1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc_implementation/shared/markSweep.inline.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/stack.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  45 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  46 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 
  49 void Klass::set_name(Symbol* n) {
  50   _name = n;
  51   if (_name != NULL) _name->increment_refcount();
  52 }
  53 
  54 bool Klass::is_subclass_of(const Klass* k) const {
  55   // Run up the super chain and check
  56   if (this == k) return true;
  57 
  58   Klass* t = const_cast<Klass*>(this)->super();
  59 
  60   while (t != NULL) {
  61     if (t == k) return true;
  62     t = t->super();
  63   }
  64   return false;
  65 }
  66 
  67 bool Klass::search_secondary_supers(Klass* k) const {
  68   // Put some extra logic here out-of-line, before the search proper.
  69   // This cuts down the size of the inline method.
  70 
  71   // This is necessary, since I am never in my own secondary_super list.
  72   if (this == k)
  73     return true;
  74   // Scan the array-of-objects for a match
  75   int cnt = secondary_supers()->length();
  76   for (int i = 0; i < cnt; i++) {
  77     if (secondary_supers()->at(i) == k) {
  78       ((Klass*)this)->set_secondary_super_cache(k);
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 // Return self, except for abstract classes with exactly 1
  86 // implementor.  Then return the 1 concrete implementation.
  87 Klass *Klass::up_cast_abstract() {
  88   Klass *r = this;
  89   while( r->is_abstract() ) {   // Receiver is abstract?
  90     Klass *s = r->subklass();   // Check for exactly 1 subklass
  91     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  92       return this;              // Return 'this' as a no-progress flag
  93     r = s;                    // Loop till find concrete class
  94   }
  95   return r;                   // Return the 1 concrete class
  96 }
  97 
  98 // Find LCA in class hierarchy
  99 Klass *Klass::LCA( Klass *k2 ) {
 100   Klass *k1 = this;
 101   while( 1 ) {
 102     if( k1->is_subtype_of(k2) ) return k2;
 103     if( k2->is_subtype_of(k1) ) return k1;
 104     k1 = k1->super();
 105     k2 = k2->super();
 106   }
 107 }
 108 
 109 
 110 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 111   ResourceMark rm(THREAD);
 112   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 113             : vmSymbols::java_lang_InstantiationException(), external_name());
 114 }
 115 
 116 
 117 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 118   THROW(vmSymbols::java_lang_ArrayStoreException());
 119 }
 120 
 121 
 122 void Klass::initialize(TRAPS) {
 123   ShouldNotReachHere();
 124 }
 125 
 126 bool Klass::compute_is_subtype_of(Klass* k) {
 127   assert(k->is_klass(), "argument must be a class");
 128   return is_subclass_of(k);
 129 }
 130 
 131 
 132 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
 133 #ifdef ASSERT
 134   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 135                 " Likely error: reflection method does not correctly"
 136                 " wrap return value in a mirror object.");
 137 #endif
 138   ShouldNotReachHere();
 139   return NULL;
 140 }
 141 
 142 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
 143   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 144                              MetaspaceObj::ClassType, CHECK_NULL);
 145 }
 146 
 147 Klass::Klass() {
 148   Klass* k = this;
 149 
 150   // Preinitialize supertype information.
 151   // A later call to initialize_supers() may update these settings:
 152   set_super(NULL);
 153   for (juint i = 0; i < Klass::primary_super_limit(); i++) {
 154     _primary_supers[i] = NULL;
 155   }
 156   set_secondary_supers(NULL);
 157   set_secondary_super_cache(NULL);
 158   _primary_supers[0] = k;
 159   set_super_check_offset(in_bytes(primary_supers_offset()));
 160 
 161   set_java_mirror(NULL);
 162   set_modifier_flags(0);
 163   set_layout_helper(Klass::_lh_neutral_value);
 164   set_name(NULL);
 165   AccessFlags af;
 166   af.set_flags(0);
 167   set_access_flags(af);
 168   set_subklass(NULL);
 169   set_next_sibling(NULL);
 170   set_next_link(NULL);
 171   set_alloc_count(0);
 172   TRACE_INIT_ID(this);
 173 
 174   set_prototype_header(markOopDesc::prototype());
 175   set_biased_lock_revocation_count(0);
 176   set_last_biased_lock_bulk_revocation_time(0);
 177 
 178   // The klass doesn't have any references at this point.
