1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.nio.charset.Charset;
  28 import java.nio.file.Files;
  29 import java.nio.file.Path;
  30 import java.util.Arrays;
  31 import java.util.Collection;
  32 import java.util.Comparator;
  33 import java.util.Iterator;
  34 import java.util.Objects;
  35 import java.util.Optional;
  36 import java.util.Spliterator;
  37 import java.util.Spliterators;
  38 import java.util.concurrent.ConcurrentHashMap;
  39 import java.util.function.BiConsumer;
  40 import java.util.function.BiFunction;
  41 import java.util.function.BinaryOperator;
  42 import java.util.function.Consumer;
  43 import java.util.function.Function;
  44 import java.util.function.IntFunction;
  45 import java.util.function.Predicate;
  46 import java.util.function.Supplier;
  47 import java.util.function.ToDoubleFunction;
  48 import java.util.function.ToIntFunction;
  49 import java.util.function.ToLongFunction;
  50 import java.util.function.UnaryOperator;
  51 
  52 /**
  53  * A sequence of elements supporting sequential and parallel aggregate
  54  * operations.  The following example illustrates an aggregate operation using
  55  * {@link Stream} and {@link IntStream}:
  56  *
  57  * <pre>{@code
  58  *     int sum = widgets.stream()
  59  *                      .filter(w -> w.getColor() == RED)
  60  *                      .mapToInt(w -> w.getWeight())
  61  *                      .sum();
  62  * }</pre>
  63  *
  64  * In this example, {@code widgets} is a {@code Collection<Widget>}.  We create
  65  * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},
  66  * filter it to produce a stream containing only the red widgets, and then
  67  * transform it into a stream of {@code int} values representing the weight of
  68  * each red widget. Then this stream is summed to produce a total weight.
  69  *
  70  * <p>In addition to {@code Stream}, which is a stream of object references,
  71  * there are primitive specializations for {@link IntStream}, {@link LongStream},
  72  * and {@link DoubleStream}, all of which are referred to as "streams" and
  73  * conform to the characteristics and restrictions described here.
  74  *
  75  * <p>To perform a computation, stream
  76  * <a href="package-summary.html#StreamOps">operations</a> are composed into a
  77  * <em>stream pipeline</em>.  A stream pipeline consists of a source (which
  78  * might be an array, a collection, a generator function, an I/O channel,
  79  * etc), zero or more <em>intermediate operations</em> (which transform a
  80  * stream into another stream, such as {@link Stream#filter(Predicate)}), and a
  81  * <em>terminal operation</em> (which produces a result or side-effect, such
  82  * as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).
  83  * Streams are lazy; computation on the source data is only performed when the
  84  * terminal operation is initiated, and source elements are consumed only
  85  * as needed.
  86  *
  87  * <p>Collections and streams, while bearing some superficial similarities,
  88  * have different goals.  Collections are primarily concerned with the efficient
  89  * management of, and access to, their elements.  By contrast, streams do not
  90  * provide a means to directly access or manipulate their elements, and are
  91  * instead concerned with declaratively describing their source and the
  92  * computational operations which will be performed in aggregate on that source.
  93  * However, if the provided stream operations do not offer the desired
  94  * functionality, the {@link #iterator()} and {@link #spliterator()} operations
  95  * can be used to perform a controlled traversal.
  96  *
  97  * <p>A stream pipeline, like the "widgets" example above, can be viewed as
  98  * a <em>query</em> on the stream source.  Unless the source was explicitly
  99  * designed for concurrent modification (such as a {@link ConcurrentHashMap}),
 100  * unpredictable or erroneous behavior may result from modifying the stream
 101  * source while it is being queried.
 102  *
 103  * <p>Most stream operations accept parameters that describe user-specified
 104  * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to
 105  * {@code mapToInt} in the example above.  To preserve correct behavior,
 106  * these <em>behavioral parameters</em>:
 107  * <ul>
 108  * <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>
 109  * (they do not modify the stream source); and</li>
 110  * <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>
 111  * (their result should not depend on any state that might change during execution
 112  * of the stream pipeline).</li>
 113  * </ul>
 114  *
 115  * <p>Such parameters are always instances of a
 116  * <a href="../function/package-summary.html">functional interface</a> such
 117  * as {@link java.util.function.Function}, and are often lambda expressions or
 118  * method references.  Unless otherwise specified these parameters must be
 119  * <em>non-null</em>.
 120  *
 121  * <p>A stream should be operated on (invoking an intermediate or terminal stream
 122  * operation) only once.  This rules out, for example, "forked" streams, where
 123  * the same source feeds two or more pipelines, or multiple traversals of the
 124  * same stream.  A stream implementation may throw {@link IllegalStateException}
 125  * if it detects that the stream is being reused. However, since some stream
 126  * operations may return their receiver rather than a new stream object, it may
 127  * not be possible to detect reuse in all cases.
 128  *
 129  * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},
 130  * but nearly all stream instances do not actually need to be closed after use.
 131  * Generally, only streams whose source is an IO channel (such as those returned
 132  * by {@link Files#lines(Path, Charset)}) will require closing.  Most streams
 133  * are backed by collections, arrays, or generating functions, which require no
 134  * special resource management.  (If a stream does require closing, it can be
 135  * declared as a resource in a {@code try}-with-resources statement.)
