1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import com.sun.tools.javac.util.*;
  29 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  30 import com.sun.tools.javac.util.List;
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.code.Attribute.TypeCompound;
  33 import com.sun.tools.javac.code.Symbol.VarSymbol;
  34 import com.sun.tools.javac.comp.*;
  35 import com.sun.tools.javac.tree.*;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.code.Type.*;
  39 import com.sun.tools.javac.jvm.Code.*;
  40 import com.sun.tools.javac.jvm.Items.*;
  41 import com.sun.tools.javac.tree.EndPosTable;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.Kind.*;
  46 import static com.sun.tools.javac.code.TypeTag.*;
  47 import static com.sun.tools.javac.jvm.ByteCodes.*;
  48 import static com.sun.tools.javac.jvm.CRTFlags.*;
  49 import static com.sun.tools.javac.main.Option.*;
  50 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  51 
  52 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  53  *
  54  *  <p><b>This is NOT part of any supported API.
  55  *  If you write code that depends on this, you do so at your own risk.
  56  *  This code and its internal interfaces are subject to change or
  57  *  deletion without notice.</b>
  58  */
  59 public class Gen extends JCTree.Visitor {
  60     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  61 
  62     private final Log log;
  63     private final Symtab syms;
  64     private final Check chk;
  65     private final Resolve rs;
  66     private final TreeMaker make;
  67     private final Names names;
  68     private final Target target;
  69     private Name accessDollar;
  70     private final Types types;
  71     private final Lower lower;
  72     private final Flow flow;
  73     private final Annotate annotate;
  74     private final StringConcat concat;
  75 
  76     /** Format of stackmap tables to be generated. */
  77     private final Code.StackMapFormat stackMap;
  78 
  79     /** A type that serves as the expected type for all method expressions.
  80      */
  81     private final Type methodType;
  82 
  83     /**
  84      * Are we presently traversing a let expression ? Yes if depth != 0
  85      */
  86     private int letExprDepth;
  87 
  88     public static Gen instance(Context context) {
  89         Gen instance = context.get(genKey);
  90         if (instance == null)
  91             instance = new Gen(context);
  92         return instance;
  93     }
  94 
  95     /** Constant pool, reset by genClass.
  96      */
  97     private Pool pool;
  98 
  99     protected Gen(Context context) {
 100         context.put(genKey, this);
 101 
 102         names = Names.instance(context);
 103         log = Log.instance(context);
 104         syms = Symtab.instance(context);
 105         chk = Check.instance(context);
 106         rs = Resolve.instance(context);
 107         make = TreeMaker.instance(context);
 108         target = Target.instance(context);
 109         types = Types.instance(context);
 110         concat = StringConcat.instance(context);
 111 
 112         methodType = new MethodType(null, null, null, syms.methodClass);
 113         accessDollar = names.
 114             fromString("access" + target.syntheticNameChar());
 115         flow = Flow.instance(context);
 116         lower = Lower.instance(context);
 117 
 118         Options options = Options.instance(context);
 119         lineDebugInfo =
 120             options.isUnset(G_CUSTOM) ||
 121             options.isSet(G_CUSTOM, "lines");
 122         varDebugInfo =
 123             options.isUnset(G_CUSTOM)
 124             ? options.isSet(G)
 125             : options.isSet(G_CUSTOM, "vars");
 126         genCrt = options.isSet(XJCOV);
 127         debugCode = options.isSet("debugcode");
 128         allowBetterNullChecks = target.hasObjects();
 129         pool = new Pool(types);
 130 
 131         // ignore cldc because we cannot have both stackmap formats
 132         this.stackMap = StackMapFormat.JSR202;
 133         annotate = Annotate.instance(context);
 134     }
 135 
 136     /** Switches
 137      */
 138     private final boolean lineDebugInfo;
 139     private final boolean varDebugInfo;
 140     private final boolean genCrt;
 141     private final boolean debugCode;
 142     private final boolean allowBetterNullChecks;
 143 
 144     /** Code buffer, set by genMethod.
 145      */
 146     private Code code;
 147 
 148     /** Items structure, set by genMethod.
 149      */
 150     private Items items;
 151 
 152     /** Environment for symbol lookup, set by genClass
 153      */
 154     private Env<AttrContext> attrEnv;
 155 
 156     /** The top level tree.
 157      */
 158     private JCCompilationUnit toplevel;
 159 
 160     /** The number of code-gen errors in this class.
 161      */
 162     private int nerrs = 0;
 163 
 164     /** An object containing mappings of syntax trees to their
 165      *  ending source positions.
 166      */
 167     EndPosTable endPosTable;
 168 
 169     /** Generate code to load an integer constant.
 170      *  @param n     The integer to be loaded.
 171      */
 172     void loadIntConst(int n) {
 173         items.makeImmediateItem(syms.intType, n).load();
 174     }
 175 
 176     /** The opcode that loads a zero constant of a given type code.
 177      *  @param tc   The given type code (@see ByteCode).
 178      */
 179     public static int zero(int tc) {
 180         switch(tc) {
 181         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 182             return iconst_0;
 183         case LONGcode:
 184             return lconst_0;
 185         case FLOATcode:
 186             return fconst_0;
 187         case DOUBLEcode:
 188             return dconst_0;
 189         default:
 190             throw new AssertionError("zero");
 191         }
 192     }
 193 
 194     /** The opcode that loads a one constant of a given type code.
 195      *  @param tc   The given type code (@see ByteCode).
