1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 #ifdef COMPILER1
  32 #include "c1/c1_globals.hpp"
  33 #endif
  34 #ifdef COMPILER2
  35 #include "opto/c2_globals.hpp"
  36 #endif
  37 
  38 #include <new>
  39 
  40 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
  41 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
  42 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
  43 
  44 
  45 // noinline attribute
  46 #ifdef _WINDOWS
  47   #define _NOINLINE_  __declspec(noinline)
  48 #else
  49   #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
  50     #define _NOINLINE_
  51   #else
  52     #define _NOINLINE_ __attribute__ ((noinline))
  53   #endif
  54 #endif
  55 
  56 class AllocFailStrategy {
  57 public:
  58   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  59 };
  60 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  61 
  62 // All classes in the virtual machine must be subclassed
  63 // by one of the following allocation classes:
  64 //
  65 // For objects allocated in the resource area (see resourceArea.hpp).
  66 // - ResourceObj
  67 //
  68 // For objects allocated in the C-heap (managed by: free & malloc).
  69 // - CHeapObj
  70 //
  71 // For objects allocated on the stack.
  72 // - StackObj
  73 //
  74 // For embedded objects.
  75 // - ValueObj
  76 //
  77 // For classes used as name spaces.
  78 // - AllStatic
  79 //
  80 // For classes in Metaspace (class data)
  81 // - MetaspaceObj
  82 //
  83 // The printable subclasses are used for debugging and define virtual
  84 // member functions for printing. Classes that avoid allocating the
  85 // vtbl entries in the objects should therefore not be the printable
  86 // subclasses.
  87 //
  88 // The following macros and function should be used to allocate memory
  89 // directly in the resource area or in the C-heap, The _OBJ variants
  90 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  91 // objects which are not inherited from CHeapObj, note constructor and
  92 // destructor are not called. The preferable way to allocate objects
  93 // is using the new operator.
  94 //
  95 // WARNING: The array variant must only be used for a homogenous array
  96 // where all objects are of the exact type specified. If subtypes are
  97 // stored in the array then must pay attention to calling destructors
  98 // at needed.
  99 //
 100 //   NEW_RESOURCE_ARRAY(type, size)
 101 //   NEW_RESOURCE_OBJ(type)
 102 //   NEW_C_HEAP_ARRAY(type, size)
 103 //   NEW_C_HEAP_OBJ(type, memflags)
 104 //   FREE_C_HEAP_ARRAY(type, old, memflags)
 105 //   FREE_C_HEAP_OBJ(objname, type, memflags)
 106 //   char* AllocateHeap(size_t size, const char* name);
 107 //   void  FreeHeap(void* p);
 108 //
 109 // C-heap allocation can be traced using +PrintHeapAllocation.
 110 // malloc and free should therefore never called directly.
 111 
 112 // Base class for objects allocated in the C-heap.
 113 
 114 // In non product mode we introduce a super class for all allocation classes
 115 // that supports printing.
 116 // We avoid the superclass in product mode since some C++ compilers add
 117 // a word overhead for empty super classes.
 118 
 119 #ifdef PRODUCT
 120 #define ALLOCATION_SUPER_CLASS_SPEC
 121 #else
 122 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 123 class AllocatedObj {
 124  public:
 125   // Printing support
 126   void print() const;
 127   void print_value() const;
 128 
 129   virtual void print_on(outputStream* st) const;
 130   virtual void print_value_on(outputStream* st) const;
 131 };
 132 #endif
 133 
 134 
 135 /*
 136  * MemoryType bitmap layout:
 137  * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
 138  * |      memory type        |   object    | reserved    |
 139  * |                         |     type    |             |
 140  */
 141 enum MemoryType {
 142   // Memory type by sub systems. It occupies lower byte.