 136  *
 137  * <p>Stream pipelines may execute either sequentially or in
 138  * <a href="package-summary.html#Parallelism">parallel</a>.  This
 139  * execution mode is a property of the stream.  Streams are created
 140  * with an initial choice of sequential or parallel execution.  (For example,
 141  * {@link Collection#stream() Collection.stream()} creates a sequential stream,
 142  * and {@link Collection#parallelStream() Collection.parallelStream()} creates
 143  * a parallel one.)  This choice of execution mode may be modified by the
 144  * {@link #sequential()} or {@link #parallel()} methods, and may be queried with
 145  * the {@link #isParallel()} method.
 146  *
 147  * @param <T> the type of the stream elements
 148  * @since 1.8
 149  * @see IntStream
 150  * @see LongStream
 151  * @see DoubleStream
 152  * @see <a href="package-summary.html">java.util.stream</a>
 153  */
 154 public interface Stream<T> extends BaseStream<T, Stream<T>> {
 155 
 156     /**
 157      * Returns a stream consisting of the elements of this stream that match
 158      * the given predicate.
 159      *
 160      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 161      * operation</a>.
 162      *
 163      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 164      *                  <a href="package-summary.html#Statelessness">stateless</a>
 165      *                  predicate to apply to each element to determine if it
 166      *                  should be included
 167      * @return the new stream
 168      */
 169     Stream<T> filter(Predicate<? super T> predicate);
 170 
 171     /**
 172      * Returns a stream consisting of the results of applying the given
 173      * function to the elements of this stream.
 174      *
 175      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 176      * operation</a>.
 177      *
 178      * @param <R> The element type of the new stream
 179      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 180      *               <a href="package-summary.html#Statelessness">stateless</a>
 181      *               function to apply to each element
 182      * @return the new stream
 183      */
 184     <R> Stream<R> map(Function<? super T, ? extends R> mapper);
 185 
 186     /**
 187      * Returns an {@code IntStream} consisting of the results of applying the
 188      * given function to the elements of this stream.
 189      *
 190      * <p>This is an <a href="package-summary.html#StreamOps">
 191      *     intermediate operation</a>.
 192      *
 193      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 194      *               <a href="package-summary.html#Statelessness">stateless</a>
 195      *               function to apply to each element
 196      * @return the new stream
 197      */
 198     IntStream mapToInt(ToIntFunction<? super T> mapper);
 199 
 200     /**
 201      * Returns a {@code LongStream} consisting of the results of applying the
 202      * given function to the elements of this stream.
 203      *
 204      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 205      * operation</a>.
 206      *
 207      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 208      *               <a href="package-summary.html#Statelessness">stateless</a>
 209      *               function to apply to each element
 210      * @return the new stream
 211      */
 212     LongStream mapToLong(ToLongFunction<? super T> mapper);
 213 
 214     /**
 215      * Returns a {@code DoubleStream} consisting of the results of applying the
 216      * given function to the elements of this stream.
 217      *
 218      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 219      * operation</a>.
 220      *
 221      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 222      *               <a href="package-summary.html#Statelessness">stateless</a>
 223      *               function to apply to each element
 224      * @return the new stream
 225      */
 226     DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
 227 
 228     /**
 229      * Returns a stream consisting of the results of replacing each element of
 230      * this stream with the contents of a mapped stream produced by applying
 231      * the provided mapping function to each element.  Each mapped stream is
 232      * {@link java.util.stream.BaseStream#close() closed} after its contents
 233      * have been placed into this stream.  (If a mapped stream is {@code null}
 234      * an empty stream is used, instead.)
 235      *
 236      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 237      * operation</a>.
 238      *
 239      * @apiNote
 240      * The {@code flatMap()} operation has the effect of applying a one-to-many
 241      * transformation to the elements of the stream, and then flattening the
 242      * resulting elements into a new stream.
 243      *
 244      * <p><b>Examples.</b>
 245      *
 246      * <p>If {@code orders} is a stream of purchase orders, and each purchase
 247      * order contains a collection of line items, then the following produces a
 248      * stream containing all the line items in all the orders:
 249      * <pre>{@code
 250      *     orders.flatMap(order -> order.getLineItems().stream())...
 251      * }</pre>
 252      *
 253      * <p>If {@code path} is the path to a file, then the following produces a
 254      * stream of the {@code words} contained in that file:
 255      * <pre>{@code
 256      *     Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
 257      *     Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
 258      * }</pre>
 259      * The {@code mapper} function passed to {@code flatMap} splits a line,
 260      * using a simple regular expression, into an array of words, and then
 261      * creates a stream of words from that array.
 262      *
 263      * @param <R> The element type of the new stream
 264      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 265      *               <a href="package-summary.html#Statelessness">stateless</a>
 266      *               function to apply to each element which produces a stream
 267      *               of new values
 268      * @return the new stream
 269      */
 270     <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
 271 
 272     /**
 273      * Returns an {@code IntStream} consisting of the results of replacing each
 274      * element of this stream with the contents of a mapped stream produced by
 275      * applying the provided mapping function to each element.  Each mapped
 276      * stream is {@link java.util.stream.BaseStream#close() closed} after its
 277      * contents have been placed into this stream.  (If a mapped stream is
 278      * {@code null} an empty stream is used, instead.)
 279      *
 280      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 281      * operation</a>.