 196      */
 197     public static int one(int tc) {
 198         return zero(tc) + 1;
 199     }
 200 
 201     /** Generate code to load -1 of the given type code (either int or long).
 202      *  @param tc   The given type code (@see ByteCode).
 203      */
 204     void emitMinusOne(int tc) {
 205         if (tc == LONGcode) {
 206             items.makeImmediateItem(syms.longType, new Long(-1)).load();
 207         } else {
 208             code.emitop0(iconst_m1);
 209         }
 210     }
 211 
 212     /** Construct a symbol to reflect the qualifying type that should
 213      *  appear in the byte code as per JLS 13.1.
 214      *
 215      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 216      *  for those cases where we need to work around VM bugs).
 217      *
 218      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 219      *  non-accessible class, clone it with the qualifier class as owner.
 220      *
 221      *  @param sym    The accessed symbol
 222      *  @param site   The qualifier's type.
 223      */
 224     Symbol binaryQualifier(Symbol sym, Type site) {
 225 
 226         if (site.hasTag(ARRAY)) {
 227             if (sym == syms.lengthVar ||
 228                 sym.owner != syms.arrayClass)
 229                 return sym;
 230             // array clone can be qualified by the array type in later targets
 231             Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 232                                                site, syms.noSymbol);
 233             return sym.clone(qualifier);
 234         }
 235 
 236         if (sym.owner == site.tsym ||
 237             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 238             return sym;
 239         }
 240 
 241         // leave alone methods inherited from Object
 242         // JLS 13.1.
 243         if (sym.owner == syms.objectType.tsym)
 244             return sym;
 245 
 246         return sym.clone(site.tsym);
 247     }
 248 
 249     /** Insert a reference to given type in the constant pool,
 250      *  checking for an array with too many dimensions;
 251      *  return the reference's index.
 252      *  @param type   The type for which a reference is inserted.
 253      */
 254     int makeRef(DiagnosticPosition pos, Type type) {
 255         checkDimension(pos, type);
 256         if (type.isAnnotated()) {
 257             return pool.put((Object)type);
 258         } else {
 259             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
 260         }
 261     }
 262 
 263     /** Check if the given type is an array with too many dimensions.
 264      */
 265     private void checkDimension(DiagnosticPosition pos, Type t) {
 266         switch (t.getTag()) {
 267         case METHOD:
 268             checkDimension(pos, t.getReturnType());
 269             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 270                 checkDimension(pos, args.head);
 271             break;
 272         case ARRAY:
 273             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 274                 log.error(pos, "limit.dimensions");
 275                 nerrs++;
 276             }
 277             break;
 278         default:
 279             break;
 280         }
 281     }
 282 
 283     /** Create a tempory variable.
 284      *  @param type   The variable's type.
 285      */
 286     LocalItem makeTemp(Type type) {
 287         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 288                                     names.empty,
 289                                     type,
 290                                     env.enclMethod.sym);
 291         code.newLocal(v);
 292         return items.makeLocalItem(v);
 293     }
 294 
 295     /** Generate code to call a non-private method or constructor.
 296      *  @param pos         Position to be used for error reporting.
 297      *  @param site        The type of which the method is a member.
 298      *  @param name        The method's name.
 299      *  @param argtypes    The method's argument types.
 300      *  @param isStatic    A flag that indicates whether we call a
 301      *                     static or instance method.
 302      */
 303     void callMethod(DiagnosticPosition pos,
 304                     Type site, Name name, List<Type> argtypes,
 305                     boolean isStatic) {
 306         Symbol msym = rs.
 307             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 308         if (isStatic) items.makeStaticItem(msym).invoke();
 309         else items.makeMemberItem(msym, name == names.init).invoke();
 310     }
 311 
 312     /** Is the given method definition an access method
 313      *  resulting from a qualified super? This is signified by an odd
 314      *  access code.
 315      */
 316     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 317         return
 318             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 319             isOddAccessName(enclMethod.name);
 320     }
 321 
 322     /** Does given name start with "access$" and end in an odd digit?
 323      */
 324     private boolean isOddAccessName(Name name) {
 325         return
 326             name.startsWith(accessDollar) &&
 327             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 328     }
 329 
 330 /* ************************************************************************
 331  * Non-local exits
 332  *************************************************************************/
 333 
 334     /** Generate code to invoke the finalizer associated with given
 335      *  environment.
 336      *  Any calls to finalizers are appended to the environments `cont' chain.
 337      *  Mark beginning of gap in catch all range for finalizer.
 338      */
 339     void genFinalizer(Env<GenContext> env) {
 340         if (code.isAlive() && env.info.finalize != null)
 341             env.info.finalize.gen();
 342     }
 343 
 344     /** Generate code to call all finalizers of structures aborted by
 345      *  a non-local
 346      *  exit.  Return target environment of the non-local exit.
 347      *  @param target      The tree representing the structure that's aborted
 348      *  @param env         The environment current at the non-local exit.
 349      */
 350     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 351         Env<GenContext> env1 = env;
 352         while (true) {
 353             genFinalizer(env1);
 354             if (env1.tree == target) break;
 355             env1 = env1.next;
 356         }
 357         return env1;
 358     }
 359 
 360     /** Mark end of gap in catch-all range for finalizer.
 361      *  @param env   the environment which might contain the finalizer
 362      *               (if it does, env.info.gaps != null).
 363      */
 364     void endFinalizerGap(Env<GenContext> env) {
 365         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 366             env.info.gaps.append(code.curCP());
 367     }
 368 
 369     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 370      *  lying between, and including to two environments.
