs_lengths_diffs = 0;
1644   _inc_cset_predicted_elapsed_time_ms = 0.0;
1645   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1646   _inc_cset_build_state = Active;
1647 }
1648 
1649 void G1CollectorPolicy::finalize_incremental_cset_building() {
1650   assert(_inc_cset_build_state == Active, "Precondition");
1651   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1652 
1653   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1654   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1655   // that adds a new region to the CSet. Further updates by the
1656   // concurrent refinement thread that samples the young RSet lengths
1657   // are accumulated in the *_diffs fields. Here we add the diffs to
1658   // the "main" fields.
1659 
1660   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1661     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1662   } else {
1663     // This is defensive. The diff should in theory be always positive
1664     // as RSets can only grow between GCs. However, given that we
1665     // sample their size concurrently with other threads updating them
1666     // it's possible that we might get the wrong size back, which
1667     // could make the calculations somewhat inaccurate.
1668     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1669     if (_inc_cset_recorded_rs_lengths >= diffs) {
1670       _inc_cset_recorded_rs_lengths -= diffs;
1671     } else {
1672       _inc_cset_recorded_rs_lengths = 0;
1673     }
1674   }
1675   _inc_cset_predicted_elapsed_time_ms +=
1676                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1677 
1678   _inc_cset_recorded_rs_lengths_diffs = 0;
1679   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1680 }
1681 
1682 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1683   // This routine is used when:
1684   // * adding survivor regions to the incremental cset at the end of an
1685   //   evacuation pause,
1686   // * adding the current allocation region to the incremental cset
1687   //   when it is retired, and
1688   // * updating existing policy information for a region in the
1689   //   incremental cset via young list RSet sampling.
1690   // Therefore this routine may be called at a safepoint by the
1691   // VM thread, or in-between safepoints by mutator threads (when
1692   // retiring the current allocation region) or a concurrent
1693   // refine thread (RSet sampling).
1694 
1695   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1696   size_t used_bytes = hr->used();
1697   _inc_cset_recorded_rs_lengths += rs_length;
1698   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1699   _inc_cset_bytes_used_before += used_bytes;
1700 
1701   // Cache the values we have added to the aggregated informtion
1702   // in the heap region in case we have to remove this region from
1703   // the incremental collection set, or it is updated by the
1704   // rset sampling code
1705   hr->set_recorded_rs_length(rs_length);
1706   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1707 }
1708 
1709 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1710                                                      size_t new_rs_length) {
1711   // Update the CSet information that is dependent on the new RS length
1712   assert(hr->is_young(), "Precondition");
1713   assert(!SafepointSynchronize::is_at_safepoint(),
1714                                                "should not be at a safepoint");
1715 
1716   // We could have updated _inc_cset_recorded_rs_lengths and
1717   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1718   // that atomically, as this code is executed by a concurrent
1719   // refinement thread, potentially concurrently with a mutator thread
1720   // allocating a new region and also updating the same fields. To
1721   // avoid the atomic operations we accumulate these updates on two
1722   // separate fields (*_diffs) and we'll just add them to the "main"
1723   // fields at the start of a GC.
1724 
1725   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1726   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1727   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1728 
1729   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1730   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1731   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1732   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1733 
1734   hr->set_recorded_rs_length(new_rs_length);
1735   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1736 }
1737 
1738 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1739   assert(hr->is_young(), "invariant");
1740   assert(hr->young_index_in_cset() > -1, "should have already been set");
1741   assert(_inc_cset_build_state == Active, "Precondition");
1742 
1743   // We need to clear and set the cached recorded/cached collection set
1744   // information in the heap region here (before the region gets added
1745   // to the collection set). An individual heap region's cached values
1746   // are calculated, aggregated with the policy collection set info,
1747   // and cached in the heap region here (initially) and (subsequently)
1748   // by the Young List sampling code.
