1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/spaceDecorator.hpp"
  27 #include "gc_interface/collectedHeap.inline.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/blockOffsetTable.inline.hpp"
  30 #include "memory/cardTableRS.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/genMarkSweep.hpp"
  34 #include "memory/genOopClosures.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/generation.hpp"
  37 #include "memory/generation.inline.hpp"
  38 #include "memory/space.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/java.hpp"
  41 #include "utilities/copy.hpp"
  42 #include "utilities/events.hpp"
  43 
  44 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
  45   _level(level),
  46   _ref_processor(NULL) {
  47   if (!_virtual_space.initialize(rs, initial_size)) {
  48     vm_exit_during_initialization("Could not reserve enough space for "
  49                     "object heap");
  50   }
  51   // Mangle all of the the initial generation.
  52   if (ZapUnusedHeapArea) {
  53     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
  54       (HeapWord*)_virtual_space.high());
  55     SpaceMangler::mangle_region(mangle_region);
  56   }
  57   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
  58           (HeapWord*)_virtual_space.high_boundary());
  59 }
  60 
  61 GenerationSpec* Generation::spec() {
  62   GenCollectedHeap* gch = GenCollectedHeap::heap();
  63   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
  64   return gch->_gen_specs[level()];
  65 }
  66 
  67 size_t Generation::max_capacity() const {
  68   return reserved().byte_size();
  69 }
  70 
  71 void Generation::print_heap_change(size_t prev_used) const {
  72   if (PrintGCDetails && Verbose) {
  73     gclog_or_tty->print(" "  SIZE_FORMAT
  74                         "->" SIZE_FORMAT
  75                         "("  SIZE_FORMAT ")",
  76                         prev_used, used(), capacity());
  77   } else {
  78     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  79                         "->" SIZE_FORMAT "K"
  80                         "("  SIZE_FORMAT "K)",
  81                         prev_used / K, used() / K, capacity() / K);
  82   }
  83 }
  84 
  85 // By default we get a single threaded default reference processor;
  86 // generations needing multi-threaded refs processing or discovery override this method.
  87 void Generation::ref_processor_init() {
  88   assert(_ref_processor == NULL, "a reference processor already exists");
  89   assert(!_reserved.is_empty(), "empty generation?");
  90   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
  91   if (_ref_processor == NULL) {
  92     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  93   }
  94 }
  95 
  96 void Generation::print() const { print_on(tty); }
  97 
  98 void Generation::print_on(outputStream* st)  const {
  99   st->print(" %-20s", name());
 100   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 101              capacity()/K, used()/K);
 102   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 103               _virtual_space.low_boundary(),
 104               _virtual_space.high(),
 105               _virtual_space.high_boundary());
 106 }
 107 
 108 void Generation::print_summary_info() { print_summary_info_on(tty); }
 109 
 110 void Generation::print_summary_info_on(outputStream* st) {
 111   StatRecord* sr = stat_record();
 112   double time = sr->accumulated_time.seconds();
 113   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
 114                "%d GC's, avg GC time %3.7f]",
 115                level(), time, sr->invocations,
 116                sr->invocations > 0 ? time / sr->invocations : 0.0);
 117 }
 118 
 119 // Utility iterator classes
 120 
 121 class GenerationIsInReservedClosure : public SpaceClosure {
 122  public:
 123   const void* _p;
 124   Space* sp;
 125   virtual void do_space(Space* s) {
 126     if (sp == NULL) {
 127       if (s->is_in_reserved(_p)) sp = s;
 128     }
 129   }
 130   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
 131 };
 132 
 133 class GenerationIsInClosure : public SpaceClosure {
 134  public:
 135   const void* _p;
 136   Space* sp;
 137   virtual void do_space(Space* s) {
 138     if (sp == NULL) {
 139       if (s->is_in(_p)) sp = s;
 140     }
 141   }
 142   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
 143 };
 144 
 145 bool Generation::is_in(const void* p) const {
 146   GenerationIsInClosure blk(p);
 147   ((Generation*)this)->space_iterate(&blk);
 148   return blk.sp != NULL;
 149 }
 150 
 151 DefNewGeneration* Generation::as_DefNewGeneration() {
 152   assert((kind() == Generation::DefNew) ||
 153          (kind() == Generation::ParNew) ||
 154          (kind() == Generation::ASParNew),
 155     "Wrong youngest generation type");
 156   return (DefNewGeneration*) this;
 157 }
 158 
 159 Generation* Generation::next_gen() const {
 160   GenCollectedHeap* gch = GenCollectedHeap::heap();
 161   int next = level() + 1;
 162   if (next < gch->_n_gens) {
 163     return gch->_gens[next];
 164   } else {
 165     return NULL;
 166   }
 167 }
 168 
 169 size_t Generation::max_contiguous_available() const {
 170   // The largest number of contiguous free words in this or any higher generation.
 171   size_t max = 0;
 172   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
 173     size_t avail = gen->contiguous_available();
 174     if (avail > max) {
 175       max = avail;
 176     }
 177   }
 178   return max;
 179 }
 180 
 181 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 182   size_t available = max_contiguous_available();
 183   bool   res = (available >= max_promotion_in_bytes);
 184   if (PrintGC && Verbose) {
 185     gclog_or_tty->print_cr(
 186       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
 187       res? "":" not", available, res? ">=":"<",
 188       max_promotion_in_bytes);
 189   }
 190   return res;
 191 }
 192 
 193 // Ignores "ref" and calls allocate().
 194 oop Generation::promote(oop obj, size_t obj_size) {
 195   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 196 
 197 #ifndef PRODUCT
 198   if (Universe::heap()->promotion_should_fail()) {
 199     return NULL;
 200   }
 201 #endif  // #ifndef PRODUCT
 202 
 203   HeapWord* result = allocate(obj_size, false);
 204   if (result != NULL) {
 205     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
 206     return oop(result);
 207   } else {
 208     GenCollectedHeap* gch = GenCollectedHeap::heap();
 209     return gch->handle_failed_promotion(this, obj, obj_size);
 210   }
 211 }
 212 
 213 oop Generation::par_promote(int thread_num,
 214                             oop obj, markOop m, size_t word_sz) {
 215   // Could do a bad general impl here that gets a lock.  But no.
 216   ShouldNotCallThis();
 217   return NULL;
 218 }
 219 
 220 void Generation::par_promote_alloc_undo(int thread_num,
 221                                         HeapWord* obj, size_t word_sz) {
 222   // Could do a bad general impl here that gets a lock.  But no.
 223   guarantee(false, "No good general implementation.");
 224 }
 225 
 226 Space* Generation::space_containing(const void* p) const {
 227   GenerationIsInReservedClosure blk(p);
 228   // Cast away const
 229   ((Generation*)this)->space_iterate(&blk);
 230   return blk.sp;
 231 }
 232 
 233 // Some of these are mediocre general implementations.  Should be
 234 // overridden to get better performance.
 235 
 236 class GenerationBlockStartClosure : public SpaceClosure {
 237  public:
 238   const void* _p;
 239   HeapWord* _start;
 240   virtual void do_space(Space* s) {
 241     if (_start == NULL && s->is_in_reserved(_p)) {
 242       _start = s->block_start(_p);
 243     }
 244   }
 245   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
 246 };
 247 
 248 HeapWord* Generation::block_start(const void* p) const {
 249   GenerationBlockStartClosure blk(p);
 250   // Cast away const
 251   ((Generation*)this)->space_iterate(&blk);
 252   return blk._start;
 253 }
 254 
 255 class GenerationBlockSizeClosure : public SpaceClosure {
 256  public:
 257   const HeapWord* _p;
 258   size_t size;
 259   virtual void do_space(Space* s) {
 260     if (size == 0 && s->is_in_reserved(_p)) {
 261       size = s->block_size(_p);
 262     }
 263   }
 264   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
 265 };
 266 
 267 size_t Generation::block_size(const HeapWord* p) const {
 268   GenerationBlockSizeClosure blk(p);
 269   // Cast away const
 270   ((Generation*)this)->space_iterate(&blk);
 271   assert(blk.size > 0, "seems reasonable");
 272   return blk.size;
 273 }
 274 
 275 class GenerationBlockIsObjClosure : public SpaceClosure {
 276  public:
 277   const HeapWord* _p;
 278   bool is_obj;
 279   virtual void do_space(Space* s) {
 280     if (!is_obj && s->is_in_reserved(_p)) {
 281       is_obj |= s->block_is_obj(_p);
 282     }
 283   }
 284   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
 285 };
 286 
 287 bool Generation::block_is_obj(const HeapWord* p) const {
 288   GenerationBlockIsObjClosure blk(p);
 289   // Cast away const
 290   ((Generation*)this)->space_iterate(&blk);
 291   return blk.is_obj;
 292 }
 293 
 294 class GenerationOopIterateClosure : public SpaceClosure {
 295  public:
 296   ExtendedOopClosure* cl;
 297   MemRegion mr;
 298   virtual void do_space(Space* s) {
 299     s->oop_iterate(mr, cl);
 300   }
 301   GenerationOopIterateClosure(ExtendedOopClosure* _cl, MemRegion _mr) :
 302     cl(_cl), mr(_mr) {}
 303 };
 304 
 305 void Generation::oop_iterate(ExtendedOopClosure* cl) {
 306   GenerationOopIterateClosure blk(cl, _reserved);
 307   space_iterate(&blk);
 308 }
 309 
 310 void Generation::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 311   GenerationOopIterateClosure blk(cl, mr);
 312   space_iterate(&blk);
 313 }
 314 
 315 void Generation::younger_refs_in_space_iterate(Space* sp,
 316                                                OopsInGenClosure* cl) {
 317   GenRemSet* rs = SharedHeap::heap()->rem_set();
 318   rs->younger_refs_in_space_iterate(sp, cl);
 319 }
 320 
 321 class GenerationObjIterateClosure : public SpaceClosure {
 322  private:
 323   ObjectClosure* _cl;
 324  public:
 325   virtual void do_space(Space* s) {
 326     s->object_iterate(_cl);
 327   }
 328   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 329 };
 330 
 331 void Generation::object_iterate(ObjectClosure* cl) {
 332   GenerationObjIterateClosure blk(cl);
 333   space_iterate(&blk);
 334 }
 335 
 336 class GenerationSafeObjIterateClosure : public SpaceClosure {
 337  private:
 338   ObjectClosure* _cl;
 339  public:
 340   virtual void do_space(Space* s) {
 341     s->safe_object_iterate(_cl);
 342   }
 343   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 344 };
 345 
 346 void Generation::safe_object_iterate(ObjectClosure* cl) {
 347   GenerationSafeObjIterateClosure blk(cl);
 348   space_iterate(&blk);
 349 }
 350 
 351 void Generation::prepare_for_compaction(CompactPoint* cp) {
 352   // Generic implementation, can be specialized
 353   CompactibleSpace* space = first_compaction_space();
 354   while (space != NULL) {
 355     space->prepare_for_compaction(cp);
 356     space = space->next_compaction_space();
 357   }
 358 }
 359 
 360 class AdjustPointersClosure: public SpaceClosure {
 361  public:
 362   void do_space(Space* sp) {
 363     sp->adjust_pointers();
 364   }
 365 };
 366 
 367 void Generation::adjust_pointers() {
 368   // Note that this is done over all spaces, not just the compactible
 369   // ones.
 370   AdjustPointersClosure blk;
 371   space_iterate(&blk, true);
 372 }
 373 
 374 void Generation::compact() {
 375   CompactibleSpace* sp = first_compaction_space();
 376   while (sp != NULL) {
 377     sp->compact();
 378     sp = sp->next_compaction_space();
 379   }
 380 }
 381 
 382 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
 383                                int level,
 384                                GenRemSet* remset) :
 385   Generation(rs, initial_byte_size, level), _rs(remset),
 386   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
 387   _used_at_prologue()
 388 {
 389   HeapWord* start = (HeapWord*)rs.base();
 390   size_t reserved_byte_size = rs.size();
 391   assert((uintptr_t(start) & 3) == 0, "bad alignment");
 392   assert((reserved_byte_size & 3) == 0, "bad alignment");
 393   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
 394   _bts = new BlockOffsetSharedArray(reserved_mr,
 395                                     heap_word_size(initial_byte_size));
 396   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
 397   _rs->resize_covered_region(committed_mr);
 398   if (_bts == NULL)
 399     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
 400 
 401   // Verify that the start and end of this generation is the start of a card.
 402   // If this wasn't true, a single card could span more than on generation,
 403   // which would cause problems when we commit/uncommit memory, and when we
 404   // clear and dirty cards.
 405   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
 406   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
 407     // Don't check at the very end of the heap as we'll assert that we're probing off
 408     // the end if we try.
 409     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
 410   }
 411   _min_heap_delta_bytes = MinHeapDeltaBytes;
 412   _capacity_at_prologue = initial_byte_size;
 413   _used_at_prologue = 0;
 414 }
 415 
 416 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
 417   assert_locked_or_safepoint(Heap_lock);
 418   if (bytes == 0) {
 419     return true;  // That's what grow_by(0) would return
 420   }
 421   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
 422   if (aligned_bytes == 0){
 423     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 424     // return true with the implication that an expansion was done when it
 425     // was not.  A call to expand implies a best effort to expand by "bytes"
 426     // but not a guarantee.  Align down to give a best effort.  This is likely
 427     // the most that the generation can expand since it has some capacity to
 428     // start with.
 429     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
 430   }
 431   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 432   bool success = false;
 433   if (aligned_expand_bytes > aligned_bytes) {
 434     success = grow_by(aligned_expand_bytes);
 435   }
 436   if (!success) {
 437     success = grow_by(aligned_bytes);
 438   }
 439   if (!success) {
 440     success = grow_to_reserved();
 441   }
 442   if (PrintGC && Verbose) {
 443     if (success && GC_locker::is_active_and_needs_gc()) {
 444       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 445     }
 446   }
 447 
 448   return success;
 449 }
 450 
 451 
 452 // No young generation references, clear this generation's cards.
 453 void CardGeneration::clear_remembered_set() {
 454   _rs->clear(reserved());
 455 }
 456 
 457 
 458 // Objects in this generation may have moved, invalidate this
 459 // generation's cards.
 460 void CardGeneration::invalidate_remembered_set() {
 461   _rs->invalidate(used_region());
 462 }
 463 
 464 
 465 void CardGeneration::compute_new_size() {
 466   assert(_shrink_factor <= 100, "invalid shrink factor");
 467   size_t current_shrink_factor = _shrink_factor;
 468   _shrink_factor = 0;
 469 
 470   // We don't have floating point command-line arguments
 471   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
 472   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
 473   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
 474 
 475   // Compute some numbers about the state of the heap.
 476   const size_t used_after_gc = used();
 477   const size_t capacity_after_gc = capacity();
 478 
 479   const double min_tmp = used_after_gc / maximum_used_percentage;
 480   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
 481   // Don't shrink less than the initial generation size
 482   minimum_desired_capacity = MAX2(minimum_desired_capacity,
 483                                   spec()->init_size());
 484   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
 485 
 486   if (PrintGC && Verbose) {
 487     const size_t free_after_gc = free();
 488     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
 489     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
 490     gclog_or_tty->print_cr("  "
 491                   "  minimum_free_percentage: %6.2f"
 492                   "  maximum_used_percentage: %6.2f",
 493                   minimum_free_percentage,
 494                   maximum_used_percentage);
 495     gclog_or_tty->print_cr("  "
 496                   "   free_after_gc   : %6.1fK"
 497                   "   used_after_gc   : %6.1fK"
 498                   "   capacity_after_gc   : %6.1fK",
 499                   free_after_gc / (double) K,
 500                   used_after_gc / (double) K,
 501                   capacity_after_gc / (double) K);
 502     gclog_or_tty->print_cr("  "
 503                   "   free_percentage: %6.2f",
 504                   free_percentage);
 505   }
 506 
 507   if (capacity_after_gc < minimum_desired_capacity) {
 508     // If we have less free space than we want then expand
 509     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
 510     // Don't expand unless it's significant
 511     if (expand_bytes >= _min_heap_delta_bytes) {
 512       expand(expand_bytes, 0); // safe if expansion fails
 513     }
 514     if (PrintGC && Verbose) {
 515       gclog_or_tty->print_cr("    expanding:"
 516                     "  minimum_desired_capacity: %6.1fK"
 517                     "  expand_bytes: %6.1fK"
 518                     "  _min_heap_delta_bytes: %6.1fK",
 519                     minimum_desired_capacity / (double) K,
 520                     expand_bytes / (double) K,
 521                     _min_heap_delta_bytes / (double) K);
 522     }
 523     return;
 524   }
 525 
 526   // No expansion, now see if we want to shrink
 527   size_t shrink_bytes = 0;
 528   // We would never want to shrink more than this
 529   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
 530 
 531   if (MaxHeapFreeRatio < 100) {
 532     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
 533     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
 534     const double max_tmp = used_after_gc / minimum_used_percentage;
 535     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
 536     maximum_desired_capacity = MAX2(maximum_desired_capacity,
 537                                     spec()->init_size());
 538     if (PrintGC && Verbose) {
 539       gclog_or_tty->print_cr("  "
 540                              "  maximum_free_percentage: %6.2f"
 541                              "  minimum_used_percentage: %6.2f",
 542                              maximum_free_percentage,
 543                              minimum_used_percentage);
 544       gclog_or_tty->print_cr("  "
 545                              "  _capacity_at_prologue: %6.1fK"
 546                              "  minimum_desired_capacity: %6.1fK"
 547                              "  maximum_desired_capacity: %6.1fK",
 548                              _capacity_at_prologue / (double) K,
 549                              minimum_desired_capacity / (double) K,
 550                              maximum_desired_capacity / (double) K);
 551     }
 552     assert(minimum_desired_capacity <= maximum_desired_capacity,
 553            "sanity check");
 554 
 555     if (capacity_after_gc > maximum_desired_capacity) {
 556       // Capacity too large, compute shrinking size
 557       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
 558       // We don't want shrink all the way back to initSize if people call
 559       // System.gc(), because some programs do that between "phases" and then
 560       // we'd just have to grow the heap up again for the next phase.  So we
 561       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
 562       // on the third call, and 100% by the fourth call.  But if we recompute
 563       // size without shrinking, it goes back to 0%.
 564       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
 565       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 566       if (current_shrink_factor == 0) {
 567         _shrink_factor = 10;
 568       } else {
 569         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
 570       }
 571       if (PrintGC && Verbose) {
 572         gclog_or_tty->print_cr("  "
 573                       "  shrinking:"
 574                       "  initSize: %.1fK"
 575                       "  maximum_desired_capacity: %.1fK",
 576                       spec()->init_size() / (double) K,
 577                       maximum_desired_capacity / (double) K);
 578         gclog_or_tty->print_cr("  "
 579                       "  shrink_bytes: %.1fK"
 580                       "  current_shrink_factor: %d"
 581                       "  new shrink factor: %d"
 582                       "  _min_heap_delta_bytes: %.1fK",
 583                       shrink_bytes / (double) K,
 584                       current_shrink_factor,
 585                       _shrink_factor,
 586                       _min_heap_delta_bytes / (double) K);
 587       }
 588     }
 589   }
 590 
 591   if (capacity_after_gc > _capacity_at_prologue) {
 592     // We might have expanded for promotions, in which case we might want to
 593     // take back that expansion if there's room after GC.  That keeps us from
 594     // stretching the heap with promotions when there's plenty of room.
 595     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
 596     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
 597     // We have two shrinking computations, take the largest
 598     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
 599     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 600     if (PrintGC && Verbose) {
 601       gclog_or_tty->print_cr("  "
 602                              "  aggressive shrinking:"
 603                              "  _capacity_at_prologue: %.1fK"
 604                              "  capacity_after_gc: %.1fK"
 605                              "  expansion_for_promotion: %.1fK"
 606                              "  shrink_bytes: %.1fK",
 607                              capacity_after_gc / (double) K,
 608                              _capacity_at_prologue / (double) K,
 609                              expansion_for_promotion / (double) K,
 610                              shrink_bytes / (double) K);
 611     }
 612   }
 613   // Don't shrink unless it's significant
 614   if (shrink_bytes >= _min_heap_delta_bytes) {
 615     shrink(shrink_bytes);
 616   }
 617 }
 618 
 619 // Currently nothing to do.
 620 void CardGeneration::prepare_for_verify() {}
 621 
 622 
 623 void OneContigSpaceCardGeneration::collect(bool   full,
 624                                            bool   clear_all_soft_refs,
 625                                            size_t size,
 626                                            bool   is_tlab) {
 627   SpecializationStats::clear();
 628   // Temporarily expand the span of our ref processor, so
 629   // refs discovery is over the entire heap, not just this generation
 630   ReferenceProcessorSpanMutator
 631     x(ref_processor(), GenCollectedHeap::heap()->reserved_region());
 632   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
 633   SpecializationStats::print();
 634 }
 635 
 636 HeapWord*
 637 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
 638                                                   bool is_tlab,
 639                                                   bool parallel) {
 640   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
 641   if (parallel) {
 642     MutexLocker x(ParGCRareEvent_lock);
 643     HeapWord* result = NULL;
 644     size_t byte_size = word_size * HeapWordSize;
 645     while (true) {
 646       expand(byte_size, _min_heap_delta_bytes);
 647       if (GCExpandToAllocateDelayMillis > 0) {
 648         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 649       }
 650       result = _the_space->par_allocate(word_size);
 651       if ( result != NULL) {
 652         return result;
 653       } else {
 654         // If there's not enough expansion space available, give up.
 655         if (_virtual_space.uncommitted_size() < byte_size) {
 656           return NULL;
 657         }
 658         // else try again
 659       }
 660     }
 661   } else {
 662     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
 663     return _the_space->allocate(word_size);
 664   }
 665 }
 666 
 667 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
 668   GCMutexLocker x(ExpandHeap_lock);
 669   return CardGeneration::expand(bytes, expand_bytes);
 670 }
 671 
 672 
 673 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
 674   assert_locked_or_safepoint(ExpandHeap_lock);
 675   size_t size = ReservedSpace::page_align_size_down(bytes);
 676   if (size > 0) {
 677     shrink_by(size);
 678   }
 679 }
 680 
 681 
 682 size_t OneContigSpaceCardGeneration::capacity() const {
 683   return _the_space->capacity();
 684 }
 685 
 686 
 687 size_t OneContigSpaceCardGeneration::used() const {
 688   return _the_space->used();
 689 }
 690 
 691 
 692 size_t OneContigSpaceCardGeneration::free() const {
 693   return _the_space->free();
 694 }
 695 
 696 MemRegion OneContigSpaceCardGeneration::used_region() const {
 697   return the_space()->used_region();
 698 }
 699 
 700 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
 701   return _the_space->free();
 702 }
 703 
 704 size_t OneContigSpaceCardGeneration::contiguous_available() const {
 705   return _the_space->free() + _virtual_space.uncommitted_size();
 706 }
 707 
 708 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
 709   assert_locked_or_safepoint(ExpandHeap_lock);
 710   bool result = _virtual_space.expand_by(bytes);
 711   if (result) {
 712     size_t new_word_size =
 713        heap_word_size(_virtual_space.committed_size());
 714     MemRegion mr(_the_space->bottom(), new_word_size);
 715     // Expand card table
 716     Universe::heap()->barrier_set()->resize_covered_region(mr);
 717     // Expand shared block offset array
 718     _bts->resize(new_word_size);
 719 
 720     // Fix for bug #4668531
 721     if (ZapUnusedHeapArea) {
 722       MemRegion mangle_region(_the_space->end(),
 723       (HeapWord*)_virtual_space.high());
 724       SpaceMangler::mangle_region(mangle_region);
 725     }
 726 
 727     // Expand space -- also expands space's BOT
 728     // (which uses (part of) shared array above)
 729     _the_space->set_end((HeapWord*)_virtual_space.high());
 730 
 731     // update the space and generation capacity counters
 732     update_counters();
 733 
 734     if (Verbose && PrintGC) {
 735       size_t new_mem_size = _virtual_space.committed_size();
 736       size_t old_mem_size = new_mem_size - bytes;
 737       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 738                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
 739                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 740     }
 741   }
 742   return result;
 743 }
 744 
 745 
 746 bool OneContigSpaceCardGeneration::grow_to_reserved() {
 747   assert_locked_or_safepoint(ExpandHeap_lock);
 748   bool success = true;
 749   const size_t remaining_bytes = _virtual_space.uncommitted_size();
 750   if (remaining_bytes > 0) {
 751     success = grow_by(remaining_bytes);
 752     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
 753   }
 754   return success;
 755 }
 756 
 757 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
 758   assert_locked_or_safepoint(ExpandHeap_lock);
 759   // Shrink committed space
 760   _virtual_space.shrink_by(bytes);
 761   // Shrink space; this also shrinks the space's BOT
 762   _the_space->set_end((HeapWord*) _virtual_space.high());
 763   size_t new_word_size = heap_word_size(_the_space->capacity());
 764   // Shrink the shared block offset array
 765   _bts->resize(new_word_size);
 766   MemRegion mr(_the_space->bottom(), new_word_size);
 767   // Shrink the card table
 768   Universe::heap()->barrier_set()->resize_covered_region(mr);
 769 
 770   if (Verbose && PrintGC) {
 771     size_t new_mem_size = _virtual_space.committed_size();
 772     size_t old_mem_size = new_mem_size + bytes;
 773     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 774                   name(), old_mem_size/K, new_mem_size/K);
 775   }
 776 }
 777 
 778 // Currently nothing to do.
 779 void OneContigSpaceCardGeneration::prepare_for_verify() {}
 780 
 781 
 782 // Override for a card-table generation with one contiguous
 783 // space. NOTE: For reasons that are lost in the fog of history,
 784 // this code is used when you iterate over perm gen objects,
 785 // even when one uses CDS, where the perm gen has a couple of
 786 // other spaces; this is because CompactingPermGenGen derives
 787 // from OneContigSpaceCardGeneration. This should be cleaned up,
 788 // see CR 6897789..
 789 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
 790   _the_space->object_iterate(blk);
 791 }
 792 
 793 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
 794                                                  bool usedOnly) {
 795   blk->do_space(_the_space);
 796 }
 797 
 798 void OneContigSpaceCardGeneration::object_iterate_since_last_GC(ObjectClosure* blk) {
 799   // Deal with delayed initialization of _the_space,
 800   // and lack of initialization of _last_gc.
 801   if (_last_gc.space() == NULL) {
 802     assert(the_space() != NULL, "shouldn't be NULL");
 803     _last_gc = the_space()->bottom_mark();
 804   }
 805   the_space()->object_iterate_from(_last_gc, blk);
 806 }
 807 
 808 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
 809   blk->set_generation(this);
 810   younger_refs_in_space_iterate(_the_space, blk);
 811   blk->reset_generation();
 812 }
 813 
 814 void OneContigSpaceCardGeneration::save_marks() {
 815   _the_space->set_saved_mark();
 816 }
 817 
 818 
 819 void OneContigSpaceCardGeneration::reset_saved_marks() {
 820   _the_space->reset_saved_mark();
 821 }
 822 
 823 
 824 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
 825   return _the_space->saved_mark_at_top();
 826 }
 827 
 828 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
 829                                                                                 \
 830 void OneContigSpaceCardGeneration::                                             \
 831 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
 832   blk->set_generation(this);                                                    \
 833   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
 834   blk->reset_generation();                                                      \
 835   save_marks();                                                                 \
 836 }
 837 
 838 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
 839 
 840 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
 841 
 842 
 843 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
 844   _last_gc = WaterMark(the_space(), the_space()->top());
 845 
 846   // update the generation and space performance counters
 847   update_counters();
 848   if (ZapUnusedHeapArea) {
 849     the_space()->check_mangled_unused_area_complete();
 850   }
 851 }
 852 
 853 void OneContigSpaceCardGeneration::record_spaces_top() {
 854   assert(ZapUnusedHeapArea, "Not mangling unused space");
 855   the_space()->set_top_for_allocations();
 856 }
 857 
 858 void OneContigSpaceCardGeneration::verify() {
 859   the_space()->verify();
 860 }
 861 
 862 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
 863   Generation::print_on(st);
 864   st->print("   the");
 865   the_space()->print_on(st);
 866 }