 371      *  @param from    the most deeply nested environment to mark
 372      *  @param to      the least deeply nested environment to mark
 373      */
 374     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 375         Env<GenContext> last = null;
 376         while (last != to) {
 377             endFinalizerGap(from);
 378             last = from;
 379             from = from.next;
 380         }
 381     }
 382 
 383     /** Do any of the structures aborted by a non-local exit have
 384      *  finalizers that require an empty stack?
 385      *  @param target      The tree representing the structure that's aborted
 386      *  @param env         The environment current at the non-local exit.
 387      */
 388     boolean hasFinally(JCTree target, Env<GenContext> env) {
 389         while (env.tree != target) {
 390             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 391                 return true;
 392             env = env.next;
 393         }
 394         return false;
 395     }
 396 
 397 /* ************************************************************************
 398  * Normalizing class-members.
 399  *************************************************************************/
 400 
 401     /** Distribute member initializer code into constructors and {@code <clinit>}
 402      *  method.
 403      *  @param defs         The list of class member declarations.
 404      *  @param c            The enclosing class.
 405      */
 406     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 407         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 408         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 409         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 410         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 411         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 412         // Sort definitions into three listbuffers:
 413         //  - initCode for instance initializers
 414         //  - clinitCode for class initializers
 415         //  - methodDefs for method definitions
 416         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 417             JCTree def = l.head;
 418             switch (def.getTag()) {
 419             case BLOCK:
 420                 JCBlock block = (JCBlock)def;
 421                 if ((block.flags & STATIC) != 0)
 422                     clinitCode.append(block);
 423                 else if ((block.flags & SYNTHETIC) == 0)
 424                     initCode.append(block);
 425                 break;
 426             case METHODDEF:
 427                 methodDefs.append(def);
 428                 break;
 429             case VARDEF:
 430                 JCVariableDecl vdef = (JCVariableDecl) def;
 431                 VarSymbol sym = vdef.sym;
 432                 checkDimension(vdef.pos(), sym.type);
 433                 if (vdef.init != null) {
 434                     if ((sym.flags() & STATIC) == 0) {
 435                         // Always initialize instance variables.
 436                         JCStatement init = make.at(vdef.pos()).
 437                             Assignment(sym, vdef.init);
 438                         initCode.append(init);
 439                         endPosTable.replaceTree(vdef, init);
 440                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 441                     } else if (sym.getConstValue() == null) {
 442                         // Initialize class (static) variables only if
 443                         // they are not compile-time constants.
 444                         JCStatement init = make.at(vdef.pos).
 445                             Assignment(sym, vdef.init);
 446                         clinitCode.append(init);
 447                         endPosTable.replaceTree(vdef, init);
 448                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 449                     } else {
 450                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 451                         /* if the init contains a reference to an external class, add it to the
 452                          * constant's pool
 453                          */
 454                         vdef.init.accept(classReferenceVisitor);
 455                     }
 456                 }
 457                 break;
 458             default:
 459                 Assert.error();
 460             }
 461         }
 462         // Insert any instance initializers into all constructors.
 463         if (initCode.length() != 0) {
 464             List<JCStatement> inits = initCode.toList();
 465             initTAs.addAll(c.getInitTypeAttributes());
 466             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 467             for (JCTree t : methodDefs) {
 468                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 469             }
 470         }
 471         // If there are class initializers, create a <clinit> method
 472         // that contains them as its body.
 473         if (clinitCode.length() != 0) {
 474             MethodSymbol clinit = new MethodSymbol(
 475                 STATIC | (c.flags() & STRICTFP),
 476                 names.clinit,
 477                 new MethodType(
 478                     List.<Type>nil(), syms.voidType,
 479                     List.<Type>nil(), syms.methodClass),
 480                 c);
 481             c.members().enter(clinit);
 482             List<JCStatement> clinitStats = clinitCode.toList();
 483             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 484             block.endpos = TreeInfo.endPos(clinitStats.last());
 485             methodDefs.append(make.MethodDef(clinit, block));
 486 
 487             if (!clinitTAs.isEmpty())
 488                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 489             if (!c.getClassInitTypeAttributes().isEmpty())
 490                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 491         }
 492         // Return all method definitions.
 493         return methodDefs.toList();
 494     }
 495 
 496     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 497         List<TypeCompound> tas = sym.getRawTypeAttributes();
 498         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 499         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 500         for (TypeCompound ta : tas) {
 501             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 502             if (ta.getPosition().type == TargetType.FIELD) {
 503                 fieldTAs.add(ta);
 504             } else {
 505                 nonfieldTAs.add(ta);
 506             }
 507         }
 508         sym.setTypeAttributes(fieldTAs.toList());
 509         return nonfieldTAs.toList();
 510     }
 511 
 512     /** Check a constant value and report if it is a string that is
 513      *  too large.
 514      */
 515     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 516         if (nerrs != 0 || // only complain about a long string once
 517             constValue == null ||
 518             !(constValue instanceof String) ||
 519             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 520             return;
 521         log.error(pos, "limit.string");
 522         nerrs++;
 523     }
 524 
 525     /** Insert instance initializer code into initial constructor.
 526      *  @param md        The tree potentially representing a
 527      *                   constructor's definition.
 528      *  @param initCode  The list of instance initializer statements.
 529      *  @param initTAs  Type annotations from the initializer expression.
 530      */
 531     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 532         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 533             // We are seeing a constructor that does not call another
 534             // constructor of the same class.
 535             List<JCStatement> stats = md.body.stats;
 536             ListBuffer<JCStatement> newstats = new ListBuffer<>();
 537 
 538             if (stats.nonEmpty()) {
 539                 // Copy initializers of synthetic variables generated in
 540                 // the translation of inner classes.