 143   mtNone              = 0x0000,  // undefined
 144   mtClass             = 0x0100,  // memory class for Java classes
 145   mtThread            = 0x0200,  // memory for thread objects
 146   mtThreadStack       = 0x0300,
 147   mtCode              = 0x0400,  // memory for generated code
 148   mtGC                = 0x0500,  // memory for GC
 149   mtCompiler          = 0x0600,  // memory for compiler
 150   mtInternal          = 0x0700,  // memory used by VM, but does not belong to
 151                                  // any of above categories, and not used for
 152                                  // native memory tracking
 153   mtOther             = 0x0800,  // memory not used by VM
 154   mtSymbol            = 0x0900,  // symbol
 155   mtNMT               = 0x0A00,  // memory used by native memory tracking
 156   mtChunk             = 0x0B00,  // chunk that holds content of arenas
 157   mtJavaHeap          = 0x0C00,  // Java heap
 158   mtClassShared       = 0x0D00,  // class data sharing
 159   mtTest              = 0x0E00,  // Test type for verifying NMT
 160   mtTracing           = 0x0F00,  // memory used for Tracing
 161   mt_number_of_types  = 0x000F,  // number of memory types (mtDontTrack
 162                                  // is not included as validate type)
 163   mtDontTrack         = 0x0F00,  // memory we do not or cannot track
 164   mt_masks            = 0x7F00,
 165 
 166   // object type mask
 167   otArena             = 0x0010, // an arena object
 168   otNMTRecorder       = 0x0020, // memory recorder object
 169   ot_masks            = 0x00F0
 170 };
 171 
 172 #define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
 173 #define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
 174 #define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)
 175 
 176 #define IS_ARENA_OBJ(flags)         ((flags & ot_masks) == otArena)
 177 #define IS_NMT_RECORDER(flags)      ((flags & ot_masks) == otNMTRecorder)
 178 #define NMT_CAN_TRACK(flags)        (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))
 179 
 180 typedef unsigned short MEMFLAGS;
 181 
 182 #if INCLUDE_NMT
 183 
 184 extern bool NMT_track_callsite;
 185 
 186 #else
 187 
 188 const bool NMT_track_callsite = false;
 189 
 190 #endif // INCLUDE_NMT
 191 
 192 // debug build does not inline
 193 #if defined(_NMT_NOINLINE_)
 194   #define CURRENT_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
 195   #define CALLER_PC        (NMT_track_callsite ? os::get_caller_pc(2) : 0)
 196   #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
 197 #else
 198   #define CURRENT_PC      (NMT_track_callsite? os::get_caller_pc(0) : 0)
 199   #define CALLER_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
 200   #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
 201 #endif
 202 
 203 
 204 
 205 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 206  public:
 207   _NOINLINE_ void* operator new(size_t size, address caller_pc = 0);
 208   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 209                                address caller_pc = 0);
 210   _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0);
 211   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 212                                address caller_pc = 0);
 213   void  operator delete(void* p);
 214   void  operator delete [] (void* p);
 215 };
 216 
 217 // Base class for objects allocated on the stack only.
 218 // Calling new or delete will result in fatal error.
 219 
 220 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 221  private:
 222   void* operator new(size_t size);
 223   void  operator delete(void* p);
 224   void* operator new [](size_t size);
 225   void  operator delete [](void* p);
 226 };
 227 
 228 // Base class for objects used as value objects.
 229 // Calling new or delete will result in fatal error.
 230 //
 231 // Portability note: Certain compilers (e.g. gcc) will
 232 // always make classes bigger if it has a superclass, even
 233 // if the superclass does not have any virtual methods or
 234 // instance fields. The HotSpot implementation relies on this
 235 // not to happen. So never make a ValueObj class a direct subclass
 236 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 237 // like this:
 238 //
 239 //   class A VALUE_OBJ_CLASS_SPEC {
 240 //     ...
 241 //   }
 242 //
 243 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 244 // be defined as a an empty string "".
 245 //
 246 class _ValueObj {
 247  private:
 248   void* operator new(size_t size);
 249   void  operator delete(void* p);
 250   void* operator new [](size_t size);
 251   void  operator delete [](void* p);
 252 };
 253 
 254 
 255 // Base class for objects stored in Metaspace.
 256 // Calling delete will result in fatal error.
 257 //
 258 // Do not inherit from something with a vptr because this class does
 259 // not introduce one.  This class is used to allocate both shared read-only
 260 // and shared read-write classes.
 261 //
 262 
 263 class ClassLoaderData;
 264 
 265 class MetaspaceObj {
 266  public:
 267   bool is_metadata() const;
 268   bool is_metaspace_object() const;  // more specific test but slower
 269   bool is_shared() const;
 270   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 271 
 272 #define METASPACE_OBJ_TYPES_DO(f) \
 273   f(Unknown) \
 274   f(Class) \
 275   f(Symbol) \
 276   f(TypeArrayU1) \
 277   f(TypeArrayU2) \
 278   f(TypeArrayU4) \
 279   f(TypeArrayU8) \
 280   f(TypeArrayOther) \
 281   f(Method) \
 282   f(ConstMethod) \
 283   f(MethodData) \
 284   f(ConstantPool) \
 285   f(ConstantPoolCache) \
 286   f(Annotation) \
 287   f(MethodCounters)
 288 
 289 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 290 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 291 
 292   enum Type {
 293     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 294     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 295     _number_of_types
 296   };
 297 
 298   static const char * type_name(Type type) {
 299     switch(type) {
 300     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 301     default:
 302       ShouldNotReachHere();
 303       return NULL;
 304     }
 305   }
 306 
 307   static MetaspaceObj::Type array_type(size_t elem_size) {
 308     switch (elem_size) {
 309     case 1: return TypeArrayU1Type;
 310     case 2: return TypeArrayU2Type;
 311     case 4: return TypeArrayU4Type;
 312     case 8: return TypeArrayU8Type;
 313     default:
 314       return TypeArrayOtherType;
 315     }
 316   }
 317 
 318   void* operator new(size_t size, ClassLoaderData* loader_data,
 319                      size_t word_size, bool read_only,
 320                      Type type, Thread* thread);
 321                      // can't use TRAPS from this header file.