 282      *
 283      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 284      *               <a href="package-summary.html#Statelessness">stateless</a>
 285      *               function to apply to each element which produces a stream
 286      *               of new values
 287      * @return the new stream
 288      * @see #flatMap(Function)
 289      */
 290     IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
 291 
 292     /**
 293      * Returns an {@code LongStream} consisting of the results of replacing each
 294      * element of this stream with the contents of a mapped stream produced by
 295      * applying the provided mapping function to each element.  Each mapped
 296      * stream is {@link java.util.stream.BaseStream#close() closed} after its
 297      * contents have been placed into this stream.  (If a mapped stream is
 298      * {@code null} an empty stream is used, instead.)
 299      *
 300      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 301      * operation</a>.
 302      *
 303      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 304      *               <a href="package-summary.html#Statelessness">stateless</a>
 305      *               function to apply to each element which produces a stream
 306      *               of new values
 307      * @return the new stream
 308      * @see #flatMap(Function)
 309      */
 310     LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
 311 
 312     /**
 313      * Returns an {@code DoubleStream} consisting of the results of replacing
 314      * each element of this stream with the contents of a mapped stream produced
 315      * by applying the provided mapping function to each element.  Each mapped
 316      * stream is {@link java.util.stream.BaseStream#close() closed} after its
 317      * contents have placed been into this stream.  (If a mapped stream is
 318      * {@code null} an empty stream is used, instead.)
 319      *
 320      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 321      * operation</a>.
 322      *
 323      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 324      *               <a href="package-summary.html#Statelessness">stateless</a>
 325      *               function to apply to each element which produces a stream
 326      *               of new values
 327      * @return the new stream
 328      * @see #flatMap(Function)
 329      */
 330     DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
 331 
 332     /**
 333      * Returns a stream consisting of the distinct elements (according to
 334      * {@link Object#equals(Object)}) of this stream.
 335      *
 336      * <p>For ordered streams, the selection of distinct elements is stable
 337      * (for duplicated elements, the element appearing first in the encounter
 338      * order is preserved.)  For unordered streams, no stability guarantees
 339      * are made.
 340      *
 341      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 342      * intermediate operation</a>.
 343      *
 344      * @apiNote
 345      * Preserving stability for {@code distinct()} in parallel pipelines is
 346      * relatively expensive (requires that the operation act as a full barrier,
 347      * with substantial buffering overhead), and stability is often not needed.
 348      * Using an unordered stream source (such as {@link #generate(Supplier)})
 349      * or removing the ordering constraint with {@link #unordered()} may result
 350      * in significantly more efficient execution for {@code distinct()} in parallel
 351      * pipelines, if the semantics of your situation permit.  If consistency
 352      * with encounter order is required, and you are experiencing poor performance
 353      * or memory utilization with {@code distinct()} in parallel pipelines,
 354      * switching to sequential execution with {@link #sequential()} may improve
 355      * performance.
 356      *
 357      * @return the new stream
 358      */
 359     Stream<T> distinct();
 360 
 361     /**
 362      * Returns a stream consisting of the elements of this stream, sorted
 363      * according to natural order.  If the elements of this stream are not
 364      * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
 365      * when the terminal operation is executed.
 366      *
 367      * <p>For ordered streams, the sort is stable.  For unordered streams, no
 368      * stability guarantees are made.
 369      *
 370      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 371      * intermediate operation</a>.
 372      *
 373      * @return the new stream
 374      */
 375     Stream<T> sorted();
 376 
 377     /**
 378      * Returns a stream consisting of the elements of this stream, sorted
 379      * according to the provided {@code Comparator}.
 380      *
 381      * <p>For ordered streams, the sort is stable.  For unordered streams, no
 382      * stability guarantees are made.
 383      *
 384      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 385      * intermediate operation</a>.
 386      *
 387      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
 388      *                   <a href="package-summary.html#Statelessness">stateless</a>
 389      *                   {@code Comparator} to be used to compare stream elements
 390      * @return the new stream
 391      */
 392     Stream<T> sorted(Comparator<? super T> comparator);
 393 
 394     /**
 395      * Returns a stream consisting of the elements of this stream, additionally
 396      * performing the provided action on each element as elements are consumed
 397      * from the resulting stream.
 398      *
 399      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 400      * operation</a>.
 401      *
 402      * <p>For parallel stream pipelines, the action may be called at
 403      * whatever time and in whatever thread the element is made available by the
 404      * upstream operation.  If the action modifies shared state,
 405      * it is responsible for providing the required synchronization.
 406      *
 407      * @apiNote This method exists mainly to support debugging, where you want
 408      * to see the elements as they flow past a certain point in a pipeline:
 409      * <pre>{@code
 410      *     Stream.of("one", "two", "three", "four")
 411      *         .filter(e -> e.length() > 3)
 412      *         .peek(e -> System.out.println("Filtered value: " + e))
 413      *         .map(String::toUpperCase)
 414      *         .peek(e -> System.out.println("Mapped value: " + e))
 415      *         .collect(Collectors.toList());
 416      * }</pre>
 417      *
 418      * @param action a <a href="package-summary.html#NonInterference">
 419      *                 non-interfering</a> action to perform on the elements as
 420      *                 they are consumed from the stream
 421      * @return the new stream
 422      */
 423     Stream<T> peek(Consumer<? super T> action);
 424 
 425     /**
 426      * Returns a stream consisting of the elements of this stream, truncated
 427      * to be no longer than {@code maxSize} in length.
 428      *
 429      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 430      * stateful intermediate operation</a>.