 541                 while (TreeInfo.isSyntheticInit(stats.head)) {
 542                     newstats.append(stats.head);
 543                     stats = stats.tail;
 544                 }
 545                 // Copy superclass constructor call
 546                 newstats.append(stats.head);
 547                 stats = stats.tail;
 548                 // Copy remaining synthetic initializers.
 549                 while (stats.nonEmpty() &&
 550                        TreeInfo.isSyntheticInit(stats.head)) {
 551                     newstats.append(stats.head);
 552                     stats = stats.tail;
 553                 }
 554                 // Now insert the initializer code.
 555                 newstats.appendList(initCode);
 556                 // And copy all remaining statements.
 557                 while (stats.nonEmpty()) {
 558                     newstats.append(stats.head);
 559                     stats = stats.tail;
 560                 }
 561             }
 562             md.body.stats = newstats.toList();
 563             if (md.body.endpos == Position.NOPOS)
 564                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 565 
 566             md.sym.appendUniqueTypeAttributes(initTAs);
 567         }
 568     }
 569 
 570 /* ************************************************************************
 571  * Traversal methods
 572  *************************************************************************/
 573 
 574     /** Visitor argument: The current environment.
 575      */
 576     Env<GenContext> env;
 577 
 578     /** Visitor argument: The expected type (prototype).
 579      */
 580     Type pt;
 581 
 582     /** Visitor result: The item representing the computed value.
 583      */
 584     Item result;
 585 
 586     /** Visitor method: generate code for a definition, catching and reporting
 587      *  any completion failures.
 588      *  @param tree    The definition to be visited.
 589      *  @param env     The environment current at the definition.
 590      */
 591     public void genDef(JCTree tree, Env<GenContext> env) {
 592         Env<GenContext> prevEnv = this.env;
 593         try {
 594             this.env = env;
 595             tree.accept(this);
 596         } catch (CompletionFailure ex) {
 597             chk.completionError(tree.pos(), ex);
 598         } finally {
 599             this.env = prevEnv;
 600         }
 601     }
 602 
 603     /** Derived visitor method: check whether CharacterRangeTable
 604      *  should be emitted, if so, put a new entry into CRTable
 605      *  and call method to generate bytecode.
 606      *  If not, just call method to generate bytecode.
 607      *  @see    #genStat(JCTree, Env)
 608      *
 609      *  @param  tree     The tree to be visited.
 610      *  @param  env      The environment to use.
 611      *  @param  crtFlags The CharacterRangeTable flags
 612      *                   indicating type of the entry.
 613      */
 614     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 615         if (!genCrt) {
 616             genStat(tree, env);
 617             return;
 618         }
 619         int startpc = code.curCP();
 620         genStat(tree, env);
 621         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 622         code.crt.put(tree, crtFlags, startpc, code.curCP());
 623     }
 624 
 625     /** Derived visitor method: generate code for a statement.
 626      */
 627     public void genStat(JCTree tree, Env<GenContext> env) {
 628         if (code.isAlive()) {
 629             code.statBegin(tree.pos);
 630             genDef(tree, env);
 631         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 632             // variables whose declarations are in a switch
 633             // can be used even if the decl is unreachable.
 634             code.newLocal(((JCVariableDecl) tree).sym);
 635         }
 636     }
 637 
 638     /** Derived visitor method: check whether CharacterRangeTable
 639      *  should be emitted, if so, put a new entry into CRTable
 640      *  and call method to generate bytecode.
 641      *  If not, just call method to generate bytecode.
 642      *  @see    #genStats(List, Env)
 643      *
 644      *  @param  trees    The list of trees to be visited.
 645      *  @param  env      The environment to use.
 646      *  @param  crtFlags The CharacterRangeTable flags
 647      *                   indicating type of the entry.
 648      */
 649     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 650         if (!genCrt) {
 651             genStats(trees, env);
 652             return;
 653         }
 654         if (trees.length() == 1) {        // mark one statement with the flags
 655             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 656         } else {
 657             int startpc = code.curCP();
 658             genStats(trees, env);
 659             code.crt.put(trees, crtFlags, startpc, code.curCP());
 660         }
 661     }
 662 
 663     /** Derived visitor method: generate code for a list of statements.
 664      */
 665     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 666         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 667             genStat(l.head, env, CRT_STATEMENT);
 668     }
 669 
 670     /** Derived visitor method: check whether CharacterRangeTable
 671      *  should be emitted, if so, put a new entry into CRTable
 672      *  and call method to generate bytecode.
 673      *  If not, just call method to generate bytecode.
 674      *  @see    #genCond(JCTree,boolean)
 675      *
 676      *  @param  tree     The tree to be visited.
 677      *  @param  crtFlags The CharacterRangeTable flags
 678      *                   indicating type of the entry.
 679      */
 680     public CondItem genCond(JCTree tree, int crtFlags) {
 681         if (!genCrt) return genCond(tree, false);
 682         int startpc = code.curCP();
 683         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 684         code.crt.put(tree, crtFlags, startpc, code.curCP());
 685         return item;
 686     }
 687 
 688     /** Derived visitor method: generate code for a boolean
 689      *  expression in a control-flow context.
 690      *  @param _tree         The expression to be visited.
 691      *  @param markBranches The flag to indicate that the condition is
 692      *                      a flow controller so produced conditions
 693      *                      should contain a proper tree to generate
 694      *                      CharacterRangeTable branches for them.
