1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "memory/gcLocker.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/java.hpp"
  42 #include "runtime/vmThread.hpp"
  43 #include "services/memTracker.hpp"
  44 #include "utilities/vmError.hpp"
  45 
  46 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  47 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  52 
  53 static void trace_gen_sizes(const char* const str,
  54                             size_t og_min, size_t og_max,
  55                             size_t yg_min, size_t yg_max)
  56 {
  57   if (TracePageSizes) {
  58     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
  59                   SIZE_FORMAT "," SIZE_FORMAT " "
  60                   SIZE_FORMAT,
  61                   str,
  62                   og_min / K, og_max / K,
  63                   yg_min / K, yg_max / K,
  64                   (og_max + yg_max) / K);
  65   }
  66 }
  67 
  68 jint ParallelScavengeHeap::initialize() {
  69   CollectedHeap::pre_initialize();
  70 
  71   // Cannot be initialized until after the flags are parsed
  72   // GenerationSizer flag_parser;
  73   _collector_policy = new GenerationSizer();
  74 
  75   size_t yg_min_size = _collector_policy->min_young_gen_size();
  76   size_t yg_max_size = _collector_policy->max_young_gen_size();
  77   size_t og_min_size = _collector_policy->min_old_gen_size();
  78   size_t og_max_size = _collector_policy->max_old_gen_size();
  79 
  80   trace_gen_sizes("ps heap raw",
  81                   og_min_size, og_max_size,
  82                   yg_min_size, yg_max_size);
  83 
  84   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
  85                                                      yg_max_size + og_max_size,
  86                                                      8);
  87 
  88   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
  89   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
  90 
  91   // Update sizes to reflect the selected page size(s).
  92   //
  93   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
  94   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
  95   // move to the common code.
  96   yg_min_size = align_size_up(yg_min_size, yg_align);
  97   yg_max_size = align_size_up(yg_max_size, yg_align);
  98   size_t yg_cur_size =
  99     align_size_up(_collector_policy->young_gen_size(), yg_align);
 100   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
 101 
 102   og_min_size = align_size_up(og_min_size, og_align);
 103   // Align old gen size down to preserve specified heap size.
 104   assert(og_align == yg_align, "sanity");
 105   og_max_size = align_size_down(og_max_size, og_align);
 106   og_max_size = MAX2(og_max_size, og_min_size);
 107   size_t og_cur_size =
 108     align_size_down(_collector_policy->old_gen_size(), og_align);
 109   og_cur_size = MAX2(og_cur_size, og_min_size);
 110 
 111   trace_gen_sizes("ps heap rnd",
 112                   og_min_size, og_max_size,
 113                   yg_min_size, yg_max_size);
 114 
 115   const size_t heap_size = og_max_size + yg_max_size;
 116 
 117   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, og_align);
 118 
 119   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 120 
 121   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
 122                        og_max_size + yg_max_size, og_page_sz,
 123                        heap_rs.base(),
 124                        heap_rs.size());
 125   if (!heap_rs.is_reserved()) {
 126     vm_shutdown_during_initialization(
 127       "Could not reserve enough space for object heap");
 128     return JNI_ENOMEM;
 129   }
 130 
 131   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 132                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 133 
 134   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
 135   _barrier_set = barrier_set;
 136   oopDesc::set_bs(_barrier_set);
 137   if (_barrier_set == NULL) {
 138     vm_shutdown_during_initialization(
 139       "Could not reserve enough space for barrier set");
 140     return JNI_ENOMEM;
 141   }
 142 
 143   // Initial young gen size is 4 Mb
 144   //
 145   // XXX - what about flag_parser.young_gen_size()?
 146   const size_t init_young_size = align_size_up(4 * M, yg_align);
 147   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
 148 
 149   // Make up the generations
 150   // Calculate the maximum size that a generation can grow.  This
 151   // includes growth into the other generation.  Note that the
 152   // parameter _max_gen_size is kept as the maximum
 153   // size of the generation as the boundaries currently stand.
 154   // _max_gen_size is still used as that value.