 431      *
 432      * @apiNote
 433      * While {@code limit()} is generally a cheap operation on sequential
 434      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
 435      * especially for large values of {@code maxSize}, since {@code limit(n)}
 436      * is constrained to return not just any <em>n</em> elements, but the
 437      * <em>first n</em> elements in the encounter order.  Using an unordered
 438      * stream source (such as {@link #generate(Supplier)}) or removing the
 439      * ordering constraint with {@link #unordered()} may result in significant
 440      * speedups of {@code limit()} in parallel pipelines, if the semantics of
 441      * your situation permit.  If consistency with encounter order is required,
 442      * and you are experiencing poor performance or memory utilization with
 443      * {@code limit()} in parallel pipelines, switching to sequential execution
 444      * with {@link #sequential()} may improve performance.
 445      *
 446      * @param maxSize the number of elements the stream should be limited to
 447      * @return the new stream
 448      * @throws IllegalArgumentException if {@code maxSize} is negative
 449      */
 450     Stream<T> limit(long maxSize);
 451 
 452     /**
 453      * Returns a stream consisting of the remaining elements of this stream
 454      * after discarding the first {@code n} elements of the stream.
 455      * If this stream contains fewer than {@code n} elements then an
 456      * empty stream will be returned.
 457      *
 458      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 459      * intermediate operation</a>.
 460      *
 461      * @apiNote
 462      * While {@code skip()} is generally a cheap operation on sequential
 463      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
 464      * especially for large values of {@code n}, since {@code skip(n)}
 465      * is constrained to skip not just any <em>n</em> elements, but the
 466      * <em>first n</em> elements in the encounter order.  Using an unordered
 467      * stream source (such as {@link #generate(Supplier)}) or removing the
 468      * ordering constraint with {@link #unordered()} may result in significant
 469      * speedups of {@code skip()} in parallel pipelines, if the semantics of
 470      * your situation permit.  If consistency with encounter order is required,
 471      * and you are experiencing poor performance or memory utilization with
 472      * {@code skip()} in parallel pipelines, switching to sequential execution
 473      * with {@link #sequential()} may improve performance.
 474      *
 475      * @param n the number of leading elements to skip
 476      * @return the new stream
 477      * @throws IllegalArgumentException if {@code n} is negative
 478      */
 479     Stream<T> skip(long n);
 480 
 481     /**
 482      * Performs an action for each element of this stream.
 483      *
 484      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 485      * operation</a>.
 486      *
 487      * <p>The behavior of this operation is explicitly nondeterministic.
 488      * For parallel stream pipelines, this operation does <em>not</em>
 489      * guarantee to respect the encounter order of the stream, as doing so
 490      * would sacrifice the benefit of parallelism.  For any given element, the
 491      * action may be performed at whatever time and in whatever thread the
 492      * library chooses.  If the action accesses shared state, it is
 493      * responsible for providing the required synchronization.
 494      *
 495      * @param action a <a href="package-summary.html#NonInterference">
 496      *               non-interfering</a> action to perform on the elements
 497      */
 498     void forEach(Consumer<? super T> action);
 499 
 500     /**
 501      * Performs an action for each element of this stream, in the encounter
 502      * order of the stream if the stream has a defined encounter order.
 503      *
 504      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 505      * operation</a>.
 506      *
 507      * <p>This operation processes the elements one at a time, in encounter
 508      * order if one exists.  Performing the action for one element
 509      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
 510      * performing the action for subsequent elements, but for any given element,
 511      * the action may be performed in whatever thread the library chooses.
 512      *
 513      * @param action a <a href="package-summary.html#NonInterference">
 514      *               non-interfering</a> action to perform on the elements
 515      * @see #forEach(Consumer)
 516      */
 517     void forEachOrdered(Consumer<? super T> action);
 518 
 519     /**
 520      * Returns an array containing the elements of this stream.
 521      *
 522      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 523      * operation</a>.
 524      *
 525      * @return an array containing the elements of this stream
 526      */
 527     Object[] toArray();
 528 
 529     /**
 530      * Returns an array containing the elements of this stream, using the
 531      * provided {@code generator} function to allocate the returned array, as
 532      * well as any additional arrays that might be required for a partitioned
 533      * execution or for resizing.
 534      *
 535      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 536      * operation</a>.
 537      *
 538      * @apiNote
 539      * The generator function takes an integer, which is the size of the
 540      * desired array, and produces an array of the desired size.  This can be
 541      * concisely expressed with an array constructor reference:
 542      * <pre>{@code
 543      *     Person[] men = people.stream()
 544      *                          .filter(p -> p.getGender() == MALE)
 545      *                          .toArray(Person[]::new);
 546      * }</pre>
 547      *
 548      * @param <A> the element type of the resulting array
 549      * @param generator a function which produces a new array of the desired
 550      *                  type and the provided length
 551      * @return an array containing the elements in this stream
 552      * @throws ArrayStoreException if the runtime type of the array returned
 553      * from the array generator is not a supertype of the runtime type of every
 554      * element in this stream
 555      */
 556     <A> A[] toArray(IntFunction<A[]> generator);
 557 
 558     /**
 559      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
 560      * elements of this stream, using the provided identity value and an
 561      * <a href="package-summary.html#Associativity">associative</a>
 562      * accumulation function, and returns the reduced value.  This is equivalent
 563      * to:
 564      * <pre>{@code
 565      *     T result = identity;
 566      *     for (T element : this stream)
 567      *         result = accumulator.apply(result, element)
 568      *     return result;
 569      * }</pre>
 570      *
 571      * but is not constrained to execute sequentially.