1749 
1750   size_t rs_length = hr->rem_set()->occupied();
1751   add_to_incremental_cset_info(hr, rs_length);
1752 
1753   HeapWord* hr_end = hr->end();
1754   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1755 
1756   assert(!hr->in_collection_set(), "invariant");
1757   hr->set_in_collection_set(true);
1758   assert( hr->next_in_collection_set() == NULL, "invariant");
1759 
1760   _g1->register_region_with_in_cset_fast_test(hr);
1761 }
1762 
1763 // Add the region at the RHS of the incremental cset
1764 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1765   // We should only ever be appending survivors at the end of a pause
1766   assert( hr->is_survivor(), "Logic");
1767 
1768   // Do the 'common' stuff
1769   add_region_to_incremental_cset_common(hr);
1770 
1771   // Now add the region at the right hand side
1772   if (_inc_cset_tail == NULL) {
1773     assert(_inc_cset_head == NULL, "invariant");
1774     _inc_cset_head = hr;
1775   } else {
1776     _inc_cset_tail->set_next_in_collection_set(hr);
1777   }
1778   _inc_cset_tail = hr;
1779 }
1780 
1781 // Add the region to the LHS of the incremental cset
1782 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1783   // Survivors should be added to the RHS at the end of a pause
1784   assert(!hr->is_survivor(), "Logic");
1785 
1786   // Do the 'common' stuff
1787   add_region_to_incremental_cset_common(hr);
1788 
1789   // Add the region at the left hand side
1790   hr->set_next_in_collection_set(_inc_cset_head);
1791   if (_inc_cset_head == NULL) {
1792     assert(_inc_cset_tail == NULL, "Invariant");
1793     _inc_cset_tail = hr;
1794   }
1795   _inc_cset_head = hr;
1796 }
1797 
1798 #ifndef PRODUCT
1799 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1800   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1801 
1802   st->print_cr("\nCollection_set:");
1803   HeapRegion* csr = list_head;
1804   while (csr != NULL) {
1805     HeapRegion* next = csr->next_in_collection_set();
1806     assert(csr->in_collection_set(), "bad CS");
1807     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1808                  HR_FORMAT_PARAMS(csr),
1809                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1810                  csr->age_in_surv_rate_group_cond());
1811     csr = next;
1812   }
1813 }
1814 #endif // !PRODUCT
1815 
1816 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1817   // Returns the given amount of reclaimable bytes (that represents
1818   // the amount of reclaimable space still to be collected) as a
1819   // percentage of the current heap capacity.
1820   size_t capacity_bytes = _g1->capacity();
1821   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1822 }
1823 
1824 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1825                                                 const char* false_action_str) {
1826   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1827   if (cset_chooser->is_empty()) {
1828     ergo_verbose0(ErgoMixedGCs,
1829                   false_action_str,
1830                   ergo_format_reason("candidate old regions not available"));
1831     return false;
1832   }
1833 
1834   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1835   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1836   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1837   double threshold = (double) G1HeapWastePercent;
1838   if (reclaimable_perc <= threshold) {
1839     ergo_verbose4(ErgoMixedGCs,
1840               false_action_str,
1841               ergo_format_reason("reclaimable percentage not over threshold")
1842               ergo_format_region("candidate old regions")
1843               ergo_format_byte_perc("reclaimable")
1844               ergo_format_perc("threshold"),
1845               cset_chooser->remaining_regions(),
1846               reclaimable_bytes,
1847               reclaimable_perc, threshold);
1848     return false;
1849   }
1850 
1851   ergo_verbose4(ErgoMixedGCs,
1852                 true_action_str,
1853                 ergo_format_reason("candidate old regions available")
1854                 ergo_format_region("candidate old regions")
1855                 ergo_format_byte_perc("reclaimable")
1856                 ergo_format_perc("threshold"),
1857                 cset_chooser->remaining_regions(),
1858                 reclaimable_bytes,
1859                 reclaimable_perc, threshold);
1860   return true;
1861 }
1862 
1863 uint G1CollectorPolicy::calc_min_old_cset_length() {
1864   // The min old CSet region bound is based on the maximum desired
1865   // number of mixed GCs after a cycle. I.e., even if some old regions
1866   // look expensive, we should add them to the CSet anyway to make
1867   // sure we go through the available old regions in no more than the
1868   // maximum desired number of mixed GCs.
1869   //
1870   // The calculation is based on the number of marked regions we added
1871   // to the CSet chooser in the first place, not how many remain, so
1872   // that the result is the same during all mixed GCs that follow a cycle.