 155   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 156   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 157 
 158   _gens = new AdjoiningGenerations(heap_rs,
 159                                    og_cur_size,
 160                                    og_min_size,
 161                                    og_max_size,
 162                                    yg_cur_size,
 163                                    yg_min_size,
 164                                    yg_max_size,
 165                                    yg_align);
 166 
 167   _old_gen = _gens->old_gen();
 168   _young_gen = _gens->young_gen();
 169 
 170   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 171   const size_t old_capacity = _old_gen->capacity_in_bytes();
 172   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 173   _size_policy =
 174     new PSAdaptiveSizePolicy(eden_capacity,
 175                              initial_promo_size,
 176                              young_gen()->to_space()->capacity_in_bytes(),
 177                              intra_heap_alignment(),
 178                              max_gc_pause_sec,
 179                              max_gc_minor_pause_sec,
 180                              GCTimeRatio
 181                              );
 182 
 183   assert(!UseAdaptiveGCBoundary ||
 184     (old_gen()->virtual_space()->high_boundary() ==
 185      young_gen()->virtual_space()->low_boundary()),
 186     "Boundaries must meet");
 187   // initialize the policy counters - 2 collectors, 3 generations
 188   _gc_policy_counters =
 189     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 190   _psh = this;
 191 
 192   // Set up the GCTaskManager
 193   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 194 
 195   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 196     return JNI_ENOMEM;
 197   }
 198 
 199   return JNI_OK;
 200 }
 201 
 202 void ParallelScavengeHeap::post_initialize() {
 203   // Need to init the tenuring threshold
 204   PSScavenge::initialize();
 205   if (UseParallelOldGC) {
 206     PSParallelCompact::post_initialize();
 207   } else {
 208     PSMarkSweep::initialize();
 209   }
 210   PSPromotionManager::initialize();
 211 }
 212 
 213 void ParallelScavengeHeap::update_counters() {
 214   young_gen()->update_counters();
 215   old_gen()->update_counters();
 216   MetaspaceCounters::update_performance_counters();
 217 }
 218 
 219 size_t ParallelScavengeHeap::capacity() const {
 220   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 221   return value;
 222 }
 223 
 224 size_t ParallelScavengeHeap::used() const {
 225   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 226   return value;
 227 }
 228 
 229 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 230   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 231 }
 232 
 233 
 234 size_t ParallelScavengeHeap::max_capacity() const {
 235   size_t estimated = reserved_region().byte_size();
 236   if (UseAdaptiveSizePolicy) {
 237     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 238   } else {
 239     estimated -= young_gen()->to_space()->capacity_in_bytes();
 240   }
 241   return MAX2(estimated, capacity());
 242 }
 243 
 244 bool ParallelScavengeHeap::is_in(const void* p) const {
 245   if (young_gen()->is_in(p)) {
 246     return true;
 247   }
 248 
 249   if (old_gen()->is_in(p)) {
 250     return true;
 251   }
 252 
 253   return false;
 254 }
 255 
 256 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 257   if (young_gen()->is_in_reserved(p)) {
 258     return true;
 259   }
 260 
 261   if (old_gen()->is_in_reserved(p)) {
 262     return true;
 263   }
 264 
 265   return false;
 266 }
 267 
 268 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 269   return is_in_young((oop)addr);
 270 }
 271 
 272 #ifdef ASSERT
 273 // Don't implement this by using is_in_young().  This method is used
 274 // in some cases to check that is_in_young() is correct.
 275 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
 276   assert(is_in_reserved(p) || p == NULL,
 277     "Does not work if address is non-null and outside of the heap");
 278   // The order of the generations is old (low addr), young (high addr)
 279   return p >= old_gen()->reserved().end();
 280 }
 281 #endif
 282 
 283 // There are two levels of allocation policy here.
 284 //
 285 // When an allocation request fails, the requesting thread must invoke a VM
 286 // operation, transfer control to the VM thread, and await the results of a
 287 // garbage collection. That is quite expensive, and we should avoid doing it
 288 // multiple times if possible.
