1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTraceTime.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/filemap.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/genCollectedHeap.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.inline.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "memory/space.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/oop.inline2.hpp"
  45 #include "runtime/aprofiler.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/fprofiler.hpp"
  48 #include "runtime/handles.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in strong root scanning.
  65 enum GCH_process_strong_roots_tasks {
  66   // We probably want to parallelize both of these internally, but for now...
  67   GCH_PS_younger_gens,
  68   // Leave this one last.
  69   GCH_PS_NumElements
  70 };
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  73   SharedHeap(policy),
  74   _gen_policy(policy),
  75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_strong_tasks == NULL ||
  79       !_gen_process_strong_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   int i;
  89   _n_gens = gen_policy()->number_of_generations();
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   size_t total_reserved = 0;
 112   int n_covered_regions = 0;
 113   ReservedSpace heap_rs(0);
 114 
 115   heap_address = allocate(alignment, &total_reserved,
 116                           &n_covered_regions, &heap_rs);
 117 
 118   if (!heap_rs.is_reserved()) {
 119     vm_shutdown_during_initialization(
 120       "Could not reserve enough space for object heap");
 121     return JNI_ENOMEM;
 122   }
 123 
 124   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 125                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 126 
 127   // It is important to do this in a way such that concurrent readers can't
 128   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 129   _reserved.set_word_size(0);
 130   _reserved.set_start((HeapWord*)heap_rs.base());
 131   size_t actual_heap_size = heap_rs.size();
 132   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 133 
 134   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 135   set_barrier_set(rem_set()->bs());
 136 
 137   _gch = this;
 138 
 139   for (i = 0; i < _n_gens; i++) {
 140     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 141     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 142     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 143   }
 144   clear_incremental_collection_failed();
 145 
 146 #if INCLUDE_ALL_GCS
 147   // If we are running CMS, create the collector responsible
 148   // for collecting the CMS generations.
 149   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 150     bool success = create_cms_collector();
 151     if (!success) return JNI_ENOMEM;
 152   }
 153 #endif // INCLUDE_ALL_GCS
 154 
 155   return JNI_OK;
 156 }
 157 
 158 
 159 char* GenCollectedHeap::allocate(size_t alignment,
 160                                  size_t* _total_reserved,
 161                                  int* _n_covered_regions,
 162                                  ReservedSpace* heap_rs){
 163   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 164     "the maximum representable size";
 165 
 166   // Now figure out the total size.
 167   size_t total_reserved = 0;
 168   int n_covered_regions = 0;
 169   const size_t pageSize = UseLargePages ?
 170       os::large_page_size() : os::vm_page_size();
 171 
 172   for (int i = 0; i < _n_gens; i++) {
 173     total_reserved += _gen_specs[i]->max_size();
 174     if (total_reserved < _gen_specs[i]->max_size()) {
 175       vm_exit_during_initialization(overflow_msg);
 176     }
 177     n_covered_regions += _gen_specs[i]->n_covered_regions();
 178   }
 179   assert(total_reserved % pageSize == 0,
 180          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
 181                  SIZE_FORMAT, total_reserved, pageSize));
 182 
 183   // Needed until the cardtable is fixed to have the right number
 184   // of covered regions.
 185   n_covered_regions += 2;
 186 
 187   if (UseLargePages) {
 188     assert(total_reserved != 0, "total_reserved cannot be 0");
 189     total_reserved = round_to(total_reserved, os::large_page_size());
 190     if (total_reserved < os::large_page_size()) {
 191       vm_exit_during_initialization(overflow_msg);
 192     }
 193   }
 194 
 195       *_total_reserved = total_reserved;
 196       *_n_covered_regions = n_covered_regions;
 197   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 198   return heap_rs->base();
 199 }
 200 
 201 
 202 void GenCollectedHeap::post_initialize() {
 203   SharedHeap::post_initialize();
 204   TwoGenerationCollectorPolicy *policy =
 205     (TwoGenerationCollectorPolicy *)collector_policy();
 206   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 207   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 208   assert(def_new_gen->kind() == Generation::DefNew ||
 209          def_new_gen->kind() == Generation::ParNew ||
 210          def_new_gen->kind() == Generation::ASParNew,
 211          "Wrong generation kind");
 212 
 213   Generation* old_gen = get_gen(1);
 214   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 215          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 216          old_gen->kind() == Generation::MarkSweepCompact,
 217     "Wrong generation kind");
 218 
 219   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 220                                  old_gen->capacity(),
 221                                  def_new_gen->from()->capacity());
 222   policy->initialize_gc_policy_counters();
 223 }
 224 
 225 void GenCollectedHeap::ref_processing_init() {
 226   SharedHeap::ref_processing_init();
 227   for (int i = 0; i < _n_gens; i++) {
 228     _gens[i]->ref_processor_init();
 229   }
 230 }
 231 
 232 size_t GenCollectedHeap::capacity() const {
 233   size_t res = 0;
 234   for (int i = 0; i < _n_gens; i++) {
 235     res += _gens[i]->capacity();
 236   }
 237   return res;
 238 }
 239 
 240 size_t GenCollectedHeap::used() const {
 241   size_t res = 0;
 242   for (int i = 0; i < _n_gens; i++) {
 243     res += _gens[i]->used();
 244   }
 245   return res;
 246 }
 247 
 248 // Save the "used_region" for generations level and lower.