1873 
1874   const size_t region_num = (size_t) _collectionSetChooser->length();
1875   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1876   size_t result = region_num / gc_num;
1877   // emulate ceiling
1878   if (result * gc_num < region_num) {
1879     result += 1;
1880   }
1881   return (uint) result;
1882 }
1883 
1884 uint G1CollectorPolicy::calc_max_old_cset_length() {
1885   // The max old CSet region bound is based on the threshold expressed
1886   // as a percentage of the heap size. I.e., it should bound the
1887   // number of old regions added to the CSet irrespective of how many
1888   // of them are available.
1889 
1890   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1891   const size_t region_num = g1h->n_regions();
1892   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1893   size_t result = region_num * perc / 100;
1894   // emulate ceiling
1895   if (100 * result < region_num * perc) {
1896     result += 1;
1897   }
1898   return (uint) result;
1899 }
1900 
1901 
1902 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1903   double young_start_time_sec = os::elapsedTime();
1904 
1905   YoungList* young_list = _g1->young_list();
1906   finalize_incremental_cset_building();
1907 
1908   guarantee(target_pause_time_ms > 0.0,
1909             err_msg("target_pause_time_ms = %1.6lf should be positive",
1910                     target_pause_time_ms));
1911   guarantee(_collection_set == NULL, "Precondition");
1912 
1913   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1914   double predicted_pause_time_ms = base_time_ms;
1915   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1916 
1917   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1918                 "start choosing CSet",
1919                 ergo_format_size("_pending_cards")
1920                 ergo_format_ms("predicted base time")
1921                 ergo_format_ms("remaining time")
1922                 ergo_format_ms("target pause time"),
1923                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1924 
1925   _last_gc_was_young = gcs_are_young() ? true : false;
1926 
1927   if (_last_gc_was_young) {
1928     _trace_gen0_time_data.increment_young_collection_count();
1929   } else {
1930     _trace_gen0_time_data.increment_mixed_collection_count();
1931   }
1932 
1933   // The young list is laid with the survivor regions from the previous
1934   // pause are appended to the RHS of the young list, i.e.
1935   //   [Newly Young Regions ++ Survivors from last pause].
1936 
1937   uint survivor_region_length = young_list->survivor_length();
1938   uint eden_region_length = young_list->length() - survivor_region_length;
1939   init_cset_region_lengths(eden_region_length, survivor_region_length);
1940 
1941   HeapRegion* hr = young_list->first_survivor_region();
1942   while (hr != NULL) {
1943     assert(hr->is_survivor(), "badly formed young list");
1944     hr->set_young();
1945     hr = hr->get_next_young_region();
1946   }
1947 
1948   // Clear the fields that point to the survivor list - they are all young now.
1949   young_list->clear_survivors();
1950 
1951   _collection_set = _inc_cset_head;
1952   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1953   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1954   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1955 
1956   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1957                 "add young regions to CSet",
1958                 ergo_format_region("eden")
1959                 ergo_format_region("survivors")
1960                 ergo_format_ms("predicted young region time"),
1961                 eden_region_length, survivor_region_length,
1962                 _inc_cset_predicted_elapsed_time_ms);
1963 
1964   // The number of recorded young regions is the incremental
1965   // collection set's current size
1966   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1967 
1968   double young_end_time_sec = os::elapsedTime();
1969   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1970 
1971   // Set the start of the non-young choice time.
1972   double non_young_start_time_sec = young_end_time_sec;
1973 
1974   if (!gcs_are_young()) {
1975     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1976     cset_chooser->verify();
1977     const uint min_old_cset_length = calc_min_old_cset_length();
1978     const uint max_old_cset_length = calc_max_old_cset_length();
1979 
1980     uint expensive_region_num = 0;
1981     bool check_time_remaining = adaptive_young_list_length();
1982 
1983     HeapRegion* hr = cset_chooser->peek();
1984     while (hr != NULL) {
1985       if (old_cset_region_length() >= max_old_cset_length) {
1986         // Added maximum number of old regions to the CSet.
1987         ergo_verbose2(ErgoCSetConstruction,
1988                       "finish adding old regions to CSet",
1989                       ergo_format_reason("old CSet region num reached max")
1990                       ergo_format_region("old")
1991                       ergo_format_region("max"),
1992                       old_cset_region_length(), max_old_cset_length);
1993         break;
1994       }
1995 
1996 
1997       // Stop adding regions if the remaining reclaimable space is
1998       // not above G1HeapWastePercent.