 289 //
 290 // To accomplish this, we have a basic allocation policy, and also a
 291 // failed allocation policy.
 292 //
 293 // The basic allocation policy controls how you allocate memory without
 294 // attempting garbage collection. It is okay to grab locks and
 295 // expand the heap, if that can be done without coming to a safepoint.
 296 // It is likely that the basic allocation policy will not be very
 297 // aggressive.
 298 //
 299 // The failed allocation policy is invoked from the VM thread after
 300 // the basic allocation policy is unable to satisfy a mem_allocate
 301 // request. This policy needs to cover the entire range of collection,
 302 // heap expansion, and out-of-memory conditions. It should make every
 303 // attempt to allocate the requested memory.
 304 
 305 // Basic allocation policy. Should never be called at a safepoint, or
 306 // from the VM thread.
 307 //
 308 // This method must handle cases where many mem_allocate requests fail
 309 // simultaneously. When that happens, only one VM operation will succeed,
 310 // and the rest will not be executed. For that reason, this method loops
 311 // during failed allocation attempts. If the java heap becomes exhausted,
 312 // we rely on the size_policy object to force a bail out.
 313 HeapWord* ParallelScavengeHeap::mem_allocate(
 314                                      size_t size,
 315                                      bool* gc_overhead_limit_was_exceeded) {
 316   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 317   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 318   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 319 
 320   // In general gc_overhead_limit_was_exceeded should be false so
 321   // set it so here and reset it to true only if the gc time
 322   // limit is being exceeded as checked below.
 323   *gc_overhead_limit_was_exceeded = false;
 324 
 325   HeapWord* result = young_gen()->allocate(size);
 326 
 327   uint loop_count = 0;
 328   uint gc_count = 0;
 329   int gclocker_stalled_count = 0;
 330 
 331   while (result == NULL) {
 332     // We don't want to have multiple collections for a single filled generation.
 333     // To prevent this, each thread tracks the total_collections() value, and if
 334     // the count has changed, does not do a new collection.
 335     //
 336     // The collection count must be read only while holding the heap lock. VM
 337     // operations also hold the heap lock during collections. There is a lock
 338     // contention case where thread A blocks waiting on the Heap_lock, while
 339     // thread B is holding it doing a collection. When thread A gets the lock,
 340     // the collection count has already changed. To prevent duplicate collections,
 341     // The policy MUST attempt allocations during the same period it reads the
 342     // total_collections() value!
 343     {
 344       MutexLocker ml(Heap_lock);
 345       gc_count = Universe::heap()->total_collections();
 346 
 347       result = young_gen()->allocate(size);
 348       if (result != NULL) {
 349         return result;
 350       }
 351 
 352       // If certain conditions hold, try allocating from the old gen.
 353       result = mem_allocate_old_gen(size);
 354       if (result != NULL) {
 355         return result;
 356       }
 357 
 358       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 359         return NULL;
 360       }
 361 
 362       // Failed to allocate without a gc.
 363       if (GC_locker::is_active_and_needs_gc()) {
 364         // If this thread is not in a jni critical section, we stall
 365         // the requestor until the critical section has cleared and
 366         // GC allowed. When the critical section clears, a GC is
 367         // initiated by the last thread exiting the critical section; so
 368         // we retry the allocation sequence from the beginning of the loop,
 369         // rather than causing more, now probably unnecessary, GC attempts.
 370         JavaThread* jthr = JavaThread::current();
 371         if (!jthr->in_critical()) {
 372           MutexUnlocker mul(Heap_lock);
 373           GC_locker::stall_until_clear();
 374           gclocker_stalled_count += 1;
 375           continue;
 376         } else {
 377           if (CheckJNICalls) {
 378             fatal("Possible deadlock due to allocating while"
 379                   " in jni critical section");
 380           }
 381           return NULL;
 382         }
 383       }
 384     }
 385 
 386     if (result == NULL) {
 387       // Generate a VM operation
 388       VM_ParallelGCFailedAllocation op(size, gc_count);
 389       VMThread::execute(&op);
 390 
 391       // Did the VM operation execute? If so, return the result directly.