 572      *
 573      * <p>The {@code identity} value must be an identity for the accumulator
 574      * function. This means that for all {@code t},
 575      * {@code accumulator.apply(identity, t)} is equal to {@code t}.
 576      * The {@code accumulator} function must be an
 577      * <a href="package-summary.html#Associativity">associative</a> function.
 578      *
 579      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 580      * operation</a>.
 581      *
 582      * @apiNote Sum, min, max, average, and string concatenation are all special
 583      * cases of reduction. Summing a stream of numbers can be expressed as:
 584      *
 585      * <pre>{@code
 586      *     Integer sum = integers.reduce(0, (a, b) -> a+b);
 587      * }</pre>
 588      *
 589      * or:
 590      *
 591      * <pre>{@code
 592      *     Integer sum = integers.reduce(0, Integer::sum);
 593      * }</pre>
 594      *
 595      * <p>While this may seem a more roundabout way to perform an aggregation
 596      * compared to simply mutating a running total in a loop, reduction
 597      * operations parallelize more gracefully, without needing additional
 598      * synchronization and with greatly reduced risk of data races.
 599      *
 600      * @param identity the identity value for the accumulating function
 601      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
 602      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 603      *                    <a href="package-summary.html#Statelessness">stateless</a>
 604      *                    function for combining two values
 605      * @return the result of the reduction
 606      */
 607     T reduce(T identity, BinaryOperator<T> accumulator);
 608 
 609     /**
 610      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
 611      * elements of this stream, using an
 612      * <a href="package-summary.html#Associativity">associative</a> accumulation
 613      * function, and returns an {@code Optional} describing the reduced value,
 614      * if any. This is equivalent to:
 615      * <pre>{@code
 616      *     boolean foundAny = false;
 617      *     T result = null;
 618      *     for (T element : this stream) {
 619      *         if (!foundAny) {
 620      *             foundAny = true;
 621      *             result = element;
 622      *         }
 623      *         else
 624      *             result = accumulator.apply(result, element);
 625      *     }
 626      *     return foundAny ? Optional.of(result) : Optional.empty();
 627      * }</pre>
 628      *
 629      * but is not constrained to execute sequentially.
 630      *
 631      * <p>The {@code accumulator} function must be an
 632      * <a href="package-summary.html#Associativity">associative</a> function.
 633      *
 634      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 635      * operation</a>.
 636      *
 637      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
 638      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 639      *                    <a href="package-summary.html#Statelessness">stateless</a>
 640      *                    function for combining two values
 641      * @return an {@link Optional} describing the result of the reduction
 642      * @throws NullPointerException if the result of the reduction is null
 643      * @see #reduce(Object, BinaryOperator)
 644      * @see #min(Comparator)
 645      * @see #max(Comparator)
 646      */
 647     Optional<T> reduce(BinaryOperator<T> accumulator);
 648 
 649     /**
 650      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
 651      * elements of this stream, using the provided identity, accumulation and
 652      * combining functions.  This is equivalent to:
 653      * <pre>{@code
 654      *     U result = identity;
 655      *     for (T element : this stream)
 656      *         result = accumulator.apply(result, element)
 657      *     return result;
 658      * }</pre>
 659      *
 660      * but is not constrained to execute sequentially.
 661      *
 662      * <p>The {@code identity} value must be an identity for the combiner
 663      * function.  This means that for all {@code u}, {@code combiner(identity, u)}
 664      * is equal to {@code u}.  Additionally, the {@code combiner} function
 665      * must be compatible with the {@code accumulator} function; for all
 666      * {@code u} and {@code t}, the following must hold:
 667      * <pre>{@code
 668      *     combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
 669      * }</pre>
 670      *
 671      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 672      * operation</a>.
 673      *
 674      * @apiNote Many reductions using this form can be represented more simply
 675      * by an explicit combination of {@code map} and {@code reduce} operations.
 676      * The {@code accumulator} function acts as a fused mapper and accumulator,
 677      * which can sometimes be more efficient than separate mapping and reduction,
 678      * such as when knowing the previously reduced value allows you to avoid
 679      * some computation.
 680      *
 681      * @param <U> The type of the result
 682      * @param identity the identity value for the combiner function
 683      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
 684      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 685      *                    <a href="package-summary.html#Statelessness">stateless</a>
 686      *                    function for incorporating an additional element into a result
 687      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
 688      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 689      *                    <a href="package-summary.html#Statelessness">stateless</a>
 690      *                    function for combining two values, which must be
 691      *                    compatible with the accumulator function
 692      * @return the result of the reduction
 693      * @see #reduce(BinaryOperator)
 694      * @see #reduce(Object, BinaryOperator)
 695      */
 696     <U> U reduce(U identity,
 697                  BiFunction<U, ? super T, U> accumulator,
 698                  BinaryOperator<U> combiner);
 699 
 700     /**
 701      * Performs a <a href="package-summary.html#MutableReduction">mutable
 702      * reduction</a> operation on the elements of this stream.  A mutable
 703      * reduction is one in which the reduced value is a mutable result container,
 704      * such as an {@code ArrayList}, and elements are incorporated by updating
 705      * the state of the result rather than by replacing the result.  This
 706      * produces a result equivalent to:
 707      * <pre>{@code
 708      *     R result = supplier.get();
 709      *     for (T element : this stream)
 710      *         accumulator.accept(result, element);
 711      *     return result;
 712      * }</pre>
 713      *
 714      * <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
 715      * can be parallelized without requiring additional synchronization.