 695      */
 696     public CondItem genCond(JCTree _tree, boolean markBranches) {
 697         JCTree inner_tree = TreeInfo.skipParens(_tree);
 698         if (inner_tree.hasTag(CONDEXPR)) {
 699             JCConditional tree = (JCConditional)inner_tree;
 700             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 701             if (cond.isTrue()) {
 702                 code.resolve(cond.trueJumps);
 703                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 704                 if (markBranches) result.tree = tree.truepart;
 705                 return result;
 706             }
 707             if (cond.isFalse()) {
 708                 code.resolve(cond.falseJumps);
 709                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 710                 if (markBranches) result.tree = tree.falsepart;
 711                 return result;
 712             }
 713             Chain secondJumps = cond.jumpFalse();
 714             code.resolve(cond.trueJumps);
 715             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 716             if (markBranches) first.tree = tree.truepart;
 717             Chain falseJumps = first.jumpFalse();
 718             code.resolve(first.trueJumps);
 719             Chain trueJumps = code.branch(goto_);
 720             code.resolve(secondJumps);
 721             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 722             CondItem result = items.makeCondItem(second.opcode,
 723                                       Code.mergeChains(trueJumps, second.trueJumps),
 724                                       Code.mergeChains(falseJumps, second.falseJumps));
 725             if (markBranches) result.tree = tree.falsepart;
 726             return result;
 727         } else {
 728             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 729             if (markBranches) result.tree = _tree;
 730             return result;
 731         }
 732     }
 733 
 734     public Code getCode() {
 735         return code;
 736     }
 737 
 738     public Items getItems() {
 739         return items;
 740     }
 741 
 742     public Env<AttrContext> getAttrEnv() {
 743         return attrEnv;
 744     }
 745 
 746     /** Visitor class for expressions which might be constant expressions.
 747      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 748      *  Lower as long as constant expressions looking for references to any
 749      *  ClassSymbol. Any such reference will be added to the constant pool so
 750      *  automated tools can detect class dependencies better.
 751      */
 752     class ClassReferenceVisitor extends JCTree.Visitor {
 753 
 754         @Override
 755         public void visitTree(JCTree tree) {}
 756 
 757         @Override
 758         public void visitBinary(JCBinary tree) {
 759             tree.lhs.accept(this);
 760             tree.rhs.accept(this);
 761         }
 762 
 763         @Override
 764         public void visitSelect(JCFieldAccess tree) {
 765             if (tree.selected.type.hasTag(CLASS)) {
 766                 makeRef(tree.selected.pos(), tree.selected.type);
 767             }
 768         }
 769 
 770         @Override
 771         public void visitIdent(JCIdent tree) {
 772             if (tree.sym.owner instanceof ClassSymbol) {
 773                 pool.put(tree.sym.owner);
 774             }
 775         }
 776 
 777         @Override
 778         public void visitConditional(JCConditional tree) {
 779             tree.cond.accept(this);
 780             tree.truepart.accept(this);
 781             tree.falsepart.accept(this);
 782         }
 783 
 784         @Override
 785         public void visitUnary(JCUnary tree) {
 786             tree.arg.accept(this);
 787         }
 788 
 789         @Override
 790         public void visitParens(JCParens tree) {
 791             tree.expr.accept(this);
 792         }
 793 
 794         @Override
 795         public void visitTypeCast(JCTypeCast tree) {
 796             tree.expr.accept(this);
 797         }
 798     }
 799 
 800     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 801 
 802     /** Visitor method: generate code for an expression, catching and reporting
 803      *  any completion failures.
 804      *  @param tree    The expression to be visited.
 805      *  @param pt      The expression's expected type (proto-type).
 806      */
 807     public Item genExpr(JCTree tree, Type pt) {
 808         Type prevPt = this.pt;
 809         try {
 810             if (tree.type.constValue() != null) {
 811                 // Short circuit any expressions which are constants
 812                 tree.accept(classReferenceVisitor);
 813                 checkStringConstant(tree.pos(), tree.type.constValue());
 814                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 815             } else {
 816                 this.pt = pt;
 817                 tree.accept(this);
 818             }
 819             return result.coerce(pt);
 820         } catch (CompletionFailure ex) {
 821             chk.completionError(tree.pos(), ex);
 822             code.state.stacksize = 1;
 823             return items.makeStackItem(pt);
 824         } finally {
 825             this.pt = prevPt;
 826         }
 827     }
 828 
 829     /** Derived visitor method: generate code for a list of method arguments.
 830      *  @param trees    The argument expressions to be visited.
 831      *  @param pts      The expression's expected types (i.e. the formal parameter
 832      *                  types of the invoked method).
 833      */
 834     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 835         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 836             genExpr(l.head, pts.head).load();
 837             pts = pts.tail;
 838         }
 839         // require lists be of same length
 840         Assert.check(pts.isEmpty());
 841     }
 842 
 843 /* ************************************************************************
 844  * Visitor methods for statements and definitions
 845  *************************************************************************/
 846 
 847     /** Thrown when the byte code size exceeds limit.
 848      */
 849     public static class CodeSizeOverflow extends RuntimeException {
 850         private static final long serialVersionUID = 0;
 851         public CodeSizeOverflow() {}
 852     }
 853 
 854     public void visitMethodDef(JCMethodDecl tree) {
 855         // Create a new local environment that points pack at method
 856         // definition.
 857         Env<GenContext> localEnv = env.dup(tree);
 858         localEnv.enclMethod = tree;
 859         // The expected type of every return statement in this method
 860         // is the method's return type.