 392       // This prevents us from looping until time out on requests that can
 393       // not be satisfied.
 394       if (op.prologue_succeeded()) {
 395         assert(Universe::heap()->is_in_or_null(op.result()),
 396           "result not in heap");
 397 
 398         // If GC was locked out during VM operation then retry allocation
 399         // and/or stall as necessary.
 400         if (op.gc_locked()) {
 401           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 402           continue;  // retry and/or stall as necessary
 403         }
 404 
 405         // Exit the loop if the gc time limit has been exceeded.
 406         // The allocation must have failed above ("result" guarding
 407         // this path is NULL) and the most recent collection has exceeded the
 408         // gc overhead limit (although enough may have been collected to
 409         // satisfy the allocation).  Exit the loop so that an out-of-memory
 410         // will be thrown (return a NULL ignoring the contents of
 411         // op.result()),
 412         // but clear gc_overhead_limit_exceeded so that the next collection
 413         // starts with a clean slate (i.e., forgets about previous overhead
 414         // excesses).  Fill op.result() with a filler object so that the
 415         // heap remains parsable.
 416         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 417         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 418 
 419         if (limit_exceeded && softrefs_clear) {
 420           *gc_overhead_limit_was_exceeded = true;
 421           size_policy()->set_gc_overhead_limit_exceeded(false);
 422           if (PrintGCDetails && Verbose) {
 423             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 424               "return NULL because gc_overhead_limit_exceeded is set");
 425           }
 426           if (op.result() != NULL) {
 427             CollectedHeap::fill_with_object(op.result(), size);
 428           }
 429           return NULL;
 430         }
 431 
 432         return op.result();
 433       }
 434     }
 435 
 436     // The policy object will prevent us from looping forever. If the
 437     // time spent in gc crosses a threshold, we will bail out.
 438     loop_count++;
 439     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 440         (loop_count % QueuedAllocationWarningCount == 0)) {
 441       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 442               " size=%d", loop_count, size);
 443     }
 444   }
 445 
 446   return result;
 447 }
 448 
 449 // A "death march" is a series of ultra-slow allocations in which a full gc is
 450 // done before each allocation, and after the full gc the allocation still
 451 // cannot be satisfied from the young gen.  This routine detects that condition;
 452 // it should be called after a full gc has been done and the allocation
 453 // attempted from the young gen. The parameter 'addr' should be the result of
 454 // that young gen allocation attempt.
 455 void
 456 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 457   if (addr != NULL) {
 458     _death_march_count = 0;  // death march has ended
 459   } else if (_death_march_count == 0) {
 460     if (should_alloc_in_eden(size)) {
 461       _death_march_count = 1;    // death march has started
 462     }
 463   }
 464 }
 465 
 466 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 467   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 468     // Size is too big for eden, or gc is locked out.
 469     return old_gen()->allocate(size);
 470   }
 471 
 472   // If a "death march" is in progress, allocate from the old gen a limited
 473   // number of times before doing a GC.
 474   if (_death_march_count > 0) {
 475     if (_death_march_count < 64) {
 476       ++_death_march_count;
 477       return old_gen()->allocate(size);
 478     } else {
 479       _death_march_count = 0;
 480     }
 481   }
 482   return NULL;
 483 }
 484 
 485 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 486   if (UseParallelOldGC) {
 487     // The do_full_collection() parameter clear_all_soft_refs
 488     // is interpreted here as maximum_compaction which will
 489     // cause SoftRefs to be cleared.
 490     bool maximum_compaction = clear_all_soft_refs;
 491     PSParallelCompact::invoke(maximum_compaction);
 492   } else {
 493     PSMarkSweep::invoke(clear_all_soft_refs);
 494   }
 495 }
 496 
 497 // Failed allocation policy. Must be called from the VM thread, and
 498 // only at a safepoint! Note that this method has policy for allocation
 499 // flow, and NOT collection policy. So we do not check for gc collection
 500 // time over limit here, that is the responsibility of the heap specific
 501 // collection methods. This method decides where to attempt allocations,
 502 // and when to attempt collections, but no collection specific policy.