 716      *
 717      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 718      * operation</a>.
 719      *
 720      * @apiNote There are many existing classes in the JDK whose signatures are
 721      * well-suited for use with method references as arguments to {@code collect()}.
 722      * For example, the following will accumulate strings into an {@code ArrayList}:
 723      * <pre>{@code
 724      *     List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
 725      *                                                ArrayList::addAll);
 726      * }</pre>
 727      *
 728      * <p>The following will take a stream of strings and concatenates them into a
 729      * single string:
 730      * <pre>{@code
 731      *     String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
 732      *                                          StringBuilder::append)
 733      *                                 .toString();
 734      * }</pre>
 735      *
 736      * @param <R> type of the result
 737      * @param supplier a function that creates a new result container. For a
 738      *                 parallel execution, this function may be called
 739      *                 multiple times and must return a fresh value each time.
 740      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
 741      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 742      *                    <a href="package-summary.html#Statelessness">stateless</a>
 743      *                    function for incorporating an additional element into a result
 744      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
 745      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 746      *                    <a href="package-summary.html#Statelessness">stateless</a>
 747      *                    function for combining two values, which must be
 748      *                    compatible with the accumulator function
 749      * @return the result of the reduction
 750      */
 751     <R> R collect(Supplier<R> supplier,
 752                   BiConsumer<R, ? super T> accumulator,
 753                   BiConsumer<R, R> combiner);
 754 
 755     /**
 756      * Performs a <a href="package-summary.html#MutableReduction">mutable
 757      * reduction</a> operation on the elements of this stream using a
 758      * {@code Collector}.  A {@code Collector}
 759      * encapsulates the functions used as arguments to
 760      * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
 761      * collection strategies and composition of collect operations such as
 762      * multiple-level grouping or partitioning.
 763      *
 764      * <p>If the stream is parallel, and the {@code Collector}
 765      * is {@link Collector.Characteristics#CONCURRENT concurrent}, and
 766      * either the stream is unordered or the collector is
 767      * {@link Collector.Characteristics#UNORDERED unordered},
 768      * then a concurrent reduction will be performed (see {@link Collector} for
 769      * details on concurrent reduction.)
 770      *
 771      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 772      * operation</a>.
 773      *
 774      * <p>When executed in parallel, multiple intermediate results may be
 775      * instantiated, populated, and merged so as to maintain isolation of
 776      * mutable data structures.  Therefore, even when executed in parallel
 777      * with non-thread-safe data structures (such as {@code ArrayList}), no
 778      * additional synchronization is needed for a parallel reduction.
 779      *
 780      * @apiNote
 781      * The following will accumulate strings into an ArrayList:
 782      * <pre>{@code
 783      *     List<String> asList = stringStream.collect(Collectors.toList());
 784      * }</pre>
 785      *
 786      * <p>The following will classify {@code Person} objects by city:
 787      * <pre>{@code
 788      *     Map<String, List<Person>> peopleByCity
 789      *         = personStream.collect(Collectors.groupingBy(Person::getCity));
 790      * }</pre>
 791      *
 792      * <p>The following will classify {@code Person} objects by state and city,
 793      * cascading two {@code Collector}s together:
 794      * <pre>{@code
 795      *     Map<String, Map<String, List<Person>>> peopleByStateAndCity
 796      *         = personStream.collect(Collectors.groupingBy(Person::getState,
 797      *                                                      Collectors.groupingBy(Person::getCity)));
 798      * }</pre>
 799      *
 800      * @param <R> the type of the result
 801      * @param <A> the intermediate accumulation type of the {@code Collector}
 802      * @param collector the {@code Collector} describing the reduction
 803      * @return the result of the reduction
 804      * @see #collect(Supplier, BiConsumer, BiConsumer)
 805      * @see Collectors
 806      */
 807     <R, A> R collect(Collector<? super T, A, R> collector);
 808 
 809     /**
 810      * Returns the minimum element of this stream according to the provided
 811      * {@code Comparator}.  This is a special case of a
 812      * <a href="package-summary.html#Reduction">reduction</a>.
 813      *
 814      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
 815      *
 816      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
 817      *                   <a href="package-summary.html#Statelessness">stateless</a>
 818      *                   {@code Comparator} to compare elements of this stream
 819      * @return an {@code Optional} describing the minimum element of this stream,
 820      * or an empty {@code Optional} if the stream is empty
 821      * @throws NullPointerException if the minimum element is null
 822      */
 823     Optional<T> min(Comparator<? super T> comparator);
 824 
 825     /**
 826      * Returns the maximum element of this stream according to the provided
 827      * {@code Comparator}.  This is a special case of a
 828      * <a href="package-summary.html#Reduction">reduction</a>.
 829      *
 830      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 831      * operation</a>.
 832      *
 833      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
 834      *                   <a href="package-summary.html#Statelessness">stateless</a>
 835      *                   {@code Comparator} to compare elements of this stream
 836      * @return an {@code Optional} describing the maximum element of this stream,
 837      * or an empty {@code Optional} if the stream is empty
 838      * @throws NullPointerException if the maximum element is null
 839      */
 840     Optional<T> max(Comparator<? super T> comparator);
 841 
 842     /**
 843      * Returns the count of elements in this stream.  This is a special case of
 844      * a <a href="package-summary.html#Reduction">reduction</a> and is
 845      * equivalent to:
 846      * <pre>{@code
 847      *     return mapToLong(e -> 1L).sum();
 848      * }</pre>
 849      *
 850      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
 851      *
 852      * @return the count of elements in this stream
 853      */
 854     long count();
 855 
 856     /**
 857      * Returns whether any elements of this stream match the provided
 858      * predicate.  May not evaluate the predicate on all elements if not
 859      * necessary for determining the result.  If the stream is empty then
 860      * {@code false} is returned and the predicate is not evaluated.