 322   void operator delete(void* p) { ShouldNotCallThis(); }
 323 };
 324 
 325 // Base class for classes that constitute name spaces.
 326 
 327 class AllStatic {
 328  public:
 329   AllStatic()  { ShouldNotCallThis(); }
 330   ~AllStatic() { ShouldNotCallThis(); }
 331 };
 332 
 333 
 334 //------------------------------Chunk------------------------------------------
 335 // Linked list of raw memory chunks
 336 class Chunk: CHeapObj<mtChunk> {
 337   friend class VMStructs;
 338 
 339  protected:
 340   Chunk*       _next;     // Next Chunk in list
 341   const size_t _len;      // Size of this Chunk
 342  public:
 343   void* operator new(size_t size, size_t length);
 344   void  operator delete(void* p);
 345   Chunk(size_t length);
 346 
 347   enum {
 348     // default sizes; make them slightly smaller than 2**k to guard against
 349     // buddy-system style malloc implementations
 350 #ifdef _LP64
 351     slack      = 40,            // [RGV] Not sure if this is right, but make it
 352                                 //       a multiple of 8.
 353 #else
 354     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
 355 #endif
 356 
 357     init_size  =  1*K  - slack, // Size of first chunk
 358     medium_size= 10*K  - slack, // Size of medium-sized chunk
 359     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
 360     non_pool_size = init_size + 32 // An initial size which is not one of above
 361   };
 362 
 363   void chop();                  // Chop this chunk
 364   void next_chop();             // Chop next chunk
 365   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
 366   static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
 367 
 368   size_t length() const         { return _len;  }
 369   Chunk* next() const           { return _next;  }
 370   void set_next(Chunk* n)       { _next = n;  }
 371   // Boundaries of data area (possibly unused)
 372   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
 373   char* top()    const          { return bottom() + _len; }
 374   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
 375 
 376   // Start the chunk_pool cleaner task
 377   static void start_chunk_pool_cleaner_task();
 378 
 379   static void clean_chunk_pool();
 380 };
 381 
 382 //------------------------------Arena------------------------------------------
 383 // Fast allocation of memory
 384 class Arena : public CHeapObj<mtNone|otArena> {
 385 protected:
 386   friend class ResourceMark;
 387   friend class HandleMark;
 388   friend class NoHandleMark;
 389   friend class VMStructs;
 390 
 391   Chunk *_first;                // First chunk
 392   Chunk *_chunk;                // current chunk
 393   char *_hwm, *_max;            // High water mark and max in current chunk
 394   // Get a new Chunk of at least size x
 395   void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 396   size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
 397 
 398   NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
 399   friend class AllocStats;
 400   debug_only(void* malloc(size_t size);)
 401   debug_only(void* internal_malloc_4(size_t x);)
 402   NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
 403 
 404   void signal_out_of_memory(size_t request, const char* whence) const;
 405 
 406   void check_for_overflow(size_t request, const char* whence) const {
 407     if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
 408       signal_out_of_memory(request, whence);
 409     }
 410  }
 411 
 412  public:
 413   Arena();
 414   Arena(size_t init_size);
 415   ~Arena();
 416   void  destruct_contents();
 417   char* hwm() const             { return _hwm; }
 418 
 419   // new operators
 420   void* operator new (size_t size);
 421   void* operator new (size_t size, const std::nothrow_t& nothrow_constant);
 422 
 423   // dynamic memory type tagging
 424   void* operator new(size_t size, MEMFLAGS flags);
 425   void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags);
 426   void  operator delete(void* p);
 427 
 428   // Fast allocate in the arena.  Common case is: pointer test + increment.