 503 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 504   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 505   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 506   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 507   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 508 
 509   // We assume that allocation in eden will fail unless we collect.
 510 
 511   // First level allocation failure, scavenge and allocate in young gen.
 512   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 513   const bool invoked_full_gc = PSScavenge::invoke();
 514   HeapWord* result = young_gen()->allocate(size);
 515 
 516   // Second level allocation failure.
 517   //   Mark sweep and allocate in young generation.
 518   if (result == NULL && !invoked_full_gc) {
 519     do_full_collection(false);
 520     result = young_gen()->allocate(size);
 521   }
 522 
 523   death_march_check(result, size);
 524 
 525   // Third level allocation failure.
 526   //   After mark sweep and young generation allocation failure,
 527   //   allocate in old generation.
 528   if (result == NULL) {
 529     result = old_gen()->allocate(size);
 530   }
 531 
 532   // Fourth level allocation failure. We're running out of memory.
 533   //   More complete mark sweep and allocate in young generation.
 534   if (result == NULL) {
 535     do_full_collection(true);
 536     result = young_gen()->allocate(size);
 537   }
 538 
 539   // Fifth level allocation failure.
 540   //   After more complete mark sweep, allocate in old generation.
 541   if (result == NULL) {
 542     result = old_gen()->allocate(size);
 543   }
 544 
 545   return result;
 546 }
 547 
 548 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 549   CollectedHeap::ensure_parsability(retire_tlabs);
 550   young_gen()->eden_space()->ensure_parsability();
 551 }
 552 
 553 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 554   return young_gen()->eden_space()->free_in_bytes();
 555 }
 556 
 557 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 558   return young_gen()->eden_space()->tlab_capacity(thr);
 559 }
 560 
 561 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 562   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 563 }
 564 
 565 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 566   return young_gen()->allocate(size);
 567 }
 568 
 569 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 570   CollectedHeap::accumulate_statistics_all_tlabs();
 571 }
 572 
 573 void ParallelScavengeHeap::resize_all_tlabs() {
 574   CollectedHeap::resize_all_tlabs();
 575 }
 576 
 577 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 578   // We don't need barriers for stores to objects in the
 579   // young gen and, a fortiori, for initializing stores to
 580   // objects therein.
 581   return is_in_young(new_obj);
 582 }
 583 
 584 // This method is used by System.gc() and JVMTI.
 585 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 586   assert(!Heap_lock->owned_by_self(),
 587     "this thread should not own the Heap_lock");
 588 
 589   unsigned int gc_count      = 0;
 590   unsigned int full_gc_count = 0;
 591   {
 592     MutexLocker ml(Heap_lock);
 593     // This value is guarded by the Heap_lock
 594     gc_count      = Universe::heap()->total_collections();
 595     full_gc_count = Universe::heap()->total_full_collections();
 596   }
 597 
 598   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 599   VMThread::execute(&op);
 600 }
 601 
 602 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
 603   Unimplemented();
 604 }
 605 
 606 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 607   young_gen()->object_iterate(cl);
 608   old_gen()->object_iterate(cl);
 609 }
 610 
 611 
 612 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 613   if (young_gen()->is_in_reserved(addr)) {
 614     assert(young_gen()->is_in(addr),
 615            "addr should be in allocated part of young gen");
 616     // called from os::print_location by find or VMError
 617     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 618     Unimplemented();
 619   } else if (old_gen()->is_in_reserved(addr)) {
 620     assert(old_gen()->is_in(addr),
 621            "addr should be in allocated part of old gen");
 622     return old_gen()->start_array()->object_start((HeapWord*)addr);
 623   }
 624   return 0;
 625 }
 626 
 627 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 628   return oop(addr)->size();
 629 }
 630 
 631 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 632   return block_start(addr) == addr;
 633 }
 634 
 635 jlong ParallelScavengeHeap::millis_since_last_gc() {
 636   return UseParallelOldGC ?