 249 void GenCollectedHeap::save_used_regions(int level) {
 250   assert(level < _n_gens, "Illegal level parameter");
 251   for (int i = level; i >= 0; i--) {
 252     _gens[i]->save_used_region();
 253   }
 254 }
 255 
 256 size_t GenCollectedHeap::max_capacity() const {
 257   size_t res = 0;
 258   for (int i = 0; i < _n_gens; i++) {
 259     res += _gens[i]->max_capacity();
 260   }
 261   return res;
 262 }
 263 
 264 // Update the _full_collections_completed counter
 265 // at the end of a stop-world full GC.
 266 unsigned int GenCollectedHeap::update_full_collections_completed() {
 267   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 268   assert(_full_collections_completed <= _total_full_collections,
 269          "Can't complete more collections than were started");
 270   _full_collections_completed = _total_full_collections;
 271   ml.notify_all();
 272   return _full_collections_completed;
 273 }
 274 
 275 // Update the _full_collections_completed counter, as appropriate,
 276 // at the end of a concurrent GC cycle. Note the conditional update
 277 // below to allow this method to be called by a concurrent collector
 278 // without synchronizing in any manner with the VM thread (which
 279 // may already have initiated a STW full collection "concurrently").
 280 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 281   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 282   assert((_full_collections_completed <= _total_full_collections) &&
 283          (count <= _total_full_collections),
 284          "Can't complete more collections than were started");
 285   if (count > _full_collections_completed) {
 286     _full_collections_completed = count;
 287     ml.notify_all();
 288   }
 289   return _full_collections_completed;
 290 }
 291 
 292 
 293 #ifndef PRODUCT
 294 // Override of memory state checking method in CollectedHeap:
 295 // Some collectors (CMS for example) can't have badHeapWordVal written
 296 // in the first two words of an object. (For instance , in the case of
 297 // CMS these words hold state used to synchronize between certain
 298 // (concurrent) GC steps and direct allocating mutators.)
 299 // The skip_header_HeapWords() method below, allows us to skip
 300 // over the requisite number of HeapWord's. Note that (for
 301 // generational collectors) this means that those many words are
 302 // skipped in each object, irrespective of the generation in which
 303 // that object lives. The resultant loss of precision seems to be
 304 // harmless and the pain of avoiding that imprecision appears somewhat
 305 // higher than we are prepared to pay for such rudimentary debugging
 306 // support.
 307 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 308                                                          size_t size) {
 309   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 310     // We are asked to check a size in HeapWords,
 311     // but the memory is mangled in juint words.
 312     juint* start = (juint*) (addr + skip_header_HeapWords());
 313     juint* end   = (juint*) (addr + size);
 314     for (juint* slot = start; slot < end; slot += 1) {
 315       assert(*slot == badHeapWordVal,
 316              "Found non badHeapWordValue in pre-allocation check");
 317     }
 318   }
 319 }
 320 #endif
 321 
 322 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 323                                                bool is_tlab,
 324                                                bool first_only) {
 325   HeapWord* res;
 326   for (int i = 0; i < _n_gens; i++) {
 327     if (_gens[i]->should_allocate(size, is_tlab)) {
 328       res = _gens[i]->allocate(size, is_tlab);
 329       if (res != NULL) return res;
 330       else if (first_only) break;
 331     }
 332   }
 333   // Otherwise...
 334   return NULL;
 335 }
 336 
 337 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 338                                          bool* gc_overhead_limit_was_exceeded) {
 339   return collector_policy()->mem_allocate_work(size,
 340                                                false /* is_tlab */,
 341                                                gc_overhead_limit_was_exceeded);
 342 }
 343 
 344 bool GenCollectedHeap::must_clear_all_soft_refs() {
 345   return _gc_cause == GCCause::_last_ditch_collection;
 346 }
 347 
 348 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 349   return UseConcMarkSweepGC &&
 350          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 351           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 352 }
 353 
 354 void GenCollectedHeap::do_collection(bool  full,
 355                                      bool   clear_all_soft_refs,
 356                                      size_t size,
 357                                      bool   is_tlab,
 358                                      int    max_level) {
 359   bool prepared_for_verification = false;
 360   ResourceMark rm;
 361   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 362 
 363   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 364   assert(my_thread->is_VM_thread() ||
 365          my_thread->is_ConcurrentGC_thread(),
 366          "incorrect thread type capability");
 367   assert(Heap_lock->is_locked(),
 368          "the requesting thread should have the Heap_lock");
 369   guarantee(!is_gc_active(), "collection is not reentrant");
 370   assert(max_level < n_gens(), "sanity check");
 371 
 372   if (GC_locker::check_active_before_gc()) {
 373     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 374   }
 375 
 376   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 377                           collector_policy()->should_clear_all_soft_refs();
 378 
 379   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 380 
 381   const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
 382 
 383   print_heap_before_gc();
 384 
 385   {
 386     FlagSetting fl(_is_gc_active, true);
 387 
 388     bool complete = full && (max_level == (n_gens()-1));
 389     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 390     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 391     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 392     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
 393 
 394     gc_prologue(complete);
 395     increment_total_collections(complete);
 396 
 397     size_t gch_prev_used = used();
 398 
 399     int starting_level = 0;
 400     if (full) {
 401       // Search for the oldest generation which will collect all younger
 402       // generations, and start collection loop there.
