1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   bool             _is_predicted;
  48   vmIntrinsics::ID _intrinsic_id;
  49 
  50  public:
  51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  52     : InlineCallGenerator(m),
  53       _is_virtual(is_virtual),
  54       _is_predicted(is_predicted),
  55       _intrinsic_id(id)
  56   {
  57   }
  58   virtual bool is_intrinsic() const { return true; }
  59   virtual bool is_virtual()   const { return _is_virtual; }
  60   virtual bool is_predicted()   const { return _is_predicted; }
  61   virtual JVMState* generate(JVMState* jvms);
  62   virtual Node* generate_predicate(JVMState* jvms);
  63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  64 };
  65 
  66 
  67 // Local helper class for LibraryIntrinsic:
  68 class LibraryCallKit : public GraphKit {
  69  private:
  70   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  71   Node*             _result;        // the result node, if any
  72   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  73 
  74   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  75 
  76  public:
  77   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  78     : GraphKit(jvms),
  79       _intrinsic(intrinsic),
  80       _result(NULL)
  81   {
  82     // Check if this is a root compile.  In that case we don't have a caller.
  83     if (!jvms->has_method()) {
  84       _reexecute_sp = sp();
  85     } else {
  86       // Find out how many arguments the interpreter needs when deoptimizing
  87       // and save the stack pointer value so it can used by uncommon_trap.
  88       // We find the argument count by looking at the declared signature.
  89       bool ignored_will_link;
  90       ciSignature* declared_signature = NULL;
  91       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  92       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  93       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  94     }
  95   }
  96 
  97   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  98 
  99   ciMethod*         caller()    const    { return jvms()->method(); }
 100   int               bci()       const    { return jvms()->bci(); }
 101   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 102   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 103   ciMethod*         callee()    const    { return _intrinsic->method(); }
 104 
 105   bool try_to_inline();
 106   Node* try_to_predicate();
 107 
 108   void push_result() {
 109     // Push the result onto the stack.
 110     if (!stopped() && result() != NULL) {
 111       BasicType bt = result()->bottom_type()->basic_type();
 112       push_node(bt, result());
 113     }
 114   }
 115 
 116  private:
 117   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 118     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 119   }
 120 
 121   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 122   void  set_result(RegionNode* region, PhiNode* value);
 123   Node*     result() { return _result; }
 124 
 125   virtual int reexecute_sp() { return _reexecute_sp; }
 126 
 127   // Helper functions to inline natives
 128   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 129   Node* generate_slow_guard(Node* test, RegionNode* region);
 130   Node* generate_fair_guard(Node* test, RegionNode* region);
 131   Node* generate_negative_guard(Node* index, RegionNode* region,
 132                                 // resulting CastII of index:
 133                                 Node* *pos_index = NULL);
 134   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 135                                    // resulting CastII of index:
 136                                    Node* *pos_index = NULL);
 137   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 138                              Node* array_length,
 139                              RegionNode* region);
 140   Node* generate_current_thread(Node* &tls_output);
 141   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 142                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 143   Node* load_mirror_from_klass(Node* klass);
 144   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 145                                       RegionNode* region, int null_path,
 146                                       int offset);
 147   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 148                                RegionNode* region, int null_path) {
 149     int offset = java_lang_Class::klass_offset_in_bytes();
 150     return load_klass_from_mirror_common(mirror, never_see_null,
 151                                          region, null_path,
 152                                          offset);
 153   }
 154   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 155                                      RegionNode* region, int null_path) {
 156     int offset = java_lang_Class::array_klass_offset_in_bytes();
 157     return load_klass_from_mirror_common(mirror, never_see_null,
 158                                          region, null_path,
 159                                          offset);
 160   }
 161   Node* generate_access_flags_guard(Node* kls,
 162                                     int modifier_mask, int modifier_bits,
 163                                     RegionNode* region);
 164   Node* generate_interface_guard(Node* kls, RegionNode* region);
 165   Node* generate_array_guard(Node* kls, RegionNode* region) {
 166     return generate_array_guard_common(kls, region, false, false);
 167   }
 168   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 169     return generate_array_guard_common(kls, region, false, true);
 170   }
 171   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 172     return generate_array_guard_common(kls, region, true, false);
 173   }
 174   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 175     return generate_array_guard_common(kls, region, true, true);
 176   }
 177   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 178                                     bool obj_array, bool not_array);
 179   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 180   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 181                                      bool is_virtual = false, bool is_static = false);
 182   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 183     return generate_method_call(method_id, false, true);
 184   }
 185   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 186     return generate_method_call(method_id, true, false);
 187   }
 188   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 189 
 190   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 191   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 192   bool inline_string_compareTo();
 193   bool inline_string_indexOf();
 194   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 195   bool inline_string_equals();
 196   Node* round_double_node(Node* n);
 197   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 198   bool inline_math_native(vmIntrinsics::ID id);
 199   bool inline_trig(vmIntrinsics::ID id);
 200   bool inline_math(vmIntrinsics::ID id);
 201   bool inline_exp();
 202   bool inline_pow();
 203   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 204   bool inline_min_max(vmIntrinsics::ID id);
 205   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 206   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 207   int classify_unsafe_addr(Node* &base, Node* &offset);
 208   Node* make_unsafe_address(Node* base, Node* offset);
 209   // Helper for inline_unsafe_access.
 210   // Generates the guards that check whether the result of
 211   // Unsafe.getObject should be recorded in an SATB log buffer.
 212   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 213   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 214   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 215   bool inline_unsafe_allocate();
 216   bool inline_unsafe_copyMemory();
 217   bool inline_native_currentThread();
 218 #ifdef TRACE_HAVE_INTRINSICS
 219   bool inline_native_classID();
 220   bool inline_native_threadID();
 221 #endif
 222   bool inline_native_time_funcs(address method, const char* funcName);
 223   bool inline_native_isInterrupted();
 224   bool inline_native_Class_query(vmIntrinsics::ID id);
 225   bool inline_native_subtype_check();
 226 
 227   bool inline_native_newArray();
 228   bool inline_native_getLength();
 229   bool inline_array_copyOf(bool is_copyOfRange);
 230   bool inline_array_equals();
 231   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 232   bool inline_native_clone(bool is_virtual);
 233   bool inline_native_Reflection_getCallerClass();
 234   // Helper function for inlining native object hash method
 235   bool inline_native_hashcode(bool is_virtual, bool is_static);
 236   bool inline_native_getClass();
 237 
 238   // Helper functions for inlining arraycopy
 239   bool inline_arraycopy();
 240   void generate_arraycopy(const TypePtr* adr_type,
 241                           BasicType basic_elem_type,
 242                           Node* src,  Node* src_offset,
 243                           Node* dest, Node* dest_offset,
 244                           Node* copy_length,
 245                           bool disjoint_bases = false,
 246                           bool length_never_negative = false,
 247                           RegionNode* slow_region = NULL);
 248   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 249                                                 RegionNode* slow_region);
 250   void generate_clear_array(const TypePtr* adr_type,
 251                             Node* dest,
 252                             BasicType basic_elem_type,
 253                             Node* slice_off,
 254                             Node* slice_len,
 255                             Node* slice_end);
 256   bool generate_block_arraycopy(const TypePtr* adr_type,
 257                                 BasicType basic_elem_type,
 258                                 AllocateNode* alloc,
 259                                 Node* src,  Node* src_offset,
 260                                 Node* dest, Node* dest_offset,
 261                                 Node* dest_size, bool dest_uninitialized);
 262   void generate_slow_arraycopy(const TypePtr* adr_type,
 263                                Node* src,  Node* src_offset,
 264                                Node* dest, Node* dest_offset,
 265                                Node* copy_length, bool dest_uninitialized);
 266   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 267                                      Node* dest_elem_klass,
 268                                      Node* src,  Node* src_offset,
 269                                      Node* dest, Node* dest_offset,
 270                                      Node* copy_length, bool dest_uninitialized);
 271   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 272                                    Node* src,  Node* src_offset,
 273                                    Node* dest, Node* dest_offset,
 274                                    Node* copy_length, bool dest_uninitialized);
 275   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 276                                     BasicType basic_elem_type,
 277                                     bool disjoint_bases,
 278                                     Node* src,  Node* src_offset,
 279                                     Node* dest, Node* dest_offset,
 280                                     Node* copy_length, bool dest_uninitialized);
 281   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 282   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 283   bool inline_unsafe_ordered_store(BasicType type);
 284   bool inline_unsafe_fence(vmIntrinsics::ID id);
 285   bool inline_fp_conversions(vmIntrinsics::ID id);
 286   bool inline_number_methods(vmIntrinsics::ID id);
 287   bool inline_reference_get();
 288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 291   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 292   bool inline_encodeISOArray();
 293 };
 294 
 295 
 296 //---------------------------make_vm_intrinsic----------------------------
 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 298   vmIntrinsics::ID id = m->intrinsic_id();
 299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 300 
 301   if (DisableIntrinsic[0] != '\0'
 302       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 303     // disabled by a user request on the command line:
 304     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 305     return NULL;
 306   }
 307 
 308   if (!m->is_loaded()) {
 309     // do not attempt to inline unloaded methods
 310     return NULL;
 311   }
 312 
 313   // Only a few intrinsics implement a virtual dispatch.
 314   // They are expensive calls which are also frequently overridden.
 315   if (is_virtual) {
 316     switch (id) {
 317     case vmIntrinsics::_hashCode:
 318     case vmIntrinsics::_clone:
 319       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 320       break;
 321     default:
 322       return NULL;
 323     }
 324   }
 325 
 326   // -XX:-InlineNatives disables nearly all intrinsics:
 327   if (!InlineNatives) {
 328     switch (id) {
 329     case vmIntrinsics::_indexOf:
 330     case vmIntrinsics::_compareTo:
 331     case vmIntrinsics::_equals:
 332     case vmIntrinsics::_equalsC:
 333     case vmIntrinsics::_getAndAddInt:
 334     case vmIntrinsics::_getAndAddLong:
 335     case vmIntrinsics::_getAndSetInt:
 336     case vmIntrinsics::_getAndSetLong:
 337     case vmIntrinsics::_getAndSetObject:
 338     case vmIntrinsics::_loadFence:
 339     case vmIntrinsics::_storeFence:
 340     case vmIntrinsics::_fullFence:
 341       break;  // InlineNatives does not control String.compareTo
 342     case vmIntrinsics::_Reference_get:
 343       break;  // InlineNatives does not control Reference.get
 344     default:
 345       return NULL;
 346     }
 347   }
 348 
 349   bool is_predicted = false;
 350 
 351   switch (id) {
 352   case vmIntrinsics::_compareTo:
 353     if (!SpecialStringCompareTo)  return NULL;
 354     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 355     break;
 356   case vmIntrinsics::_indexOf:
 357     if (!SpecialStringIndexOf)  return NULL;
 358     break;
 359   case vmIntrinsics::_equals:
 360     if (!SpecialStringEquals)  return NULL;
 361     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 362     break;
 363   case vmIntrinsics::_equalsC:
 364     if (!SpecialArraysEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 366     break;
 367   case vmIntrinsics::_arraycopy:
 368     if (!InlineArrayCopy)  return NULL;
 369     break;
 370   case vmIntrinsics::_copyMemory:
 371     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_hashCode:
 375     if (!InlineObjectHash)  return NULL;
 376     break;
 377   case vmIntrinsics::_clone:
 378   case vmIntrinsics::_copyOf:
 379   case vmIntrinsics::_copyOfRange:
 380     if (!InlineObjectCopy)  return NULL;
 381     // These also use the arraycopy intrinsic mechanism:
 382     if (!InlineArrayCopy)  return NULL;
 383     break;
 384   case vmIntrinsics::_encodeISOArray:
 385     if (!SpecialEncodeISOArray)  return NULL;
 386     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 387     break;
 388   case vmIntrinsics::_checkIndex:
 389     // We do not intrinsify this.  The optimizer does fine with it.
 390     return NULL;
 391 
 392   case vmIntrinsics::_getCallerClass:
 393     if (!UseNewReflection)  return NULL;
 394     if (!InlineReflectionGetCallerClass)  return NULL;
 395     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 396     break;
 397 
 398   case vmIntrinsics::_bitCount_i:
 399     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_bitCount_l:
 403     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_numberOfLeadingZeros_i:
 407     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 408     break;
 409 
 410   case vmIntrinsics::_numberOfLeadingZeros_l:
 411     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 412     break;
 413 
 414   case vmIntrinsics::_numberOfTrailingZeros_i:
 415     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 416     break;
 417 
 418   case vmIntrinsics::_numberOfTrailingZeros_l:
 419     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 420     break;
 421 
 422   case vmIntrinsics::_reverseBytes_c:
 423     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 424     break;
 425   case vmIntrinsics::_reverseBytes_s:
 426     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 427     break;
 428   case vmIntrinsics::_reverseBytes_i:
 429     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 430     break;
 431   case vmIntrinsics::_reverseBytes_l:
 432     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 433     break;
 434 
 435   case vmIntrinsics::_Reference_get:
 436     // Use the intrinsic version of Reference.get() so that the value in
 437     // the referent field can be registered by the G1 pre-barrier code.
 438     // Also add memory barrier to prevent commoning reads from this field
 439     // across safepoint since GC can change it value.
 440     break;
 441 
 442   case vmIntrinsics::_compareAndSwapObject:
 443 #ifdef _LP64
 444     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 445 #endif
 446     break;
 447 
 448   case vmIntrinsics::_compareAndSwapLong:
 449     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_getAndAddInt:
 453     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 454     break;
 455 
 456   case vmIntrinsics::_getAndAddLong:
 457     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_getAndSetInt:
 461     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 462     break;
 463 
 464   case vmIntrinsics::_getAndSetLong:
 465     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 466     break;
 467 
 468   case vmIntrinsics::_getAndSetObject:
 469 #ifdef _LP64
 470     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 471     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 472     break;
 473 #else
 474     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 475     break;
 476 #endif
 477 
 478   case vmIntrinsics::_aescrypt_encryptBlock:
 479   case vmIntrinsics::_aescrypt_decryptBlock:
 480     if (!UseAESIntrinsics) return NULL;
 481     break;
 482 
 483   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 484   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 485     if (!UseAESIntrinsics) return NULL;
 486     // these two require the predicated logic
 487     is_predicted = true;
 488     break;
 489 
 490  default:
 491     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 492     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 493     break;
 494   }
 495 
 496   // -XX:-InlineClassNatives disables natives from the Class class.
 497   // The flag applies to all reflective calls, notably Array.newArray
 498   // (visible to Java programmers as Array.newInstance).
 499   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 500       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 501     if (!InlineClassNatives)  return NULL;
 502   }
 503 
 504   // -XX:-InlineThreadNatives disables natives from the Thread class.
 505   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 506     if (!InlineThreadNatives)  return NULL;
 507   }
 508 
 509   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 510   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 511       m->holder()->name() == ciSymbol::java_lang_Float() ||
 512       m->holder()->name() == ciSymbol::java_lang_Double()) {
 513     if (!InlineMathNatives)  return NULL;
 514   }
 515 
 516   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 517   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 518     if (!InlineUnsafeOps)  return NULL;
 519   }
 520 
 521   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 522 }
 523 
 524 //----------------------register_library_intrinsics-----------------------
 525 // Initialize this file's data structures, for each Compile instance.
 526 void Compile::register_library_intrinsics() {
 527   // Nothing to do here.
 528 }
 529 
 530 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 531   LibraryCallKit kit(jvms, this);
 532   Compile* C = kit.C;
 533   int nodes = C->unique();
 534 #ifndef PRODUCT
 535   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 536     char buf[1000];
 537     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 538     tty->print_cr("Intrinsic %s", str);
 539   }
 540 #endif
 541   ciMethod* callee = kit.callee();
 542   const int bci    = kit.bci();
 543 
 544   // Try to inline the intrinsic.
 545   if (kit.try_to_inline()) {
 546     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 547       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 548     }
 549     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 550     if (C->log()) {
 551       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 552                      vmIntrinsics::name_at(intrinsic_id()),
 553                      (is_virtual() ? " virtual='1'" : ""),
 554                      C->unique() - nodes);
 555     }
 556     // Push the result from the inlined method onto the stack.
 557     kit.push_result();
 558     return kit.transfer_exceptions_into_jvms();
 559   }
 560 
 561   // The intrinsic bailed out
 562   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 563     if (jvms->has_method()) {
 564       // Not a root compile.
 565       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 566       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 567     } else {
 568       // Root compile
 569       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 570                vmIntrinsics::name_at(intrinsic_id()),
 571                (is_virtual() ? " (virtual)" : ""), bci);
 572     }
 573   }
 574   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 575   return NULL;
 576 }
 577 
 578 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 579   LibraryCallKit kit(jvms, this);
 580   Compile* C = kit.C;
 581   int nodes = C->unique();
 582 #ifndef PRODUCT
 583   assert(is_predicted(), "sanity");
 584   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 585     char buf[1000];
 586     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 587     tty->print_cr("Predicate for intrinsic %s", str);
 588   }
 589 #endif
 590   ciMethod* callee = kit.callee();
 591   const int bci    = kit.bci();
 592 
 593   Node* slow_ctl = kit.try_to_predicate();
 594   if (!kit.failing()) {
 595     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 596       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 597     }
 598     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 599     if (C->log()) {
 600       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 601                      vmIntrinsics::name_at(intrinsic_id()),
 602                      (is_virtual() ? " virtual='1'" : ""),
 603                      C->unique() - nodes);
 604     }
 605     return slow_ctl; // Could be NULL if the check folds.
 606   }
 607 
 608   // The intrinsic bailed out
 609   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 610     if (jvms->has_method()) {
 611       // Not a root compile.
 612       const char* msg = "failed to generate predicate for intrinsic";
 613       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 614     } else {
 615       // Root compile
 616       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 617                                         vmIntrinsics::name_at(intrinsic_id()),
 618                                         (is_virtual() ? " (virtual)" : ""), bci);
 619     }
 620   }
 621   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 622   return NULL;
 623 }
 624 
 625 bool LibraryCallKit::try_to_inline() {
 626   // Handle symbolic names for otherwise undistinguished boolean switches:
 627   const bool is_store       = true;
 628   const bool is_native_ptr  = true;
 629   const bool is_static      = true;
 630   const bool is_volatile    = true;
 631 
 632   if (!jvms()->has_method()) {
 633     // Root JVMState has a null method.
 634     assert(map()->memory()->Opcode() == Op_Parm, "");
 635     // Insert the memory aliasing node
 636     set_all_memory(reset_memory());
 637   }
 638   assert(merged_memory(), "");
 639 
 640 
 641   switch (intrinsic_id()) {
 642   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 643   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 644   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 645 
 646   case vmIntrinsics::_dsin:
 647   case vmIntrinsics::_dcos:
 648   case vmIntrinsics::_dtan:
 649   case vmIntrinsics::_dabs:
 650   case vmIntrinsics::_datan2:
 651   case vmIntrinsics::_dsqrt:
 652   case vmIntrinsics::_dexp:
 653   case vmIntrinsics::_dlog:
 654   case vmIntrinsics::_dlog10:
 655   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 656 
 657   case vmIntrinsics::_min:
 658   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 659 
 660   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 661 
 662   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 663   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 664   case vmIntrinsics::_equals:                   return inline_string_equals();
 665 
 666   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 667   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 668   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 669   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 670   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 671   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 672   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 673   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 674   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 675 
 676   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 677   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 678   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 679   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 680   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 681   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 682   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 683   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 684   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 685 
 686   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 687   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 688   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 689   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 690   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 691   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 692   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 693   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 694 
 695   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 696   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 697   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 698   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 699   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 700   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 701   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 702   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 703 
 704   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 705   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 706   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 707   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 708   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 709   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 710   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 711   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 712   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 713 
 714   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 715   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 716   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 717   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 718   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 719   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 720   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 721   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 722   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 723 
 724   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 725   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 726   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 727   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 728 
 729   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 730   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 731   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 732 
 733   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 734   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 735   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 736 
 737   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 738   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 739   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 740   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 741   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 742 
 743   case vmIntrinsics::_loadFence:
 744   case vmIntrinsics::_storeFence:
 745   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 746 
 747   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 748   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 749 
 750 #ifdef TRACE_HAVE_INTRINSICS
 751   case vmIntrinsics::_classID:                  return inline_native_classID();
 752   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 753   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 754 #endif
 755   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 756   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 757   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 758   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 759   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 760   case vmIntrinsics::_getLength:                return inline_native_getLength();
 761   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 762   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 763   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 764   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 765 
 766   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 767 
 768   case vmIntrinsics::_isInstance:
 769   case vmIntrinsics::_getModifiers:
 770   case vmIntrinsics::_isInterface:
 771   case vmIntrinsics::_isArray:
 772   case vmIntrinsics::_isPrimitive:
 773   case vmIntrinsics::_getSuperclass:
 774   case vmIntrinsics::_getComponentType:
 775   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 776 
 777   case vmIntrinsics::_floatToRawIntBits:
 778   case vmIntrinsics::_floatToIntBits:
 779   case vmIntrinsics::_intBitsToFloat:
 780   case vmIntrinsics::_doubleToRawLongBits:
 781   case vmIntrinsics::_doubleToLongBits:
 782   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 783 
 784   case vmIntrinsics::_numberOfLeadingZeros_i:
 785   case vmIntrinsics::_numberOfLeadingZeros_l:
 786   case vmIntrinsics::_numberOfTrailingZeros_i:
 787   case vmIntrinsics::_numberOfTrailingZeros_l:
 788   case vmIntrinsics::_bitCount_i:
 789   case vmIntrinsics::_bitCount_l:
 790   case vmIntrinsics::_reverseBytes_i:
 791   case vmIntrinsics::_reverseBytes_l:
 792   case vmIntrinsics::_reverseBytes_s:
 793   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 794 
 795   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 796 
 797   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 798 
 799   case vmIntrinsics::_aescrypt_encryptBlock:
 800   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 801 
 802   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 803   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 804     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 805 
 806   case vmIntrinsics::_encodeISOArray:
 807     return inline_encodeISOArray();
 808 
 809   default:
 810     // If you get here, it may be that someone has added a new intrinsic
 811     // to the list in vmSymbols.hpp without implementing it here.