 179   clear_modified_oops();
 180   clear_accumulated_modified_oops();
 181 }
 182 
 183 jint Klass::array_layout_helper(BasicType etype) {
 184   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 185   // Note that T_ARRAY is not allowed here.
 186   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 187   int  esize = type2aelembytes(etype);
 188   bool isobj = (etype == T_OBJECT);
 189   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 190   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 191 
 192   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 193   assert(layout_helper_is_array(lh), "correct kind");
 194   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 195   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 196   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 197   assert(layout_helper_element_type(lh) == etype, "correct decode");
 198   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 199 
 200   return lh;
 201 }
 202 
 203 bool Klass::can_be_primary_super_slow() const {
 204   if (super() == NULL)
 205     return true;
 206   else if (super()->super_depth() >= primary_super_limit()-1)
 207     return false;
 208   else
 209     return true;
 210 }
 211 
 212 void Klass::initialize_supers(Klass* k, TRAPS) {
 213   if (FastSuperclassLimit == 0) {
 214     // None of the other machinery matters.
 215     set_super(k);
 216     return;
 217   }
 218   if (k == NULL) {
 219     set_super(NULL);
 220     _primary_supers[0] = this;
 221     assert(super_depth() == 0, "Object must already be initialized properly");
 222   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 223     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 224            "initialize this only once to a non-trivial value");
 225     set_super(k);
 226     Klass* sup = k;
 227     int sup_depth = sup->super_depth();
 228     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 229     if (!can_be_primary_super_slow())
 230       my_depth = primary_super_limit();
 231     for (juint i = 0; i < my_depth; i++) {
 232       _primary_supers[i] = sup->_primary_supers[i];
 233     }
 234     Klass* *super_check_cell;
 235     if (my_depth < primary_super_limit()) {
 236       _primary_supers[my_depth] = this;
 237       super_check_cell = &_primary_supers[my_depth];
 238     } else {
 239       // Overflow of the primary_supers array forces me to be secondary.
 240       super_check_cell = &_secondary_super_cache;
 241     }
 242     set_super_check_offset((address)super_check_cell - (address) this);
 243 
 244 #ifdef ASSERT
 245     {
 246       juint j = super_depth();
 247       assert(j == my_depth, "computed accessor gets right answer");
 248       Klass* t = this;
 249       while (!t->can_be_primary_super()) {
 250         t = t->super();
 251         j = t->super_depth();
 252       }
 253       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 254         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 255       }
 256       while (t != NULL) {
 257         assert(primary_super_of_depth(j) == t, "super list initialization");
 258         t = t->super();
 259         --j;
 260       }
 261       assert(j == (juint)-1, "correct depth count");
 262     }
 263 #endif
 264   }
 265 
 266   if (secondary_supers() == NULL) {
 267     KlassHandle this_kh (THREAD, this);
 268 
 269     // Now compute the list of secondary supertypes.
 270     // Secondaries can occasionally be on the super chain,
 271     // if the inline "_primary_supers" array overflows.
 272     int extras = 0;
 273     Klass* p;
 274     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 275       ++extras;
 276     }
 277 
 278     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 279 
 280     // Compute the "real" non-extra secondaries.
 281     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 282     if (secondaries == NULL) {
 283       // secondary_supers set by compute_secondary_supers
 284       return;
 285     }
 286 
 287     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 288 
 289     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 290       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 291 
 292       // This happens frequently for very deeply nested arrays: the
 293       // primary superclass chain overflows into the secondary.  The
 294       // secondary list contains the element_klass's secondaries with
 295       // an extra array dimension added.  If the element_klass's
 296       // secondary list already contains some primary overflows, they
 297       // (with the extra level of array-ness) will collide with the
 298       // normal primary superclass overflows.
 299       for( i = 0; i < secondaries->length(); i++ ) {
 300         if( secondaries->at(i) == p )
 301           break;
 302       }
 303       if( i < secondaries->length() )
 304         continue;               // It's a dup, don't put it in
 305       primaries->push(p);
 306     }
 307     // Combine the two arrays into a metadata object to pack the array.