 861      *
 862      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 863      * terminal operation</a>.
 864      *
 865      * @apiNote
 866      * This method evaluates the <em>existential quantification</em> of the
 867      * predicate over the elements of the stream (for some x P(x)).
 868      *
 869      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 870      *                  <a href="package-summary.html#Statelessness">stateless</a>
 871      *                  predicate to apply to elements of this stream
 872      * @return {@code true} if any elements of the stream match the provided
 873      * predicate, otherwise {@code false}
 874      */
 875     boolean anyMatch(Predicate<? super T> predicate);
 876 
 877     /**
 878      * Returns whether all elements of this stream match the provided predicate.
 879      * May not evaluate the predicate on all elements if not necessary for
 880      * determining the result.  If the stream is empty then {@code true} is
 881      * returned and the predicate is not evaluated.
 882      *
 883      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 884      * terminal operation</a>.
 885      *
 886      * @apiNote
 887      * This method evaluates the <em>universal quantification</em> of the
 888      * predicate over the elements of the stream (for all x P(x)).  If the
 889      * stream is empty, the quantification is said to be <em>vacuously
 890      * satisfied</em> and is always {@code true} (regardless of P(x)).
 891      *
 892      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 893      *                  <a href="package-summary.html#Statelessness">stateless</a>
 894      *                  predicate to apply to elements of this stream
 895      * @return {@code true} if either all elements of the stream match the
 896      * provided predicate or the stream is empty, otherwise {@code false}
 897      */
 898     boolean allMatch(Predicate<? super T> predicate);
 899 
 900     /**
 901      * Returns whether no elements of this stream match the provided predicate.
 902      * May not evaluate the predicate on all elements if not necessary for
 903      * determining the result.  If the stream is empty then {@code true} is
 904      * returned and the predicate is not evaluated.
 905      *
 906      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 907      * terminal operation</a>.
 908      *
 909      * @apiNote
 910      * This method evaluates the <em>universal quantification</em> of the
 911      * negated predicate over the elements of the stream (for all x ~P(x)).  If
 912      * the stream is empty, the quantification is said to be vacuously satisfied
 913      * and is always {@code true}, regardless of P(x).
 914      *
 915      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 916      *                  <a href="package-summary.html#Statelessness">stateless</a>
 917      *                  predicate to apply to elements of this stream
 918      * @return {@code true} if either no elements of the stream match the
 919      * provided predicate or the stream is empty, otherwise {@code false}
 920      */
 921     boolean noneMatch(Predicate<? super T> predicate);
 922 
 923     /**
 924      * Returns an {@link Optional} describing the first element of this stream,
 925      * or an empty {@code Optional} if the stream is empty.  If the stream has
 926      * no encounter order, then any element may be returned.
 927      *
 928      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 929      * terminal operation</a>.
 930      *
 931      * @return an {@code Optional} describing the first element of this stream,
 932      * or an empty {@code Optional} if the stream is empty
 933      * @throws NullPointerException if the element selected is null
 934      */
 935     Optional<T> findFirst();
 936 
 937     /**
 938      * Returns an {@link Optional} describing some element of the stream, or an
 939      * empty {@code Optional} if the stream is empty.
 940      *
 941      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 942      * terminal operation</a>.
 943      *
 944      * <p>The behavior of this operation is explicitly nondeterministic; it is
 945      * free to select any element in the stream.  This is to allow for maximal
 946      * performance in parallel operations; the cost is that multiple invocations
 947      * on the same source may not return the same result.  (If a stable result
 948      * is desired, use {@link #findFirst()} instead.)
 949      *
 950      * @return an {@code Optional} describing some element of this stream, or an
 951      * empty {@code Optional} if the stream is empty
 952      * @throws NullPointerException if the element selected is null
 953      * @see #findFirst()
 954      */
 955     Optional<T> findAny();
 956 
 957     // Static factories
 958 
 959     /**
 960      * Returns a builder for a {@code Stream}.
 961      *
 962      * @param <T> type of elements
 963      * @return a stream builder
 964      */
 965     public static<T> Builder<T> builder() {
 966         return new Streams.StreamBuilderImpl<>();
 967     }
 968 
 969     /**
 970      * Returns an empty sequential {@code Stream}.
 971      *
 972      * @param <T> the type of stream elements
 973      * @return an empty sequential stream
 974      */
 975     public static<T> Stream<T> empty() {
 976         return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);
 977     }
 978 
 979     /**
 980      * Returns a sequential {@code Stream} containing a single element.
 981      *
 982      * @param t the single element
 983      * @param <T> the type of stream elements
 984      * @return a singleton sequential stream
 985      */
 986     public static<T> Stream<T> of(T t) {
 987         return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
 988     }
 989 
 990     /**
 991      * Returns a sequential {@code Stream} containing a single element, if
 992      * non-null, otherwise returns an empty {@code Stream}.