 403       for (int i = max_level; i >= 0; i--) {
 404         if (_gens[i]->full_collects_younger_generations()) {
 405           starting_level = i;
 406           break;
 407         }
 408       }
 409     }
 410 
 411     bool must_restore_marks_for_biased_locking = false;
 412 
 413     int max_level_collected = starting_level;
 414     for (int i = starting_level; i <= max_level; i++) {
 415       if (_gens[i]->should_collect(full, size, is_tlab)) {
 416         if (i == n_gens() - 1) {  // a major collection is to happen
 417           if (!complete) {
 418             // The full_collections increment was missed above.
 419             increment_total_full_collections();
 420           }
 421           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 422         }
 423         // Timer for individual generations. Last argument is false: no CR
 424         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 425         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
 426         TraceCollectorStats tcs(_gens[i]->counters());
 427         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 428 
 429         size_t prev_used = _gens[i]->used();
 430         _gens[i]->stat_record()->invocations++;
 431         _gens[i]->stat_record()->accumulated_time.start();
 432 
 433         // Must be done anew before each collection because
 434         // a previous collection will do mangling and will
 435         // change top of some spaces.
 436         record_gen_tops_before_GC();
 437 
 438         if (PrintGC && Verbose) {
 439           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 440                      i,
 441                      _gens[i]->stat_record()->invocations,
 442                      size*HeapWordSize);
 443         }
 444 
 445         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 446             total_collections() >= VerifyGCStartAt) {
 447           HandleMark hm;  // Discard invalid handles created during verification
 448           if (!prepared_for_verification) {
 449             prepare_for_verify();
 450             prepared_for_verification = true;
 451           }
 452           Universe::verify(" VerifyBeforeGC:");
 453         }
 454         COMPILER2_PRESENT(DerivedPointerTable::clear());
 455 
 456         if (!must_restore_marks_for_biased_locking &&
 457             _gens[i]->performs_in_place_marking()) {
 458           // We perform this mark word preservation work lazily
 459           // because it's only at this point that we know whether we
 460           // absolutely have to do it; we want to avoid doing it for
 461           // scavenge-only collections where it's unnecessary
 462           must_restore_marks_for_biased_locking = true;
 463           BiasedLocking::preserve_marks();
 464         }
 465 
 466         // Do collection work
 467         {
 468           // Note on ref discovery: For what appear to be historical reasons,
 469           // GCH enables and disabled (by enqueing) refs discovery.
 470           // In the future this should be moved into the generation's
 471           // collect method so that ref discovery and enqueueing concerns
 472           // are local to a generation. The collect method could return
 473           // an appropriate indication in the case that notification on
 474           // the ref lock was needed. This will make the treatment of
 475           // weak refs more uniform (and indeed remove such concerns
 476           // from GCH). XXX
 477 
 478           HandleMark hm;  // Discard invalid handles created during gc
 479           save_marks();   // save marks for all gens
 480           // We want to discover references, but not process them yet.
 481           // This mode is disabled in process_discovered_references if the
 482           // generation does some collection work, or in
 483           // enqueue_discovered_references if the generation returns
 484           // without doing any work.
 485           ReferenceProcessor* rp = _gens[i]->ref_processor();
 486           // If the discovery of ("weak") refs in this generation is
 487           // atomic wrt other collectors in this configuration, we
 488           // are guaranteed to have empty discovered ref lists.
 489           if (rp->discovery_is_atomic()) {
 490             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 491             rp->setup_policy(do_clear_all_soft_refs);
 492           } else {
 493             // collect() below will enable discovery as appropriate
 494           }
 495           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 496           if (!rp->enqueuing_is_done()) {
 497             rp->enqueue_discovered_references();
 498           } else {
 499             rp->set_enqueuing_is_done(false);
 500           }
 501           rp->verify_no_references_recorded();
 502         }
 503         max_level_collected = i;
 504 
 505         // Determine if allocation request was met.
 506         if (size > 0) {
 507           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 508             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 509               size = 0;
 510             }
 511           }
 512         }
 513 
 514         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 515 
 516         _gens[i]->stat_record()->accumulated_time.stop();
 517 
 518         update_gc_stats(i, full);
 519 
 520         if (VerifyAfterGC && i >= VerifyGCLevel &&
 521             total_collections() >= VerifyGCStartAt) {
 522           HandleMark hm;  // Discard invalid handles created during verification
 523           Universe::verify(" VerifyAfterGC:");
 524         }
 525 
 526         if (PrintGCDetails) {
 527           gclog_or_tty->print(":");
 528           _gens[i]->print_heap_change(prev_used);
 529         }
 530       }
 531     }
 532 
 533     // Update "complete" boolean wrt what actually transpired --
 534     // for instance, a promotion failure could have led to
 535     // a whole heap collection.