 861         this.pt = tree.sym.erasure(types).getReturnType();
 862 
 863         checkDimension(tree.pos(), tree.sym.erasure(types));
 864         genMethod(tree, localEnv, false);
 865     }
 866 //where
 867         /** Generate code for a method.
 868          *  @param tree     The tree representing the method definition.
 869          *  @param env      The environment current for the method body.
 870          *  @param fatcode  A flag that indicates whether all jumps are
 871          *                  within 32K.  We first invoke this method under
 872          *                  the assumption that fatcode == false, i.e. all
 873          *                  jumps are within 32K.  If this fails, fatcode
 874          *                  is set to true and we try again.
 875          */
 876         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 877             MethodSymbol meth = tree.sym;
 878             int extras = 0;
 879             // Count up extra parameters
 880             if (meth.isConstructor()) {
 881                 extras++;
 882                 if (meth.enclClass().isInner() &&
 883                     !meth.enclClass().isStatic()) {
 884                     extras++;
 885                 }
 886             } else if ((tree.mods.flags & STATIC) == 0) {
 887                 extras++;
 888             }
 889             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 890             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 891                 ClassFile.MAX_PARAMETERS) {
 892                 log.error(tree.pos(), "limit.parameters");
 893                 nerrs++;
 894             }
 895 
 896             else if (tree.body != null) {
 897                 // Create a new code structure and initialize it.
 898                 int startpcCrt = initCode(tree, env, fatcode);
 899 
 900                 try {
 901                     genStat(tree.body, env);
 902                 } catch (CodeSizeOverflow e) {
 903                     // Failed due to code limit, try again with jsr/ret
 904                     startpcCrt = initCode(tree, env, fatcode);
 905                     genStat(tree.body, env);
 906                 }
 907 
 908                 if (code.state.stacksize != 0) {
 909                     log.error(tree.body.pos(), "stack.sim.error", tree);
 910                     throw new AssertionError();
 911                 }
 912 
 913                 // If last statement could complete normally, insert a
 914                 // return at the end.
 915                 if (code.isAlive()) {
 916                     code.statBegin(TreeInfo.endPos(tree.body));
 917                     if (env.enclMethod == null ||
 918                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
 919                         code.emitop0(return_);
 920                     } else {
 921                         // sometime dead code seems alive (4415991);
 922                         // generate a small loop instead
 923                         int startpc = code.entryPoint();
 924                         CondItem c = items.makeCondItem(goto_);
 925                         code.resolve(c.jumpTrue(), startpc);
 926                     }
 927                 }
 928                 if (genCrt)
 929                     code.crt.put(tree.body,
 930                                  CRT_BLOCK,
 931                                  startpcCrt,
 932                                  code.curCP());
 933 
 934                 code.endScopes(0);
 935 
 936                 // If we exceeded limits, panic
 937                 if (code.checkLimits(tree.pos(), log)) {
 938                     nerrs++;
 939                     return;
 940                 }
 941 
 942                 // If we generated short code but got a long jump, do it again
 943                 // with fatCode = true.
 944                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 945 
 946                 // Clean up
 947                 if(stackMap == StackMapFormat.JSR202) {
 948                     code.lastFrame = null;
 949                     code.frameBeforeLast = null;
 950                 }
 951 
 952                 // Compress exception table
 953                 code.compressCatchTable();
 954 
 955                 // Fill in type annotation positions for exception parameters
 956                 code.fillExceptionParameterPositions();
 957             }
 958         }
 959 
 960         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 961             MethodSymbol meth = tree.sym;
 962 
 963             // Create a new code structure.
 964             meth.code = code = new Code(meth,
 965                                         fatcode,
 966                                         lineDebugInfo ? toplevel.lineMap : null,
 967                                         varDebugInfo,
 968                                         stackMap,
 969                                         debugCode,
 970                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
 971                                                : null,
 972                                         syms,
 973                                         types,
 974                                         pool);
 975             items = new Items(pool, code, syms, types);
 976             if (code.debugCode) {
 977                 System.err.println(meth + " for body " + tree);
 978             }
 979 
 980             // If method is not static, create a new local variable address
 981             // for `this'.
 982             if ((tree.mods.flags & STATIC) == 0) {
 983                 Type selfType = meth.owner.type;
 984                 if (meth.isConstructor() && selfType != syms.objectType)
 985                     selfType = UninitializedType.uninitializedThis(selfType);
 986                 code.setDefined(
 987                         code.newLocal(
 988                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
 989             }
 990 
 991             // Mark all parameters as defined from the beginning of
 992             // the method.
 993             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 994                 checkDimension(l.head.pos(), l.head.sym.type);
 995                 code.setDefined(code.newLocal(l.head.sym));
 996             }
 997 
 998             // Get ready to generate code for method body.
 999             int startpcCrt = genCrt ? code.curCP() : 0;
1000             code.entryPoint();
1001 
1002             // Suppress initial stackmap
1003             code.pendingStackMap = false;
1004 
1005             return startpcCrt;
1006         }
1007 
1008     public void visitVarDef(JCVariableDecl tree) {
1009         VarSymbol v = tree.sym;
1010         code.newLocal(v);
1011         if (tree.init != null) {
1012             checkStringConstant(tree.init.pos(), v.getConstValue());
1013             if (v.getConstValue() == null || varDebugInfo) {
1014                 Assert.check(letExprDepth != 0 || code.state.stacksize == 0);
1015                 genExpr(tree.init, v.erasure(types)).load();
1016                 items.makeLocalItem(v).store();
1017                 Assert.check(letExprDepth != 0 || code.state.stacksize == 0);
1018             }
1019         }
1020         checkDimension(tree.pos(), v.type);
1021     }
1022 
1023     public void visitSkip(JCSkip tree) {
1024     }
1025 
1026     public void visitBlock(JCBlock tree) {
1027         int limit = code.nextreg;
1028         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1029         genStats(tree.stats, localEnv);
1030         // End the scope of all block-local variables in variable info.