1999       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2000       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2001       double threshold = (double) G1HeapWastePercent;
2002       if (reclaimable_perc <= threshold) {
2003         // We've added enough old regions that the amount of uncollected
2004         // reclaimable space is at or below the waste threshold. Stop
2005         // adding old regions to the CSet.
2006         ergo_verbose5(ErgoCSetConstruction,
2007                       "finish adding old regions to CSet",
2008                       ergo_format_reason("reclaimable percentage not over threshold")
2009                       ergo_format_region("old")
2010                       ergo_format_region("max")
2011                       ergo_format_byte_perc("reclaimable")
2012                       ergo_format_perc("threshold"),
2013                       old_cset_region_length(),
2014                       max_old_cset_length,
2015                       reclaimable_bytes,
2016                       reclaimable_perc, threshold);
2017         break;
2018       }
2019 
2020       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2021       if (check_time_remaining) {
2022         if (predicted_time_ms > time_remaining_ms) {
2023           // Too expensive for the current CSet.
2024 
2025           if (old_cset_region_length() >= min_old_cset_length) {
2026             // We have added the minimum number of old regions to the CSet,
2027             // we are done with this CSet.
2028             ergo_verbose4(ErgoCSetConstruction,
2029                           "finish adding old regions to CSet",
2030                           ergo_format_reason("predicted time is too high")
2031                           ergo_format_ms("predicted time")
2032                           ergo_format_ms("remaining time")
2033                           ergo_format_region("old")
2034                           ergo_format_region("min"),
2035                           predicted_time_ms, time_remaining_ms,
2036                           old_cset_region_length(), min_old_cset_length);
2037             break;
2038           }
2039 
2040           // We'll add it anyway given that we haven't reached the
2041           // minimum number of old regions.
2042           expensive_region_num += 1;
2043         }
2044       } else {
2045         if (old_cset_region_length() >= min_old_cset_length) {
2046           // In the non-auto-tuning case, we'll finish adding regions
2047           // to the CSet if we reach the minimum.
2048           ergo_verbose2(ErgoCSetConstruction,
2049                         "finish adding old regions to CSet",
2050                         ergo_format_reason("old CSet region num reached min")
2051                         ergo_format_region("old")
2052                         ergo_format_region("min"),
2053                         old_cset_region_length(), min_old_cset_length);
2054           break;
2055         }
2056       }
2057 
2058       // We will add this region to the CSet.
2059       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2060       predicted_pause_time_ms += predicted_time_ms;
2061       cset_chooser->remove_and_move_to_next(hr);
2062       _g1->old_set_remove(hr);
2063       add_old_region_to_cset(hr);
2064 
2065       hr = cset_chooser->peek();
2066     }
2067     if (hr == NULL) {
2068       ergo_verbose0(ErgoCSetConstruction,
2069                     "finish adding old regions to CSet",
2070                     ergo_format_reason("candidate old regions not available"));
2071     }
2072 
2073     if (expensive_region_num > 0) {
2074       // We print the information once here at the end, predicated on
2075       // whether we added any apparently expensive regions or not, to
2076       // avoid generating output per region.