 536     complete = complete || (max_level_collected == n_gens() - 1);
 537 
 538     if (complete) { // We did a "major" collection
 539       // FIXME: See comment at pre_full_gc_dump call
 540       post_full_gc_dump(NULL);   // do any post full gc dumps
 541     }
 542 
 543     if (PrintGCDetails) {
 544       print_heap_change(gch_prev_used);
 545 
 546       // Print metaspace info for full GC with PrintGCDetails flag.
 547       if (complete) {
 548         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 549       }
 550     }
 551 
 552     for (int j = max_level_collected; j >= 0; j -= 1) {
 553       // Adjust generation sizes.
 554       _gens[j]->compute_new_size();
 555     }
 556 
 557     if (complete) {
 558       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 559       ClassLoaderDataGraph::purge();
 560       MetaspaceAux::verify_metrics();
 561       // Resize the metaspace capacity after full collections
 562       MetaspaceGC::compute_new_size();
 563       update_full_collections_completed();
 564     }
 565 
 566     // Track memory usage and detect low memory after GC finishes
 567     MemoryService::track_memory_usage();
 568 
 569     gc_epilogue(complete);
 570 
 571     if (must_restore_marks_for_biased_locking) {
 572       BiasedLocking::restore_marks();
 573     }
 574   }
 575 
 576   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 577   AdaptiveSizePolicyOutput(sp, total_collections());
 578 
 579   print_heap_after_gc();
 580 
 581 #ifdef TRACESPINNING
 582   ParallelTaskTerminator::print_termination_counts();
 583 #endif
 584 }
 585 
 586 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 587   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 588 }
 589 
 590 void GenCollectedHeap::set_par_threads(uint t) {
 591   SharedHeap::set_par_threads(t);
 592   _gen_process_strong_tasks->set_n_threads(t);
 593 }
 594 
 595 void GenCollectedHeap::
 596 gen_process_strong_roots(int level,
 597                          bool younger_gens_as_roots,
 598                          bool activate_scope,
 599                          bool is_scavenging,
 600                          SharedHeap::ScanningOption so,
 601                          OopsInGenClosure* not_older_gens,
 602                          bool do_code_roots,
 603                          OopsInGenClosure* older_gens,
 604                          KlassClosure* klass_closure) {
 605   // General strong roots.
 606 
 607   if (!do_code_roots) {
 608     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 609                                      not_older_gens, NULL, klass_closure);
 610   } else {
 611     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 612     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 613     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 614                                      not_older_gens, &code_roots, klass_closure);
 615   }
 616 
 617   if (younger_gens_as_roots) {
 618     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 619       for (int i = 0; i < level; i++) {
 620         not_older_gens->set_generation(_gens[i]);
 621         _gens[i]->oop_iterate(not_older_gens);
 622       }
 623       not_older_gens->reset_generation();
 624     }
 625   }
 626   // When collection is parallel, all threads get to cooperate to do
 627   // older-gen scanning.
 628   for (int i = level+1; i < _n_gens; i++) {
 629     older_gens->set_generation(_gens[i]);
 630     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 631     older_gens->reset_generation();
 632   }
 633 
 634   _gen_process_strong_tasks->all_tasks_completed();
 635 }
 636 
 637 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 638                                               CodeBlobClosure* code_roots) {
 639   SharedHeap::process_weak_roots(root_closure, code_roots);
 640   // "Local" "weak" refs
 641   for (int i = 0; i < _n_gens; i++) {
 642     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 643   }
 644 }
 645 
 646 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 647 void GenCollectedHeap::                                                 \
 648 oop_since_save_marks_iterate(int level,                                 \
 649                              OopClosureType* cur,                       \
 650                              OopClosureType* older) {                   \
 651   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 652   for (int i = level+1; i < n_gens(); i++) {                            \
 653     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 654   }                                                                     \
 655 }
 656 
 657 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 658 
 659 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 660 
 661 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 662   for (int i = level; i < _n_gens; i++) {
 663     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 664   }
 665   return true;
 666 }
 667 
 668 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 669   return _gens[0]->supports_inline_contig_alloc();
 670 }
 671 
 672 HeapWord** GenCollectedHeap::top_addr() const {
 673   return _gens[0]->top_addr();
 674 }
 675 
 676 HeapWord** GenCollectedHeap::end_addr() const {
 677   return _gens[0]->end_addr();
 678 }
 679 
 680 size_t GenCollectedHeap::unsafe_max_alloc() {
 681   return _gens[0]->unsafe_max_alloc_nogc();
 682 }
 683 
 684 // public collection interfaces
 685 
 686 void GenCollectedHeap::collect(GCCause::Cause cause) {
 687   if (should_do_concurrent_full_gc(cause)) {
 688 #if INCLUDE_ALL_GCS
 689     // mostly concurrent full collection
 690     collect_mostly_concurrent(cause);
 691 #else  // INCLUDE_ALL_GCS
 692     ShouldNotReachHere();
 693 #endif // INCLUDE_ALL_GCS
 694   } else {
 695 #ifdef ASSERT
 696     if (cause == GCCause::_scavenge_alot) {
 697       // minor collection only
 698       collect(cause, 0);
 699     } else {
 700       // Stop-the-world full collection
 701       collect(cause, n_gens() - 1);
 702     }
 703 #else
 704     // Stop-the-world full collection
 705     collect(cause, n_gens() - 1);
 706 #endif
 707   }
 708 }
 709 
 710 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 711   // The caller doesn't have the Heap_lock
 712   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 713   MutexLocker ml(Heap_lock);
 714   collect_locked(cause, max_level);
 715 }
 716 
 717 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 718   // The caller has the Heap_lock
 719   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 720   collect_locked(cause, n_gens() - 1);
 721 }
 722 
 723 // this is the private collection interface
 724 // The Heap_lock is expected to be held on entry.