 308     // The primaries are added in the reverse order, then the secondaries.
 309     int new_length = primaries->length() + secondaries->length();
 310     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 311                                        class_loader_data(), new_length, CHECK);
 312     int fill_p = primaries->length();
 313     for (int j = 0; j < fill_p; j++) {
 314       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 315     }
 316     for( int j = 0; j < secondaries->length(); j++ ) {
 317       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 318     }
 319 
 320   #ifdef ASSERT
 321       // We must not copy any NULL placeholders left over from bootstrap.
 322     for (int j = 0; j < s2->length(); j++) {
 323       assert(s2->at(j) != NULL, "correct bootstrapping order");
 324     }
 325   #endif
 326 
 327     this_kh->set_secondary_supers(s2);
 328   }
 329 }
 330 
 331 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 332   assert(num_extra_slots == 0, "override for complex klasses");
 333   set_secondary_supers(Universe::the_empty_klass_array());
 334   return NULL;
 335 }
 336 
 337 
 338 Klass* Klass::subklass() const {
 339   return _subklass == NULL ? NULL : _subklass;
 340 }
 341 
 342 InstanceKlass* Klass::superklass() const {
 343   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
 344   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 345 }
 346 
 347 Klass* Klass::next_sibling() const {
 348   return _next_sibling == NULL ? NULL : _next_sibling;
 349 }
 350 
 351 void Klass::set_subklass(Klass* s) {
 352   assert(s != this, "sanity check");
 353   _subklass = s;
 354 }
 355 
 356 void Klass::set_next_sibling(Klass* s) {
 357   assert(s != this, "sanity check");
 358   _next_sibling = s;
 359 }
 360 
 361 void Klass::append_to_sibling_list() {
 362   debug_only(verify();)
 363   // add ourselves to superklass' subklass list
 364   InstanceKlass* super = superklass();
 365   if (super == NULL) return;        // special case: class Object
 366   assert((!super->is_interface()    // interfaces cannot be supers
 367           && (super->superklass() == NULL || !is_interface())),
 368          "an interface can only be a subklass of Object");
 369   Klass* prev_first_subklass = super->subklass_oop();
 370   if (prev_first_subklass != NULL) {
 371     // set our sibling to be the superklass' previous first subklass
 372     set_next_sibling(prev_first_subklass);
 373   }
 374   // make ourselves the superklass' first subklass
 375   super->set_subklass(this);
 376   debug_only(verify();)
 377 }
 378 
 379 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 380   assert(is_metadata(), "p is not meta-data");
 381   assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
 382 
 383 #ifdef ASSERT
 384   // The class is alive iff the class loader is alive.
 385   oop loader = class_loader();
 386   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 387 #endif // ASSERT
 388 
 389   // The class is alive if it's mirror is alive (which should be marked if the
 390   // loader is alive) unless it's an anoymous class.
 391   bool mirror_alive = is_alive->do_object_b(java_mirror());
 392   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 393                         " but not the other way around with anonymous classes");
 394   return mirror_alive;
 395 }
 396 
 397 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
 398   if (!ClassUnloading) {
 399     return;
 400   }
 401 
 402   Klass* root = SystemDictionary::Object_klass();
 403   Stack<Klass*, mtGC> stack;
 404 
 405   stack.push(root);
 406   while (!stack.is_empty()) {
 407     Klass* current = stack.pop();
 408 
 409     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 410 
 411     // Find and set the first alive subklass
 412     Klass* sub = current->subklass_oop();
 413     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 414 #ifndef PRODUCT
 415       if (TraceClassUnloading && WizardMode) {
 416         ResourceMark rm;
 417         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 418       }
 419 #endif
 420       sub = sub->next_sibling_oop();
 421     }
 422     current->set_subklass(sub);
 423     if (sub != NULL) {
 424       stack.push(sub);
 425     }
 426 
 427     // Find and set the first alive sibling
 428     Klass* sibling = current->next_sibling_oop();
 429     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 430       if (TraceClassUnloading && WizardMode) {
 431         ResourceMark rm;
 432         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 433       }
 434       sibling = sibling->next_sibling_oop();
 435     }
 436     current->set_next_sibling(sibling);
 437     if (sibling != NULL) {
 438       stack.push(sibling);
 439     }
 440 
 441     // Clean the implementors list and method data.