 993      *
 994      * @param t the single element
 995      * @param <T> the type of stream elements
 996      * @return a stream with a single element if the specified element
 997      *         is non-null, otherwise an empty stream
 998      * @since 1.9
 999      */
1000     public static<T> Stream<T> ofNullable(T t) {
1001         return t == null ? Stream.empty()
1002                          : StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
1003     }
1004 
1005     /**
1006      * Returns a sequential ordered stream whose elements are the specified values.
1007      *
1008      * @param <T> the type of stream elements
1009      * @param values the elements of the new stream
1010      * @return the new stream
1011      */
1012     @SafeVarargs
1013     @SuppressWarnings("varargs") // Creating a stream from an array is safe
1014     public static<T> Stream<T> of(T... values) {
1015         return Arrays.stream(values);
1016     }
1017 
1018     /**
1019      * Returns an infinite sequential ordered {@code Stream} produced by iterative
1020      * application of a function {@code f} to an initial element {@code seed},
1021      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
1022      * {@code f(f(seed))}, etc.
1023      *
1024      * <p>The first element (position {@code 0}) in the {@code Stream} will be
1025      * the provided {@code seed}.  For {@code n > 0}, the element at position
1026      * {@code n}, will be the result of applying the function {@code f} to the
1027      * element at position {@code n - 1}.
1028      *
1029      * @param <T> the type of stream elements
1030      * @param seed the initial element
1031      * @param f a function to be applied to the previous element to produce
1032      *          a new element
1033      * @return a new sequential {@code Stream}
1034      */
1035     public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
1036         Objects.requireNonNull(f);
1037         final Iterator<T> iterator = new Iterator<T>() {
1038             @SuppressWarnings("unchecked")
1039             T t = (T) Streams.NONE;
1040 
1041             @Override
1042             public boolean hasNext() {
1043                 return true;
1044             }
1045 
1046             @Override
1047             public T next() {
1048                 return t = (t == Streams.NONE) ? seed : f.apply(t);
1049             }
1050         };
1051         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
1052                 iterator,
1053                 Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
1054     }
1055 
1056     /**
1057      * Returns an infinite sequential unordered stream where each element is
1058      * generated by the provided {@code Supplier}.  This is suitable for
1059      * generating constant streams, streams of random elements, etc.
1060      *
1061      * @param <T> the type of stream elements
1062      * @param s the {@code Supplier} of generated elements
1063      * @return a new infinite sequential unordered {@code Stream}
1064      */
1065     public static<T> Stream<T> generate(Supplier<T> s) {
1066         Objects.requireNonNull(s);
1067         return StreamSupport.stream(
1068                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);
1069     }
1070 
1071     /**
1072      * Creates a lazily concatenated stream whose elements are all the
1073      * elements of the first stream followed by all the elements of the
1074      * second stream.  The resulting stream is ordered if both
1075      * of the input streams are ordered, and parallel if either of the input
1076      * streams is parallel.  When the resulting stream is closed, the close
1077      * handlers for both input streams are invoked.
1078      *
1079      * @implNote
1080      * Use caution when constructing streams from repeated concatenation.
1081      * Accessing an element of a deeply concatenated stream can result in deep
1082      * call chains, or even {@code StackOverflowError}.
1083      *
1084      * @param <T> The type of stream elements
1085      * @param a the first stream
1086      * @param b the second stream
1087      * @return the concatenation of the two input streams
1088      */
1089     public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
1090         Objects.requireNonNull(a);
1091         Objects.requireNonNull(b);
1092 
1093         @SuppressWarnings("unchecked")
1094         Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
1095                 (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
1096         Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
1097         return stream.onClose(Streams.composedClose(a, b));
1098     }
1099 
1100     /**
1101      * A mutable builder for a {@code Stream}.  This allows the creation of a
1102      * {@code Stream} by generating elements individually and adding them to the
1103      * {@code Builder} (without the copying overhead that comes from using
1104      * an {@code ArrayList} as a temporary buffer.)
1105      *
1106      * <p>A stream builder has a lifecycle, which starts in a building
1107      * phase, during which elements can be added, and then transitions to a built
1108      * phase, after which elements may not be added.  The built phase begins
1109      * when the {@link #build()} method is called, which creates an ordered
1110      * {@code Stream} whose elements are the elements that were added to the stream
1111      * builder, in the order they were added.
1112      *
1113      * @param <T> the type of stream elements
1114      * @see Stream#builder()
1115      * @since 1.8
1116      */
1117     public interface Builder<T> extends Consumer<T> {
1118 
1119         /**
1120          * Adds an element to the stream being built.
1121          *
1122          * @throws IllegalStateException if the builder has already transitioned to
1123          * the built state
1124          */
1125         @Override
1126         void accept(T t);
1127 
1128         /**
1129          * Adds an element to the stream being built.
1130          *
1131          * @implSpec
1132          * The default implementation behaves as if:
1133          * <pre>{@code
1134          *     accept(t)
1135          *     return this;
1136          * }</pre>
1137          *
1138          * @param t the element to add
1139          * @return {@code this} builder
1140          * @throws IllegalStateException if the builder has already transitioned to
1141          * the built state
1142          */
1143         default Builder<T> add(T t) {
1144             accept(t);
1145             return this;
1146         }
1147 
1148         /**
1149          * Builds the stream, transitioning this builder to the built state.
1150          * An {@code IllegalStateException} is thrown if there are further attempts
1151          * to operate on the builder after it has entered the built state.
1152          *
1153          * @return the built stream
1154          * @throws IllegalStateException if the builder has already transitioned to
1155          * the built state
1156          */
1157         Stream<T> build();
1158 
1159     }
1160 }