 637     PSParallelCompact::millis_since_last_gc() :
 638     PSMarkSweep::millis_since_last_gc();
 639 }
 640 
 641 void ParallelScavengeHeap::prepare_for_verify() {
 642   ensure_parsability(false);  // no need to retire TLABs for verification
 643 }
 644 
 645 void ParallelScavengeHeap::print_on(outputStream* st) const {
 646   young_gen()->print_on(st);
 647   old_gen()->print_on(st);
 648   MetaspaceAux::print_on(st);
 649 }
 650 
 651 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 652   this->CollectedHeap::print_on_error(st);
 653 
 654   if (UseParallelOldGC) {
 655     st->cr();
 656     PSParallelCompact::print_on_error(st);
 657   }
 658 }
 659 
 660 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 661   PSScavenge::gc_task_manager()->threads_do(tc);
 662 }
 663 
 664 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 665   PSScavenge::gc_task_manager()->print_threads_on(st);
 666 }
 667 
 668 void ParallelScavengeHeap::print_tracing_info() const {
 669   if (TraceGen0Time) {
 670     double time = PSScavenge::accumulated_time()->seconds();
 671     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 672   }
 673   if (TraceGen1Time) {
 674     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 675     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 676   }
 677 }
 678 
 679 
 680 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 681   // Why do we need the total_collections()-filter below?
 682   if (total_collections() > 0) {
 683     if (!silent) {
 684       gclog_or_tty->print("tenured ");
 685     }
 686     old_gen()->verify();
 687 
 688     if (!silent) {
 689       gclog_or_tty->print("eden ");
 690     }
 691     young_gen()->verify();
 692   }
 693 }
 694 
 695 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 696   if (PrintGCDetails && Verbose) {
 697     gclog_or_tty->print(" "  SIZE_FORMAT
 698                         "->" SIZE_FORMAT
 699                         "("  SIZE_FORMAT ")",
 700                         prev_used, used(), capacity());
 701   } else {
 702     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 703                         "->" SIZE_FORMAT "K"
 704                         "("  SIZE_FORMAT "K)",
 705                         prev_used / K, used() / K, capacity() / K);
 706   }
 707 }
 708 
 709 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 710   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 711   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 712   return _psh;
 713 }
 714 
 715 // Before delegating the resize to the young generation,
 716 // the reserved space for the young and old generations
 717 // may be changed to accomodate the desired resize.
 718 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 719     size_t survivor_size) {
 720   if (UseAdaptiveGCBoundary) {
 721     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 722       size_policy()->reset_bytes_absorbed_from_eden();
 723       return;  // The generation changed size already.
 724     }
 725     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 726   }
 727 
 728   // Delegate the resize to the generation.
 729   _young_gen->resize(eden_size, survivor_size);
 730 }
 731 
 732 // Before delegating the resize to the old generation,
 733 // the reserved space for the young and old generations
 734 // may be changed to accomodate the desired resize.
 735 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 736   if (UseAdaptiveGCBoundary) {
 737     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 738       size_policy()->reset_bytes_absorbed_from_eden();
 739       return;  // The generation changed size already.
 740     }
 741     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 742   }
 743 
 744   // Delegate the resize to the generation.
 745   _old_gen->resize(desired_free_space);
 746 }
 747 
 748 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 749   // nothing particular
 750 }
 751 
 752 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 753   // nothing particular
 754 }
 755 
 756 #ifndef PRODUCT
 757 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 758   if (ZapUnusedHeapArea) {
 759     young_gen()->record_spaces_top();
 760     old_gen()->record_spaces_top();
 761   }
 762 }
 763 
 764 void ParallelScavengeHeap::gen_mangle_unused_area() {
 765   if (ZapUnusedHeapArea) {
 766     young_gen()->eden_space()->mangle_unused_area();
 767     young_gen()->to_space()->mangle_unused_area();
 768     young_gen()->from_space()->mangle_unused_area();
 769     old_gen()->object_space()->mangle_unused_area();
 770   }
 771 }
 772 #endif