 725 
 726 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 727   // Read the GC count while holding the Heap_lock
 728   unsigned int gc_count_before      = total_collections();
 729   unsigned int full_gc_count_before = total_full_collections();
 730   {
 731     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 732     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 733                          cause, max_level);
 734     VMThread::execute(&op);
 735   }
 736 }
 737 
 738 #if INCLUDE_ALL_GCS
 739 bool GenCollectedHeap::create_cms_collector() {
 740 
 741   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 742          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
 743          "Unexpected generation kinds");
 744   // Skip two header words in the block content verification
 745   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 746   CMSCollector* collector = new CMSCollector(
 747     (ConcurrentMarkSweepGeneration*)_gens[1],
 748     _rem_set->as_CardTableRS(),
 749     (ConcurrentMarkSweepPolicy*) collector_policy());
 750 
 751   if (collector == NULL || !collector->completed_initialization()) {
 752     if (collector) {
 753       delete collector;  // Be nice in embedded situation
 754     }
 755     vm_shutdown_during_initialization("Could not create CMS collector");
 756     return false;
 757   }
 758   return true;  // success
 759 }
 760 
 761 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 762   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 763 
 764   MutexLocker ml(Heap_lock);
 765   // Read the GC counts while holding the Heap_lock
 766   unsigned int full_gc_count_before = total_full_collections();
 767   unsigned int gc_count_before      = total_collections();
 768   {
 769     MutexUnlocker mu(Heap_lock);
 770     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 771     VMThread::execute(&op);
 772   }
 773 }
 774 #endif // INCLUDE_ALL_GCS
 775 
 776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 777    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 778 }
 779 
 780 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 781                                           int max_level) {
 782   int local_max_level;
 783   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 784       gc_cause() == GCCause::_gc_locker) {
 785     local_max_level = 0;
 786   } else {
 787     local_max_level = max_level;
 788   }
 789 
 790   do_collection(true                 /* full */,
 791                 clear_all_soft_refs  /* clear_all_soft_refs */,
 792                 0                    /* size */,
 793                 false                /* is_tlab */,
 794                 local_max_level      /* max_level */);
 795   // Hack XXX FIX ME !!!
 796   // A scavenge may not have been attempted, or may have
 797   // been attempted and failed, because the old gen was too full
 798   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 799       incremental_collection_will_fail(false /* don't consult_young */)) {
 800     if (PrintGCDetails) {
 801       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 802                              "because scavenge failed");
 803     }
 804     // This time allow the old gen to be collected as well
 805     do_collection(true                 /* full */,
 806                   clear_all_soft_refs  /* clear_all_soft_refs */,
 807                   0                    /* size */,
 808                   false                /* is_tlab */,
 809                   n_gens() - 1         /* max_level */);
 810   }
 811 }
 812 
 813 bool GenCollectedHeap::is_in_young(oop p) {
 814   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 815   assert(result == _gens[0]->is_in_reserved(p),
 816          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 817   return result;
 818 }
 819 
 820 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 821 bool GenCollectedHeap::is_in(const void* p) const {
 822   #ifndef ASSERT
 823   guarantee(VerifyBeforeGC      ||
 824             VerifyDuringGC      ||
 825             VerifyBeforeExit    ||
 826             VerifyDuringStartup ||
 827             PrintAssembly       ||
 828             tty->count() != 0   ||   // already printing
 829             VerifyAfterGC       ||
 830     VMError::fatal_error_in_progress(), "too expensive");
 831 
 832   #endif
 833   // This might be sped up with a cache of the last generation that
 834   // answered yes.
 835   for (int i = 0; i < _n_gens; i++) {
 836     if (_gens[i]->is_in(p)) return true;
 837   }
 838   // Otherwise...