 429   void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 430     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
 431     x = ARENA_ALIGN(x);
 432     debug_only(if (UseMallocOnly) return malloc(x);)
 433     check_for_overflow(x, "Arena::Amalloc");
 434     NOT_PRODUCT(inc_bytes_allocated(x);)
 435     if (_hwm + x > _max) {
 436       return grow(x, alloc_failmode);
 437     } else {
 438       char *old = _hwm;
 439       _hwm += x;
 440       return old;
 441     }
 442   }
 443   // Further assume size is padded out to words
 444   void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 445     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 446     debug_only(if (UseMallocOnly) return malloc(x);)
 447     check_for_overflow(x, "Arena::Amalloc_4");
 448     NOT_PRODUCT(inc_bytes_allocated(x);)
 449     if (_hwm + x > _max) {
 450       return grow(x, alloc_failmode);
 451     } else {
 452       char *old = _hwm;
 453       _hwm += x;
 454       return old;
 455     }
 456   }
 457 
 458   // Allocate with 'double' alignment. It is 8 bytes on sparc.
 459   // In other cases Amalloc_D() should be the same as Amalloc_4().
 460   void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 461     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 462     debug_only(if (UseMallocOnly) return malloc(x);)
 463 #if defined(SPARC) && !defined(_LP64)
 464 #define DALIGN_M1 7
 465     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
 466     x += delta;
 467 #endif
 468     check_for_overflow(x, "Arena::Amalloc_D");
 469     NOT_PRODUCT(inc_bytes_allocated(x);)
 470     if (_hwm + x > _max) {
 471       return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
 472     } else {
 473       char *old = _hwm;
 474       _hwm += x;
 475 #if defined(SPARC) && !defined(_LP64)
 476       old += delta; // align to 8-bytes
 477 #endif
 478       return old;
 479     }
 480   }
 481 
 482   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
 483   void Afree(void *ptr, size_t size) {
 484 #ifdef ASSERT
 485     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
 486     if (UseMallocOnly) return;
 487 #endif
 488     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
 489   }
 490 
 491   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
 492       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 493 
 494   // Move contents of this arena into an empty arena
 495   Arena *move_contents(Arena *empty_arena);
 496 
 497   // Determine if pointer belongs to this Arena or not.
 498   bool contains( const void *ptr ) const;
 499 
 500   // Total of all chunks in use (not thread-safe)
 501   size_t used() const;
 502 
 503   // Total # of bytes used
 504   size_t size_in_bytes() const         {  return _size_in_bytes; };
 505   void set_size_in_bytes(size_t size);
 506 
 507   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
 508   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
 509 
 510   // how many arena instances
 511   NOT_PRODUCT(static volatile jint _instance_count;)
 512 private:
 513   // Reset this Arena to empty, access will trigger grow if necessary
 514   void   reset(void) {
 515     _first = _chunk = NULL;
 516     _hwm = _max = NULL;
 517     set_size_in_bytes(0);
 518   }
 519 };
 520 
 521 // One of the following macros must be used when allocating
 522 // an array or object from an arena
 523 #define NEW_ARENA_ARRAY(arena, type, size) \
 524   (type*) (arena)->Amalloc((size) * sizeof(type))
 525 
 526 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
 527   (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
 528                             (new_size) * sizeof(type) )
 529 
 530 #define FREE_ARENA_ARRAY(arena, type, old, size) \
 531   (arena)->Afree((char*)(old), (size) * sizeof(type))
 532 
 533 #define NEW_ARENA_OBJ(arena, type) \
 534   NEW_ARENA_ARRAY(arena, type, 1)
 535 
 536 
 537 //%note allocation_1
 538 extern char* resource_allocate_bytes(size_t size,
 539     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 540 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 541     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 542 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 543     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 544 extern void resource_free_bytes( char *old, size_t size );
 545 
 546 //----------------------------------------------------------------------
 547 // Base class for objects allocated in the resource area per default.
 548 // Optionally, objects may be allocated on the C heap with
 549 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 550 // ResourceObj's can be allocated within other objects, but don't use
 551 // new or delete (allocation_type is unknown).  If new is used to allocate,
 552 // use delete to deallocate.
 553 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 554  public:
 555   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 556   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 557 #ifdef ASSERT
 558  private:
 559   // When this object is allocated on stack the new() operator is not
 560   // called but garbage on stack may look like a valid allocation_type.
 561   // Store negated 'this' pointer when new() is called to distinguish cases.
 562   // Use second array's element for verification value to distinguish garbage.