 812 #ifndef PRODUCT
 813     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 814       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 815                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 816     }
 817 #endif
 818     return false;
 819   }
 820 }
 821 
 822 Node* LibraryCallKit::try_to_predicate() {
 823   if (!jvms()->has_method()) {
 824     // Root JVMState has a null method.
 825     assert(map()->memory()->Opcode() == Op_Parm, "");
 826     // Insert the memory aliasing node
 827     set_all_memory(reset_memory());
 828   }
 829   assert(merged_memory(), "");
 830 
 831   switch (intrinsic_id()) {
 832   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 833     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 834   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 835     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 836 
 837   default:
 838     // If you get here, it may be that someone has added a new intrinsic
 839     // to the list in vmSymbols.hpp without implementing it here.
 840 #ifndef PRODUCT
 841     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 842       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 843                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 844     }
 845 #endif
 846     Node* slow_ctl = control();
 847     set_control(top()); // No fast path instrinsic
 848     return slow_ctl;
 849   }
 850 }
 851 
 852 //------------------------------set_result-------------------------------
 853 // Helper function for finishing intrinsics.
 854 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 855   record_for_igvn(region);
 856   set_control(_gvn.transform(region));
 857   set_result( _gvn.transform(value));
 858   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 859 }
 860 
 861 //------------------------------generate_guard---------------------------
 862 // Helper function for generating guarded fast-slow graph structures.
 863 // The given 'test', if true, guards a slow path.  If the test fails
 864 // then a fast path can be taken.  (We generally hope it fails.)
 865 // In all cases, GraphKit::control() is updated to the fast path.
 866 // The returned value represents the control for the slow path.
 867 // The return value is never 'top'; it is either a valid control
 868 // or NULL if it is obvious that the slow path can never be taken.
 869 // Also, if region and the slow control are not NULL, the slow edge
 870 // is appended to the region.
 871 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 872   if (stopped()) {
 873     // Already short circuited.
 874     return NULL;
 875   }
 876 
 877   // Build an if node and its projections.
 878   // If test is true we take the slow path, which we assume is uncommon.
 879   if (_gvn.type(test) == TypeInt::ZERO) {
 880     // The slow branch is never taken.  No need to build this guard.
 881     return NULL;
 882   }
 883 
 884   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 885 
 886   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 887   if (if_slow == top()) {
 888     // The slow branch is never taken.  No need to build this guard.
 889     return NULL;
 890   }
 891 
 892   if (region != NULL)
 893     region->add_req(if_slow);
 894 
 895   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 896   set_control(if_fast);
 897 
 898   return if_slow;
 899 }
 900 
 901 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 902   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 903 }
 904 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 905   return generate_guard(test, region, PROB_FAIR);
 906 }
 907 
 908 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 909                                                      Node* *pos_index) {
 910   if (stopped())
 911     return NULL;                // already stopped
 912   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 913     return NULL;                // index is already adequately typed
 914   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 915   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 916   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 917   if (is_neg != NULL && pos_index != NULL) {
 918     // Emulate effect of Parse::adjust_map_after_if.
 919     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 920     ccast->set_req(0, control());
 921     (*pos_index) = _gvn.transform(ccast);
 922   }
 923   return is_neg;
 924 }
 925 
 926 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 927                                                         Node* *pos_index) {
 928   if (stopped())
 929     return NULL;                // already stopped
 930   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 931     return NULL;                // index is already adequately typed
 932   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 933   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 934   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 935   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 936   if (is_notp != NULL && pos_index != NULL) {
 937     // Emulate effect of Parse::adjust_map_after_if.
 938     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 939     ccast->set_req(0, control());
 940     (*pos_index) = _gvn.transform(ccast);
 941   }
 942   return is_notp;
 943 }
 944 
 945 // Make sure that 'position' is a valid limit index, in [0..length].
 946 // There are two equivalent plans for checking this:
 947 //   A. (offset + copyLength)  unsigned<=  arrayLength
 948 //   B. offset  <=  (arrayLength - copyLength)
 949 // We require that all of the values above, except for the sum and
 950 // difference, are already known to be non-negative.
 951 // Plan A is robust in the face of overflow, if offset and copyLength
 952 // are both hugely positive.
 953 //
 954 // Plan B is less direct and intuitive, but it does not overflow at
 955 // all, since the difference of two non-negatives is always
 956 // representable.  Whenever Java methods must perform the equivalent
 957 // check they generally use Plan B instead of Plan A.
 958 // For the moment we use Plan A.
 959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 960                                                   Node* subseq_length,
 961                                                   Node* array_length,
 962                                                   RegionNode* region) {
 963   if (stopped())
 964     return NULL;                // already stopped
 965   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 966   if (zero_offset && subseq_length->eqv_uncast(array_length))
 967     return NULL;                // common case of whole-array copy
 968   Node* last = subseq_length;
 969   if (!zero_offset)             // last += offset
 970     last = _gvn.transform( new (C) AddINode(last, offset));
 971   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 972   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 973   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 974   return is_over;
 975 }
 976 
 977 
 978 //--------------------------generate_current_thread--------------------
 979 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 980   ciKlass*    thread_klass = env()->Thread_klass();
 981   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 982   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 983   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 984   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 985   tls_output = thread;
 986   return threadObj;
 987 }
 988 
 989 
 990 //------------------------------make_string_method_node------------------------
 991 // Helper method for String intrinsic functions. This version is called
 992 // with str1 and str2 pointing to String object nodes.
 993 //
 994 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 995   Node* no_ctrl = NULL;
 996 
 997   // Get start addr of string
 998   Node* str1_value   = load_String_value(no_ctrl, str1);
 999   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1000   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1001 
1002   // Get length of string 1
1003   Node* str1_len  = load_String_length(no_ctrl, str1);
1004 
1005   Node* str2_value   = load_String_value(no_ctrl, str2);
1006   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1007   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1008 
1009   Node* str2_len = NULL;
1010   Node* result = NULL;
1011 
1012   switch (opcode) {
1013   case Op_StrIndexOf:
1014     // Get length of string 2
1015     str2_len = load_String_length(no_ctrl, str2);
1016 
1017     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1018                                  str1_start, str1_len, str2_start, str2_len);
1019     break;
1020   case Op_StrComp:
1021     // Get length of string 2
1022     str2_len = load_String_length(no_ctrl, str2);
1023 
1024     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1025                                  str1_start, str1_len, str2_start, str2_len);
1026     break;
1027   case Op_StrEquals:
1028     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1029                                str1_start, str2_start, str1_len);
1030     break;
1031   default:
1032     ShouldNotReachHere();
1033     return NULL;
1034   }
1035 
1036   // All these intrinsics have checks.
1037   C->set_has_split_ifs(true); // Has chance for split-if optimization
1038 
1039   return _gvn.transform(result);
1040 }
1041 
1042 // Helper method for String intrinsic functions. This version is called
1043 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1044 // to Int nodes containing the lenghts of str1 and str2.
1045 //
1046 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1047   Node* result = NULL;
1048   switch (opcode) {
1049   case Op_StrIndexOf:
1050     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1051                                  str1_start, cnt1, str2_start, cnt2);
1052     break;
1053   case Op_StrComp:
1054     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1055                                  str1_start, cnt1, str2_start, cnt2);
1056     break;
1057   case Op_StrEquals:
1058     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1059                                  str1_start, str2_start, cnt1);
1060     break;
1061   default:
1062     ShouldNotReachHere();
1063     return NULL;
1064   }
1065 
1066   // All these intrinsics have checks.
1067   C->set_has_split_ifs(true); // Has chance for split-if optimization
1068 
1069   return _gvn.transform(result);
1070 }
1071 
1072 //------------------------------inline_string_compareTo------------------------
1073 // public int java.lang.String.compareTo(String anotherString);
1074 bool LibraryCallKit::inline_string_compareTo() {
1075   Node* receiver = null_check(argument(0));
1076   Node* arg      = null_check(argument(1));
1077   if (stopped()) {
1078     return true;
1079   }
1080   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1081   return true;
1082 }
1083 
1084 //------------------------------inline_string_equals------------------------
1085 bool LibraryCallKit::inline_string_equals() {
1086   Node* receiver = null_check_receiver();
1087   // NOTE: Do not null check argument for String.equals() because spec
1088   // allows to specify NULL as argument.
1089   Node* argument = this->argument(1);
1090   if (stopped()) {
1091     return true;
1092   }
1093 
1094   // paths (plus control) merge
1095   RegionNode* region = new (C) RegionNode(5);
1096   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1097 
1098   // does source == target string?
1099   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1100   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1101 
1102   Node* if_eq = generate_slow_guard(bol, NULL);
1103   if (if_eq != NULL) {
1104     // receiver == argument
1105     phi->init_req(2, intcon(1));
1106     region->init_req(2, if_eq);
1107   }
1108 
1109   // get String klass for instanceOf
1110   ciInstanceKlass* klass = env()->String_klass();
1111 
1112   if (!stopped()) {
1113     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1114     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1115     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1116 
1117     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1118     //instanceOf == true, fallthrough
1119 
1120     if (inst_false != NULL) {
1121       phi->init_req(3, intcon(0));
1122       region->init_req(3, inst_false);
1123     }
1124   }
1125 
1126   if (!stopped()) {
1127     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1128 
1129     // Properly cast the argument to String
1130     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1131     // This path is taken only when argument's type is String:NotNull.
1132     argument = cast_not_null(argument, false);
1133 
1134     Node* no_ctrl = NULL;
1135 
1136     // Get start addr of receiver
1137     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1138     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1139     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1140 
1141     // Get length of receiver
1142     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1143 
1144     // Get start addr of argument
1145     Node* argument_val    = load_String_value(no_ctrl, argument);
1146     Node* argument_offset = load_String_offset(no_ctrl, argument);
1147     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1148 
1149     // Get length of argument
1150     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1151 
1152     // Check for receiver count != argument count
1153     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1154     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1155     Node* if_ne = generate_slow_guard(bol, NULL);
1156     if (if_ne != NULL) {
1157       phi->init_req(4, intcon(0));
1158       region->init_req(4, if_ne);
1159     }
1160 
1161     // Check for count == 0 is done by assembler code for StrEquals.
1162 
1163     if (!stopped()) {
1164       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1165       phi->init_req(1, equals);
1166       region->init_req(1, control());
1167     }
1168   }
1169 
1170   // post merge
1171   set_control(_gvn.transform(region));
1172   record_for_igvn(region);
1173 
1174   set_result(_gvn.transform(phi));
1175   return true;
1176 }
1177 
1178 //------------------------------inline_array_equals----------------------------
1179 bool LibraryCallKit::inline_array_equals() {
1180   Node* arg1 = argument(0);
1181   Node* arg2 = argument(1);
1182   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1183   return true;
1184 }
1185 
1186 // Java version of String.indexOf(constant string)
1187 // class StringDecl {
1188 //   StringDecl(char[] ca) {
1189 //     offset = 0;
1190 //     count = ca.length;
1191 //     value = ca;
1192 //   }
1193 //   int offset;
1194 //   int count;
1195 //   char[] value;
1196 // }
1197 //
1198 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1199 //                             int targetOffset, int cache_i, int md2) {
1200 //   int cache = cache_i;
1201 //   int sourceOffset = string_object.offset;
1202 //   int sourceCount = string_object.count;
1203 //   int targetCount = target_object.length;
1204 //
1205 //   int targetCountLess1 = targetCount - 1;
1206 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1207 //
1208 //   char[] source = string_object.value;
1209 //   char[] target = target_object;
1210 //   int lastChar = target[targetCountLess1];
1211 //
1212 //  outer_loop:
1213 //   for (int i = sourceOffset; i < sourceEnd; ) {
1214 //     int src = source[i + targetCountLess1];
1215 //     if (src == lastChar) {
1216 //       // With random strings and a 4-character alphabet,
1217 //       // reverse matching at this point sets up 0.8% fewer
1218 //       // frames, but (paradoxically) makes 0.3% more probes.
1219 //       // Since those probes are nearer the lastChar probe,
1220 //       // there is may be a net D$ win with reverse matching.
1221 //       // But, reversing loop inhibits unroll of inner loop
1222 //       // for unknown reason.  So, does running outer loop from
1223 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1224 //       for (int j = 0; j < targetCountLess1; j++) {
1225 //         if (target[targetOffset + j] != source[i+j]) {
1226 //           if ((cache & (1 << source[i+j])) == 0) {
1227 //             if (md2 < j+1) {
1228 //               i += j+1;
1229 //               continue outer_loop;
1230 //             }
1231 //           }
1232 //           i += md2;
1233 //           continue outer_loop;
1234 //         }
1235 //       }
1236 //       return i - sourceOffset;
1237 //     }
1238 //     if ((cache & (1 << src)) == 0) {
1239 //       i += targetCountLess1;
1240 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1241 //     i++;
1242 //   }
1243 //   return -1;
1244 // }
1245 
1246 //------------------------------string_indexOf------------------------
1247 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1248                                      jint cache_i, jint md2_i) {
1249 
1250   Node* no_ctrl  = NULL;
1251   float likely   = PROB_LIKELY(0.9);
1252   float unlikely = PROB_UNLIKELY(0.9);
1253 
1254   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1255 
1256   Node* source        = load_String_value(no_ctrl, string_object);
1257   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1258   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1259 
1260   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1261   jint target_length = target_array->length();
1262   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1263   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1264 
1265   IdealKit kit(this, false, true);
1266 #define __ kit.
1267   Node* zero             = __ ConI(0);
1268   Node* one              = __ ConI(1);
1269   Node* cache            = __ ConI(cache_i);
1270   Node* md2              = __ ConI(md2_i);
1271   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1272   Node* targetCount      = __ ConI(target_length);
1273   Node* targetCountLess1 = __ ConI(target_length - 1);
1274   Node* targetOffset     = __ ConI(targetOffset_i);
1275   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1276 
1277   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1278   Node* outer_loop = __ make_label(2 /* goto */);
1279   Node* return_    = __ make_label(1);
1280 
1281   __ set(rtn,__ ConI(-1));
1282   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1283        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1284        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1285        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1286        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1287          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1288               Node* tpj = __ AddI(targetOffset, __ value(j));
1289               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1290               Node* ipj  = __ AddI(__ value(i), __ value(j));
1291               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1292               __ if_then(targ, BoolTest::ne, src2); {
1293                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1294                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1295                     __ increment(i, __ AddI(__ value(j), one));
1296                     __ goto_(outer_loop);
1297                   } __ end_if(); __ dead(j);
1298                 }__ end_if(); __ dead(j);
1299                 __ increment(i, md2);
1300                 __ goto_(outer_loop);
1301               }__ end_if();
1302               __ increment(j, one);
1303          }__ end_loop(); __ dead(j);
1304          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1305          __ goto_(return_);
1306        }__ end_if();
1307        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1308          __ increment(i, targetCountLess1);
1309        }__ end_if();
1310        __ increment(i, one);
1311        __ bind(outer_loop);
1312   }__ end_loop(); __ dead(i);
1313   __ bind(return_);
1314 
1315   // Final sync IdealKit and GraphKit.
1316   final_sync(kit);
1317   Node* result = __ value(rtn);
1318 #undef __
1319   C->set_has_loops(true);
1320   return result;
1321 }
1322 
1323 //------------------------------inline_string_indexOf------------------------
1324 bool LibraryCallKit::inline_string_indexOf() {
1325   Node* receiver = argument(0);
1326   Node* arg      = argument(1);
1327 
1328   Node* result;
1329   // Disable the use of pcmpestri until it can be guaranteed that
1330   // the load doesn't cross into the uncommited space.
1331   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1332       UseSSE42Intrinsics) {
1333     // Generate SSE4.2 version of indexOf
1334     // We currently only have match rules that use SSE4.2
1335 
1336     receiver = null_check(receiver);
1337     arg      = null_check(arg);
1338     if (stopped()) {
1339       return true;
1340     }
1341 
1342     ciInstanceKlass* str_klass = env()->String_klass();
1343     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1344 
1345     // Make the merge point
1346     RegionNode* result_rgn = new (C) RegionNode(4);
1347     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1348     Node* no_ctrl  = NULL;
1349 
1350     // Get start addr of source string
1351     Node* source = load_String_value(no_ctrl, receiver);
1352     Node* source_offset = load_String_offset(no_ctrl, receiver);
1353     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1354 
1355     // Get length of source string
1356     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1357 
1358     // Get start addr of substring
1359     Node* substr = load_String_value(no_ctrl, arg);
1360     Node* substr_offset = load_String_offset(no_ctrl, arg);
1361     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1362 
1363     // Get length of source string
1364     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1365 
1366     // Check for substr count > string count
1367     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1368     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1369     Node* if_gt = generate_slow_guard(bol, NULL);
1370     if (if_gt != NULL) {
1371       result_phi->init_req(2, intcon(-1));
1372       result_rgn->init_req(2, if_gt);
1373     }
1374 
1375     if (!stopped()) {
1376       // Check for substr count == 0
1377       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1378       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1379       Node* if_zero = generate_slow_guard(bol, NULL);
1380       if (if_zero != NULL) {
1381         result_phi->init_req(3, intcon(0));
1382         result_rgn->init_req(3, if_zero);
1383       }
1384     }
1385 
1386     if (!stopped()) {
1387       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1388       result_phi->init_req(1, result);
1389       result_rgn->init_req(1, control());
1390     }
1391     set_control(_gvn.transform(result_rgn));
1392     record_for_igvn(result_rgn);
1393     result = _gvn.transform(result_phi);
1394 
1395   } else { // Use LibraryCallKit::string_indexOf
1396     // don't intrinsify if argument isn't a constant string.
1397     if (!arg->is_Con()) {
1398      return false;
1399     }
1400     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1401     if (str_type == NULL) {
1402       return false;
1403     }
1404     ciInstanceKlass* klass = env()->String_klass();
1405     ciObject* str_const = str_type->const_oop();
1406     if (str_const == NULL || str_const->klass() != klass) {
1407       return false;
1408     }
1409     ciInstance* str = str_const->as_instance();
1410     assert(str != NULL, "must be instance");
1411 
1412     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1413     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1414 
1415     int o;
1416     int c;
1417     if (java_lang_String::has_offset_field()) {
1418       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1419       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1420     } else {
1421       o = 0;
1422       c = pat->length();
1423     }
1424 
1425     // constant strings have no offset and count == length which
1426     // simplifies the resulting code somewhat so lets optimize for that.
1427     if (o != 0 || c != pat->length()) {
1428      return false;
1429     }
1430 
1431     receiver = null_check(receiver, T_OBJECT);
1432     // NOTE: No null check on the argument is needed since it's a constant String oop.
1433     if (stopped()) {
1434       return true;
1435     }
1436 
1437     // The null string as a pattern always returns 0 (match at beginning of string)
1438     if (c == 0) {
1439       set_result(intcon(0));
1440       return true;
1441     }
1442 
1443     // Generate default indexOf
1444     jchar lastChar = pat->char_at(o + (c - 1));
1445     int cache = 0;
1446     int i;
1447     for (i = 0; i < c - 1; i++) {
1448       assert(i < pat->length(), "out of range");
1449       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1450     }
1451 
1452     int md2 = c;
1453     for (i = 0; i < c - 1; i++) {
1454       assert(i < pat->length(), "out of range");
1455       if (pat->char_at(o + i) == lastChar) {
1456         md2 = (c - 1) - i;
1457       }
1458     }
1459 
1460     result = string_indexOf(receiver, pat, o, cache, md2);
1461   }
1462   set_result(result);
1463   return true;
1464 }
1465 
1466 //--------------------------round_double_node--------------------------------
1467 // Round a double node if necessary.
1468 Node* LibraryCallKit::round_double_node(Node* n) {
1469   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1470     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1471   return n;
1472 }
1473 
1474 //------------------------------inline_math-----------------------------------
1475 // public static double Math.abs(double)
1476 // public static double Math.sqrt(double)
1477 // public static double Math.log(double)
1478 // public static double Math.log10(double)
1479 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1480   Node* arg = round_double_node(argument(0));
1481   Node* n;
1482   switch (id) {
1483   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1484   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1485   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1486   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1487   default:  fatal_unexpected_iid(id);  break;
1488   }
1489   set_result(_gvn.transform(n));
1490   return true;
1491 }
1492 
1493 //------------------------------inline_trig----------------------------------
1494 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1495 // argument reduction which will turn into a fast/slow diamond.
1496 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1497   Node* arg = round_double_node(argument(0));
1498   Node* n = NULL;
1499 
1500   switch (id) {
1501   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1502   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1503   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1504   default:  fatal_unexpected_iid(id);  break;
1505   }
1506   n = _gvn.transform(n);
1507 
1508   // Rounding required?  Check for argument reduction!
1509   if (Matcher::strict_fp_requires_explicit_rounding) {
1510     static const double     pi_4 =  0.7853981633974483;
1511     static const double neg_pi_4 = -0.7853981633974483;
1512     // pi/2 in 80-bit extended precision
1513     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1514     // -pi/2 in 80-bit extended precision
1515     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1516     // Cutoff value for using this argument reduction technique
1517     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1518     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1519 
1520     // Pseudocode for sin:
1521     // if (x <= Math.PI / 4.0) {
1522     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1523     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1524     // } else {
1525     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1526     // }
1527     // return StrictMath.sin(x);
1528 
1529     // Pseudocode for cos:
1530     // if (x <= Math.PI / 4.0) {
1531     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1532     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1533     // } else {
1534     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1535     // }
1536     // return StrictMath.cos(x);
1537 
1538     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1539     // requires a special machine instruction to load it.  Instead we'll try
1540     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1541     // probably do the math inside the SIN encoding.