 839   return false;
 840 }
 841 
 842 #ifdef ASSERT
 843 // Don't implement this by using is_in_young().  This method is used
 844 // in some cases to check that is_in_young() is correct.
 845 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 846   assert(is_in_reserved(p) || p == NULL,
 847     "Does not work if address is non-null and outside of the heap");
 848   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 849 }
 850 #endif
 851 
 852 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 853   for (int i = 0; i < _n_gens; i++) {
 854     _gens[i]->oop_iterate(cl);
 855   }
 856 }
 857 
 858 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 859   for (int i = 0; i < _n_gens; i++) {
 860     _gens[i]->oop_iterate(mr, cl);
 861   }
 862 }
 863 
 864 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 865   for (int i = 0; i < _n_gens; i++) {
 866     _gens[i]->object_iterate(cl);
 867   }
 868 }
 869 
 870 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 871   for (int i = 0; i < _n_gens; i++) {
 872     _gens[i]->safe_object_iterate(cl);
 873   }
 874 }
 875 
 876 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
 877   for (int i = 0; i < _n_gens; i++) {
 878     _gens[i]->object_iterate_since_last_GC(cl);
 879   }
 880 }
 881 
 882 Space* GenCollectedHeap::space_containing(const void* addr) const {
 883   for (int i = 0; i < _n_gens; i++) {
 884     Space* res = _gens[i]->space_containing(addr);
 885     if (res != NULL) return res;
 886   }
 887   // Otherwise...
 888   assert(false, "Could not find containing space");
 889   return NULL;
 890 }
 891 
 892 
 893 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 894   assert(is_in_reserved(addr), "block_start of address outside of heap");
 895   for (int i = 0; i < _n_gens; i++) {
 896     if (_gens[i]->is_in_reserved(addr)) {
 897       assert(_gens[i]->is_in(addr),
 898              "addr should be in allocated part of generation");
 899       return _gens[i]->block_start(addr);
 900     }
 901   }
 902   assert(false, "Some generation should contain the address");
 903   return NULL;
 904 }
 905 
 906 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 907   assert(is_in_reserved(addr), "block_size of address outside of heap");
 908   for (int i = 0; i < _n_gens; i++) {
 909     if (_gens[i]->is_in_reserved(addr)) {
 910       assert(_gens[i]->is_in(addr),
 911              "addr should be in allocated part of generation");
 912       return _gens[i]->block_size(addr);
 913     }
 914   }
 915   assert(false, "Some generation should contain the address");
 916   return 0;
 917 }
 918 
 919 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 920   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 921   assert(block_start(addr) == addr, "addr must be a block start");
 922   for (int i = 0; i < _n_gens; i++) {
 923     if (_gens[i]->is_in_reserved(addr)) {
 924       return _gens[i]->block_is_obj(addr);
 925     }
 926   }
 927   assert(false, "Some generation should contain the address");
 928   return false;
 929 }
 930 
 931 bool GenCollectedHeap::supports_tlab_allocation() const {
 932   for (int i = 0; i < _n_gens; i += 1) {
 933     if (_gens[i]->supports_tlab_allocation()) {
 934       return true;
 935     }
 936   }
 937   return false;
 938 }
 939 
 940 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 941   size_t result = 0;
 942   for (int i = 0; i < _n_gens; i += 1) {
 943     if (_gens[i]->supports_tlab_allocation()) {
 944       result += _gens[i]->tlab_capacity();
 945     }
 946   }
 947   return result;
 948 }
 949 
 950 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 951   size_t result = 0;
 952   for (int i = 0; i < _n_gens; i += 1) {
 953     if (_gens[i]->supports_tlab_allocation()) {
 954       result += _gens[i]->unsafe_max_tlab_alloc();
 955     }
 956   }
 957   return result;
 958 }
 959 
 960 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 961   bool gc_overhead_limit_was_exceeded;
 962   return collector_policy()->mem_allocate_work(size /* size */,
 963                                                true /* is_tlab */,
 964                                                &gc_overhead_limit_was_exceeded);
 965 }
 966 
 967 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 968 // from the list headed by "*prev_ptr".
 969 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 970   bool first = true;
 971   size_t min_size = 0;   // "first" makes this conceptually infinite.
 972   ScratchBlock **smallest_ptr, *smallest;
 973   ScratchBlock  *cur = *prev_ptr;
 974   while (cur) {
 975     assert(*prev_ptr == cur, "just checking");
 976     if (first || cur->num_words < min_size) {
 977       smallest_ptr = prev_ptr;
 978       smallest     = cur;
 979       min_size     = smallest->num_words;
 980       first        = false;
 981     }
 982     prev_ptr = &cur->next;
 983     cur     =  cur->next;
 984   }
 985   smallest      = *smallest_ptr;
 986   *smallest_ptr = smallest->next;
 987   return smallest;
 988 }
 989 
 990 // Sort the scratch block list headed by res into decreasing size order,
 991 // and set "res" to the result.