1031         if (!env.tree.hasTag(METHODDEF)) {
1032             code.statBegin(tree.endpos);
1033             code.endScopes(limit);
1034             code.pendingStatPos = Position.NOPOS;
1035         }
1036     }
1037 
1038     public void visitDoLoop(JCDoWhileLoop tree) {
1039         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1040     }
1041 
1042     public void visitWhileLoop(JCWhileLoop tree) {
1043         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1044     }
1045 
1046     public void visitForLoop(JCForLoop tree) {
1047         int limit = code.nextreg;
1048         genStats(tree.init, env);
1049         genLoop(tree, tree.body, tree.cond, tree.step, true);
1050         code.endScopes(limit);
1051     }
1052     //where
1053         /** Generate code for a loop.
1054          *  @param loop       The tree representing the loop.
1055          *  @param body       The loop's body.
1056          *  @param cond       The loop's controling condition.
1057          *  @param step       "Step" statements to be inserted at end of
1058          *                    each iteration.
1059          *  @param testFirst  True if the loop test belongs before the body.
1060          */
1061         private void genLoop(JCStatement loop,
1062                              JCStatement body,
1063                              JCExpression cond,
1064                              List<JCExpressionStatement> step,
1065                              boolean testFirst) {
1066             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1067             int startpc = code.entryPoint();
1068             if (testFirst) { //while or for loop
1069                 CondItem c;
1070                 if (cond != null) {
1071                     code.statBegin(cond.pos);
1072                     Assert.check(code.state.stacksize == 0);
1073                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1074                 } else {
1075                     c = items.makeCondItem(goto_);
1076                 }
1077                 Chain loopDone = c.jumpFalse();
1078                 code.resolve(c.trueJumps);
1079                 Assert.check(code.state.stacksize == 0);
1080                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1081                 code.resolve(loopEnv.info.cont);
1082                 genStats(step, loopEnv);
1083                 code.resolve(code.branch(goto_), startpc);
1084                 code.resolve(loopDone);
1085             } else {
1086                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1087                 code.resolve(loopEnv.info.cont);
1088                 genStats(step, loopEnv);
1089                 CondItem c;
1090                 if (cond != null) {
1091                     code.statBegin(cond.pos);
1092                     Assert.check(code.state.stacksize == 0);
1093                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1094                 } else {
1095                     c = items.makeCondItem(goto_);
1096                 }
1097                 code.resolve(c.jumpTrue(), startpc);
1098                 Assert.check(code.state.stacksize == 0);
1099                 code.resolve(c.falseJumps);
1100             }
1101             Chain exit = loopEnv.info.exit;
1102             if (exit != null) {
1103                 code.resolve(exit);
1104                 exit.state.defined.excludeFrom(code.nextreg);
1105             }
1106         }
1107 
1108     public void visitForeachLoop(JCEnhancedForLoop tree) {
1109         throw new AssertionError(); // should have been removed by Lower.
1110     }
1111 
1112     public void visitLabelled(JCLabeledStatement tree) {
1113         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1114         genStat(tree.body, localEnv, CRT_STATEMENT);
1115         Chain exit = localEnv.info.exit;
1116         if (exit != null) {
1117             code.resolve(exit);
1118             exit.state.defined.excludeFrom(code.nextreg);
1119         }
1120     }
1121 
1122     public void visitSwitch(JCSwitch tree) {
1123         int limit = code.nextreg;
1124         Assert.check(!tree.selector.type.hasTag(CLASS));
1125         int startpcCrt = genCrt ? code.curCP() : 0;
1126         Assert.check(code.state.stacksize == 0);
1127         Item sel = genExpr(tree.selector, syms.intType);
1128         List<JCCase> cases = tree.cases;
1129         if (cases.isEmpty()) {
1130             // We are seeing:  switch <sel> {}
1131             sel.load().drop();
1132             if (genCrt)
1133                 code.crt.put(TreeInfo.skipParens(tree.selector),
1134                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1135         } else {
1136             // We are seeing a nonempty switch.
1137             sel.load();
1138             if (genCrt)
1139                 code.crt.put(TreeInfo.skipParens(tree.selector),
1140                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1141             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1142             switchEnv.info.isSwitch = true;
1143 
1144             // Compute number of labels and minimum and maximum label values.
1145             // For each case, store its label in an array.
1146             int lo = Integer.MAX_VALUE;  // minimum label.
1147             int hi = Integer.MIN_VALUE;  // maximum label.
1148             int nlabels = 0;               // number of labels.
1149 
1150             int[] labels = new int[cases.length()];  // the label array.
1151             int defaultIndex = -1;     // the index of the default clause.
1152 
1153             List<JCCase> l = cases;
1154             for (int i = 0; i < labels.length; i++) {
1155                 if (l.head.pat != null) {
1156                     int val = ((Number)l.head.pat.type.constValue()).intValue();
1157                     labels[i] = val;
1158                     if (val < lo) lo = val;
1159                     if (hi < val) hi = val;
1160                     nlabels++;
1161                 } else {
1162                     Assert.check(defaultIndex == -1);
1163                     defaultIndex = i;
1164                 }
1165                 l = l.tail;
1166             }
1167 
1168             // Determine whether to issue a tableswitch or a lookupswitch
1169             // instruction.