1542 
1543     // Make the merge point
1544     RegionNode* r = new (C) RegionNode(3);
1545     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1546 
1547     // Flatten arg so we need only 1 test
1548     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1549     // Node for PI/4 constant
1550     Node *pi4 = makecon(TypeD::make(pi_4));
1551     // Check PI/4 : abs(arg)
1552     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1553     // Check: If PI/4 < abs(arg) then go slow
1554     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1555     // Branch either way
1556     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1557     set_control(opt_iff(r,iff));
1558 
1559     // Set fast path result
1560     phi->init_req(2, n);
1561 
1562     // Slow path - non-blocking leaf call
1563     Node* call = NULL;
1564     switch (id) {
1565     case vmIntrinsics::_dsin:
1566       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1567                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1568                                "Sin", NULL, arg, top());
1569       break;
1570     case vmIntrinsics::_dcos:
1571       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1572                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1573                                "Cos", NULL, arg, top());
1574       break;
1575     case vmIntrinsics::_dtan:
1576       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1577                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1578                                "Tan", NULL, arg, top());
1579       break;
1580     }
1581     assert(control()->in(0) == call, "");
1582     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1583     r->init_req(1, control());
1584     phi->init_req(1, slow_result);
1585 
1586     // Post-merge
1587     set_control(_gvn.transform(r));
1588     record_for_igvn(r);
1589     n = _gvn.transform(phi);
1590 
1591     C->set_has_split_ifs(true); // Has chance for split-if optimization
1592   }
1593   set_result(n);
1594   return true;
1595 }
1596 
1597 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1598   //-------------------
1599   //result=(result.isNaN())? funcAddr():result;
1600   // Check: If isNaN() by checking result!=result? then either trap
1601   // or go to runtime
1602   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1603   // Build the boolean node
1604   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1605 
1606   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1607     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1608       // The pow or exp intrinsic returned a NaN, which requires a call
1609       // to the runtime.  Recompile with the runtime call.
1610       uncommon_trap(Deoptimization::Reason_intrinsic,
1611                     Deoptimization::Action_make_not_entrant);
1612     }
1613     set_result(result);
1614   } else {
1615     // If this inlining ever returned NaN in the past, we compile a call
1616     // to the runtime to properly handle corner cases
1617 
1618     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1619     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1620     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1621 
1622     if (!if_slow->is_top()) {
1623       RegionNode* result_region = new (C) RegionNode(3);
1624       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1625 
1626       result_region->init_req(1, if_fast);
1627       result_val->init_req(1, result);
1628 
1629       set_control(if_slow);
1630 
1631       const TypePtr* no_memory_effects = NULL;
1632       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1633                                    no_memory_effects,
1634                                    x, top(), y, y ? top() : NULL);
1635       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1636 #ifdef ASSERT
1637       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1638       assert(value_top == top(), "second value must be top");
1639 #endif
1640 
1641       result_region->init_req(2, control());
1642       result_val->init_req(2, value);
1643       set_result(result_region, result_val);
1644     } else {
1645       set_result(result);
1646     }
1647   }
1648 }
1649 
1650 //------------------------------inline_exp-------------------------------------
1651 // Inline exp instructions, if possible.  The Intel hardware only misses
1652 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1653 bool LibraryCallKit::inline_exp() {
1654   Node* arg = round_double_node(argument(0));
1655   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1656 
1657   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1658 
1659   C->set_has_split_ifs(true); // Has chance for split-if optimization
1660   return true;
1661 }
1662 
1663 //------------------------------inline_pow-------------------------------------
1664 // Inline power instructions, if possible.
1665 bool LibraryCallKit::inline_pow() {
1666   // Pseudocode for pow
1667   // if (x <= 0.0) {
1668   //   long longy = (long)y;
1669   //   if ((double)longy == y) { // if y is long
1670   //     if (y + 1 == y) longy = 0; // huge number: even
1671   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1672   //   } else {
1673   //     result = NaN;
1674   //   }
1675   // } else {
1676   //   result = DPow(x,y);
1677   // }
1678   // if (result != result)?  {
1679   //   result = uncommon_trap() or runtime_call();
1680   // }
1681   // return result;
1682 
1683   Node* x = round_double_node(argument(0));
1684   Node* y = round_double_node(argument(2));
1685 
1686   Node* result = NULL;
1687 
1688   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1689     // Short form: skip the fancy tests and just check for NaN result.
1690     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1691   } else {
1692     // If this inlining ever returned NaN in the past, include all
1693     // checks + call to the runtime.
1694 
1695     // Set the merge point for If node with condition of (x <= 0.0)
1696     // There are four possible paths to region node and phi node
1697     RegionNode *r = new (C) RegionNode(4);
1698     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1699 
1700     // Build the first if node: if (x <= 0.0)
1701     // Node for 0 constant
1702     Node *zeronode = makecon(TypeD::ZERO);
1703     // Check x:0
1704     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1705     // Check: If (x<=0) then go complex path
1706     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1707     // Branch either way
1708     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1709     // Fast path taken; set region slot 3
1710     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1711     r->init_req(3,fast_taken); // Capture fast-control
1712 
1713     // Fast path not-taken, i.e. slow path
1714     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1715 
1716     // Set fast path result
1717     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
1718     phi->init_req(3, fast_result);
1719 
1720     // Complex path
1721     // Build the second if node (if y is long)
1722     // Node for (long)y
1723     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1724     // Node for (double)((long) y)
1725     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1726     // Check (double)((long) y) : y
1727     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1728     // Check if (y isn't long) then go to slow path
1729 
1730     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1731     // Branch either way
1732     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1733     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1734 
1735     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1736 
1737     // Calculate DPow(abs(x), y)*(1 & (long)y)
1738     // Node for constant 1
1739     Node *conone = longcon(1);
1740     // 1& (long)y
1741     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1742 
1743     // A huge number is always even. Detect a huge number by checking
1744     // if y + 1 == y and set integer to be tested for parity to 0.
1745     // Required for corner case:
1746     // (long)9.223372036854776E18 = max_jlong
1747     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1748     // max_jlong is odd but 9.223372036854776E18 is even
1749     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1750     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1751     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1752     Node* correctedsign = NULL;
1753     if (ConditionalMoveLimit != 0) {
1754       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1755     } else {
1756       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1757       RegionNode *r = new (C) RegionNode(3);
1758       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1759       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1760       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1761       phi->init_req(1, signnode);
1762       phi->init_req(2, longcon(0));
1763       correctedsign = _gvn.transform(phi);
1764       ylong_path = _gvn.transform(r);
1765       record_for_igvn(r);
1766     }
1767 
1768     // zero node
1769     Node *conzero = longcon(0);
1770     // Check (1&(long)y)==0?
1771     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1772     // Check if (1&(long)y)!=0?, if so the result is negative
1773     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1774     // abs(x)
1775     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1776     // abs(x)^y
1777     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
1778     // -abs(x)^y
1779     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1780     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1781     Node *signresult = NULL;
1782     if (ConditionalMoveLimit != 0) {
1783       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1784     } else {
1785       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1786       RegionNode *r = new (C) RegionNode(3);
1787       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1788       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1789       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1790       phi->init_req(1, absxpowy);
1791       phi->init_req(2, negabsxpowy);
1792       signresult = _gvn.transform(phi);
1793       ylong_path = _gvn.transform(r);
1794       record_for_igvn(r);
1795     }
1796     // Set complex path fast result
1797     r->init_req(2, ylong_path);
1798     phi->init_req(2, signresult);
1799 
1800     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1801     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1802     r->init_req(1,slow_path);
1803     phi->init_req(1,slow_result);
1804 
1805     // Post merge
1806     set_control(_gvn.transform(r));
1807     record_for_igvn(r);
1808     result = _gvn.transform(phi);
1809   }
1810 
1811   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1812 
1813   C->set_has_split_ifs(true); // Has chance for split-if optimization
1814   return true;
1815 }
1816 
1817 //------------------------------runtime_math-----------------------------
1818 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1819   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1820          "must be (DD)D or (D)D type");
1821 
1822   // Inputs
1823   Node* a = round_double_node(argument(0));
1824   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1825 
1826   const TypePtr* no_memory_effects = NULL;
1827   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1828                                  no_memory_effects,
1829                                  a, top(), b, b ? top() : NULL);
1830   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1831 #ifdef ASSERT
1832   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1833   assert(value_top == top(), "second value must be top");
1834 #endif
1835 
1836   set_result(value);
1837   return true;
1838 }
1839 
1840 //------------------------------inline_math_native-----------------------------
1841 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1842 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1843   switch (id) {
1844     // These intrinsics are not properly supported on all hardware
1845   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1846     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1847   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1848     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1849   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1850     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1851 
1852   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1853     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1854   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1855     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1856 
1857     // These intrinsics are supported on all hardware
1858   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1859   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1860 
1861   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1862     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1863   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1864     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1865 #undef FN_PTR
1866 
1867    // These intrinsics are not yet correctly implemented
1868   case vmIntrinsics::_datan2:
1869     return false;
1870 
1871   default:
1872     fatal_unexpected_iid(id);
1873     return false;
1874   }
1875 }
1876 
1877 static bool is_simple_name(Node* n) {
1878   return (n->req() == 1         // constant
1879           || (n->is_Type() && n->as_Type()->type()->singleton())
1880           || n->is_Proj()       // parameter or return value
1881           || n->is_Phi()        // local of some sort
1882           );
1883 }
1884 
1885 //----------------------------inline_min_max-----------------------------------
1886 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1887   set_result(generate_min_max(id, argument(0), argument(1)));
1888   return true;
1889 }
1890 
1891 Node*
1892 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1893   // These are the candidate return value:
1894   Node* xvalue = x0;
1895   Node* yvalue = y0;
1896 
1897   if (xvalue == yvalue) {
1898     return xvalue;
1899   }
1900 
1901   bool want_max = (id == vmIntrinsics::_max);
1902 
1903   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1904   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1905   if (txvalue == NULL || tyvalue == NULL)  return top();
1906   // This is not really necessary, but it is consistent with a
1907   // hypothetical MaxINode::Value method:
1908   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1909 
1910   // %%% This folding logic should (ideally) be in a different place.
1911   // Some should be inside IfNode, and there to be a more reliable
1912   // transformation of ?: style patterns into cmoves.  We also want
1913   // more powerful optimizations around cmove and min/max.
1914 
1915   // Try to find a dominating comparison of these guys.
1916   // It can simplify the index computation for Arrays.copyOf
1917   // and similar uses of System.arraycopy.
1918   // First, compute the normalized version of CmpI(x, y).
1919   int   cmp_op = Op_CmpI;
1920   Node* xkey = xvalue;
1921   Node* ykey = yvalue;
1922   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1923   if (ideal_cmpxy->is_Cmp()) {
1924     // E.g., if we have CmpI(length - offset, count),
1925     // it might idealize to CmpI(length, count + offset)
1926     cmp_op = ideal_cmpxy->Opcode();
1927     xkey = ideal_cmpxy->in(1);
1928     ykey = ideal_cmpxy->in(2);
1929   }
1930 
1931   // Start by locating any relevant comparisons.
1932   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1933   Node* cmpxy = NULL;
1934   Node* cmpyx = NULL;
1935   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1936     Node* cmp = start_from->fast_out(k);
1937     if (cmp->outcnt() > 0 &&            // must have prior uses
1938         cmp->in(0) == NULL &&           // must be context-independent
1939         cmp->Opcode() == cmp_op) {      // right kind of compare
1940       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1941       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1942     }
1943   }
1944 
1945   const int NCMPS = 2;
1946   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1947   int cmpn;
1948   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1949     if (cmps[cmpn] != NULL)  break;     // find a result
1950   }
1951   if (cmpn < NCMPS) {
1952     // Look for a dominating test that tells us the min and max.
1953     int depth = 0;                // Limit search depth for speed
1954     Node* dom = control();
1955     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1956       if (++depth >= 100)  break;
1957       Node* ifproj = dom;
1958       if (!ifproj->is_Proj())  continue;
1959       Node* iff = ifproj->in(0);
1960       if (!iff->is_If())  continue;
1961       Node* bol = iff->in(1);
1962       if (!bol->is_Bool())  continue;
1963       Node* cmp = bol->in(1);
1964       if (cmp == NULL)  continue;
1965       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1966         if (cmps[cmpn] == cmp)  break;
1967       if (cmpn == NCMPS)  continue;
1968       BoolTest::mask btest = bol->as_Bool()->_test._test;
1969       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1970       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1971       // At this point, we know that 'x btest y' is true.
1972       switch (btest) {
1973       case BoolTest::eq:
1974         // They are proven equal, so we can collapse the min/max.
1975         // Either value is the answer.  Choose the simpler.
1976         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1977           return yvalue;
1978         return xvalue;
1979       case BoolTest::lt:          // x < y
1980       case BoolTest::le:          // x <= y
1981         return (want_max ? yvalue : xvalue);
1982       case BoolTest::gt:          // x > y
1983       case BoolTest::ge:          // x >= y
1984         return (want_max ? xvalue : yvalue);
1985       }
1986     }
1987   }
1988 
1989   // We failed to find a dominating test.
1990   // Let's pick a test that might GVN with prior tests.
1991   Node*          best_bol   = NULL;
1992   BoolTest::mask best_btest = BoolTest::illegal;
1993   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1994     Node* cmp = cmps[cmpn];
1995     if (cmp == NULL)  continue;
1996     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1997       Node* bol = cmp->fast_out(j);
1998       if (!bol->is_Bool())  continue;
1999       BoolTest::mask btest = bol->as_Bool()->_test._test;
2000       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2001       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2002       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2003         best_bol   = bol->as_Bool();
2004         best_btest = btest;
2005       }
2006     }
2007   }
2008 
2009   Node* answer_if_true  = NULL;
2010   Node* answer_if_false = NULL;
2011   switch (best_btest) {
2012   default:
2013     if (cmpxy == NULL)
2014       cmpxy = ideal_cmpxy;
2015     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2016     // and fall through:
2017   case BoolTest::lt:          // x < y
2018   case BoolTest::le:          // x <= y
2019     answer_if_true  = (want_max ? yvalue : xvalue);
2020     answer_if_false = (want_max ? xvalue : yvalue);
2021     break;
2022   case BoolTest::gt:          // x > y
2023   case BoolTest::ge:          // x >= y
2024     answer_if_true  = (want_max ? xvalue : yvalue);
2025     answer_if_false = (want_max ? yvalue : xvalue);
2026     break;
2027   }
2028 
2029   jint hi, lo;
2030   if (want_max) {
2031     // We can sharpen the minimum.
2032     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2033     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2034   } else {
2035     // We can sharpen the maximum.
2036     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2037     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2038   }
2039 
2040   // Use a flow-free graph structure, to avoid creating excess control edges
2041   // which could hinder other optimizations.
2042   // Since Math.min/max is often used with arraycopy, we want
2043   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2044   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2045                                answer_if_false, answer_if_true,
2046                                TypeInt::make(lo, hi, widen));
2047 
2048   return _gvn.transform(cmov);
2049 
2050   /*
2051   // This is not as desirable as it may seem, since Min and Max
2052   // nodes do not have a full set of optimizations.
2053   // And they would interfere, anyway, with 'if' optimizations
2054   // and with CMoveI canonical forms.
2055   switch (id) {
2056   case vmIntrinsics::_min:
2057     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2058   case vmIntrinsics::_max:
2059     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2060   default:
2061     ShouldNotReachHere();
2062   }
2063   */
2064 }
2065 
2066 inline int
2067 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2068   const TypePtr* base_type = TypePtr::NULL_PTR;
2069   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2070   if (base_type == NULL) {
2071     // Unknown type.
2072     return Type::AnyPtr;
2073   } else if (base_type == TypePtr::NULL_PTR) {
2074     // Since this is a NULL+long form, we have to switch to a rawptr.
2075     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2076     offset = MakeConX(0);
2077     return Type::RawPtr;
2078   } else if (base_type->base() == Type::RawPtr) {
2079     return Type::RawPtr;
2080   } else if (base_type->isa_oopptr()) {
2081     // Base is never null => always a heap address.
2082     if (base_type->ptr() == TypePtr::NotNull) {
2083       return Type::OopPtr;
2084     }
2085     // Offset is small => always a heap address.
2086     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2087     if (offset_type != NULL &&
2088         base_type->offset() == 0 &&     // (should always be?)
2089         offset_type->_lo >= 0 &&
2090         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2091       return Type::OopPtr;
2092     }
2093     // Otherwise, it might either be oop+off or NULL+addr.
2094     return Type::AnyPtr;
2095   } else {
2096     // No information:
2097     return Type::AnyPtr;
2098   }
2099 }
2100 
2101 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2102   int kind = classify_unsafe_addr(base, offset);
2103   if (kind == Type::RawPtr) {
2104     return basic_plus_adr(top(), base, offset);
2105   } else {
2106     return basic_plus_adr(base, offset);
2107   }
2108 }
2109 
2110 //--------------------------inline_number_methods-----------------------------
2111 // inline int     Integer.numberOfLeadingZeros(int)
2112 // inline int        Long.numberOfLeadingZeros(long)
2113 //
2114 // inline int     Integer.numberOfTrailingZeros(int)
2115 // inline int        Long.numberOfTrailingZeros(long)
2116 //
2117 // inline int     Integer.bitCount(int)
2118 // inline int        Long.bitCount(long)
2119 //
2120 // inline char  Character.reverseBytes(char)
2121 // inline short     Short.reverseBytes(short)
2122 // inline int     Integer.reverseBytes(int)
2123 // inline long       Long.reverseBytes(long)
2124 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2125   Node* arg = argument(0);
2126   Node* n;
2127   switch (id) {
2128   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2129   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2130   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2131   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2132   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2133   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2134   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2135   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2136   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2137   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2138   default:  fatal_unexpected_iid(id);  break;
2139   }
2140   set_result(_gvn.transform(n));
2141   return true;
2142 }
2143 
2144 //----------------------------inline_unsafe_access----------------------------
2145 
2146 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2147 
2148 // Helper that guards and inserts a pre-barrier.
2149 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2150                                         Node* pre_val, bool need_mem_bar) {
2151   // We could be accessing the referent field of a reference object. If so, when G1
2152   // is enabled, we need to log the value in the referent field in an SATB buffer.
2153   // This routine performs some compile time filters and generates suitable
2154   // runtime filters that guard the pre-barrier code.
2155   // Also add memory barrier for non volatile load from the referent field
2156   // to prevent commoning of loads across safepoint.
2157   if (!UseG1GC && !need_mem_bar)
2158     return;
2159 
2160   // Some compile time checks.
2161 
2162   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2163   const TypeX* otype = offset->find_intptr_t_type();
2164   if (otype != NULL && otype->is_con() &&
2165       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2166     // Constant offset but not the reference_offset so just return
2167     return;
2168   }
2169 
2170   // We only need to generate the runtime guards for instances.
2171   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2172   if (btype != NULL) {
2173     if (btype->isa_aryptr()) {
2174       // Array type so nothing to do
2175       return;
2176     }
2177 
2178     const TypeInstPtr* itype = btype->isa_instptr();
2179     if (itype != NULL) {
2180       // Can the klass of base_oop be statically determined to be
2181       // _not_ a sub-class of Reference and _not_ Object?
2182       ciKlass* klass = itype->klass();
2183       if ( klass->is_loaded() &&
2184           !klass->is_subtype_of(env()->Reference_klass()) &&
2185           !env()->Object_klass()->is_subtype_of(klass)) {
2186         return;
2187       }
2188     }
2189   }
2190 
2191   // The compile time filters did not reject base_oop/offset so
2192   // we need to generate the following runtime filters
2193   //
2194   // if (offset == java_lang_ref_Reference::_reference_offset) {
2195   //   if (instance_of(base, java.lang.ref.Reference)) {
2196   //     pre_barrier(_, pre_val, ...);
2197   //   }
2198   // }
2199 
2200   float likely   = PROB_LIKELY(  0.999);
2201   float unlikely = PROB_UNLIKELY(0.999);
2202 
2203   IdealKit ideal(this);
2204 #define __ ideal.
2205 
2206   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2207 
2208   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2209       // Update graphKit memory and control from IdealKit.
2210       sync_kit(ideal);
2211 
2212       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2213       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2214 
2215       // Update IdealKit memory and control from graphKit.
2216       __ sync_kit(this);
2217 
2218       Node* one = __ ConI(1);
2219       // is_instof == 0 if base_oop == NULL
2220       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2221 
2222         // Update graphKit from IdeakKit.
2223         sync_kit(ideal);
2224 
2225         // Use the pre-barrier to record the value in the referent field
2226         pre_barrier(false /* do_load */,
2227                     __ ctrl(),
2228                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2229                     pre_val /* pre_val */,
2230                     T_OBJECT);
2231         if (need_mem_bar) {
2232           // Add memory barrier to prevent commoning reads from this field
2233           // across safepoint since GC can change its value.
2234           insert_mem_bar(Op_MemBarCPUOrder);
2235         }
2236         // Update IdealKit from graphKit.
2237         __ sync_kit(this);
2238 
2239       } __ end_if(); // _ref_type != ref_none
2240   } __ end_if(); // offset == referent_offset
2241 
2242   // Final sync IdealKit and GraphKit.
2243   final_sync(ideal);
2244 #undef __
2245 }
2246 
2247 
2248 // Interpret Unsafe.fieldOffset cookies correctly:
2249 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2250 
2251 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2252   // Attempt to infer a sharper value type from the offset and base type.
2253   ciKlass* sharpened_klass = NULL;
2254 
2255   // See if it is an instance field, with an object type.
2256   if (alias_type->field() != NULL) {
2257     assert(!is_native_ptr, "native pointer op cannot use a java address");
2258     if (alias_type->field()->type()->is_klass()) {
2259       sharpened_klass = alias_type->field()->type()->as_klass();
2260     }
2261   }
2262 
2263   // See if it is a narrow oop array.
2264   if (adr_type->isa_aryptr()) {
2265     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2266       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2267       if (elem_type != NULL) {
2268         sharpened_klass = elem_type->klass();
2269       }
2270     }
2271   }
2272 
2273   // The sharpened class might be unloaded if there is no class loader
2274   // contraint in place.
2275   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2276     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2277 
2278 #ifndef PRODUCT
2279     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2280       tty->print("  from base type: ");  adr_type->dump();
2281       tty->print("  sharpened value: ");  tjp->dump();
2282     }
2283 #endif
2284     // Sharpen the value type.
2285     return tjp;
2286   }
2287   return NULL;
2288 }
2289 
2290 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2291   if (callee()->is_static())  return false;  // caller must have the capability!
2292 
2293 #ifndef PRODUCT
2294   {
2295     ResourceMark rm;
2296     // Check the signatures.
2297     ciSignature* sig = callee()->signature();
2298 #ifdef ASSERT
2299     if (!is_store) {
2300       // Object getObject(Object base, int/long offset), etc.
2301       BasicType rtype = sig->return_type()->basic_type();
2302       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2303           rtype = T_ADDRESS;  // it is really a C void*
2304       assert(rtype == type, "getter must return the expected value");
2305       if (!is_native_ptr) {
2306         assert(sig->count() == 2, "oop getter has 2 arguments");
2307         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2308         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2309       } else {
2310         assert(sig->count() == 1, "native getter has 1 argument");
2311         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2312       }
2313     } else {
2314       // void putObject(Object base, int/long offset, Object x), etc.
2315       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2316       if (!is_native_ptr) {
2317         assert(sig->count() == 3, "oop putter has 3 arguments");
2318         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2319         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2320       } else {
2321         assert(sig->count() == 2, "native putter has 2 arguments");
2322         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2323       }
2324       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2325       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2326         vtype = T_ADDRESS;  // it is really a C void*
2327       assert(vtype == type, "putter must accept the expected value");
2328     }
2329 #endif // ASSERT
2330  }
2331 #endif //PRODUCT
2332 
2333   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2334 
2335   Node* receiver = argument(0);  // type: oop
2336 
2337   // Build address expression.  See the code in inline_unsafe_prefetch.
2338   Node* adr;
2339   Node* heap_base_oop = top();
2340   Node* offset = top();
2341   Node* val;
2342 
2343   if (!is_native_ptr) {
2344     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2345     Node* base = argument(1);  // type: oop
2346     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2347     offset = argument(2);  // type: long
2348     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2349     // to be plain byte offsets, which are also the same as those accepted
2350     // by oopDesc::field_base.
2351     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2352            "fieldOffset must be byte-scaled");
2353     // 32-bit machines ignore the high half!
2354     offset = ConvL2X(offset);
2355     adr = make_unsafe_address(base, offset);
2356     heap_base_oop = base;
2357     val = is_store ? argument(4) : NULL;
2358   } else {
2359     Node* ptr = argument(1);  // type: long
2360     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2361     adr = make_unsafe_address(NULL, ptr);
2362     val = is_store ? argument(3) : NULL;
2363   }
2364 
2365   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2366 
2367   // First guess at the value type.
2368   const Type *value_type = Type::get_const_basic_type(type);
2369 
2370   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2371   // there was not enough information to nail it down.
2372   Compile::AliasType* alias_type = C->alias_type(adr_type);
2373   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2374 
2375   // We will need memory barriers unless we can determine a unique
2376   // alias category for this reference.  (Note:  If for some reason
2377   // the barriers get omitted and the unsafe reference begins to "pollute"
2378   // the alias analysis of the rest of the graph, either Compile::can_alias
2379   // or Compile::must_alias will throw a diagnostic assert.)
2380   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2381 
2382   // If we are reading the value of the referent field of a Reference
2383   // object (either by using Unsafe directly or through reflection)
2384   // then, if G1 is enabled, we need to record the referent in an
2385   // SATB log buffer using the pre-barrier mechanism.
2386   // Also we need to add memory barrier to prevent commoning reads
2387   // from this field across safepoint since GC can change its value.
2388   bool need_read_barrier = !is_native_ptr && !is_store &&
2389                            offset != top() && heap_base_oop != top();
2390 
2391   if (!is_store && type == T_OBJECT) {
2392     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2393     if (tjp != NULL) {
2394       value_type = tjp;
2395     }
2396   }
2397 
2398   receiver = null_check(receiver);
2399   if (stopped()) {
2400     return true;
2401   }
2402   // Heap pointers get a null-check from the interpreter,
2403   // as a courtesy.  However, this is not guaranteed by Unsafe,
2404   // and it is not possible to fully distinguish unintended nulls
2405   // from intended ones in this API.
2406 
2407   if (is_volatile) {
2408     // We need to emit leading and trailing CPU membars (see below) in
2409     // addition to memory membars when is_volatile. This is a little
2410     // too strong, but avoids the need to insert per-alias-type
2411     // volatile membars (for stores; compare Parse::do_put_xxx), which
2412     // we cannot do effectively here because we probably only have a
2413     // rough approximation of type.
2414     need_mem_bar = true;
2415     // For Stores, place a memory ordering barrier now.
2416     if (is_store)
2417       insert_mem_bar(Op_MemBarRelease);
2418   }
2419 
2420   // Memory barrier to prevent normal and 'unsafe' accesses from
2421   // bypassing each other.  Happens after null checks, so the
2422   // exception paths do not take memory state from the memory barrier,
2423   // so there's no problems making a strong assert about mixing users
2424   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2425   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2426   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2427 
2428   if (!is_store) {
2429     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2430     // load value
2431     switch (type) {
2432     case T_BOOLEAN:
2433     case T_CHAR:
2434     case T_BYTE:
2435     case T_SHORT:
2436     case T_INT:
2437     case T_LONG:
2438     case T_FLOAT:
2439     case T_DOUBLE:
2440       break;
2441     case T_OBJECT:
2442       if (need_read_barrier) {
2443         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2444       }
2445       break;
2446     case T_ADDRESS:
2447       // Cast to an int type.
2448       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2449       p = ConvX2L(p);
2450       break;
2451     default:
2452       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2453       break;
2454     }
2455     // The load node has the control of the preceding MemBarCPUOrder.  All
2456     // following nodes will have the control of the MemBarCPUOrder inserted at
2457     // the end of this method.  So, pushing the load onto the stack at a later
2458     // point is fine.
2459     set_result(p);
2460   } else {
2461     // place effect of store into memory
2462     switch (type) {
2463     case T_DOUBLE:
2464       val = dstore_rounding(val);
2465       break;
2466     case T_ADDRESS:
2467       // Repackage the long as a pointer.
2468       val = ConvL2X(val);
2469       val = _gvn.transform( new (C) CastX2PNode(val) );
2470       break;
2471     }
2472 
2473     if (type != T_OBJECT ) {
2474       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2475     } else {
2476       // Possibly an oop being stored to Java heap or native memory
2477       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2478         // oop to Java heap.
2479         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2480       } else {
2481         // We can't tell at compile time if we are storing in the Java heap or outside
2482         // of it. So we need to emit code to conditionally do the proper type of
2483         // store.
2484 
2485         IdealKit ideal(this);
2486 #define __ ideal.
2487         // QQQ who knows what probability is here??
2488         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2489           // Sync IdealKit and graphKit.
2490           sync_kit(ideal);
2491           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2492           // Update IdealKit memory.
2493           __ sync_kit(this);
2494         } __ else_(); {
2495           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2496         } __ end_if();
2497         // Final sync IdealKit and GraphKit.
2498         final_sync(ideal);
2499 #undef __
2500       }
2501     }
2502   }
2503 
2504   if (is_volatile) {
2505     if (!is_store)
2506       insert_mem_bar(Op_MemBarAcquire);
2507     else
2508       insert_mem_bar(Op_MemBarVolatile);
2509   }
2510 
2511   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2512 
2513   return true;
2514 }
2515 
2516 //----------------------------inline_unsafe_prefetch----------------------------
2517 
2518 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2519 #ifndef PRODUCT
2520   {
2521     ResourceMark rm;
2522     // Check the signatures.
2523     ciSignature* sig = callee()->signature();
2524 #ifdef ASSERT
2525     // Object getObject(Object base, int/long offset), etc.
2526     BasicType rtype = sig->return_type()->basic_type();
2527     if (!is_native_ptr) {
2528       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2529       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2530       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2531     } else {
2532       assert(sig->count() == 1, "native prefetch has 1 argument");
2533       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2534     }
2535 #endif // ASSERT
2536   }
2537 #endif // !PRODUCT
2538 
2539   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2540 
2541   const int idx = is_static ? 0 : 1;
2542   if (!is_static) {
2543     null_check_receiver();
2544     if (stopped()) {
2545       return true;
2546     }
2547   }
2548 
2549   // Build address expression.  See the code in inline_unsafe_access.
2550   Node *adr;
2551   if (!is_native_ptr) {
2552     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2553     Node* base   = argument(idx + 0);  // type: oop
2554     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2555     Node* offset = argument(idx + 1);  // type: long
2556     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2557     // to be plain byte offsets, which are also the same as those accepted
2558     // by oopDesc::field_base.
2559     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2560            "fieldOffset must be byte-scaled");
2561     // 32-bit machines ignore the high half!
2562     offset = ConvL2X(offset);
2563     adr = make_unsafe_address(base, offset);
2564   } else {
2565     Node* ptr = argument(idx + 0);  // type: long
2566     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2567     adr = make_unsafe_address(NULL, ptr);
2568   }
2569 
2570   // Generate the read or write prefetch
2571   Node *prefetch;
2572   if (is_store) {
2573     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2574   } else {
2575     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2576   }
2577   prefetch->init_req(0, control());
2578   set_i_o(_gvn.transform(prefetch));
2579 
2580   return true;
2581 }
2582 
2583 //----------------------------inline_unsafe_load_store----------------------------
2584 // This method serves a couple of different customers (depending on LoadStoreKind):
2585 //
2586 // LS_cmpxchg:
2587 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2588 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2589 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2590 //
2591 // LS_xadd:
2592 //   public int  getAndAddInt( Object o, long offset, int  delta)
2593 //   public long getAndAddLong(Object o, long offset, long delta)
2594 //
2595 // LS_xchg:
2596 //   int    getAndSet(Object o, long offset, int    newValue)
2597 //   long   getAndSet(Object o, long offset, long   newValue)
2598 //   Object getAndSet(Object o, long offset, Object newValue)
2599 //
2600 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2601   // This basic scheme here is the same as inline_unsafe_access, but
2602   // differs in enough details that combining them would make the code
2603   // overly confusing.  (This is a true fact! I originally combined
2604   // them, but even I was confused by it!) As much code/comments as
2605   // possible are retained from inline_unsafe_access though to make
2606   // the correspondences clearer. - dl
2607 
2608   if (callee()->is_static())  return false;  // caller must have the capability!
2609 
2610 #ifndef PRODUCT
2611   BasicType rtype;
2612   {
2613     ResourceMark rm;
2614     // Check the signatures.
2615     ciSignature* sig = callee()->signature();
2616     rtype = sig->return_type()->basic_type();
2617     if (kind == LS_xadd || kind == LS_xchg) {
2618       // Check the signatures.
2619 #ifdef ASSERT
2620       assert(rtype == type, "get and set must return the expected type");
2621       assert(sig->count() == 3, "get and set has 3 arguments");
2622       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2623       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2624       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2625 #endif // ASSERT
2626     } else if (kind == LS_cmpxchg) {
2627       // Check the signatures.
2628 #ifdef ASSERT
2629       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2630       assert(sig->count() == 4, "CAS has 4 arguments");
2631       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2632       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2633 #endif // ASSERT
2634     } else {
2635       ShouldNotReachHere();
2636     }
2637   }
2638 #endif //PRODUCT
2639 
2640   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2641 
2642   // Get arguments:
2643   Node* receiver = NULL;
2644   Node* base     = NULL;
2645   Node* offset   = NULL;
2646   Node* oldval   = NULL;
2647   Node* newval   = NULL;
2648   if (kind == LS_cmpxchg) {
2649     const bool two_slot_type = type2size[type] == 2;
2650     receiver = argument(0);  // type: oop
2651     base     = argument(1);  // type: oop
2652     offset   = argument(2);  // type: long
2653     oldval   = argument(4);  // type: oop, int, or long
2654     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2655   } else if (kind == LS_xadd || kind == LS_xchg){
2656     receiver = argument(0);  // type: oop
2657     base     = argument(1);  // type: oop
2658     offset   = argument(2);  // type: long
2659     oldval   = NULL;
2660     newval   = argument(4);  // type: oop, int, or long
2661   }
2662 
2663   // Null check receiver.
2664   receiver = null_check(receiver);
2665   if (stopped()) {
2666     return true;
2667   }
2668 
2669   // Build field offset expression.
2670   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2671   // to be plain byte offsets, which are also the same as those accepted
2672   // by oopDesc::field_base.
2673   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2674   // 32-bit machines ignore the high half of long offsets
2675   offset = ConvL2X(offset);
2676   Node* adr = make_unsafe_address(base, offset);
2677   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2678 
2679   // For CAS, unlike inline_unsafe_access, there seems no point in
2680   // trying to refine types. Just use the coarse types here.
2681   const Type *value_type = Type::get_const_basic_type(type);
2682   Compile::AliasType* alias_type = C->alias_type(adr_type);
2683   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2684 
2685   if (kind == LS_xchg && type == T_OBJECT) {
2686     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2687     if (tjp != NULL) {
2688       value_type = tjp;
2689     }
2690   }
2691 
2692   int alias_idx = C->get_alias_index(adr_type);
2693 
2694   // Memory-model-wise, a LoadStore acts like a little synchronized
2695   // block, so needs barriers on each side.  These don't translate
2696   // into actual barriers on most machines, but we still need rest of
2697   // compiler to respect ordering.
2698 
2699   insert_mem_bar(Op_MemBarRelease);
2700   insert_mem_bar(Op_MemBarCPUOrder);
2701 
2702   // 4984716: MemBars must be inserted before this
2703   //          memory node in order to avoid a false
2704   //          dependency which will confuse the scheduler.
2705   Node *mem = memory(alias_idx);
2706 
2707   // For now, we handle only those cases that actually exist: ints,
2708   // longs, and Object. Adding others should be straightforward.
2709   Node* load_store;
2710   switch(type) {
2711   case T_INT:
2712     if (kind == LS_xadd) {
2713       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2714     } else if (kind == LS_xchg) {
2715       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2716     } else if (kind == LS_cmpxchg) {
2717       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2718     } else {
2719       ShouldNotReachHere();
2720     }
2721     break;
2722   case T_LONG:
2723     if (kind == LS_xadd) {
2724       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2725     } else if (kind == LS_xchg) {
2726       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2727     } else if (kind == LS_cmpxchg) {
2728       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2729     } else {
2730       ShouldNotReachHere();
2731     }
2732     break;
2733   case T_OBJECT:
2734     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2735     // could be delayed during Parse (for example, in adjust_map_after_if()).
2736     // Execute transformation here to avoid barrier generation in such case.
2737     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2738       newval = _gvn.makecon(TypePtr::NULL_PTR);
2739 
2740     // Reference stores need a store barrier.
2741     pre_barrier(true /* do_load*/,
2742                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2743                 NULL /* pre_val*/,
2744                 T_OBJECT);
2745 #ifdef _LP64
2746     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2747       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2748       if (kind == LS_xchg) {
2749         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2750                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2751       } else {
2752         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2753         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2754         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2755                                                                    newval_enc, oldval_enc));
2756       }
2757     } else
2758 #endif
2759     {
2760       if (kind == LS_xchg) {
2761         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2762       } else {
2763         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2764         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2765       }
2766     }
2767     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2768     break;
2769   default:
2770     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2771     break;
2772   }
2773 
2774   // SCMemProjNodes represent the memory state of a LoadStore. Their
2775   // main role is to prevent LoadStore nodes from being optimized away
2776   // when their results aren't used.
2777   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2778   set_memory(proj, alias_idx);
2779 
2780   // Add the trailing membar surrounding the access
2781   insert_mem_bar(Op_MemBarCPUOrder);
2782   insert_mem_bar(Op_MemBarAcquire);
2783 
2784 #ifdef _LP64
2785   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2786     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2787   }
2788 #endif
2789 
2790   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2791   set_result(load_store);
2792   return true;
2793 }
2794 
2795 //----------------------------inline_unsafe_ordered_store----------------------
2796 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2797 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2798 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2799 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2800   // This is another variant of inline_unsafe_access, differing in
2801   // that it always issues store-store ("release") barrier and ensures
2802   // store-atomicity (which only matters for "long").
2803 
2804   if (callee()->is_static())  return false;  // caller must have the capability!
2805 
2806 #ifndef PRODUCT
2807   {
2808     ResourceMark rm;
2809     // Check the signatures.
2810     ciSignature* sig = callee()->signature();
2811 #ifdef ASSERT
2812     BasicType rtype = sig->return_type()->basic_type();
2813     assert(rtype == T_VOID, "must return void");
2814     assert(sig->count() == 3, "has 3 arguments");
2815     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2816     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2817 #endif // ASSERT
2818   }
2819 #endif //PRODUCT
2820 
2821   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2822 
2823   // Get arguments:
2824   Node* receiver = argument(0);  // type: oop
2825   Node* base     = argument(1);  // type: oop
2826   Node* offset   = argument(2);  // type: long
2827   Node* val      = argument(4);  // type: oop, int, or long
2828 
2829   // Null check receiver.
2830   receiver = null_check(receiver);
2831   if (stopped()) {
2832     return true;
2833   }
2834 
2835   // Build field offset expression.
2836   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2837   // 32-bit machines ignore the high half of long offsets
2838   offset = ConvL2X(offset);
2839   Node* adr = make_unsafe_address(base, offset);
2840   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2841   const Type *value_type = Type::get_const_basic_type(type);
2842   Compile::AliasType* alias_type = C->alias_type(adr_type);
2843 
2844   insert_mem_bar(Op_MemBarRelease);
2845   insert_mem_bar(Op_MemBarCPUOrder);
2846   // Ensure that the store is atomic for longs:
2847   const bool require_atomic_access = true;
2848   Node* store;
2849   if (type == T_OBJECT) // reference stores need a store barrier.
2850     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2851   else {
2852     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2853   }
2854   insert_mem_bar(Op_MemBarCPUOrder);
2855   return true;
2856 }
2857 
2858 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2859   // Regardless of form, don't allow previous ld/st to move down,
2860   // then issue acquire, release, or volatile mem_bar.
2861   insert_mem_bar(Op_MemBarCPUOrder);
2862   switch(id) {
2863     case vmIntrinsics::_loadFence:
2864       insert_mem_bar(Op_MemBarAcquire);
2865       return true;
2866     case vmIntrinsics::_storeFence:
2867       insert_mem_bar(Op_MemBarRelease);
2868       return true;
2869     case vmIntrinsics::_fullFence:
2870       insert_mem_bar(Op_MemBarVolatile);
2871       return true;
2872     default:
2873       fatal_unexpected_iid(id);
2874       return false;
2875   }
2876 }
2877 
2878 //----------------------------inline_unsafe_allocate---------------------------
2879 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2880 bool LibraryCallKit::inline_unsafe_allocate() {
2881   if (callee()->is_static())  return false;  // caller must have the capability!
2882 
2883   null_check_receiver();  // null-check, then ignore
2884   Node* cls = null_check(argument(1));
2885   if (stopped())  return true;
2886 
2887   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2888   kls = null_check(kls);
2889   if (stopped())  return true;  // argument was like int.class
2890 
2891   // Note:  The argument might still be an illegal value like
2892   // Serializable.class or Object[].class.   The runtime will handle it.
2893   // But we must make an explicit check for initialization.
2894   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2895   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2896   // can generate code to load it as unsigned byte.
2897   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2898   Node* bits = intcon(InstanceKlass::fully_initialized);
2899   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2900   // The 'test' is non-zero if we need to take a slow path.
2901 
2902   Node* obj = new_instance(kls, test);
2903   set_result(obj);
2904   return true;
2905 }
2906 
2907 #ifdef TRACE_HAVE_INTRINSICS
2908 /*
2909  * oop -> myklass
2910  * myklass->trace_id |= USED
2911  * return myklass->trace_id & ~0x3
2912  */
2913 bool LibraryCallKit::inline_native_classID() {
2914   null_check_receiver();  // null-check, then ignore
2915   Node* cls = null_check(argument(1), T_OBJECT);
2916   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2917   kls = null_check(kls, T_OBJECT);
2918   ByteSize offset = TRACE_ID_OFFSET;
2919   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2920   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2921   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2922   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2923   Node* clsused = longcon(0x01l); // set the class bit
2924   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2925 
2926   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2927   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2928   set_result(andl);
2929   return true;
2930 }
2931 
2932 bool LibraryCallKit::inline_native_threadID() {
2933   Node* tls_ptr = NULL;
2934   Node* cur_thr = generate_current_thread(tls_ptr);
2935   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2936   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2937   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2938 
2939   Node* threadid = NULL;
2940   size_t thread_id_size = OSThread::thread_id_size();
2941   if (thread_id_size == (size_t) BytesPerLong) {
2942     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2943   } else if (thread_id_size == (size_t) BytesPerInt) {
2944     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2945   } else {
2946     ShouldNotReachHere();
2947   }
2948   set_result(threadid);
2949   return true;
2950 }
2951 #endif
2952 
2953 //------------------------inline_native_time_funcs--------------
2954 // inline code for System.currentTimeMillis() and System.nanoTime()
2955 // these have the same type and signature
2956 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2957   const TypeFunc* tf = OptoRuntime::void_long_Type();
2958   const TypePtr* no_memory_effects = NULL;
2959   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2960   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2961 #ifdef ASSERT
2962   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2963   assert(value_top == top(), "second value must be top");
2964 #endif
2965   set_result(value);
2966   return true;
2967 }
2968 
2969 //------------------------inline_native_currentThread------------------
2970 bool LibraryCallKit::inline_native_currentThread() {
2971   Node* junk = NULL;
2972   set_result(generate_current_thread(junk));
2973   return true;
2974 }
2975 
2976 //------------------------inline_native_isInterrupted------------------
2977 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2978 bool LibraryCallKit::inline_native_isInterrupted() {
2979   // Add a fast path to t.isInterrupted(clear_int):
2980   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2981   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2982   // So, in the common case that the interrupt bit is false,
2983   // we avoid making a call into the VM.  Even if the interrupt bit
2984   // is true, if the clear_int argument is false, we avoid the VM call.
2985   // However, if the receiver is not currentThread, we must call the VM,
2986   // because there must be some locking done around the operation.
2987 
2988   // We only go to the fast case code if we pass two guards.
2989   // Paths which do not pass are accumulated in the slow_region.
2990 
2991   enum {
2992     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
2993     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
2994     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
2995     PATH_LIMIT
2996   };
2997 
2998   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
2999   // out of the function.
3000   insert_mem_bar(Op_MemBarCPUOrder);
3001 
3002   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3003   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3004 
3005   RegionNode* slow_region = new (C) RegionNode(1);
3006   record_for_igvn(slow_region);
3007 
3008   // (a) Receiving thread must be the current thread.
3009   Node* rec_thr = argument(0);
3010   Node* tls_ptr = NULL;
3011   Node* cur_thr = generate_current_thread(tls_ptr);
3012   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
3013   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
3014 
3015   generate_slow_guard(bol_thr, slow_region);
3016 
3017   // (b) Interrupt bit on TLS must be false.
3018   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3019   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3020   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3021 
3022   // Set the control input on the field _interrupted read to prevent it floating up.
3023   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3024   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
3025   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
3026 
3027   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3028 
3029   // First fast path:  if (!TLS._interrupted) return false;
3030   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
3031   result_rgn->init_req(no_int_result_path, false_bit);
3032   result_val->init_req(no_int_result_path, intcon(0));
3033 
3034   // drop through to next case
3035   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3036 
3037   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3038   Node* clr_arg = argument(1);
3039   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3040   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3041   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3042 
3043   // Second fast path:  ... else if (!clear_int) return true;
3044   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3045   result_rgn->init_req(no_clear_result_path, false_arg);
3046   result_val->init_req(no_clear_result_path, intcon(1));
3047 
3048   // drop through to next case
3049   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3050 
3051   // (d) Otherwise, go to the slow path.
3052   slow_region->add_req(control());
3053   set_control( _gvn.transform(slow_region) );
3054 
3055   if (stopped()) {
3056     // There is no slow path.
3057     result_rgn->init_req(slow_result_path, top());
3058     result_val->init_req(slow_result_path, top());
3059   } else {
3060     // non-virtual because it is a private non-static
3061     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3062 
3063     Node* slow_val = set_results_for_java_call(slow_call);
3064     // this->control() comes from set_results_for_java_call
3065 
3066     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3067     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3068 
3069     // These two phis are pre-filled with copies of of the fast IO and Memory
3070     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3071     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3072 
3073     result_rgn->init_req(slow_result_path, control());
3074     result_io ->init_req(slow_result_path, i_o());
3075     result_mem->init_req(slow_result_path, reset_memory());
3076     result_val->init_req(slow_result_path, slow_val);
3077 
3078     set_all_memory(_gvn.transform(result_mem));
3079     set_i_o(       _gvn.transform(result_io));
3080   }
3081 
3082   C->set_has_split_ifs(true); // Has chance for split-if optimization
3083   set_result(result_rgn, result_val);
3084   return true;
3085 }
3086 
3087 //---------------------------load_mirror_from_klass----------------------------
3088 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3089 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3090   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3091   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3092 }
3093 
3094 //-----------------------load_klass_from_mirror_common-------------------------
3095 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3096 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3097 // and branch to the given path on the region.
3098 // If never_see_null, take an uncommon trap on null, so we can optimistically
3099 // compile for the non-null case.
3100 // If the region is NULL, force never_see_null = true.
3101 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3102                                                     bool never_see_null,
3103                                                     RegionNode* region,
3104                                                     int null_path,
3105                                                     int offset) {
3106   if (region == NULL)  never_see_null = true;
3107   Node* p = basic_plus_adr(mirror, offset);
3108   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3109   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3110   Node* null_ctl = top();
3111   kls = null_check_oop(kls, &null_ctl, never_see_null);
3112   if (region != NULL) {
3113     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3114     region->init_req(null_path, null_ctl);
3115   } else {
3116     assert(null_ctl == top(), "no loose ends");
3117   }
3118   return kls;
3119 }
3120 
3121 //--------------------(inline_native_Class_query helpers)---------------------
3122 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3123 // Fall through if (mods & mask) == bits, take the guard otherwise.
3124 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3125   // Branch around if the given klass has the given modifier bit set.
3126   // Like generate_guard, adds a new path onto the region.
3127   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3128   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3129   Node* mask = intcon(modifier_mask);
3130   Node* bits = intcon(modifier_bits);
3131   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3132   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3133   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3134   return generate_fair_guard(bol, region);
3135 }
3136 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3137   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3138 }
3139 
3140 //-------------------------inline_native_Class_query-------------------
3141 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3142   const Type* return_type = TypeInt::BOOL;
3143   Node* prim_return_value = top();  // what happens if it's a primitive class?
3144   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3145   bool expect_prim = false;     // most of these guys expect to work on refs
3146 
3147   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3148 
3149   Node* mirror = argument(0);
3150   Node* obj    = top();
3151 
3152   switch (id) {
3153   case vmIntrinsics::_isInstance:
3154     // nothing is an instance of a primitive type
3155     prim_return_value = intcon(0);
3156     obj = argument(1);
3157     break;
3158   case vmIntrinsics::_getModifiers:
3159     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3160     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3161     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3162     break;
3163   case vmIntrinsics::_isInterface:
3164     prim_return_value = intcon(0);
3165     break;
3166   case vmIntrinsics::_isArray:
3167     prim_return_value = intcon(0);
3168     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3169     break;
3170   case vmIntrinsics::_isPrimitive:
3171     prim_return_value = intcon(1);
3172     expect_prim = true;  // obviously
3173     break;
3174   case vmIntrinsics::_getSuperclass:
3175     prim_return_value = null();
3176     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3177     break;
3178   case vmIntrinsics::_getComponentType:
3179     prim_return_value = null();
3180     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3181     break;
3182   case vmIntrinsics::_getClassAccessFlags:
3183     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3184     return_type = TypeInt::INT;  // not bool!  6297094
3185     break;
3186   default:
3187     fatal_unexpected_iid(id);
3188     break;
3189   }
3190 
3191   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3192   if (mirror_con == NULL)  return false;  // cannot happen?
3193 
3194 #ifndef PRODUCT
3195   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3196     ciType* k = mirror_con->java_mirror_type();
3197     if (k) {
3198       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3199       k->print_name();
3200       tty->cr();
3201     }
3202   }
3203 #endif
3204 
3205   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3206   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3207   record_for_igvn(region);
3208   PhiNode* phi = new (C) PhiNode(region, return_type);
3209 
3210   // The mirror will never be null of Reflection.getClassAccessFlags, however
3211   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3212   // if it is. See bug 4774291.
3213 
3214   // For Reflection.getClassAccessFlags(), the null check occurs in
3215   // the wrong place; see inline_unsafe_access(), above, for a similar
3216   // situation.
3217   mirror = null_check(mirror);
3218   // If mirror or obj is dead, only null-path is taken.
3219   if (stopped())  return true;
3220 
3221   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3222 
3223   // Now load the mirror's klass metaobject, and null-check it.
3224   // Side-effects region with the control path if the klass is null.
3225   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3226   // If kls is null, we have a primitive mirror.
3227   phi->init_req(_prim_path, prim_return_value);
3228   if (stopped()) { set_result(region, phi); return true; }
3229 
3230   Node* p;  // handy temp
3231   Node* null_ctl;
3232 
3233   // Now that we have the non-null klass, we can perform the real query.
3234   // For constant classes, the query will constant-fold in LoadNode::Value.
3235   Node* query_value = top();
3236   switch (id) {
3237   case vmIntrinsics::_isInstance:
3238     // nothing is an instance of a primitive type
3239     query_value = gen_instanceof(obj, kls);
3240     break;
3241 
3242   case vmIntrinsics::_getModifiers:
3243     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3244     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3245     break;
3246 
3247   case vmIntrinsics::_isInterface:
3248     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3249     if (generate_interface_guard(kls, region) != NULL)
3250       // A guard was added.  If the guard is taken, it was an interface.
3251       phi->add_req(intcon(1));
3252     // If we fall through, it's a plain class.
3253     query_value = intcon(0);
3254     break;
3255 
3256   case vmIntrinsics::_isArray:
3257     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3258     if (generate_array_guard(kls, region) != NULL)
3259       // A guard was added.  If the guard is taken, it was an array.
3260       phi->add_req(intcon(1));
3261     // If we fall through, it's a plain class.
3262     query_value = intcon(0);
3263     break;
3264 
3265   case vmIntrinsics::_isPrimitive:
3266     query_value = intcon(0); // "normal" path produces false
3267     break;
3268 
3269   case vmIntrinsics::_getSuperclass:
3270     // The rules here are somewhat unfortunate, but we can still do better
3271     // with random logic than with a JNI call.
3272     // Interfaces store null or Object as _super, but must report null.
3273     // Arrays store an intermediate super as _super, but must report Object.
3274     // Other types can report the actual _super.
3275     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3276     if (generate_interface_guard(kls, region) != NULL)
3277       // A guard was added.  If the guard is taken, it was an interface.
3278       phi->add_req(null());
3279     if (generate_array_guard(kls, region) != NULL)
3280       // A guard was added.  If the guard is taken, it was an array.
3281       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3282     // If we fall through, it's a plain class.  Get its _super.
3283     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3284     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3285     null_ctl = top();
3286     kls = null_check_oop(kls, &null_ctl);
3287     if (null_ctl != top()) {
3288       // If the guard is taken, Object.superClass is null (both klass and mirror).
3289       region->add_req(null_ctl);
3290       phi   ->add_req(null());
3291     }
3292     if (!stopped()) {
3293       query_value = load_mirror_from_klass(kls);
3294     }
3295     break;
3296 
3297   case vmIntrinsics::_getComponentType:
3298     if (generate_array_guard(kls, region) != NULL) {
3299       // Be sure to pin the oop load to the guard edge just created:
3300       Node* is_array_ctrl = region->in(region->req()-1);
3301       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3302       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3303       phi->add_req(cmo);
3304     }
3305     query_value = null();  // non-array case is null
3306     break;
3307 
3308   case vmIntrinsics::_getClassAccessFlags:
3309     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3310     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3311     break;
3312 
3313   default:
3314     fatal_unexpected_iid(id);
3315     break;
3316   }
3317 
3318   // Fall-through is the normal case of a query to a real class.
3319   phi->init_req(1, query_value);
3320   region->init_req(1, control());
3321 
3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
3323   set_result(region, phi);
3324   return true;
3325 }
3326 
3327 //--------------------------inline_native_subtype_check------------------------
3328 // This intrinsic takes the JNI calls out of the heart of
3329 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3330 bool LibraryCallKit::inline_native_subtype_check() {
3331   // Pull both arguments off the stack.
3332   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3333   args[0] = argument(0);
3334   args[1] = argument(1);
3335   Node* klasses[2];             // corresponding Klasses: superk, subk
3336   klasses[0] = klasses[1] = top();
3337 
3338   enum {
3339     // A full decision tree on {superc is prim, subc is prim}:
3340     _prim_0_path = 1,           // {P,N} => false
3341                                 // {P,P} & superc!=subc => false
3342     _prim_same_path,            // {P,P} & superc==subc => true
3343     _prim_1_path,               // {N,P} => false
3344     _ref_subtype_path,          // {N,N} & subtype check wins => true
3345     _both_ref_path,             // {N,N} & subtype check loses => false
3346     PATH_LIMIT
3347   };
3348 
3349   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3350   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3351   record_for_igvn(region);
3352 
3353   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3354   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3355   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3356 
3357   // First null-check both mirrors and load each mirror's klass metaobject.
3358   int which_arg;
3359   for (which_arg = 0; which_arg <= 1; which_arg++) {
3360     Node* arg = args[which_arg];
3361     arg = null_check(arg);
3362     if (stopped())  break;
3363     args[which_arg] = arg;
3364 
3365     Node* p = basic_plus_adr(arg, class_klass_offset);
3366     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3367     klasses[which_arg] = _gvn.transform(kls);
3368   }
3369 
3370   // Having loaded both klasses, test each for null.
3371   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3372   for (which_arg = 0; which_arg <= 1; which_arg++) {
3373     Node* kls = klasses[which_arg];
3374     Node* null_ctl = top();
3375     kls = null_check_oop(kls, &null_ctl, never_see_null);
3376     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3377     region->init_req(prim_path, null_ctl);
3378     if (stopped())  break;
3379     klasses[which_arg] = kls;
3380   }
3381 
3382   if (!stopped()) {
3383     // now we have two reference types, in klasses[0..1]
3384     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3385     Node* superk = klasses[0];  // the receiver
3386     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3387     // now we have a successful reference subtype check
3388     region->set_req(_ref_subtype_path, control());
3389   }
3390 
3391   // If both operands are primitive (both klasses null), then
3392   // we must return true when they are identical primitives.
3393   // It is convenient to test this after the first null klass check.
3394   set_control(region->in(_prim_0_path)); // go back to first null check
3395   if (!stopped()) {
3396     // Since superc is primitive, make a guard for the superc==subc case.
3397     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3398     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3399     generate_guard(bol_eq, region, PROB_FAIR);
3400     if (region->req() == PATH_LIMIT+1) {
3401       // A guard was added.  If the added guard is taken, superc==subc.
3402       region->swap_edges(PATH_LIMIT, _prim_same_path);
3403       region->del_req(PATH_LIMIT);
3404     }
3405     region->set_req(_prim_0_path, control()); // Not equal after all.
3406   }
3407 
3408   // these are the only paths that produce 'true':
3409   phi->set_req(_prim_same_path,   intcon(1));
3410   phi->set_req(_ref_subtype_path, intcon(1));
3411 
3412   // pull together the cases:
3413   assert(region->req() == PATH_LIMIT, "sane region");
3414   for (uint i = 1; i < region->req(); i++) {
3415     Node* ctl = region->in(i);
3416     if (ctl == NULL || ctl == top()) {
3417       region->set_req(i, top());
3418       phi   ->set_req(i, top());
3419     } else if (phi->in(i) == NULL) {
3420       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3421     }
3422   }
3423 
3424   set_control(_gvn.transform(region));
3425   set_result(_gvn.transform(phi));
3426   return true;
3427 }
3428 
3429 //---------------------generate_array_guard_common------------------------
3430 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3431                                                   bool obj_array, bool not_array) {
3432   // If obj_array/non_array==false/false:
3433   // Branch around if the given klass is in fact an array (either obj or prim).
3434   // If obj_array/non_array==false/true:
3435   // Branch around if the given klass is not an array klass of any kind.
3436   // If obj_array/non_array==true/true:
3437   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3438   // If obj_array/non_array==true/false:
3439   // Branch around if the kls is an oop array (Object[] or subtype)
3440   //
3441   // Like generate_guard, adds a new path onto the region.
3442   jint  layout_con = 0;
3443   Node* layout_val = get_layout_helper(kls, layout_con);
3444   if (layout_val == NULL) {
3445     bool query = (obj_array
3446                   ? Klass::layout_helper_is_objArray(layout_con)
3447                   : Klass::layout_helper_is_array(layout_con));
3448     if (query == not_array) {
3449       return NULL;                       // never a branch
3450     } else {                             // always a branch
3451       Node* always_branch = control();
3452       if (region != NULL)
3453         region->add_req(always_branch);
3454       set_control(top());
3455       return always_branch;
3456     }
3457   }
3458   // Now test the correct condition.
3459   jint  nval = (obj_array
3460                 ? ((jint)Klass::_lh_array_tag_type_value
3461                    <<    Klass::_lh_array_tag_shift)
3462                 : Klass::_lh_neutral_value);
3463   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3464   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3465   // invert the test if we are looking for a non-array
3466   if (not_array)  btest = BoolTest(btest).negate();
3467   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3468   return generate_fair_guard(bol, region);
3469 }
3470 
3471 
3472 //-----------------------inline_native_newArray--------------------------
3473 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3474 bool LibraryCallKit::inline_native_newArray() {
3475   Node* mirror    = argument(0);
3476   Node* count_val = argument(1);
3477 
3478   mirror = null_check(mirror);
3479   // If mirror or obj is dead, only null-path is taken.
3480   if (stopped())  return true;
3481 
3482   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3483   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3484   PhiNode*    result_val = new(C) PhiNode(result_reg,
3485                                           TypeInstPtr::NOTNULL);
3486   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3487   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3488                                           TypePtr::BOTTOM);
3489 
3490   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3491   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3492                                                   result_reg, _slow_path);
3493   Node* normal_ctl   = control();
3494   Node* no_array_ctl = result_reg->in(_slow_path);
3495 
3496   // Generate code for the slow case.  We make a call to newArray().
3497   set_control(no_array_ctl);
3498   if (!stopped()) {
3499     // Either the input type is void.class, or else the
3500     // array klass has not yet been cached.  Either the
3501     // ensuing call will throw an exception, or else it
3502     // will cache the array klass for next time.
3503     PreserveJVMState pjvms(this);
3504     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3505     Node* slow_result = set_results_for_java_call(slow_call);
3506     // this->control() comes from set_results_for_java_call
3507     result_reg->set_req(_slow_path, control());
3508     result_val->set_req(_slow_path, slow_result);
3509     result_io ->set_req(_slow_path, i_o());
3510     result_mem->set_req(_slow_path, reset_memory());
3511   }
3512 
3513   set_control(normal_ctl);
3514   if (!stopped()) {
3515     // Normal case:  The array type has been cached in the java.lang.Class.
3516     // The following call works fine even if the array type is polymorphic.
3517     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3518     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3519     result_reg->init_req(_normal_path, control());
3520     result_val->init_req(_normal_path, obj);
3521     result_io ->init_req(_normal_path, i_o());
3522     result_mem->init_req(_normal_path, reset_memory());
3523   }
3524 
3525   // Return the combined state.
3526   set_i_o(        _gvn.transform(result_io)  );
3527   set_all_memory( _gvn.transform(result_mem) );
3528 
3529   C->set_has_split_ifs(true); // Has chance for split-if optimization
3530   set_result(result_reg, result_val);
3531   return true;
3532 }
3533 
3534 //----------------------inline_native_getLength--------------------------
3535 // public static native int java.lang.reflect.Array.getLength(Object array);
3536 bool LibraryCallKit::inline_native_getLength() {
3537   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3538 
3539   Node* array = null_check(argument(0));
3540   // If array is dead, only null-path is taken.
3541   if (stopped())  return true;
3542 
3543   // Deoptimize if it is a non-array.
3544   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3545 
3546   if (non_array != NULL) {
3547     PreserveJVMState pjvms(this);
3548     set_control(non_array);
3549     uncommon_trap(Deoptimization::Reason_intrinsic,
3550                   Deoptimization::Action_maybe_recompile);
3551   }
3552 
3553   // If control is dead, only non-array-path is taken.
3554   if (stopped())  return true;
3555 
3556   // The works fine even if the array type is polymorphic.
3557   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3558   Node* result = load_array_length(array);
3559 
3560   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3561   set_result(result);
3562   return true;
3563 }
3564 
3565 //------------------------inline_array_copyOf----------------------------
3566 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3567 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3568 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3569   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3570 
3571   // Get the arguments.
3572   Node* original          = argument(0);
3573   Node* start             = is_copyOfRange? argument(1): intcon(0);
3574   Node* end               = is_copyOfRange? argument(2): argument(1);
3575   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3576 
3577   Node* newcopy;
3578 
3579   // Set the original stack and the reexecute bit for the interpreter to reexecute
3580   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3581   { PreserveReexecuteState preexecs(this);
3582     jvms()->set_should_reexecute(true);
3583 
3584     array_type_mirror = null_check(array_type_mirror);
3585     original          = null_check(original);
3586 
3587     // Check if a null path was taken unconditionally.
3588     if (stopped())  return true;
3589 
3590     Node* orig_length = load_array_length(original);
3591 
3592     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3593     klass_node = null_check(klass_node);
3594 
3595     RegionNode* bailout = new (C) RegionNode(1);
3596     record_for_igvn(bailout);
3597 
3598     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3599     // Bail out if that is so.
3600     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3601     if (not_objArray != NULL) {
3602       // Improve the klass node's type from the new optimistic assumption:
3603       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3604       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3605       Node* cast = new (C) CastPPNode(klass_node, akls);
3606       cast->init_req(0, control());
3607       klass_node = _gvn.transform(cast);
3608     }
3609 
3610     // Bail out if either start or end is negative.
3611     generate_negative_guard(start, bailout, &start);
3612     generate_negative_guard(end,   bailout, &end);
3613 
3614     Node* length = end;
3615     if (_gvn.type(start) != TypeInt::ZERO) {
3616       length = _gvn.transform(new (C) SubINode(end, start));
3617     }
3618 
3619     // Bail out if length is negative.
3620     // Without this the new_array would throw
3621     // NegativeArraySizeException but IllegalArgumentException is what
3622     // should be thrown
3623     generate_negative_guard(length, bailout, &length);
3624 
3625     if (bailout->req() > 1) {
3626       PreserveJVMState pjvms(this);
3627       set_control(_gvn.transform(bailout));
3628       uncommon_trap(Deoptimization::Reason_intrinsic,
3629                     Deoptimization::Action_maybe_recompile);
3630     }
3631 
3632     if (!stopped()) {
3633       // How many elements will we copy from the original?
3634       // The answer is MinI(orig_length - start, length).
3635       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3636       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3637 
3638       newcopy = new_array(klass_node, length, 0);  // no argments to push
3639 
3640       // Generate a direct call to the right arraycopy function(s).
3641       // We know the copy is disjoint but we might not know if the
3642       // oop stores need checking.
3643       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3644       // This will fail a store-check if x contains any non-nulls.
3645       bool disjoint_bases = true;
3646       // if start > orig_length then the length of the copy may be
3647       // negative.
3648       bool length_never_negative = !is_copyOfRange;
3649       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3650                          original, start, newcopy, intcon(0), moved,
3651                          disjoint_bases, length_never_negative);
3652     }
3653   } // original reexecute is set back here
3654 
3655   C->set_has_split_ifs(true); // Has chance for split-if optimization
3656   if (!stopped()) {
3657     set_result(newcopy);
3658   }
3659   return true;
3660 }
3661 
3662 
3663 //----------------------generate_virtual_guard---------------------------
3664 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3665 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3666                                              RegionNode* slow_region) {
3667   ciMethod* method = callee();
3668   int vtable_index = method->vtable_index();
3669   // Get the Method* out of the appropriate vtable entry.
3670   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3671                      vtable_index*vtableEntry::size()) * wordSize +
3672                      vtableEntry::method_offset_in_bytes();
3673   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3674   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3675 
3676   // Compare the target method with the expected method (e.g., Object.hashCode).
3677   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3678 
3679   Node* native_call = makecon(native_call_addr);
3680   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3681   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3682 
3683   return generate_slow_guard(test_native, slow_region);
3684 }
3685 
3686 //-----------------------generate_method_call----------------------------
3687 // Use generate_method_call to make a slow-call to the real
3688 // method if the fast path fails.  An alternative would be to
3689 // use a stub like OptoRuntime::slow_arraycopy_Java.