 563   uintptr_t _allocation_t[2];
 564   bool is_type_set() const;
 565  public:
 566   allocation_type get_allocation_type() const;
 567   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 568   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 569   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 570   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 571   ResourceObj(); // default construtor
 572   ResourceObj(const ResourceObj& r); // default copy construtor
 573   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 574   ~ResourceObj();
 575 #endif // ASSERT
 576 
 577  public:
 578   void* operator new(size_t size, allocation_type type, MEMFLAGS flags);
 579   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags);
 580   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 581       allocation_type type, MEMFLAGS flags);
 582   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 583       allocation_type type, MEMFLAGS flags);
 584 
 585   void* operator new(size_t size, Arena *arena) {
 586       address res = (address)arena->Amalloc(size);
 587       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 588       return res;
 589   }
 590 
 591   void* operator new [](size_t size, Arena *arena) {
 592       address res = (address)arena->Amalloc(size);
 593       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 594       return res;
 595   }
 596 
 597   void* operator new(size_t size) {
 598       address res = (address)resource_allocate_bytes(size);
 599       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 600       return res;
 601   }
 602 
 603   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) {
 604       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 605       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 606       return res;
 607   }
 608 
 609   void* operator new [](size_t size) {
 610       address res = (address)resource_allocate_bytes(size);
 611       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 612       return res;
 613   }
 614 
 615   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) {
 616       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 617       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 618       return res;
 619   }
 620 
 621   void  operator delete(void* p);
 622   void  operator delete [](void* p);
 623 };
 624 
 625 // One of the following macros must be used when allocating an array
 626 // or object to determine whether it should reside in the C heap on in
 627 // the resource area.
 628 
 629 #define NEW_RESOURCE_ARRAY(type, size)\
 630   (type*) resource_allocate_bytes((size) * sizeof(type))
 631 
 632 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 633   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 634 
 635 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 636   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 637 
 638 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 639   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) )
 640 
 641 #define FREE_RESOURCE_ARRAY(type, old, size)\
 642   resource_free_bytes((char*)(old), (size) * sizeof(type))
 643 
 644 #define FREE_FAST(old)\
 645     /* nop */
 646 
 647 #define NEW_RESOURCE_OBJ(type)\
 648   NEW_RESOURCE_ARRAY(type, 1)
 649 
 650 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 651   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 652 
 653 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 654   (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags))
 655 
 656 #define FREE_C_HEAP_ARRAY(type, old, memflags) \
 657   FreeHeap((char*)(old), memflags)
 658 
 659 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 660   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 661 
 662 #define REALLOC_C_HEAP_ARRAY2(type, old, size, memflags, pc)\
 663   (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags, pc))
 664 
 665 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)         \
 666   (type*) AllocateHeap(size * sizeof(type), memflags, pc, allocfail)
 667 
 668 // allocate type in heap without calling ctor
 669 #define NEW_C_HEAP_OBJ(type, memflags)\
 670   NEW_C_HEAP_ARRAY(type, 1, memflags)
 671 
 672 // deallocate obj of type in heap without calling dtor
 673 #define FREE_C_HEAP_OBJ(objname, memflags)\
 674   FreeHeap((char*)objname, memflags);
 675 
 676 // for statistics
 677 #ifndef PRODUCT
 678 class AllocStats : StackObj {
 679   julong start_mallocs, start_frees;
 680   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 681  public:
 682   AllocStats();
 683 
 684   julong num_mallocs();    // since creation of receiver
 685   julong alloc_bytes();
 686   julong num_frees();
 687   julong free_bytes();
 688   julong resource_bytes();
 689   void   print();
 690 };
 691 #endif
 692 
 693 
 694 //------------------------------ReallocMark---------------------------------
 695 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 696 // ReallocMark, which is declared in the same scope as the reallocated
 697 // pointer.  Any operation that could __potentially__ cause a reallocation
 698 // should check the ReallocMark.
 699 class ReallocMark: public StackObj {
 700 protected:
 701   NOT_PRODUCT(int _nesting;)
 702 
 703 public:
 704   ReallocMark()   PRODUCT_RETURN;
 705   void check()    PRODUCT_RETURN;
 706 };
 707 
 708 // Helper class to allocate arrays that may become large.
 709 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 710 // and uses mapped memory for larger allocations.
 711 // Most OS mallocs do something similar but Solaris malloc does not revert
 712 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 713 // is set so that we always use malloc except for Solaris where we set the
 714 // limit to get mapped memory.
 715 template <class E, MEMFLAGS F>
 716 class ArrayAllocator : StackObj {
 717   char* _addr;
 718   bool _use_malloc;
 719   size_t _size;
 720  public:
 721   ArrayAllocator() : _addr(NULL), _use_malloc(false), _size(0) { }
 722   ~ArrayAllocator() { free(); }
 723   E* allocate(size_t length);
 724   void free();
 725 };
 726 
 727 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP