1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc_implementation/shared/markSweep.inline.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "utilities/stack.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  44 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  45 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 void Klass::set_name(Symbol* n) {
  49   _name = n;
  50   if (_name != NULL) _name->increment_refcount();
  51 }
  52 
  53 bool Klass::is_subclass_of(const Klass* k) const {
  54   // Run up the super chain and check
  55   if (this == k) return true;
  56 
  57   Klass* t = const_cast<Klass*>(this)->super();
  58 
  59   while (t != NULL) {
  60     if (t == k) return true;
  61     t = t->super();
  62   }
  63   return false;
  64 }
  65 
  66 bool Klass::search_secondary_supers(Klass* k) const {
  67   // Put some extra logic here out-of-line, before the search proper.
  68   // This cuts down the size of the inline method.
  69 
  70   // This is necessary, since I am never in my own secondary_super list.
  71   if (this == k)
  72     return true;
  73   // Scan the array-of-objects for a match
  74   int cnt = secondary_supers()->length();
  75   for (int i = 0; i < cnt; i++) {
  76     if (secondary_supers()->at(i) == k) {
  77       ((Klass*)this)->set_secondary_super_cache(k);
  78       return true;
  79     }
  80   }
  81   return false;
  82 }
  83 
  84 // Return self, except for abstract classes with exactly 1
  85 // implementor.  Then return the 1 concrete implementation.
  86 Klass *Klass::up_cast_abstract() {
  87   Klass *r = this;
  88   while( r->is_abstract() ) {   // Receiver is abstract?
  89     Klass *s = r->subklass();   // Check for exactly 1 subklass
  90     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  91       return this;              // Return 'this' as a no-progress flag
  92     r = s;                    // Loop till find concrete class
  93   }
  94   return r;                   // Return the 1 concrete class
  95 }
  96 
  97 // Find LCA in class hierarchy
  98 Klass *Klass::LCA( Klass *k2 ) {
  99   Klass *k1 = this;
 100   while( 1 ) {
 101     if( k1->is_subtype_of(k2) ) return k2;
 102     if( k2->is_subtype_of(k1) ) return k1;
 103     k1 = k1->super();
 104     k2 = k2->super();
 105   }
 106 }
 107 
 108 
 109 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 110   ResourceMark rm(THREAD);
 111   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 112             : vmSymbols::java_lang_InstantiationException(), external_name());
 113 }
 114 
 115 
 116 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 117   THROW(vmSymbols::java_lang_ArrayStoreException());
 118 }
 119 
 120 
 121 void Klass::initialize(TRAPS) {
 122   ShouldNotReachHere();
 123 }
 124 
 125 bool Klass::compute_is_subtype_of(Klass* k) {
 126   assert(k->is_klass(), "argument must be a class");
 127   return is_subclass_of(k);
 128 }
 129 
 130 
 131 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
 132 #ifdef ASSERT
 133   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 134                 " Likely error: reflection method does not correctly"
 135                 " wrap return value in a mirror object.");
 136 #endif
 137   ShouldNotReachHere();
 138   return NULL;
 139 }
 140 
 141 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
 142   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 143                              MetaspaceObj::ClassType, CHECK_NULL);
 144 }
 145 
 146 Klass::Klass() {
 147   Klass* k = this;
 148 
 149   // Preinitialize supertype information.
 150   // A later call to initialize_supers() may update these settings:
 151   set_super(NULL);
 152   for (juint i = 0; i < Klass::primary_super_limit(); i++) {
 153     _primary_supers[i] = NULL;
 154   }
 155   set_secondary_supers(NULL);
 156   set_secondary_super_cache(NULL);
 157   _primary_supers[0] = k;
 158   set_super_check_offset(in_bytes(primary_supers_offset()));
 159 
 160   set_java_mirror(NULL);
 161   set_modifier_flags(0);
 162   set_layout_helper(Klass::_lh_neutral_value);
 163   set_name(NULL);
 164   AccessFlags af;
 165   af.set_flags(0);
 166   set_access_flags(af);
 167   set_subklass(NULL);
 168   set_next_sibling(NULL);
 169   set_next_link(NULL);
 170   set_alloc_count(0);
 171   TRACE_SET_KLASS_TRACE_ID(this, 0);
 172 
 173   set_prototype_header(markOopDesc::prototype());
 174   set_biased_lock_revocation_count(0);
 175   set_last_biased_lock_bulk_revocation_time(0);
 176 
 177   // The klass doesn't have any references at this point.
 178   clear_modified_oops();
 179   clear_accumulated_modified_oops();
 180 }
 181 
 182 jint Klass::array_layout_helper(BasicType etype) {
 183   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 184   // Note that T_ARRAY is not allowed here.
 185   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 186   int  esize = type2aelembytes(etype);
 187   bool isobj = (etype == T_OBJECT);
 188   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 189   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 190 
 191   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 192   assert(layout_helper_is_array(lh), "correct kind");
 193   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 194   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 195   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 196   assert(layout_helper_element_type(lh) == etype, "correct decode");
 197   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 198 
 199   return lh;
 200 }
 201 
 202 bool Klass::can_be_primary_super_slow() const {
 203   if (super() == NULL)
 204     return true;
 205   else if (super()->super_depth() >= primary_super_limit()-1)
 206     return false;
 207   else
 208     return true;
 209 }
 210 
 211 void Klass::initialize_supers(Klass* k, TRAPS) {
 212   if (FastSuperclassLimit == 0) {
 213     // None of the other machinery matters.
 214     set_super(k);
 215     return;
 216   }
 217   if (k == NULL) {
 218     set_super(NULL);
 219     _primary_supers[0] = this;
 220     assert(super_depth() == 0, "Object must already be initialized properly");
 221   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 222     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 223            "initialize this only once to a non-trivial value");
 224     set_super(k);
 225     Klass* sup = k;
 226     int sup_depth = sup->super_depth();
 227     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 228     if (!can_be_primary_super_slow())
 229       my_depth = primary_super_limit();
 230     for (juint i = 0; i < my_depth; i++) {
 231       _primary_supers[i] = sup->_primary_supers[i];
 232     }
 233     Klass* *super_check_cell;
 234     if (my_depth < primary_super_limit()) {
 235       _primary_supers[my_depth] = this;
 236       super_check_cell = &_primary_supers[my_depth];
 237     } else {
 238       // Overflow of the primary_supers array forces me to be secondary.
 239       super_check_cell = &_secondary_super_cache;
 240     }
 241     set_super_check_offset((address)super_check_cell - (address) this);
 242 
 243 #ifdef ASSERT
 244     {
 245       juint j = super_depth();
 246       assert(j == my_depth, "computed accessor gets right answer");
 247       Klass* t = this;
 248       while (!t->can_be_primary_super()) {
 249         t = t->super();
 250         j = t->super_depth();
 251       }
 252       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 253         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 254       }
 255       while (t != NULL) {
 256         assert(primary_super_of_depth(j) == t, "super list initialization");
 257         t = t->super();
 258         --j;
 259       }
 260       assert(j == (juint)-1, "correct depth count");
 261     }
 262 #endif
 263   }
 264 
 265   if (secondary_supers() == NULL) {
 266     KlassHandle this_kh (THREAD, this);
 267 
 268     // Now compute the list of secondary supertypes.
 269     // Secondaries can occasionally be on the super chain,
 270     // if the inline "_primary_supers" array overflows.
 271     int extras = 0;
 272     Klass* p;
 273     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 274       ++extras;
 275     }
 276 
 277     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 278 
 279     // Compute the "real" non-extra secondaries.
 280     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 281     if (secondaries == NULL) {
 282       // secondary_supers set by compute_secondary_supers
 283       return;
 284     }
 285 
 286     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 287 
 288     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 289       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 290 
 291       // This happens frequently for very deeply nested arrays: the
 292       // primary superclass chain overflows into the secondary.  The
 293       // secondary list contains the element_klass's secondaries with
 294       // an extra array dimension added.  If the element_klass's
 295       // secondary list already contains some primary overflows, they
 296       // (with the extra level of array-ness) will collide with the
 297       // normal primary superclass overflows.
 298       for( i = 0; i < secondaries->length(); i++ ) {
 299         if( secondaries->at(i) == p )
 300           break;
 301       }
 302       if( i < secondaries->length() )
 303         continue;               // It's a dup, don't put it in
 304       primaries->push(p);
 305     }
 306     // Combine the two arrays into a metadata object to pack the array.
 307     // The primaries are added in the reverse order, then the secondaries.
 308     int new_length = primaries->length() + secondaries->length();
 309     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 310                                        class_loader_data(), new_length, CHECK);
 311     int fill_p = primaries->length();
 312     for (int j = 0; j < fill_p; j++) {
 313       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 314     }
 315     for( int j = 0; j < secondaries->length(); j++ ) {
 316       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 317     }
 318 
 319   #ifdef ASSERT
 320       // We must not copy any NULL placeholders left over from bootstrap.
 321     for (int j = 0; j < s2->length(); j++) {
 322       assert(s2->at(j) != NULL, "correct bootstrapping order");
 323     }
 324   #endif
 325 
 326     this_kh->set_secondary_supers(s2);
 327   }
 328 }
 329 
 330 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 331   assert(num_extra_slots == 0, "override for complex klasses");
 332   set_secondary_supers(Universe::the_empty_klass_array());
 333   return NULL;
 334 }
 335 
 336 
 337 Klass* Klass::subklass() const {
 338   return _subklass == NULL ? NULL : _subklass;
 339 }
 340 
 341 InstanceKlass* Klass::superklass() const {
 342   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
 343   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 344 }
 345 
 346 Klass* Klass::next_sibling() const {
 347   return _next_sibling == NULL ? NULL : _next_sibling;
 348 }
 349 
 350 void Klass::set_subklass(Klass* s) {
 351   assert(s != this, "sanity check");
 352   _subklass = s;
 353 }
 354 
 355 void Klass::set_next_sibling(Klass* s) {
 356   assert(s != this, "sanity check");
 357   _next_sibling = s;
 358 }
 359 
 360 void Klass::append_to_sibling_list() {
 361   debug_only(verify();)
 362   // add ourselves to superklass' subklass list
 363   InstanceKlass* super = superklass();
 364   if (super == NULL) return;        // special case: class Object
 365   assert((!super->is_interface()    // interfaces cannot be supers
 366           && (super->superklass() == NULL || !is_interface())),
 367          "an interface can only be a subklass of Object");
 368   Klass* prev_first_subklass = super->subklass_oop();
 369   if (prev_first_subklass != NULL) {
 370     // set our sibling to be the superklass' previous first subklass
 371     set_next_sibling(prev_first_subklass);
 372   }
 373   // make ourselves the superklass' first subklass
 374   super->set_subklass(this);
 375   debug_only(verify();)
 376 }
 377 
 378 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 379   assert(is_metadata(), "p is not meta-data");
 380   assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
 381 
 382 #ifdef ASSERT
 383   // The class is alive iff the class loader is alive.
 384   oop loader = class_loader();
 385   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 386 #endif // ASSERT
 387 
 388   // The class is alive if it's mirror is alive (which should be marked if the
 389   // loader is alive) unless it's an anoymous class.
 390   bool mirror_alive = is_alive->do_object_b(java_mirror());
 391   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 392                         " but not the other way around with anonymous classes");
 393   return mirror_alive;
 394 }
 395 
 396 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
 397   if (!ClassUnloading) {
 398     return;
 399   }
 400 
 401   Klass* root = SystemDictionary::Object_klass();
 402   Stack<Klass*, mtGC> stack;
 403 
 404   stack.push(root);
 405   while (!stack.is_empty()) {
 406     Klass* current = stack.pop();
 407 
 408     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 409 
 410     // Find and set the first alive subklass
 411     Klass* sub = current->subklass_oop();
 412     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 413 #ifndef PRODUCT
 414       if (TraceClassUnloading && WizardMode) {
 415         ResourceMark rm;
 416         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 417       }
 418 #endif
 419       sub = sub->next_sibling_oop();
 420     }
 421     current->set_subklass(sub);
 422     if (sub != NULL) {
 423       stack.push(sub);
 424     }
 425 
 426     // Find and set the first alive sibling
 427     Klass* sibling = current->next_sibling_oop();
 428     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 429       if (TraceClassUnloading && WizardMode) {
 430         ResourceMark rm;
 431         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 432       }
 433       sibling = sibling->next_sibling_oop();
 434     }
 435     current->set_next_sibling(sibling);
 436     if (sibling != NULL) {
 437       stack.push(sibling);
 438     }
 439 
 440     // Clean the implementors list and method data.
 441     if (current->oop_is_instance()) {
 442       InstanceKlass* ik = InstanceKlass::cast(current);
 443       ik->clean_implementors_list(is_alive);
 444       ik->clean_method_data(is_alive);
 445     }
 446   }
 447 }
 448 
 449 void Klass::klass_update_barrier_set(oop v) {
 450   record_modified_oops();
 451 }
 452 
 453 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
 454   // This barrier used by G1, where it's used remember the old oop values,
 455   // so that we don't forget any objects that were live at the snapshot at
 456   // the beginning. This function is only used when we write oops into
 457   // Klasses. Since the Klasses are used as roots in G1, we don't have to
 458   // do anything here.
 459 }
 460 
 461 void Klass::klass_oop_store(oop* p, oop v) {
 462   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 463   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 464 
 465   // do the store
 466   if (always_do_update_barrier) {
 467     klass_oop_store((volatile oop*)p, v);
 468   } else {
 469     klass_update_barrier_set_pre((void*)p, v);
 470     *p = v;
 471     klass_update_barrier_set(v);
 472   }
 473 }
 474 
 475 void Klass::klass_oop_store(volatile oop* p, oop v) {
 476   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 477   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 478 
 479   klass_update_barrier_set_pre((void*)p, v);
 480   OrderAccess::release_store_ptr(p, v);
 481   klass_update_barrier_set(v);
 482 }
 483 
 484 void Klass::oops_do(OopClosure* cl) {
 485   cl->do_oop(&_java_mirror);
 486 }
 487 
 488 void Klass::remove_unshareable_info() {
 489   if (!DumpSharedSpaces) {
 490     // Clean up after OOM during class loading
 491     if (class_loader_data() != NULL) {
 492       class_loader_data()->remove_class(this);
 493     }
 494   }
 495   set_subklass(NULL);
 496   set_next_sibling(NULL);
 497   // Clear the java mirror
 498   set_java_mirror(NULL);
 499   set_next_link(NULL);
 500 
 501   // Null out class_loader_data because we don't share that yet.
 502   set_class_loader_data(NULL);
 503 }
 504 
 505 void Klass::restore_unshareable_info(TRAPS) {
 506   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
 507   // Restore class_loader_data to the null class loader data
 508   set_class_loader_data(loader_data);
 509 
 510   // Add to null class loader list first before creating the mirror
 511   // (same order as class file parsing)
 512   loader_data->add_class(this);
 513 
 514   // Recreate the class mirror.  The protection_domain is always null for
 515   // boot loader, for now.
 516   java_lang_Class::create_mirror(this, Handle(NULL), CHECK);
 517 }
 518 
 519 Klass* Klass::array_klass_or_null(int rank) {
 520   EXCEPTION_MARK;
 521   // No exception can be thrown by array_klass_impl when called with or_null == true.
 522   // (In anycase, the execption mark will fail if it do so)
 523   return array_klass_impl(true, rank, THREAD);
 524 }
 525 
 526 
 527 Klass* Klass::array_klass_or_null() {
 528   EXCEPTION_MARK;
 529   // No exception can be thrown by array_klass_impl when called with or_null == true.
 530   // (In anycase, the execption mark will fail if it do so)
 531   return array_klass_impl(true, THREAD);
 532 }
 533 
 534 
 535 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 536   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 537   return NULL;
 538 }
 539 
 540 
 541 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 542   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 543   return NULL;
 544 }
 545 
 546 
 547 void Klass::with_array_klasses_do(void f(Klass* k)) {
 548   f(this);
 549 }
 550 
 551 
 552 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 553 
 554 const char* Klass::external_name() const {
 555   if (oop_is_instance()) {
 556     InstanceKlass* ik = (InstanceKlass*) this;
 557     if (ik->is_anonymous()) {
 558       assert(EnableInvokeDynamic, "");
 559       intptr_t hash = 0;
 560       if (ik->java_mirror() != NULL) {
 561         // java_mirror might not be created yet, return 0 as hash.
 562         hash = ik->java_mirror()->identity_hash();
 563       }
 564       char     hash_buf[40];
 565       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 566       size_t   hash_len = strlen(hash_buf);
 567 
 568       size_t result_len = name()->utf8_length();
 569       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 570       name()->as_klass_external_name(result, (int) result_len + 1);
 571       assert(strlen(result) == result_len, "");
 572       strcpy(result + result_len, hash_buf);
 573       assert(strlen(result) == result_len + hash_len, "");
 574       return result;
 575     }
 576   }
 577   if (name() == NULL)  return "<unknown>";
 578   return name()->as_klass_external_name();
 579 }
 580 
 581 
 582 const char* Klass::signature_name() const {
 583   if (name() == NULL)  return "<unknown>";
 584   return name()->as_C_string();
 585 }
 586 
 587 // Unless overridden, modifier_flags is 0.
 588 jint Klass::compute_modifier_flags(TRAPS) const {
 589   return 0;
 590 }
 591 
 592 int Klass::atomic_incr_biased_lock_revocation_count() {
 593   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 594 }
 595 
 596 // Unless overridden, jvmti_class_status has no flags set.
 597 jint Klass::jvmti_class_status() const {
 598   return 0;
 599 }
 600 
 601 
 602 // Printing
 603 
 604 void Klass::print_on(outputStream* st) const {
 605   ResourceMark rm;
 606   // print title
 607   st->print("%s", internal_name());
 608   print_address_on(st);
 609   st->cr();
 610 }
 611 
 612 void Klass::oop_print_on(oop obj, outputStream* st) {
 613   ResourceMark rm;
 614   // print title
 615   st->print_cr("%s ", internal_name());
 616   obj->print_address_on(st);
 617 
 618   if (WizardMode) {
 619      // print header
 620      obj->mark()->print_on(st);
 621   }
 622 
 623   // print class
 624   st->print(" - klass: ");
 625   obj->klass()->print_value_on(st);
 626   st->cr();
 627 }
 628 
 629 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 630   // print title
 631   ResourceMark rm;              // Cannot print in debug mode without this
 632   st->print("%s", internal_name());
 633   obj->print_address_on(st);
 634 }
 635 
 636 #if INCLUDE_SERVICES
 637 // Size Statistics
 638 void Klass::collect_statistics(KlassSizeStats *sz) const {
 639   sz->_klass_bytes = sz->count(this);
 640   sz->_mirror_bytes = sz->count(java_mirror());
 641   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 642 
 643   sz->_ro_bytes += sz->_secondary_supers_bytes;
 644   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 645 }
 646 #endif // INCLUDE_SERVICES
 647 
 648 // Verification
 649 
 650 void Klass::verify_on(outputStream* st) {
 651   guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
 652   guarantee(this->is_metadata(), "should be in metaspace");
 653 
 654   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
 655 
 656   guarantee(this->is_klass(),"should be klass");
 657 
 658   if (super() != NULL) {
 659     guarantee(super()->is_metadata(), "should be in metaspace");
 660     guarantee(super()->is_klass(), "should be klass");
 661   }
 662   if (secondary_super_cache() != NULL) {
 663     Klass* ko = secondary_super_cache();
 664     guarantee(ko->is_metadata(), "should be in metaspace");
 665     guarantee(ko->is_klass(), "should be klass");
 666   }
 667   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 668     Klass* ko = _primary_supers[i];
 669     if (ko != NULL) {
 670       guarantee(ko->is_metadata(), "should be in metaspace");
 671       guarantee(ko->is_klass(), "should be klass");
 672     }
 673   }
 674 
 675   if (java_mirror() != NULL) {
 676     guarantee(java_mirror()->is_oop(), "should be instance");
 677   }
 678 }
 679 
 680 void Klass::oop_verify_on(oop obj, outputStream* st) {
 681   guarantee(obj->is_oop(),  "should be oop");
 682   guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
 683   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 684 }
 685 
 686 #ifndef PRODUCT
 687 
 688 void Klass::verify_vtable_index(int i) {
 689   if (oop_is_instance()) {
 690     assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 691   } else {
 692     assert(oop_is_array(), "Must be");
 693     assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 694   }
 695 }
 696 
 697 #endif