3690 // This only works for expanding the current library call,
3691 // not another intrinsic.  (E.g., don't use this for making an
3692 // arraycopy call inside of the copyOf intrinsic.)
3693 CallJavaNode*
3694 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3695   // When compiling the intrinsic method itself, do not use this technique.
3696   guarantee(callee() != C->method(), "cannot make slow-call to self");
3697 
3698   ciMethod* method = callee();
3699   // ensure the JVMS we have will be correct for this call
3700   guarantee(method_id == method->intrinsic_id(), "must match");
3701 
3702   const TypeFunc* tf = TypeFunc::make(method);
3703   CallJavaNode* slow_call;
3704   if (is_static) {
3705     assert(!is_virtual, "");
3706     slow_call = new(C) CallStaticJavaNode(C, tf,
3707                            SharedRuntime::get_resolve_static_call_stub(),
3708                            method, bci());
3709   } else if (is_virtual) {
3710     null_check_receiver();
3711     int vtable_index = Method::invalid_vtable_index;
3712     if (UseInlineCaches) {
3713       // Suppress the vtable call
3714     } else {
3715       // hashCode and clone are not a miranda methods,
3716       // so the vtable index is fixed.
3717       // No need to use the linkResolver to get it.
3718        vtable_index = method->vtable_index();
3719     }
3720     slow_call = new(C) CallDynamicJavaNode(tf,
3721                           SharedRuntime::get_resolve_virtual_call_stub(),
3722                           method, vtable_index, bci());
3723   } else {  // neither virtual nor static:  opt_virtual
3724     null_check_receiver();
3725     slow_call = new(C) CallStaticJavaNode(C, tf,
3726                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3727                                 method, bci());
3728     slow_call->set_optimized_virtual(true);
3729   }
3730   set_arguments_for_java_call(slow_call);
3731   set_edges_for_java_call(slow_call);
3732   return slow_call;
3733 }
3734 
3735 
3736 //------------------------------inline_native_hashcode--------------------
3737 // Build special case code for calls to hashCode on an object.
3738 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3739   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3740   assert(!(is_virtual && is_static), "either virtual, special, or static");
3741 
3742   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3743 
3744   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3745   PhiNode*    result_val = new(C) PhiNode(result_reg,
3746                                           TypeInt::INT);
3747   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3748   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3749                                           TypePtr::BOTTOM);
3750   Node* obj = NULL;
3751   if (!is_static) {
3752     // Check for hashing null object
3753     obj = null_check_receiver();
3754     if (stopped())  return true;        // unconditionally null
3755     result_reg->init_req(_null_path, top());
3756     result_val->init_req(_null_path, top());
3757   } else {
3758     // Do a null check, and return zero if null.
3759     // System.identityHashCode(null) == 0
3760     obj = argument(0);
3761     Node* null_ctl = top();
3762     obj = null_check_oop(obj, &null_ctl);
3763     result_reg->init_req(_null_path, null_ctl);
3764     result_val->init_req(_null_path, _gvn.intcon(0));
3765   }
3766 
3767   // Unconditionally null?  Then return right away.
3768   if (stopped()) {
3769     set_control( result_reg->in(_null_path));
3770     if (!stopped())
3771       set_result(result_val->in(_null_path));
3772     return true;
3773   }
3774 
3775   // After null check, get the object's klass.
3776   Node* obj_klass = load_object_klass(obj);
3777 
3778   // This call may be virtual (invokevirtual) or bound (invokespecial).
3779   // For each case we generate slightly different code.
3780 
3781   // We only go to the fast case code if we pass a number of guards.  The
3782   // paths which do not pass are accumulated in the slow_region.
3783   RegionNode* slow_region = new (C) RegionNode(1);
3784   record_for_igvn(slow_region);
3785 
3786   // If this is a virtual call, we generate a funny guard.  We pull out
3787   // the vtable entry corresponding to hashCode() from the target object.
3788   // If the target method which we are calling happens to be the native
3789   // Object hashCode() method, we pass the guard.  We do not need this
3790   // guard for non-virtual calls -- the caller is known to be the native
3791   // Object hashCode().
3792   if (is_virtual) {
3793     generate_virtual_guard(obj_klass, slow_region);
3794   }
3795 
3796   // Get the header out of the object, use LoadMarkNode when available
3797   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3798   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3799 
3800   // Test the header to see if it is unlocked.
3801   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3802   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3803   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3804   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3805   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3806 
3807   generate_slow_guard(test_unlocked, slow_region);
3808 
3809   // Get the hash value and check to see that it has been properly assigned.
3810   // We depend on hash_mask being at most 32 bits and avoid the use of
3811   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3812   // vm: see markOop.hpp.
3813   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3814   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3815   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3816   // This hack lets the hash bits live anywhere in the mark object now, as long
3817   // as the shift drops the relevant bits into the low 32 bits.  Note that
3818   // Java spec says that HashCode is an int so there's no point in capturing
3819   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3820   hshifted_header      = ConvX2I(hshifted_header);
3821   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3822 
3823   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3824   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3825   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3826 
3827   generate_slow_guard(test_assigned, slow_region);
3828 
3829   Node* init_mem = reset_memory();
3830   // fill in the rest of the null path:
3831   result_io ->init_req(_null_path, i_o());
3832   result_mem->init_req(_null_path, init_mem);
3833 
3834   result_val->init_req(_fast_path, hash_val);
3835   result_reg->init_req(_fast_path, control());
3836   result_io ->init_req(_fast_path, i_o());
3837   result_mem->init_req(_fast_path, init_mem);
3838 
3839   // Generate code for the slow case.  We make a call to hashCode().
3840   set_control(_gvn.transform(slow_region));
3841   if (!stopped()) {
3842     // No need for PreserveJVMState, because we're using up the present state.
3843     set_all_memory(init_mem);
3844     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3845     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3846     Node* slow_result = set_results_for_java_call(slow_call);
3847     // this->control() comes from set_results_for_java_call
3848     result_reg->init_req(_slow_path, control());
3849     result_val->init_req(_slow_path, slow_result);
3850     result_io  ->set_req(_slow_path, i_o());
3851     result_mem ->set_req(_slow_path, reset_memory());
3852   }
3853 
3854   // Return the combined state.
3855   set_i_o(        _gvn.transform(result_io)  );
3856   set_all_memory( _gvn.transform(result_mem) );
3857 
3858   set_result(result_reg, result_val);
3859   return true;
3860 }
3861 
3862 //---------------------------inline_native_getClass----------------------------
3863 // public final native Class<?> java.lang.Object.getClass();
3864 //
3865 // Build special case code for calls to getClass on an object.
3866 bool LibraryCallKit::inline_native_getClass() {
3867   Node* obj = null_check_receiver();
3868   if (stopped())  return true;
3869   set_result(load_mirror_from_klass(load_object_klass(obj)));
3870   return true;
3871 }
3872 
3873 //-----------------inline_native_Reflection_getCallerClass---------------------
3874 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3875 //
3876 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3877 //
3878 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3879 // in that it must skip particular security frames and checks for
3880 // caller sensitive methods.
3881 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3882 #ifndef PRODUCT
3883   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3884     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3885   }
3886 #endif
3887 
3888   if (!jvms()->has_method()) {
3889 #ifndef PRODUCT
3890     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3891       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3892     }
3893 #endif
3894     return false;
3895   }
3896 
3897   // Walk back up the JVM state to find the caller at the required
3898   // depth.
3899   JVMState* caller_jvms = jvms();
3900 
3901   // Cf. JVM_GetCallerClass
3902   // NOTE: Start the loop at depth 1 because the current JVM state does
3903   // not include the Reflection.getCallerClass() frame.
3904   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3905     ciMethod* m = caller_jvms->method();
3906     switch (n) {
3907     case 0:
3908       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3909       break;
3910     case 1:
3911       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3912       if (!m->caller_sensitive()) {
3913 #ifndef PRODUCT
3914         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3915           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3916         }
3917 #endif
3918         return false;  // bail-out; let JVM_GetCallerClass do the work
3919       }
3920       break;
3921     default:
3922       if (!m->is_ignored_by_security_stack_walk()) {
3923         // We have reached the desired frame; return the holder class.
3924         // Acquire method holder as java.lang.Class and push as constant.
3925         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3926         ciInstance* caller_mirror = caller_klass->java_mirror();
3927         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3928 
3929 #ifndef PRODUCT
3930         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3931           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3932           tty->print_cr("  JVM state at this point:");
3933           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3934             ciMethod* m = jvms()->of_depth(i)->method();
3935             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3936           }
3937         }
3938 #endif
3939         return true;
3940       }
3941       break;
3942     }
3943   }
3944 
3945 #ifndef PRODUCT
3946   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3947     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
3948     tty->print_cr("  JVM state at this point:");
3949     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3950       ciMethod* m = jvms()->of_depth(i)->method();
3951       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3952     }
3953   }
3954 #endif
3955 
3956   return false;  // bail-out; let JVM_GetCallerClass do the work
3957 }
3958 
3959 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3960   Node* arg = argument(0);
3961   Node* result;
3962 
3963   switch (id) {
3964   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3965   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3966   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3967   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
3968 
3969   case vmIntrinsics::_doubleToLongBits: {
3970     // two paths (plus control) merge in a wood
3971     RegionNode *r = new (C) RegionNode(3);
3972     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
3973 
3974     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
3975     // Build the boolean node
3976     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
3977 
3978     // Branch either way.
3979     // NaN case is less traveled, which makes all the difference.
3980     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3981     Node *opt_isnan = _gvn.transform(ifisnan);
3982     assert( opt_isnan->is_If(), "Expect an IfNode");
3983     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3984     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
3985 
3986     set_control(iftrue);
3987 
3988     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3989     Node *slow_result = longcon(nan_bits); // return NaN
3990     phi->init_req(1, _gvn.transform( slow_result ));
3991     r->init_req(1, iftrue);
3992 
3993     // Else fall through
3994     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
3995     set_control(iffalse);
3996 
3997     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
3998     r->init_req(2, iffalse);
3999 
4000     // Post merge
4001     set_control(_gvn.transform(r));
4002     record_for_igvn(r);
4003 
4004     C->set_has_split_ifs(true); // Has chance for split-if optimization
4005     result = phi;
4006     assert(result->bottom_type()->isa_long(), "must be");
4007     break;
4008   }
4009 
4010   case vmIntrinsics::_floatToIntBits: {
4011     // two paths (plus control) merge in a wood
4012     RegionNode *r = new (C) RegionNode(3);
4013     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4014 
4015     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4016     // Build the boolean node
4017     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4018 
4019     // Branch either way.
4020     // NaN case is less traveled, which makes all the difference.
4021     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4022     Node *opt_isnan = _gvn.transform(ifisnan);
4023     assert( opt_isnan->is_If(), "Expect an IfNode");
4024     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4025     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4026 
4027     set_control(iftrue);
4028 
4029     static const jint nan_bits = 0x7fc00000;
4030     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4031     phi->init_req(1, _gvn.transform( slow_result ));
4032     r->init_req(1, iftrue);
4033 
4034     // Else fall through
4035     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4036     set_control(iffalse);
4037 
4038     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4039     r->init_req(2, iffalse);
4040 
4041     // Post merge
4042     set_control(_gvn.transform(r));
4043     record_for_igvn(r);
4044 
4045     C->set_has_split_ifs(true); // Has chance for split-if optimization
4046     result = phi;
4047     assert(result->bottom_type()->isa_int(), "must be");
4048     break;
4049   }
4050 
4051   default:
4052     fatal_unexpected_iid(id);
4053     break;
4054   }
4055   set_result(_gvn.transform(result));
4056   return true;
4057 }
4058 
4059 #ifdef _LP64
4060 #define XTOP ,top() /*additional argument*/
4061 #else  //_LP64
4062 #define XTOP        /*no additional argument*/
4063 #endif //_LP64
4064 
4065 //----------------------inline_unsafe_copyMemory-------------------------
4066 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4067 bool LibraryCallKit::inline_unsafe_copyMemory() {
4068   if (callee()->is_static())  return false;  // caller must have the capability!
4069   null_check_receiver();  // null-check receiver
4070   if (stopped())  return true;
4071 
4072   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4073 
4074   Node* src_ptr =         argument(1);   // type: oop
4075   Node* src_off = ConvL2X(argument(2));  // type: long
4076   Node* dst_ptr =         argument(4);   // type: oop
4077   Node* dst_off = ConvL2X(argument(5));  // type: long
4078   Node* size    = ConvL2X(argument(7));  // type: long
4079 
4080   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4081          "fieldOffset must be byte-scaled");
4082 
4083   Node* src = make_unsafe_address(src_ptr, src_off);
4084   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4085 
4086   // Conservatively insert a memory barrier on all memory slices.
4087   // Do not let writes of the copy source or destination float below the copy.
4088   insert_mem_bar(Op_MemBarCPUOrder);
4089 
4090   // Call it.  Note that the length argument is not scaled.
4091   make_runtime_call(RC_LEAF|RC_NO_FP,
4092                     OptoRuntime::fast_arraycopy_Type(),
4093                     StubRoutines::unsafe_arraycopy(),
4094                     "unsafe_arraycopy",
4095                     TypeRawPtr::BOTTOM,
4096                     src, dst, size XTOP);
4097 
4098   // Do not let reads of the copy destination float above the copy.
4099   insert_mem_bar(Op_MemBarCPUOrder);
4100 
4101   return true;
4102 }
4103 
4104 //------------------------clone_coping-----------------------------------
4105 // Helper function for inline_native_clone.
4106 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4107   assert(obj_size != NULL, "");
4108   Node* raw_obj = alloc_obj->in(1);
4109   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4110 
4111   AllocateNode* alloc = NULL;
4112   if (ReduceBulkZeroing) {
4113     // We will be completely responsible for initializing this object -
4114     // mark Initialize node as complete.
4115     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4116     // The object was just allocated - there should be no any stores!
4117     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4118     // Mark as complete_with_arraycopy so that on AllocateNode
4119     // expansion, we know this AllocateNode is initialized by an array
4120     // copy and a StoreStore barrier exists after the array copy.
4121     alloc->initialization()->set_complete_with_arraycopy();
4122   }
4123 
4124   // Copy the fastest available way.
4125   // TODO: generate fields copies for small objects instead.
4126   Node* src  = obj;
4127   Node* dest = alloc_obj;
4128   Node* size = _gvn.transform(obj_size);
4129 
4130   // Exclude the header but include array length to copy by 8 bytes words.
4131   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4132   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4133                             instanceOopDesc::base_offset_in_bytes();
4134   // base_off:
4135   // 8  - 32-bit VM
4136   // 12 - 64-bit VM, compressed klass
4137   // 16 - 64-bit VM, normal klass
4138   if (base_off % BytesPerLong != 0) {
4139     assert(UseCompressedKlassPointers, "");
4140     if (is_array) {
4141       // Exclude length to copy by 8 bytes words.
4142       base_off += sizeof(int);
4143     } else {
4144       // Include klass to copy by 8 bytes words.
4145       base_off = instanceOopDesc::klass_offset_in_bytes();
4146     }
4147     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4148   }
4149   src  = basic_plus_adr(src,  base_off);
4150   dest = basic_plus_adr(dest, base_off);
4151 
4152   // Compute the length also, if needed:
4153   Node* countx = size;
4154   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4155   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4156 
4157   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4158   bool disjoint_bases = true;
4159   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4160                                src, NULL, dest, NULL, countx,
4161                                /*dest_uninitialized*/true);
4162 
4163   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4164   if (card_mark) {
4165     assert(!is_array, "");
4166     // Put in store barrier for any and all oops we are sticking
4167     // into this object.  (We could avoid this if we could prove
4168     // that the object type contains no oop fields at all.)
4169     Node* no_particular_value = NULL;
4170     Node* no_particular_field = NULL;
4171     int raw_adr_idx = Compile::AliasIdxRaw;
4172     post_barrier(control(),
4173                  memory(raw_adr_type),
4174                  alloc_obj,
4175                  no_particular_field,
4176                  raw_adr_idx,
4177                  no_particular_value,
4178                  T_OBJECT,
4179                  false);
4180   }
4181 
4182   // Do not let reads from the cloned object float above the arraycopy.
4183   if (alloc != NULL) {
4184     // Do not let stores that initialize this object be reordered with
4185     // a subsequent store that would make this object accessible by
4186     // other threads.
4187     // Record what AllocateNode this StoreStore protects so that
4188     // escape analysis can go from the MemBarStoreStoreNode to the
4189     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4190     // based on the escape status of the AllocateNode.
4191     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4192   } else {
4193     insert_mem_bar(Op_MemBarCPUOrder);
4194   }
4195 }
4196 
4197 //------------------------inline_native_clone----------------------------
4198 // protected native Object java.lang.Object.clone();
4199 //
4200 // Here are the simple edge cases:
4201 //  null receiver => normal trap
4202 //  virtual and clone was overridden => slow path to out-of-line clone
4203 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4204 //
4205 // The general case has two steps, allocation and copying.
4206 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4207 //
4208 // Copying also has two cases, oop arrays and everything else.
4209 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4210 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4211 //
4212 // These steps fold up nicely if and when the cloned object's klass
4213 // can be sharply typed as an object array, a type array, or an instance.
4214 //
4215 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4216   PhiNode* result_val;
4217 
4218   // Set the reexecute bit for the interpreter to reexecute
4219   // the bytecode that invokes Object.clone if deoptimization happens.
4220   { PreserveReexecuteState preexecs(this);
4221     jvms()->set_should_reexecute(true);
4222 
4223     Node* obj = null_check_receiver();
4224     if (stopped())  return true;
4225 
4226     Node* obj_klass = load_object_klass(obj);
4227     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4228     const TypeOopPtr*   toop   = ((tklass != NULL)
4229                                 ? tklass->as_instance_type()
4230                                 : TypeInstPtr::NOTNULL);
4231 
4232     // Conservatively insert a memory barrier on all memory slices.
4233     // Do not let writes into the original float below the clone.
4234     insert_mem_bar(Op_MemBarCPUOrder);
4235 
4236     // paths into result_reg:
4237     enum {
4238       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4239       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4240       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4241       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4242       PATH_LIMIT
4243     };
4244     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4245     result_val             = new(C) PhiNode(result_reg,
4246                                             TypeInstPtr::NOTNULL);
4247     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4248     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4249                                             TypePtr::BOTTOM);
4250     record_for_igvn(result_reg);
4251 
4252     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4253     int raw_adr_idx = Compile::AliasIdxRaw;
4254 
4255     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4256     if (array_ctl != NULL) {
4257       // It's an array.
4258       PreserveJVMState pjvms(this);
4259       set_control(array_ctl);
4260       Node* obj_length = load_array_length(obj);
4261       Node* obj_size  = NULL;
4262       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4263 
4264       if (!use_ReduceInitialCardMarks()) {
4265         // If it is an oop array, it requires very special treatment,
4266         // because card marking is required on each card of the array.
4267         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4268         if (is_obja != NULL) {
4269           PreserveJVMState pjvms2(this);
4270           set_control(is_obja);
4271           // Generate a direct call to the right arraycopy function(s).
4272           bool disjoint_bases = true;
4273           bool length_never_negative = true;
4274           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4275                              obj, intcon(0), alloc_obj, intcon(0),
4276                              obj_length,
4277                              disjoint_bases, length_never_negative);
4278           result_reg->init_req(_objArray_path, control());
4279           result_val->init_req(_objArray_path, alloc_obj);
4280           result_i_o ->set_req(_objArray_path, i_o());
4281           result_mem ->set_req(_objArray_path, reset_memory());
4282         }
4283       }
4284       // Otherwise, there are no card marks to worry about.
4285       // (We can dispense with card marks if we know the allocation
4286       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4287       //  causes the non-eden paths to take compensating steps to
4288       //  simulate a fresh allocation, so that no further
4289       //  card marks are required in compiled code to initialize
4290       //  the object.)
4291 
4292       if (!stopped()) {
4293         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4294 
4295         // Present the results of the copy.
4296         result_reg->init_req(_array_path, control());
4297         result_val->init_req(_array_path, alloc_obj);
4298         result_i_o ->set_req(_array_path, i_o());
4299         result_mem ->set_req(_array_path, reset_memory());
4300       }
4301     }
4302 
4303     // We only go to the instance fast case code if we pass a number of guards.
4304     // The paths which do not pass are accumulated in the slow_region.
4305     RegionNode* slow_region = new (C) RegionNode(1);
4306     record_for_igvn(slow_region);
4307     if (!stopped()) {
4308       // It's an instance (we did array above).  Make the slow-path tests.
4309       // If this is a virtual call, we generate a funny guard.  We grab
4310       // the vtable entry corresponding to clone() from the target object.
4311       // If the target method which we are calling happens to be the
4312       // Object clone() method, we pass the guard.  We do not need this
4313       // guard for non-virtual calls; the caller is known to be the native
4314       // Object clone().
4315       if (is_virtual) {
4316         generate_virtual_guard(obj_klass, slow_region);
4317       }
4318 
4319       // The object must be cloneable and must not have a finalizer.
4320       // Both of these conditions may be checked in a single test.
4321       // We could optimize the cloneable test further, but we don't care.
4322       generate_access_flags_guard(obj_klass,
4323                                   // Test both conditions:
4324                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4325                                   // Must be cloneable but not finalizer:
4326                                   JVM_ACC_IS_CLONEABLE,
4327                                   slow_region);
4328     }
4329 
4330     if (!stopped()) {
4331       // It's an instance, and it passed the slow-path tests.
4332       PreserveJVMState pjvms(this);
4333       Node* obj_size  = NULL;
4334       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4335 
4336       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4337 
4338       // Present the results of the slow call.
4339       result_reg->init_req(_instance_path, control());
4340       result_val->init_req(_instance_path, alloc_obj);
4341       result_i_o ->set_req(_instance_path, i_o());
4342       result_mem ->set_req(_instance_path, reset_memory());
4343     }
4344 
4345     // Generate code for the slow case.  We make a call to clone().
4346     set_control(_gvn.transform(slow_region));
4347     if (!stopped()) {
4348       PreserveJVMState pjvms(this);
4349       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4350       Node* slow_result = set_results_for_java_call(slow_call);
4351       // this->control() comes from set_results_for_java_call
4352       result_reg->init_req(_slow_path, control());
4353       result_val->init_req(_slow_path, slow_result);
4354       result_i_o ->set_req(_slow_path, i_o());
4355       result_mem ->set_req(_slow_path, reset_memory());
4356     }
4357 
4358     // Return the combined state.