2077       ergo_verbose4(ErgoCSetConstruction,
2078                     "added expensive regions to CSet",
2079                     ergo_format_reason("old CSet region num not reached min")
2080                     ergo_format_region("old")
2081                     ergo_format_region("expensive")
2082                     ergo_format_region("min")
2083                     ergo_format_ms("remaining time"),
2084                     old_cset_region_length(),
2085                     expensive_region_num,
2086                     min_old_cset_length,
2087                     time_remaining_ms);
2088     }
2089 
2090     cset_chooser->verify();
2091   }
2092 
2093   stop_incremental_cset_building();
2094 
2095   ergo_verbose5(ErgoCSetConstruction,
2096                 "finish choosing CSet",
2097                 ergo_format_region("eden")
2098                 ergo_format_region("survivors")
2099                 ergo_format_region("old")
2100                 ergo_format_ms("predicted pause time")
2101                 ergo_format_ms("target pause time"),
2102                 eden_region_length, survivor_region_length,
2103                 old_cset_region_length(),
2104                 predicted_pause_time_ms, target_pause_time_ms);
2105 
2106   double non_young_end_time_sec = os::elapsedTime();
2107   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2108   evacuation_info.set_collectionset_regions(cset_region_length());
2109 }
2110 
2111 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2112   if(TraceGen0Time) {
2113     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2114   }
2115 }
2116 
2117 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2118   if(TraceGen0Time) {
2119     _all_yield_times_ms.add(yield_time_ms);
2120   }
2121 }
2122 
2123 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2124   if(TraceGen0Time) {
2125     _total.add(pause_time_ms);
2126     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2127     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2128     _parallel.add(phase_times->cur_collection_par_time_ms());
2129     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2130     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2131     _update_rs.add(phase_times->average_last_update_rs_time());
2132     _scan_rs.add(phase_times->average_last_scan_rs_time());
2133     _obj_copy.add(phase_times->average_last_obj_copy_time());
2134     _termination.add(phase_times->average_last_termination_time());
2135 
2136     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2137       phase_times->average_last_satb_filtering_times_ms() +
2138       phase_times->average_last_update_rs_time() +
2139       phase_times->average_last_scan_rs_time() +
2140       phase_times->average_last_obj_copy_time() +
2141       + phase_times->average_last_termination_time();
2142 
2143     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2144     _parallel_other.add(parallel_other_time);
2145     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2146   }
2147 }
2148 
2149 void TraceGen0TimeData::increment_young_collection_count() {
2150   if(TraceGen0Time) {
2151     ++_young_pause_num;
2152   }
2153 }
2154 
2155 void TraceGen0TimeData::increment_mixed_collection_count() {
2156   if(TraceGen0Time) {
2157     ++_mixed_pause_num;
2158   }
2159 }
2160 
2161 void TraceGen0TimeData::print_summary(const char* str,
2162                                       const NumberSeq* seq) const {
2163   double sum = seq->sum();
2164   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2165                 str, sum / 1000.0, seq->avg());
2166 }
2167 
2168 void TraceGen0TimeData::print_summary_sd(const char* str,
2169                                          const NumberSeq* seq) const {
2170   print_summary(str, seq);
2171   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2172                 "(num", seq->num(), seq->sd(), seq->maximum());
2173 }
2174 
2175 void TraceGen0TimeData::print() const {
2176   if (!TraceGen0Time) {
2177     return;
2178   }
2179 
2180   gclog_or_tty->print_cr("ALL PAUSES");
2181   print_summary_sd("   Total", &_total);
2182   gclog_or_tty->print_cr("");
2183   gclog_or_tty->print_cr("");
2184   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2185   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2186   gclog_or_tty->print_cr("");
2187 
2188   gclog_or_tty->print_cr("EVACUATION PAUSES");
2189 
2190   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2191     gclog_or_tty->print_cr("none");
2192   } else {
2193     print_summary_sd("   Evacuation Pauses", &_total);
2194     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2195     print_summary("      Parallel Time", &_parallel);
2196     print_summary("         Ext Root Scanning", &_ext_root_scan);
2197     print_summary("         SATB Filtering", &_satb_filtering);
2198     print_summary("         Update RS", &_update_rs);
2199     print_summary("         Scan RS", &_scan_rs);
2200     print_summary("         Object Copy", &_obj_copy);
2201     print_summary("         Termination", &_termination);
2202     print_summary("         Parallel Other", &_parallel_other);
2203     print_summary("      Clear CT", &_clear_ct);
2204     print_summary("      Other", &_other);
2205   }
2206   gclog_or_tty->print_cr("");
2207 
2208   gclog_or_tty->print_cr("MISC");
2209   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2210   print_summary_sd("   Yields", &_all_yield_times_ms);
2211 }
2212 
2213 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2214   if (TraceGen1Time) {
2215     _all_full_gc_times.add(full_gc_time_ms);
2216   }
2217 }
2218 
2219 void TraceGen1TimeData::print() const {
2220   if (!TraceGen1Time) {
2221     return;
2222   }
2223 
2224   if (_all_full_gc_times.num() > 0) {
2225     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2226       _all_full_gc_times.num(),
2227       _all_full_gc_times.sum() / 1000.0);
2228     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2229     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2230       _all_full_gc_times.sd(),
2231       _all_full_gc_times.maximum());
2232   }
2233 }