 992 static void sort_scratch_list(ScratchBlock*& list) {
 993   ScratchBlock* sorted = NULL;
 994   ScratchBlock* unsorted = list;
 995   while (unsorted) {
 996     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 997     smallest->next  = sorted;
 998     sorted          = smallest;
 999   }
1000   list = sorted;
1001 }
1002 
1003 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1004                                                size_t max_alloc_words) {
1005   ScratchBlock* res = NULL;
1006   for (int i = 0; i < _n_gens; i++) {
1007     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1008   }
1009   sort_scratch_list(res);
1010   return res;
1011 }
1012 
1013 void GenCollectedHeap::release_scratch() {
1014   for (int i = 0; i < _n_gens; i++) {
1015     _gens[i]->reset_scratch();
1016   }
1017 }
1018 
1019 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1020   void do_generation(Generation* gen) {
1021     gen->prepare_for_verify();
1022   }
1023 };
1024 
1025 void GenCollectedHeap::prepare_for_verify() {
1026   ensure_parsability(false);        // no need to retire TLABs
1027   GenPrepareForVerifyClosure blk;
1028   generation_iterate(&blk, false);
1029 }
1030 
1031 
1032 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1033                                           bool old_to_young) {
1034   if (old_to_young) {
1035     for (int i = _n_gens-1; i >= 0; i--) {
1036       cl->do_generation(_gens[i]);
1037     }
1038   } else {
1039     for (int i = 0; i < _n_gens; i++) {
1040       cl->do_generation(_gens[i]);
1041     }
1042   }
1043 }
1044 
1045 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1046   for (int i = 0; i < _n_gens; i++) {
1047     _gens[i]->space_iterate(cl, true);
1048   }
1049 }
1050 
1051 bool GenCollectedHeap::is_maximal_no_gc() const {
1052   for (int i = 0; i < _n_gens; i++) {
1053     if (!_gens[i]->is_maximal_no_gc()) {
1054       return false;
1055     }
1056   }
1057   return true;
1058 }
1059 
1060 void GenCollectedHeap::save_marks() {
1061   for (int i = 0; i < _n_gens; i++) {
1062     _gens[i]->save_marks();
1063   }
1064 }
1065 
1066 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1067   for (int i = 0; i <= collectedGen; i++) {
1068     _gens[i]->compute_new_size();
1069   }
1070 }
1071 
1072 GenCollectedHeap* GenCollectedHeap::heap() {
1073   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1074   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1075   return _gch;
1076 }
1077 
1078 
1079 void GenCollectedHeap::prepare_for_compaction() {
1080   Generation* scanning_gen = _gens[_n_gens-1];
1081   // Start by compacting into same gen.
1082   CompactPoint cp(scanning_gen, NULL, NULL);
1083   while (scanning_gen != NULL) {
1084     scanning_gen->prepare_for_compaction(&cp);
1085     scanning_gen = prev_gen(scanning_gen);
1086   }
1087 }
1088 
1089 GCStats* GenCollectedHeap::gc_stats(int level) const {
1090   return _gens[level]->gc_stats();
1091 }
1092 
1093 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1094   for (int i = _n_gens-1; i >= 0; i--) {
1095     Generation* g = _gens[i];
1096     if (!silent) {
1097       gclog_or_tty->print(g->name());
1098       gclog_or_tty->print(" ");
1099     }
1100     g->verify();
1101   }
1102   if (!silent) {
1103     gclog_or_tty->print("remset ");
1104   }
1105   rem_set()->verify();
1106 }
1107 
1108 void GenCollectedHeap::print_on(outputStream* st) const {
1109   for (int i = 0; i < _n_gens; i++) {
1110     _gens[i]->print_on(st);
1111   }
1112   MetaspaceAux::print_on(st);
1113 }
1114 
1115 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1116   if (workers() != NULL) {
1117     workers()->threads_do(tc);
1118   }
1119 #if INCLUDE_ALL_GCS
1120   if (UseConcMarkSweepGC) {
1121     ConcurrentMarkSweepThread::threads_do(tc);
1122   }
1123 #endif // INCLUDE_ALL_GCS
1124 }
1125 
1126 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1127 #if INCLUDE_ALL_GCS
1128   if (UseParNewGC) {
1129     workers()->print_worker_threads_on(st);
1130   }
1131   if (UseConcMarkSweepGC) {
1132     ConcurrentMarkSweepThread::print_all_on(st);
1133   }
1134 #endif // INCLUDE_ALL_GCS
1135 }
1136 
1137 void GenCollectedHeap::print_on_error(outputStream* st) const {
1138   this->CollectedHeap::print_on_error(st);
1139 
1140 #if INCLUDE_ALL_GCS
1141   if (UseConcMarkSweepGC) {
1142     st->cr();
1143     CMSCollector::print_on_error(st);
1144   }
1145 #endif // INCLUDE_ALL_GCS
1146 }
1147 
1148 void GenCollectedHeap::print_tracing_info() const {
1149   if (TraceGen0Time) {
1150     get_gen(0)->print_summary_info();
1151   }
1152   if (TraceGen1Time) {
1153     get_gen(1)->print_summary_info();
1154   }
1155 }
1156 
1157 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1158   if (PrintGCDetails && Verbose) {
1159     gclog_or_tty->print(" "  SIZE_FORMAT
1160                         "->" SIZE_FORMAT
1161                         "("  SIZE_FORMAT ")",
1162                         prev_used, used(), capacity());
1163   } else {
1164     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1165                         "->" SIZE_FORMAT "K"
1166                         "("  SIZE_FORMAT "K)",
1167                         prev_used / K, used() / K, capacity() / K);
1168   }
1169 }
1170 
1171 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1172  private:
1173   bool _full;
1174  public:
1175   void do_generation(Generation* gen) {
1176     gen->gc_prologue(_full);
1177   }
1178   GenGCPrologueClosure(bool full) : _full(full) {};
1179 };
1180 
1181 void GenCollectedHeap::gc_prologue(bool full) {
1182   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1183 
1184   always_do_update_barrier = false;
1185   // Fill TLAB's and such
1186   CollectedHeap::accumulate_statistics_all_tlabs();
1187   ensure_parsability(true);   // retire TLABs
1188 
1189   // Call allocation profiler
1190   AllocationProfiler::iterate_since_last_gc();
1191   // Walk generations
1192   GenGCPrologueClosure blk(full);
1193   generation_iterate(&blk, false);  // not old-to-young.