4359     set_control(    _gvn.transform(result_reg) );
4360     set_i_o(        _gvn.transform(result_i_o) );
4361     set_all_memory( _gvn.transform(result_mem) );
4362   } // original reexecute is set back here
4363 
4364   set_result(_gvn.transform(result_val));
4365   return true;
4366 }
4367 
4368 //------------------------------basictype2arraycopy----------------------------
4369 address LibraryCallKit::basictype2arraycopy(BasicType t,
4370                                             Node* src_offset,
4371                                             Node* dest_offset,
4372                                             bool disjoint_bases,
4373                                             const char* &name,
4374                                             bool dest_uninitialized) {
4375   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4376   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4377 
4378   bool aligned = false;
4379   bool disjoint = disjoint_bases;
4380 
4381   // if the offsets are the same, we can treat the memory regions as
4382   // disjoint, because either the memory regions are in different arrays,
4383   // or they are identical (which we can treat as disjoint.)  We can also
4384   // treat a copy with a destination index  less that the source index
4385   // as disjoint since a low->high copy will work correctly in this case.
4386   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4387       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4388     // both indices are constants
4389     int s_offs = src_offset_inttype->get_con();
4390     int d_offs = dest_offset_inttype->get_con();
4391     int element_size = type2aelembytes(t);
4392     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4393               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4394     if (s_offs >= d_offs)  disjoint = true;
4395   } else if (src_offset == dest_offset && src_offset != NULL) {
4396     // This can occur if the offsets are identical non-constants.
4397     disjoint = true;
4398   }
4399 
4400   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4401 }
4402 
4403 
4404 //------------------------------inline_arraycopy-----------------------
4405 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4406 //                                                      Object dest, int destPos,
4407 //                                                      int length);
4408 bool LibraryCallKit::inline_arraycopy() {
4409   // Get the arguments.
4410   Node* src         = argument(0);  // type: oop
4411   Node* src_offset  = argument(1);  // type: int
4412   Node* dest        = argument(2);  // type: oop
4413   Node* dest_offset = argument(3);  // type: int
4414   Node* length      = argument(4);  // type: int
4415 
4416   // Compile time checks.  If any of these checks cannot be verified at compile time,
4417   // we do not make a fast path for this call.  Instead, we let the call remain as it
4418   // is.  The checks we choose to mandate at compile time are:
4419   //
4420   // (1) src and dest are arrays.
4421   const Type* src_type  = src->Value(&_gvn);
4422   const Type* dest_type = dest->Value(&_gvn);
4423   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4424   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4425   if (top_src  == NULL || top_src->klass()  == NULL ||
4426       top_dest == NULL || top_dest->klass() == NULL) {
4427     // Conservatively insert a memory barrier on all memory slices.
4428     // Do not let writes into the source float below the arraycopy.
4429     insert_mem_bar(Op_MemBarCPUOrder);
4430 
4431     // Call StubRoutines::generic_arraycopy stub.
4432     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4433                        src, src_offset, dest, dest_offset, length);
4434 
4435     // Do not let reads from the destination float above the arraycopy.
4436     // Since we cannot type the arrays, we don't know which slices
4437     // might be affected.  We could restrict this barrier only to those
4438     // memory slices which pertain to array elements--but don't bother.
4439     if (!InsertMemBarAfterArraycopy)
4440       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4441       insert_mem_bar(Op_MemBarCPUOrder);
4442     return true;
4443   }
4444 
4445   // (2) src and dest arrays must have elements of the same BasicType
4446   // Figure out the size and type of the elements we will be copying.
4447   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4448   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4449   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4450   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4451 
4452   if (src_elem != dest_elem || dest_elem == T_VOID) {
4453     // The component types are not the same or are not recognized.  Punt.
4454     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4455     generate_slow_arraycopy(TypePtr::BOTTOM,
4456                             src, src_offset, dest, dest_offset, length,
4457                             /*dest_uninitialized*/false);
4458     return true;
4459   }
4460 
4461   //---------------------------------------------------------------------------
4462   // We will make a fast path for this call to arraycopy.
4463 
4464   // We have the following tests left to perform:
4465   //
4466   // (3) src and dest must not be null.
4467   // (4) src_offset must not be negative.
4468   // (5) dest_offset must not be negative.
4469   // (6) length must not be negative.
4470   // (7) src_offset + length must not exceed length of src.
4471   // (8) dest_offset + length must not exceed length of dest.
4472   // (9) each element of an oop array must be assignable
4473 
4474   RegionNode* slow_region = new (C) RegionNode(1);
4475   record_for_igvn(slow_region);
4476 
4477   // (3) operands must not be null
4478   // We currently perform our null checks with the null_check routine.
4479   // This means that the null exceptions will be reported in the caller
4480   // rather than (correctly) reported inside of the native arraycopy call.
4481   // This should be corrected, given time.  We do our null check with the
4482   // stack pointer restored.
4483   src  = null_check(src,  T_ARRAY);
4484   dest = null_check(dest, T_ARRAY);
4485 
4486   // (4) src_offset must not be negative.
4487   generate_negative_guard(src_offset, slow_region);
4488 
4489   // (5) dest_offset must not be negative.
4490   generate_negative_guard(dest_offset, slow_region);
4491 
4492   // (6) length must not be negative (moved to generate_arraycopy()).
4493   // generate_negative_guard(length, slow_region);
4494 
4495   // (7) src_offset + length must not exceed length of src.
4496   generate_limit_guard(src_offset, length,
4497                        load_array_length(src),
4498                        slow_region);
4499 
4500   // (8) dest_offset + length must not exceed length of dest.
4501   generate_limit_guard(dest_offset, length,
4502                        load_array_length(dest),
4503                        slow_region);
4504 
4505   // (9) each element of an oop array must be assignable
4506   // The generate_arraycopy subroutine checks this.
4507 
4508   // This is where the memory effects are placed:
4509   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4510   generate_arraycopy(adr_type, dest_elem,
4511                      src, src_offset, dest, dest_offset, length,
4512                      false, false, slow_region);
4513 
4514   return true;
4515 }
4516 
4517 //-----------------------------generate_arraycopy----------------------
4518 // Generate an optimized call to arraycopy.
4519 // Caller must guard against non-arrays.
4520 // Caller must determine a common array basic-type for both arrays.
4521 // Caller must validate offsets against array bounds.
4522 // The slow_region has already collected guard failure paths
4523 // (such as out of bounds length or non-conformable array types).
4524 // The generated code has this shape, in general:
4525 //
4526 //     if (length == 0)  return   // via zero_path
4527 //     slowval = -1
4528 //     if (types unknown) {
4529 //       slowval = call generic copy loop
4530 //       if (slowval == 0)  return  // via checked_path
4531 //     } else if (indexes in bounds) {
4532 //       if ((is object array) && !(array type check)) {
4533 //         slowval = call checked copy loop
4534 //         if (slowval == 0)  return  // via checked_path
4535 //       } else {
4536 //         call bulk copy loop
4537 //         return  // via fast_path
4538 //       }
4539 //     }
4540 //     // adjust params for remaining work:
4541 //     if (slowval != -1) {
4542 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4543 //     }
4544 //   slow_region:
4545 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4546 //     return  // via slow_call_path
4547 //
4548 // This routine is used from several intrinsics:  System.arraycopy,
4549 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4550 //
4551 void
4552 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4553                                    BasicType basic_elem_type,
4554                                    Node* src,  Node* src_offset,
4555                                    Node* dest, Node* dest_offset,
4556                                    Node* copy_length,
4557                                    bool disjoint_bases,
4558                                    bool length_never_negative,
4559                                    RegionNode* slow_region) {
4560 
4561   if (slow_region == NULL) {
4562     slow_region = new(C) RegionNode(1);
4563     record_for_igvn(slow_region);
4564   }
4565 
4566   Node* original_dest      = dest;
4567   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4568   bool  dest_uninitialized = false;
4569 
4570   // See if this is the initialization of a newly-allocated array.
4571   // If so, we will take responsibility here for initializing it to zero.
4572   // (Note:  Because tightly_coupled_allocation performs checks on the
4573   // out-edges of the dest, we need to avoid making derived pointers
4574   // from it until we have checked its uses.)
4575   if (ReduceBulkZeroing
4576       && !ZeroTLAB              // pointless if already zeroed
4577       && basic_elem_type != T_CONFLICT // avoid corner case
4578       && !src->eqv_uncast(dest)
4579       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4580           != NULL)
4581       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4582       && alloc->maybe_set_complete(&_gvn)) {
4583     // "You break it, you buy it."
4584     InitializeNode* init = alloc->initialization();
4585     assert(init->is_complete(), "we just did this");
4586     init->set_complete_with_arraycopy();
4587     assert(dest->is_CheckCastPP(), "sanity");
4588     assert(dest->in(0)->in(0) == init, "dest pinned");
4589     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4590     // From this point on, every exit path is responsible for
4591     // initializing any non-copied parts of the object to zero.
4592     // Also, if this flag is set we make sure that arraycopy interacts properly
4593     // with G1, eliding pre-barriers. See CR 6627983.
4594     dest_uninitialized = true;
4595   } else {
4596     // No zeroing elimination here.
4597     alloc             = NULL;
4598     //original_dest   = dest;
4599     //dest_uninitialized = false;
4600   }
4601 
4602   // Results are placed here:
4603   enum { fast_path        = 1,  // normal void-returning assembly stub
4604          checked_path     = 2,  // special assembly stub with cleanup
4605          slow_call_path   = 3,  // something went wrong; call the VM
4606          zero_path        = 4,  // bypass when length of copy is zero
4607          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4608          PATH_LIMIT       = 6
4609   };
4610   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4611   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4612   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4613   record_for_igvn(result_region);
4614   _gvn.set_type_bottom(result_i_o);
4615   _gvn.set_type_bottom(result_memory);
4616   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4617 
4618   // The slow_control path:
4619   Node* slow_control;
4620   Node* slow_i_o = i_o();
4621   Node* slow_mem = memory(adr_type);
4622   debug_only(slow_control = (Node*) badAddress);
4623 
4624   // Checked control path:
4625   Node* checked_control = top();
4626   Node* checked_mem     = NULL;
4627   Node* checked_i_o     = NULL;
4628   Node* checked_value   = NULL;
4629 
4630   if (basic_elem_type == T_CONFLICT) {
4631     assert(!dest_uninitialized, "");
4632     Node* cv = generate_generic_arraycopy(adr_type,
4633                                           src, src_offset, dest, dest_offset,
4634                                           copy_length, dest_uninitialized);
4635     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4636     checked_control = control();
4637     checked_i_o     = i_o();
4638     checked_mem     = memory(adr_type);
4639     checked_value   = cv;
4640     set_control(top());         // no fast path
4641   }
4642 
4643   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4644   if (not_pos != NULL) {
4645     PreserveJVMState pjvms(this);
4646     set_control(not_pos);
4647 
4648     // (6) length must not be negative.
4649     if (!length_never_negative) {
4650       generate_negative_guard(copy_length, slow_region);
4651     }
4652 
4653     // copy_length is 0.
4654     if (!stopped() && dest_uninitialized) {
4655       Node* dest_length = alloc->in(AllocateNode::ALength);
4656       if (copy_length->eqv_uncast(dest_length)
4657           || _gvn.find_int_con(dest_length, 1) <= 0) {
4658         // There is no zeroing to do. No need for a secondary raw memory barrier.
4659       } else {
4660         // Clear the whole thing since there are no source elements to copy.
4661         generate_clear_array(adr_type, dest, basic_elem_type,
4662                              intcon(0), NULL,
4663                              alloc->in(AllocateNode::AllocSize));
4664         // Use a secondary InitializeNode as raw memory barrier.
4665         // Currently it is needed only on this path since other
4666         // paths have stub or runtime calls as raw memory barriers.
4667         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4668                                                        Compile::AliasIdxRaw,
4669                                                        top())->as_Initialize();
4670         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4671       }
4672     }
4673 
4674     // Present the results of the fast call.
4675     result_region->init_req(zero_path, control());
4676     result_i_o   ->init_req(zero_path, i_o());
4677     result_memory->init_req(zero_path, memory(adr_type));
4678   }
4679 
4680   if (!stopped() && dest_uninitialized) {
4681     // We have to initialize the *uncopied* part of the array to zero.
4682     // The copy destination is the slice dest[off..off+len].  The other slices
4683     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4684     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4685     Node* dest_length = alloc->in(AllocateNode::ALength);
4686     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4687                                                           copy_length) );
4688 
4689     // If there is a head section that needs zeroing, do it now.
4690     if (find_int_con(dest_offset, -1) != 0) {
4691       generate_clear_array(adr_type, dest, basic_elem_type,
4692                            intcon(0), dest_offset,
4693                            NULL);
4694     }
4695 
4696     // Next, perform a dynamic check on the tail length.
4697     // It is often zero, and we can win big if we prove this.
4698     // There are two wins:  Avoid generating the ClearArray
4699     // with its attendant messy index arithmetic, and upgrade
4700     // the copy to a more hardware-friendly word size of 64 bits.
4701     Node* tail_ctl = NULL;
4702     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4703       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4704       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4705       tail_ctl = generate_slow_guard(bol_lt, NULL);
4706       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4707     }
4708 
4709     // At this point, let's assume there is no tail.
4710     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4711       // There is no tail.  Try an upgrade to a 64-bit copy.
4712       bool didit = false;
4713       { PreserveJVMState pjvms(this);
4714         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4715                                          src, src_offset, dest, dest_offset,
4716                                          dest_size, dest_uninitialized);
4717         if (didit) {
4718           // Present the results of the block-copying fast call.
4719           result_region->init_req(bcopy_path, control());
4720           result_i_o   ->init_req(bcopy_path, i_o());
4721           result_memory->init_req(bcopy_path, memory(adr_type));
4722         }
4723       }
4724       if (didit)
4725         set_control(top());     // no regular fast path
4726     }
4727 
4728     // Clear the tail, if any.
4729     if (tail_ctl != NULL) {
4730       Node* notail_ctl = stopped() ? NULL : control();
4731       set_control(tail_ctl);
4732       if (notail_ctl == NULL) {
4733         generate_clear_array(adr_type, dest, basic_elem_type,
4734                              dest_tail, NULL,
4735                              dest_size);
4736       } else {
4737         // Make a local merge.
4738         Node* done_ctl = new(C) RegionNode(3);
4739         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4740         done_ctl->init_req(1, notail_ctl);
4741         done_mem->init_req(1, memory(adr_type));
4742         generate_clear_array(adr_type, dest, basic_elem_type,
4743                              dest_tail, NULL,
4744                              dest_size);
4745         done_ctl->init_req(2, control());
4746         done_mem->init_req(2, memory(adr_type));
4747         set_control( _gvn.transform(done_ctl) );
4748         set_memory(  _gvn.transform(done_mem), adr_type );
4749       }
4750     }
4751   }
4752 
4753   BasicType copy_type = basic_elem_type;
4754   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4755   if (!stopped() && copy_type == T_OBJECT) {
4756     // If src and dest have compatible element types, we can copy bits.
4757     // Types S[] and D[] are compatible if D is a supertype of S.
4758     //
4759     // If they are not, we will use checked_oop_disjoint_arraycopy,
4760     // which performs a fast optimistic per-oop check, and backs off
4761     // further to JVM_ArrayCopy on the first per-oop check that fails.
4762     // (Actually, we don't move raw bits only; the GC requires card marks.)
4763 
4764     // Get the Klass* for both src and dest
4765     Node* src_klass  = load_object_klass(src);
4766     Node* dest_klass = load_object_klass(dest);
4767 
4768     // Generate the subtype check.
4769     // This might fold up statically, or then again it might not.
4770     //
4771     // Non-static example:  Copying List<String>.elements to a new String[].
4772     // The backing store for a List<String> is always an Object[],
4773     // but its elements are always type String, if the generic types
4774     // are correct at the source level.
4775     //
4776     // Test S[] against D[], not S against D, because (probably)
4777     // the secondary supertype cache is less busy for S[] than S.
4778     // This usually only matters when D is an interface.
4779     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4780     // Plug failing path into checked_oop_disjoint_arraycopy
4781     if (not_subtype_ctrl != top()) {
4782       PreserveJVMState pjvms(this);
4783       set_control(not_subtype_ctrl);
4784       // (At this point we can assume disjoint_bases, since types differ.)
4785       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4786       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4787       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4788       Node* dest_elem_klass = _gvn.transform(n1);
4789       Node* cv = generate_checkcast_arraycopy(adr_type,
4790                                               dest_elem_klass,
4791                                               src, src_offset, dest, dest_offset,
4792                                               ConvI2X(copy_length), dest_uninitialized);
4793       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4794       checked_control = control();
4795       checked_i_o     = i_o();
4796       checked_mem     = memory(adr_type);
4797       checked_value   = cv;
4798     }
4799     // At this point we know we do not need type checks on oop stores.
4800 
4801     // Let's see if we need card marks:
4802     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4803       // If we do not need card marks, copy using the jint or jlong stub.
4804       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4805       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4806              "sizes agree");
4807     }
4808   }
4809 
4810   if (!stopped()) {
4811     // Generate the fast path, if possible.
4812     PreserveJVMState pjvms(this);
4813     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4814                                  src, src_offset, dest, dest_offset,
4815                                  ConvI2X(copy_length), dest_uninitialized);
4816 
4817     // Present the results of the fast call.
4818     result_region->init_req(fast_path, control());
4819     result_i_o   ->init_req(fast_path, i_o());
4820     result_memory->init_req(fast_path, memory(adr_type));
4821   }
4822 
4823   // Here are all the slow paths up to this point, in one bundle:
4824   slow_control = top();
4825   if (slow_region != NULL)
4826     slow_control = _gvn.transform(slow_region);
4827   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4828 
4829   set_control(checked_control);
4830   if (!stopped()) {
4831     // Clean up after the checked call.
4832     // The returned value is either 0 or -1^K,
4833     // where K = number of partially transferred array elements.
4834     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4835     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4836     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4837 
4838     // If it is 0, we are done, so transfer to the end.
4839     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4840     result_region->init_req(checked_path, checks_done);
4841     result_i_o   ->init_req(checked_path, checked_i_o);
4842     result_memory->init_req(checked_path, checked_mem);
4843 
4844     // If it is not zero, merge into the slow call.
4845     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4846     RegionNode* slow_reg2 = new(C) RegionNode(3);
4847     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4848     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4849     record_for_igvn(slow_reg2);
4850     slow_reg2  ->init_req(1, slow_control);
4851     slow_i_o2  ->init_req(1, slow_i_o);
4852     slow_mem2  ->init_req(1, slow_mem);
4853     slow_reg2  ->init_req(2, control());
4854     slow_i_o2  ->init_req(2, checked_i_o);
4855     slow_mem2  ->init_req(2, checked_mem);
4856 
4857     slow_control = _gvn.transform(slow_reg2);
4858     slow_i_o     = _gvn.transform(slow_i_o2);
4859     slow_mem     = _gvn.transform(slow_mem2);
4860 
4861     if (alloc != NULL) {
4862       // We'll restart from the very beginning, after zeroing the whole thing.
4863       // This can cause double writes, but that's OK since dest is brand new.
4864       // So we ignore the low 31 bits of the value returned from the stub.
4865     } else {
4866       // We must continue the copy exactly where it failed, or else
4867       // another thread might see the wrong number of writes to dest.
4868       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4869       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4870       slow_offset->init_req(1, intcon(0));
4871       slow_offset->init_req(2, checked_offset);
4872       slow_offset  = _gvn.transform(slow_offset);
4873 
4874       // Adjust the arguments by the conditionally incoming offset.
4875       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4876       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4877       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4878 
4879       // Tweak the node variables to adjust the code produced below:
4880       src_offset  = src_off_plus;
4881       dest_offset = dest_off_plus;
4882       copy_length = length_minus;
4883     }
4884   }
4885 
4886   set_control(slow_control);
4887   if (!stopped()) {
4888     // Generate the slow path, if needed.
4889     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4890 
4891     set_memory(slow_mem, adr_type);
4892     set_i_o(slow_i_o);
4893 
4894     if (dest_uninitialized) {
4895       generate_clear_array(adr_type, dest, basic_elem_type,
4896                            intcon(0), NULL,
4897                            alloc->in(AllocateNode::AllocSize));
4898     }
4899 
4900     generate_slow_arraycopy(adr_type,
4901                             src, src_offset, dest, dest_offset,
4902                             copy_length, /*dest_uninitialized*/false);
4903 
4904     result_region->init_req(slow_call_path, control());
4905     result_i_o   ->init_req(slow_call_path, i_o());
4906     result_memory->init_req(slow_call_path, memory(adr_type));
4907   }
4908 
4909   // Remove unused edges.
4910   for (uint i = 1; i < result_region->req(); i++) {
4911     if (result_region->in(i) == NULL)
4912       result_region->init_req(i, top());
4913   }
4914 
4915   // Finished; return the combined state.
4916   set_control( _gvn.transform(result_region) );
4917   set_i_o(     _gvn.transform(result_i_o)    );
4918   set_memory(  _gvn.transform(result_memory), adr_type );
4919 
4920   // The memory edges above are precise in order to model effects around
4921   // array copies accurately to allow value numbering of field loads around
4922   // arraycopy.  Such field loads, both before and after, are common in Java
4923   // collections and similar classes involving header/array data structures.
4924   //
4925   // But with low number of register or when some registers are used or killed
4926   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4927   // The next memory barrier is added to avoid it. If the arraycopy can be
4928   // optimized away (which it can, sometimes) then we can manually remove
4929   // the membar also.
4930   //
4931   // Do not let reads from the cloned object float above the arraycopy.
4932   if (alloc != NULL) {
4933     // Do not let stores that initialize this object be reordered with
4934     // a subsequent store that would make this object accessible by
4935     // other threads.
4936     // Record what AllocateNode this StoreStore protects so that
4937     // escape analysis can go from the MemBarStoreStoreNode to the
4938     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4939     // based on the escape status of the AllocateNode.