 442     if (current->oop_is_instance()) {
 443       InstanceKlass* ik = InstanceKlass::cast(current);
 444       ik->clean_implementors_list(is_alive);
 445       ik->clean_method_data(is_alive);
 446     }
 447   }
 448 }
 449 
 450 void Klass::klass_update_barrier_set(oop v) {
 451   record_modified_oops();
 452 }
 453 
 454 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
 455   // This barrier used by G1, where it's used remember the old oop values,
 456   // so that we don't forget any objects that were live at the snapshot at
 457   // the beginning. This function is only used when we write oops into
 458   // Klasses. Since the Klasses are used as roots in G1, we don't have to
 459   // do anything here.
 460 }
 461 
 462 void Klass::klass_oop_store(oop* p, oop v) {
 463   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 464   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 465 
 466   // do the store
 467   if (always_do_update_barrier) {
 468     klass_oop_store((volatile oop*)p, v);
 469   } else {
 470     klass_update_barrier_set_pre((void*)p, v);
 471     *p = v;
 472     klass_update_barrier_set(v);
 473   }
 474 }
 475 
 476 void Klass::klass_oop_store(volatile oop* p, oop v) {
 477   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 478   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 479 
 480   klass_update_barrier_set_pre((void*)p, v);
 481   OrderAccess::release_store_ptr(p, v);
 482   klass_update_barrier_set(v);
 483 }
 484 
 485 void Klass::oops_do(OopClosure* cl) {
 486   cl->do_oop(&_java_mirror);
 487 }
 488 
 489 void Klass::remove_unshareable_info() {
 490   if (!DumpSharedSpaces) {
 491     // Clean up after OOM during class loading
 492     if (class_loader_data() != NULL) {
 493       class_loader_data()->remove_class(this);
 494     }
 495   }
 496   set_subklass(NULL);
 497   set_next_sibling(NULL);
 498   // Clear the java mirror
 499   set_java_mirror(NULL);
 500   set_next_link(NULL);
 501 
 502   // Null out class_loader_data because we don't share that yet.
 503   set_class_loader_data(NULL);
 504 }
 505 
 506 void Klass::restore_unshareable_info(TRAPS) {
 507   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
 508   // Restore class_loader_data to the null class loader data
 509   set_class_loader_data(loader_data);
 510 
 511   // Add to null class loader list first before creating the mirror
 512   // (same order as class file parsing)
 513   loader_data->add_class(this);
 514 
 515   // Recreate the class mirror.  The protection_domain is always null for
 516   // boot loader, for now.
 517   java_lang_Class::create_mirror(this, Handle(NULL), CHECK);
 518 }
 519 
 520 Klass* Klass::array_klass_or_null(int rank) {
 521   EXCEPTION_MARK;
 522   // No exception can be thrown by array_klass_impl when called with or_null == true.
 523   // (In anycase, the execption mark will fail if it do so)
 524   return array_klass_impl(true, rank, THREAD);
 525 }
 526 
 527 
 528 Klass* Klass::array_klass_or_null() {
 529   EXCEPTION_MARK;
 530   // No exception can be thrown by array_klass_impl when called with or_null == true.
 531   // (In anycase, the execption mark will fail if it do so)
 532   return array_klass_impl(true, THREAD);
 533 }
 534 
 535 
 536 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 537   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 538   return NULL;
 539 }
 540 
 541 
 542 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 543   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 544   return NULL;
 545 }
 546 
 547 
 548 void Klass::with_array_klasses_do(void f(Klass* k)) {
 549   f(this);
 550 }
 551 
 552 
 553 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 554 
 555 const char* Klass::external_name() const {
 556   if (oop_is_instance()) {
 557     InstanceKlass* ik = (InstanceKlass*) this;
 558     if (ik->is_anonymous()) {
 559       assert(EnableInvokeDynamic, "");
 560       intptr_t hash = 0;
 561       if (ik->java_mirror() != NULL) {
 562         // java_mirror might not be created yet, return 0 as hash.