1194 };
1195 
1196 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1197  private:
1198   bool _full;
1199  public:
1200   void do_generation(Generation* gen) {
1201     gen->gc_epilogue(_full);
1202   }
1203   GenGCEpilogueClosure(bool full) : _full(full) {};
1204 };
1205 
1206 void GenCollectedHeap::gc_epilogue(bool full) {
1207 #ifdef COMPILER2
1208   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1209   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1210   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1211 #endif /* COMPILER2 */
1212 
1213   resize_all_tlabs();
1214 
1215   GenGCEpilogueClosure blk(full);
1216   generation_iterate(&blk, false);  // not old-to-young.
1217 
1218   if (!CleanChunkPoolAsync) {
1219     Chunk::clean_chunk_pool();
1220   }
1221 
1222   MetaspaceCounters::update_performance_counters();
1223 
1224   always_do_update_barrier = UseConcMarkSweepGC;
1225 };
1226 
1227 #ifndef PRODUCT
1228 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1229  private:
1230  public:
1231   void do_generation(Generation* gen) {
1232     gen->record_spaces_top();
1233   }
1234 };
1235 
1236 void GenCollectedHeap::record_gen_tops_before_GC() {
1237   if (ZapUnusedHeapArea) {
1238     GenGCSaveTopsBeforeGCClosure blk;
1239     generation_iterate(&blk, false);  // not old-to-young.
1240   }
1241 }
1242 #endif  // not PRODUCT
1243 
1244 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1245  public:
1246   void do_generation(Generation* gen) {
1247     gen->ensure_parsability();
1248   }
1249 };
1250 
1251 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1252   CollectedHeap::ensure_parsability(retire_tlabs);
1253   GenEnsureParsabilityClosure ep_cl;
1254   generation_iterate(&ep_cl, false);
1255 }
1256 
1257 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
1258                                               oop obj,
1259                                               size_t obj_size) {
1260   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1261   HeapWord* result = NULL;
1262 
1263   // First give each higher generation a chance to allocate the promoted object.
1264   Generation* allocator = next_gen(gen);
1265   if (allocator != NULL) {
1266     do {
1267       result = allocator->allocate(obj_size, false);
1268     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
1269   }
1270 
1271   if (result == NULL) {
1272     // Then give gen and higher generations a chance to expand and allocate the
1273     // object.
1274     do {
1275       result = gen->expand_and_allocate(obj_size, false);
1276     } while (result == NULL && (gen = next_gen(gen)) != NULL);
1277   }
1278 
1279   if (result != NULL) {
1280     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1281   }
1282   return oop(result);
1283 }
1284 
1285 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1286   jlong _time;   // in ms
1287   jlong _now;    // in ms
1288 
1289  public:
1290   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1291 
1292   jlong time() { return _time; }
1293 
1294   void do_generation(Generation* gen) {
1295     _time = MIN2(_time, gen->time_of_last_gc(_now));
1296   }
1297 };
1298 
1299 jlong GenCollectedHeap::millis_since_last_gc() {
1300   // We need a monotonically non-deccreasing time in ms but
1301   // os::javaTimeMillis() does not guarantee monotonicity.
1302   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1303   GenTimeOfLastGCClosure tolgc_cl(now);
1304   // iterate over generations getting the oldest
1305   // time that a generation was collected
1306   generation_iterate(&tolgc_cl, false);
1307 
1308   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1309   // provided the underlying platform provides such a time source
1310   // (and it is bug free). So we still have to guard against getting
1311   // back a time later than 'now'.
1312   jlong retVal = now - tolgc_cl.time();
1313   if (retVal < 0) {
1314     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1315     return 0;
1316   }
1317   return retVal;
1318 }