4940     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4941   } else if (InsertMemBarAfterArraycopy)
4942     insert_mem_bar(Op_MemBarCPUOrder);
4943 }
4944 
4945 
4946 // Helper function which determines if an arraycopy immediately follows
4947 // an allocation, with no intervening tests or other escapes for the object.
4948 AllocateArrayNode*
4949 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4950                                            RegionNode* slow_region) {
4951   if (stopped())             return NULL;  // no fast path
4952   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4953 
4954   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4955   if (alloc == NULL)  return NULL;
4956 
4957   Node* rawmem = memory(Compile::AliasIdxRaw);
4958   // Is the allocation's memory state untouched?
4959   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4960     // Bail out if there have been raw-memory effects since the allocation.
4961     // (Example:  There might have been a call or safepoint.)
4962     return NULL;
4963   }
4964   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4965   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4966     return NULL;
4967   }
4968 
4969   // There must be no unexpected observers of this allocation.
4970   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4971     Node* obs = ptr->fast_out(i);
4972     if (obs != this->map()) {
4973       return NULL;
4974     }
4975   }
4976 
4977   // This arraycopy must unconditionally follow the allocation of the ptr.
4978   Node* alloc_ctl = ptr->in(0);
4979   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4980 
4981   Node* ctl = control();
4982   while (ctl != alloc_ctl) {
4983     // There may be guards which feed into the slow_region.
4984     // Any other control flow means that we might not get a chance
4985     // to finish initializing the allocated object.
4986     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4987       IfNode* iff = ctl->in(0)->as_If();
4988       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4989       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4990       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4991         ctl = iff->in(0);       // This test feeds the known slow_region.
4992         continue;
4993       }
4994       // One more try:  Various low-level checks bottom out in
4995       // uncommon traps.  If the debug-info of the trap omits
4996       // any reference to the allocation, as we've already
4997       // observed, then there can be no objection to the trap.
4998       bool found_trap = false;
4999       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5000         Node* obs = not_ctl->fast_out(j);
5001         if (obs->in(0) == not_ctl && obs->is_Call() &&
5002             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5003           found_trap = true; break;
5004         }
5005       }
5006       if (found_trap) {
5007         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5008         continue;
5009       }
5010     }
5011     return NULL;
5012   }
5013 
5014   // If we get this far, we have an allocation which immediately
5015   // precedes the arraycopy, and we can take over zeroing the new object.
5016   // The arraycopy will finish the initialization, and provide
5017   // a new control state to which we will anchor the destination pointer.
5018 
5019   return alloc;
5020 }
5021 
5022 // Helper for initialization of arrays, creating a ClearArray.
5023 // It writes zero bits in [start..end), within the body of an array object.
5024 // The memory effects are all chained onto the 'adr_type' alias category.
5025 //
5026 // Since the object is otherwise uninitialized, we are free
5027 // to put a little "slop" around the edges of the cleared area,
5028 // as long as it does not go back into the array's header,
5029 // or beyond the array end within the heap.
5030 //
5031 // The lower edge can be rounded down to the nearest jint and the
5032 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5033 //
5034 // Arguments:
5035 //   adr_type           memory slice where writes are generated
5036 //   dest               oop of the destination array
5037 //   basic_elem_type    element type of the destination
5038 //   slice_idx          array index of first element to store
5039 //   slice_len          number of elements to store (or NULL)
5040 //   dest_size          total size in bytes of the array object
5041 //
5042 // Exactly one of slice_len or dest_size must be non-NULL.
5043 // If dest_size is non-NULL, zeroing extends to the end of the object.
5044 // If slice_len is non-NULL, the slice_idx value must be a constant.
5045 void
5046 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5047                                      Node* dest,
5048                                      BasicType basic_elem_type,
5049                                      Node* slice_idx,
5050                                      Node* slice_len,
5051                                      Node* dest_size) {
5052   // one or the other but not both of slice_len and dest_size:
5053   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5054   if (slice_len == NULL)  slice_len = top();
5055   if (dest_size == NULL)  dest_size = top();
5056 
5057   // operate on this memory slice:
5058   Node* mem = memory(adr_type); // memory slice to operate on
5059 
5060   // scaling and rounding of indexes:
5061   int scale = exact_log2(type2aelembytes(basic_elem_type));
5062   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5063   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5064   int bump_bit  = (-1 << scale) & BytesPerInt;
5065 
5066   // determine constant starts and ends
5067   const intptr_t BIG_NEG = -128;
5068   assert(BIG_NEG + 2*abase < 0, "neg enough");
5069   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5070   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5071   if (slice_len_con == 0) {
5072     return;                     // nothing to do here
5073   }
5074   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5075   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5076   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5077     assert(end_con < 0, "not two cons");
5078     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5079                        BytesPerLong);
5080   }
5081 
5082   if (start_con >= 0 && end_con >= 0) {
5083     // Constant start and end.  Simple.
5084     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5085                                        start_con, end_con, &_gvn);
5086   } else if (start_con >= 0 && dest_size != top()) {
5087     // Constant start, pre-rounded end after the tail of the array.
5088     Node* end = dest_size;
5089     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5090                                        start_con, end, &_gvn);
5091   } else if (start_con >= 0 && slice_len != top()) {
5092     // Constant start, non-constant end.  End needs rounding up.
5093     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5094     intptr_t end_base  = abase + (slice_idx_con << scale);
5095     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5096     Node*    end       = ConvI2X(slice_len);
5097     if (scale != 0)
5098       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5099     end_base += end_round;
5100     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5101     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5102     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5103                                        start_con, end, &_gvn);
5104   } else if (start_con < 0 && dest_size != top()) {
5105     // Non-constant start, pre-rounded end after the tail of the array.
5106     // This is almost certainly a "round-to-end" operation.
5107     Node* start = slice_idx;
5108     start = ConvI2X(start);
5109     if (scale != 0)
5110       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5111     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5112     if ((bump_bit | clear_low) != 0) {
5113       int to_clear = (bump_bit | clear_low);
5114       // Align up mod 8, then store a jint zero unconditionally
5115       // just before the mod-8 boundary.
5116       if (((abase + bump_bit) & ~to_clear) - bump_bit
5117           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5118         bump_bit = 0;
5119         assert((abase & to_clear) == 0, "array base must be long-aligned");
5120       } else {
5121         // Bump 'start' up to (or past) the next jint boundary:
5122         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5123         assert((abase & clear_low) == 0, "array base must be int-aligned");
5124       }
5125       // Round bumped 'start' down to jlong boundary in body of array.
5126       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5127       if (bump_bit != 0) {
5128         // Store a zero to the immediately preceding jint:
5129         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5130         Node* p1 = basic_plus_adr(dest, x1);
5131         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5132         mem = _gvn.transform(mem);
5133       }
5134     }
5135     Node* end = dest_size; // pre-rounded
5136     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5137                                        start, end, &_gvn);
5138   } else {
5139     // Non-constant start, unrounded non-constant end.
5140     // (Nobody zeroes a random midsection of an array using this routine.)
5141     ShouldNotReachHere();       // fix caller
5142   }
5143 
5144   // Done.
5145   set_memory(mem, adr_type);
5146 }
5147 
5148 
5149 bool
5150 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5151                                          BasicType basic_elem_type,
5152                                          AllocateNode* alloc,
5153                                          Node* src,  Node* src_offset,
5154                                          Node* dest, Node* dest_offset,
5155                                          Node* dest_size, bool dest_uninitialized) {
5156   // See if there is an advantage from block transfer.
5157   int scale = exact_log2(type2aelembytes(basic_elem_type));
5158   if (scale >= LogBytesPerLong)
5159     return false;               // it is already a block transfer
5160 
5161   // Look at the alignment of the starting offsets.
5162   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5163 
5164   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5165   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5166   if (src_off_con < 0 || dest_off_con < 0)
5167     // At present, we can only understand constants.
5168     return false;
5169 
5170   intptr_t src_off  = abase + (src_off_con  << scale);
5171   intptr_t dest_off = abase + (dest_off_con << scale);
5172 
5173   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5174     // Non-aligned; too bad.
5175     // One more chance:  Pick off an initial 32-bit word.
5176     // This is a common case, since abase can be odd mod 8.
5177     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5178         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5179       Node* sptr = basic_plus_adr(src,  src_off);
5180       Node* dptr = basic_plus_adr(dest, dest_off);
5181       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5182       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5183       src_off += BytesPerInt;
5184       dest_off += BytesPerInt;
5185     } else {
5186       return false;
5187     }
5188   }
5189   assert(src_off % BytesPerLong == 0, "");
5190   assert(dest_off % BytesPerLong == 0, "");
5191 
5192   // Do this copy by giant steps.
5193   Node* sptr  = basic_plus_adr(src,  src_off);
5194   Node* dptr  = basic_plus_adr(dest, dest_off);
5195   Node* countx = dest_size;
5196   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5197   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5198 
5199   bool disjoint_bases = true;   // since alloc != NULL
5200   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5201                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5202 
5203   return true;
5204 }
5205 
5206 
5207 // Helper function; generates code for the slow case.
5208 // We make a call to a runtime method which emulates the native method,
5209 // but without the native wrapper overhead.
5210 void
5211 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5212                                         Node* src,  Node* src_offset,
5213                                         Node* dest, Node* dest_offset,
5214                                         Node* copy_length, bool dest_uninitialized) {
5215   assert(!dest_uninitialized, "Invariant");
5216   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5217                                  OptoRuntime::slow_arraycopy_Type(),
5218                                  OptoRuntime::slow_arraycopy_Java(),
5219                                  "slow_arraycopy", adr_type,
5220                                  src, src_offset, dest, dest_offset,
5221                                  copy_length);
5222 
5223   // Handle exceptions thrown by this fellow:
5224   make_slow_call_ex(call, env()->Throwable_klass(), false);
5225 }
5226 
5227 // Helper function; generates code for cases requiring runtime checks.
5228 Node*
5229 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5230                                              Node* dest_elem_klass,
5231                                              Node* src,  Node* src_offset,
5232                                              Node* dest, Node* dest_offset,
5233                                              Node* copy_length, bool dest_uninitialized) {
5234   if (stopped())  return NULL;
5235 
5236   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5237   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5238     return NULL;
5239   }
5240 
5241   // Pick out the parameters required to perform a store-check
5242   // for the target array.  This is an optimistic check.  It will
5243   // look in each non-null element's class, at the desired klass's
5244   // super_check_offset, for the desired klass.
5245   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5246   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5247   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5248   Node* check_offset = ConvI2X(_gvn.transform(n3));
5249   Node* check_value  = dest_elem_klass;
5250 
5251   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5252   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5253 
5254   // (We know the arrays are never conjoint, because their types differ.)
5255   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5256                                  OptoRuntime::checkcast_arraycopy_Type(),
5257                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5258                                  // five arguments, of which two are
5259                                  // intptr_t (jlong in LP64)
5260                                  src_start, dest_start,
5261                                  copy_length XTOP,
5262                                  check_offset XTOP,
5263                                  check_value);
5264 
5265   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5266 }
5267 
5268 
5269 // Helper function; generates code for cases requiring runtime checks.
5270 Node*
5271 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5272                                            Node* src,  Node* src_offset,
5273                                            Node* dest, Node* dest_offset,
5274                                            Node* copy_length, bool dest_uninitialized) {
5275   assert(!dest_uninitialized, "Invariant");
5276   if (stopped())  return NULL;
5277   address copyfunc_addr = StubRoutines::generic_arraycopy();
5278   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5279     return NULL;
5280   }
5281 
5282   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5283                     OptoRuntime::generic_arraycopy_Type(),
5284                     copyfunc_addr, "generic_arraycopy", adr_type,
5285                     src, src_offset, dest, dest_offset, copy_length);
5286 
5287   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5288 }
5289 
5290 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5291 void
5292 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5293                                              BasicType basic_elem_type,
5294                                              bool disjoint_bases,
5295                                              Node* src,  Node* src_offset,
5296                                              Node* dest, Node* dest_offset,
5297                                              Node* copy_length, bool dest_uninitialized) {
5298   if (stopped())  return;               // nothing to do
5299 
5300   Node* src_start  = src;
5301   Node* dest_start = dest;
5302   if (src_offset != NULL || dest_offset != NULL) {
5303     assert(src_offset != NULL && dest_offset != NULL, "");
5304     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5305     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5306   }
5307 
5308   // Figure out which arraycopy runtime method to call.
5309   const char* copyfunc_name = "arraycopy";
5310   address     copyfunc_addr =
5311       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5312                           disjoint_bases, copyfunc_name, dest_uninitialized);
5313 
5314   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5315   make_runtime_call(RC_LEAF|RC_NO_FP,
5316                     OptoRuntime::fast_arraycopy_Type(),
5317                     copyfunc_addr, copyfunc_name, adr_type,
5318                     src_start, dest_start, copy_length XTOP);
5319 }
5320 
5321 //-------------inline_encodeISOArray-----------------------------------
5322 // encode char[] to byte[] in ISO_8859_1
5323 bool LibraryCallKit::inline_encodeISOArray() {
5324   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5325   // no receiver since it is static method
5326   Node *src         = argument(0);
5327   Node *src_offset  = argument(1);
5328   Node *dst         = argument(2);
5329   Node *dst_offset  = argument(3);
5330   Node *length      = argument(4);
5331 
5332   const Type* src_type = src->Value(&_gvn);
5333   const Type* dst_type = dst->Value(&_gvn);
5334   const TypeAryPtr* top_src = src_type->isa_aryptr();
5335   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5336   if (top_src  == NULL || top_src->klass()  == NULL ||
5337       top_dest == NULL || top_dest->klass() == NULL) {
5338     // failed array check
5339     return false;
5340   }
5341 
5342   // Figure out the size and type of the elements we will be copying.
5343   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5344   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5345   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5346     return false;
5347   }
5348   Node* src_start = array_element_address(src, src_offset, src_elem);
5349   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5350   // 'src_start' points to src array + scaled offset
5351   // 'dst_start' points to dst array + scaled offset
5352 
5353   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5354   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5355   enc = _gvn.transform(enc);
5356   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5357   set_memory(res_mem, mtype);
5358   set_result(enc);
5359   return true;
5360 }
5361 
5362 //----------------------------inline_reference_get----------------------------
5363 // public T java.lang.ref.Reference.get();
5364 bool LibraryCallKit::inline_reference_get() {
5365   const int referent_offset = java_lang_ref_Reference::referent_offset;
5366   guarantee(referent_offset > 0, "should have already been set");
5367 
5368   // Get the argument:
5369   Node* reference_obj = null_check_receiver();
5370   if (stopped()) return true;
5371 
5372   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5373 
5374   ciInstanceKlass* klass = env()->Object_klass();
5375   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5376 
5377   Node* no_ctrl = NULL;
5378   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5379 
5380   // Use the pre-barrier to record the value in the referent field
5381   pre_barrier(false /* do_load */,
5382               control(),
5383               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5384               result /* pre_val */,
5385               T_OBJECT);
5386 
5387   // Add memory barrier to prevent commoning reads from this field
5388   // across safepoint since GC can change its value.
5389   insert_mem_bar(Op_MemBarCPUOrder);
5390 
5391   set_result(result);
5392   return true;
5393 }
5394 
5395 
5396 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5397                                               bool is_exact=true, bool is_static=false) {
5398 
5399   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5400   assert(tinst != NULL, "obj is null");
5401   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5402   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5403 
5404   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5405                                                                           ciSymbol::make(fieldTypeString),
5406                                                                           is_static);
5407   if (field == NULL) return (Node *) NULL;
5408   assert (field != NULL, "undefined field");
5409 
5410   // Next code  copied from Parse::do_get_xxx():
5411 
5412   // Compute address and memory type.
5413   int offset  = field->offset_in_bytes();
5414   bool is_vol = field->is_volatile();
5415   ciType* field_klass = field->type();
5416   assert(field_klass->is_loaded(), "should be loaded");
5417   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5418   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5419   BasicType bt = field->layout_type();
5420 
5421   // Build the resultant type of the load
5422   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5423 
5424   // Build the load.
5425   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5426   return loadedField;
5427 }
5428 
5429 
5430 //------------------------------inline_aescrypt_Block-----------------------
5431 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5432   address stubAddr;
5433   const char *stubName;
5434   assert(UseAES, "need AES instruction support");
5435 
5436   switch(id) {
5437   case vmIntrinsics::_aescrypt_encryptBlock:
5438     stubAddr = StubRoutines::aescrypt_encryptBlock();
5439     stubName = "aescrypt_encryptBlock";
5440     break;
5441   case vmIntrinsics::_aescrypt_decryptBlock:
5442     stubAddr = StubRoutines::aescrypt_decryptBlock();
5443     stubName = "aescrypt_decryptBlock";
5444     break;
5445   }
5446   if (stubAddr == NULL) return false;
5447 
5448   Node* aescrypt_object = argument(0);
5449   Node* src             = argument(1);
5450   Node* src_offset      = argument(2);
5451   Node* dest            = argument(3);
5452   Node* dest_offset     = argument(4);
5453 
5454   // (1) src and dest are arrays.
5455   const Type* src_type = src->Value(&_gvn);
5456   const Type* dest_type = dest->Value(&_gvn);
5457   const TypeAryPtr* top_src = src_type->isa_aryptr();
5458   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5459   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5460 
5461   // for the quick and dirty code we will skip all the checks.
5462   // we are just trying to get the call to be generated.
5463   Node* src_start  = src;
5464   Node* dest_start = dest;
5465   if (src_offset != NULL || dest_offset != NULL) {
5466     assert(src_offset != NULL && dest_offset != NULL, "");
5467     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5468     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5469   }
5470 
5471   // now need to get the start of its expanded key array
5472   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5473   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5474   if (k_start == NULL) return false;
5475 
5476   // Call the stub.
5477   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5478                     stubAddr, stubName, TypePtr::BOTTOM,
5479                     src_start, dest_start, k_start);
5480 
5481   return true;
5482 }
5483 
5484 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5485 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5486   address stubAddr;
5487   const char *stubName;
5488 
5489   assert(UseAES, "need AES instruction support");
5490 
5491   switch(id) {
5492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5493     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5494     stubName = "cipherBlockChaining_encryptAESCrypt";
5495     break;
5496   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5497     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5498     stubName = "cipherBlockChaining_decryptAESCrypt";
5499     break;
5500   }
5501   if (stubAddr == NULL) return false;
5502 
5503   Node* cipherBlockChaining_object = argument(0);
5504   Node* src                        = argument(1);
5505   Node* src_offset                 = argument(2);
5506   Node* len                        = argument(3);
5507   Node* dest                       = argument(4);
5508   Node* dest_offset                = argument(5);
5509 
5510   // (1) src and dest are arrays.
5511   const Type* src_type = src->Value(&_gvn);
5512   const Type* dest_type = dest->Value(&_gvn);
5513   const TypeAryPtr* top_src = src_type->isa_aryptr();
5514   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5515   assert (top_src  != NULL && top_src->klass()  != NULL
5516           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5517 
5518   // checks are the responsibility of the caller
5519   Node* src_start  = src;
5520   Node* dest_start = dest;
5521   if (src_offset != NULL || dest_offset != NULL) {
5522     assert(src_offset != NULL && dest_offset != NULL, "");
5523     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5524     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5525   }
5526 
5527   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5528   // (because of the predicated logic executed earlier).
5529   // so we cast it here safely.
5530   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5531 
5532   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5533   if (embeddedCipherObj == NULL) return false;
5534 
5535   // cast it to what we know it will be at runtime
5536   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5537   assert(tinst != NULL, "CBC obj is null");
5538   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5539   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5540   if (!klass_AESCrypt->is_loaded()) return false;
5541 
5542   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5543   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5544   const TypeOopPtr* xtype = aklass->as_instance_type();
5545   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5546   aescrypt_object = _gvn.transform(aescrypt_object);
5547 
5548   // we need to get the start of the aescrypt_object's expanded key array
5549   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5550   if (k_start == NULL) return false;
5551 
5552   // similarly, get the start address of the r vector
5553   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5554   if (objRvec == NULL) return false;
5555   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5556 
5557   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5558   make_runtime_call(RC_LEAF|RC_NO_FP,
5559                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5560                     stubAddr, stubName, TypePtr::BOTTOM,
5561                     src_start, dest_start, k_start, r_start, len);
5562 
5563   // return is void so no result needs to be pushed
5564 
5565   return true;
5566 }
5567 
5568 //------------------------------get_key_start_from_aescrypt_object-----------------------
5569 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5570   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5571   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5572   if (objAESCryptKey == NULL) return (Node *) NULL;
5573 
5574   // now have the array, need to get the start address of the K array
5575   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5576   return k_start;
5577 }
5578 
5579 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5580 // Return node representing slow path of predicate check.
5581 // the pseudo code we want to emulate with this predicate is:
5582 // for encryption:
5583 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5584 // for decryption:
5585 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5586 //    note cipher==plain is more conservative than the original java code but that's OK
5587 //
5588 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5589   // First, check receiver for NULL since it is virtual method.
5590   Node* objCBC = argument(0);
5591   objCBC = null_check(objCBC);
5592 
5593   if (stopped()) return NULL; // Always NULL
5594 
5595   // Load embeddedCipher field of CipherBlockChaining object.
5596   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5597 
5598   // get AESCrypt klass for instanceOf check
5599   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5600   // will have same classloader as CipherBlockChaining object
5601   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5602   assert(tinst != NULL, "CBCobj is null");
5603   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5604 
5605   // we want to do an instanceof comparison against the AESCrypt class
5606   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5607   if (!klass_AESCrypt->is_loaded()) {
5608     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5609     Node* ctrl = control();
5610     set_control(top()); // no regular fast path
5611     return ctrl;
5612   }
5613   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5614 
5615   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5616   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5617   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5618 
5619   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5620 
5621   // for encryption, we are done
5622   if (!decrypting)
5623     return instof_false;  // even if it is NULL
5624 
5625   // for decryption, we need to add a further check to avoid
5626   // taking the intrinsic path when cipher and plain are the same
5627   // see the original java code for why.
5628   RegionNode* region = new(C) RegionNode(3);
5629   region->init_req(1, instof_false);
5630   Node* src = argument(1);
5631   Node* dest = argument(4);
5632   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5633   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5634   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5635   region->init_req(2, src_dest_conjoint);
5636 
5637   record_for_igvn(region);
5638   return _gvn.transform(region);
5639 }