 563         hash = ik->java_mirror()->identity_hash();
 564       }
 565       char     hash_buf[40];
 566       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 567       size_t   hash_len = strlen(hash_buf);
 568 
 569       size_t result_len = name()->utf8_length();
 570       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 571       name()->as_klass_external_name(result, (int) result_len + 1);
 572       assert(strlen(result) == result_len, "");
 573       strcpy(result + result_len, hash_buf);
 574       assert(strlen(result) == result_len + hash_len, "");
 575       return result;
 576     }
 577   }
 578   if (name() == NULL)  return "<unknown>";
 579   return name()->as_klass_external_name();
 580 }
 581 
 582 
 583 const char* Klass::signature_name() const {
 584   if (name() == NULL)  return "<unknown>";
 585   return name()->as_C_string();
 586 }
 587 
 588 // Unless overridden, modifier_flags is 0.
 589 jint Klass::compute_modifier_flags(TRAPS) const {
 590   return 0;
 591 }
 592 
 593 int Klass::atomic_incr_biased_lock_revocation_count() {
 594   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 595 }
 596 
 597 // Unless overridden, jvmti_class_status has no flags set.
 598 jint Klass::jvmti_class_status() const {
 599   return 0;
 600 }
 601 
 602 
 603 // Printing
 604 
 605 void Klass::print_on(outputStream* st) const {
 606   ResourceMark rm;
 607   // print title
 608   st->print("%s", internal_name());
 609   print_address_on(st);
 610   st->cr();
 611 }
 612 
 613 void Klass::oop_print_on(oop obj, outputStream* st) {
 614   ResourceMark rm;
 615   // print title
 616   st->print_cr("%s ", internal_name());
 617   obj->print_address_on(st);
 618 
 619   if (WizardMode) {
 620      // print header
 621      obj->mark()->print_on(st);
 622   }
 623 
 624   // print class
 625   st->print(" - klass: ");
 626   obj->klass()->print_value_on(st);
 627   st->cr();
 628 }
 629 
 630 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 631   // print title
 632   ResourceMark rm;              // Cannot print in debug mode without this
 633   st->print("%s", internal_name());
 634   obj->print_address_on(st);
 635 }
 636 
 637 #if INCLUDE_SERVICES
 638 // Size Statistics
 639 void Klass::collect_statistics(KlassSizeStats *sz) const {
 640   sz->_klass_bytes = sz->count(this);
 641   sz->_mirror_bytes = sz->count(java_mirror());
 642   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 643 
 644   sz->_ro_bytes += sz->_secondary_supers_bytes;
 645   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 646 }
 647 #endif // INCLUDE_SERVICES
 648 
 649 // Verification
 650 
 651 void Klass::verify_on(outputStream* st) {
 652   guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
 653   guarantee(this->is_metadata(), "should be in metaspace");
 654 
 655   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
 656 
 657   guarantee(this->is_klass(),"should be klass");
 658 
 659   if (super() != NULL) {
 660     guarantee(super()->is_metadata(), "should be in metaspace");
 661     guarantee(super()->is_klass(), "should be klass");
 662   }
 663   if (secondary_super_cache() != NULL) {
 664     Klass* ko = secondary_super_cache();
 665     guarantee(ko->is_metadata(), "should be in metaspace");
 666     guarantee(ko->is_klass(), "should be klass");
 667   }
 668   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 669     Klass* ko = _primary_supers[i];
 670     if (ko != NULL) {
 671       guarantee(ko->is_metadata(), "should be in metaspace");
 672       guarantee(ko->is_klass(), "should be klass");
 673     }
 674   }
 675 
 676   if (java_mirror() != NULL) {
 677     guarantee(java_mirror()->is_oop(), "should be instance");
 678   }
 679 }
 680 
 681 void Klass::oop_verify_on(oop obj, outputStream* st) {
 682   guarantee(obj->is_oop(),  "should be oop");
 683   guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
 684   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 685 }
 686 
 687 #ifndef PRODUCT
 688 
 689 void Klass::verify_vtable_index(int i) {
 690   if (oop_is_instance()) {
 691     assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 692   } else {
 693     assert(oop_is_array(), "Must be");
 694     assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 695   }
 696 }
 697 
 698 #endif