1170             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1171             long table_time_cost = 3; // comparisons
1172             long lookup_space_cost = 3 + 2 * (long) nlabels;
1173             long lookup_time_cost = nlabels;
1174             int opcode =
1175                 nlabels > 0 &&
1176                 table_space_cost + 3 * table_time_cost <=
1177                 lookup_space_cost + 3 * lookup_time_cost
1178                 ?
1179                 tableswitch : lookupswitch;
1180 
1181             int startpc = code.curCP();    // the position of the selector operation
1182             code.emitop0(opcode);
1183             code.align(4);
1184             int tableBase = code.curCP();  // the start of the jump table
1185             int[] offsets = null;          // a table of offsets for a lookupswitch
1186             code.emit4(-1);                // leave space for default offset
1187             if (opcode == tableswitch) {
1188                 code.emit4(lo);            // minimum label
1189                 code.emit4(hi);            // maximum label
1190                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1191                     code.emit4(-1);
1192                 }
1193             } else {
1194                 code.emit4(nlabels);    // number of labels
1195                 for (int i = 0; i < nlabels; i++) {
1196                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1197                 }
1198                 offsets = new int[labels.length];
1199             }
1200             Code.State stateSwitch = code.state.dup();
1201             code.markDead();
1202 
1203             // For each case do:
1204             l = cases;
1205             for (int i = 0; i < labels.length; i++) {
1206                 JCCase c = l.head;
1207                 l = l.tail;
1208 
1209                 int pc = code.entryPoint(stateSwitch);
1210                 // Insert offset directly into code or else into the
1211                 // offsets table.
1212                 if (i != defaultIndex) {
1213                     if (opcode == tableswitch) {
1214                         code.put4(
1215                             tableBase + 4 * (labels[i] - lo + 3),
1216                             pc - startpc);
1217                     } else {
1218                         offsets[i] = pc - startpc;
1219                     }
1220                 } else {
1221                     code.put4(tableBase, pc - startpc);
1222                 }
1223 
1224                 // Generate code for the statements in this case.
1225                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1226             }
1227 
1228             // Resolve all breaks.
1229             Chain exit = switchEnv.info.exit;
1230             if  (exit != null) {
1231                 code.resolve(exit);
1232                 exit.state.defined.excludeFrom(code.nextreg);
1233             }
1234 
1235             // If we have not set the default offset, we do so now.
1236             if (code.get4(tableBase) == -1) {
1237                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1238             }
1239 
1240             if (opcode == tableswitch) {
1241                 // Let any unfilled slots point to the default case.
1242                 int defaultOffset = code.get4(tableBase);
1243                 for (long i = lo; i <= hi; i++) {
1244                     int t = (int)(tableBase + 4 * (i - lo + 3));
1245                     if (code.get4(t) == -1)
1246                         code.put4(t, defaultOffset);
1247                 }
1248             } else {
1249                 // Sort non-default offsets and copy into lookup table.
1250                 if (defaultIndex >= 0)
1251                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1252                         labels[i] = labels[i+1];
1253                         offsets[i] = offsets[i+1];
1254                     }
1255                 if (nlabels > 0)
1256                     qsort2(labels, offsets, 0, nlabels - 1);
1257                 for (int i = 0; i < nlabels; i++) {
1258                     int caseidx = tableBase + 8 * (i + 1);
1259                     code.put4(caseidx, labels[i]);
1260                     code.put4(caseidx + 4, offsets[i]);
1261                 }
1262             }
1263         }
1264         code.endScopes(limit);
1265     }
1266 //where
1267         /** Sort (int) arrays of keys and values
1268          */
1269        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1270             int i = lo;
1271             int j = hi;
1272             int pivot = keys[(i+j)/2];
1273             do {
1274                 while (keys[i] < pivot) i++;
1275                 while (pivot < keys[j]) j--;
1276                 if (i <= j) {
1277                     int temp1 = keys[i];
1278                     keys[i] = keys[j];
1279                     keys[j] = temp1;
1280                     int temp2 = values[i];
1281                     values[i] = values[j];
1282                     values[j] = temp2;
1283                     i++;
1284                     j--;
1285                 }
1286             } while (i <= j);
1287             if (lo < j) qsort2(keys, values, lo, j);
1288             if (i < hi) qsort2(keys, values, i, hi);
1289         }
1290 
1291     public void visitSynchronized(JCSynchronized tree) {
1292         int limit = code.nextreg;
1293         // Generate code to evaluate lock and save in temporary variable.
1294         final LocalItem lockVar = makeTemp(syms.objectType);
1295         Assert.check(code.state.stacksize == 0);
1296         genExpr(tree.lock, tree.lock.type).load().duplicate();
1297         lockVar.store();
1298 
1299         // Generate code to enter monitor.
1300         code.emitop0(monitorenter);
1301         code.state.lock(lockVar.reg);
1302 
1303         // Generate code for a try statement with given body, no catch clauses
1304         // in a new environment with the "exit-monitor" operation as finalizer.
1305         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1306         syncEnv.info.finalize = new GenFinalizer() {
1307             void gen() {
1308                 genLast();
1309                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1310                 syncEnv.info.gaps.append(code.curCP());
1311             }
1312             void genLast() {
1313                 if (code.isAlive()) {
1314                     lockVar.load();
1315                     code.emitop0(monitorexit);
1316                     code.state.unlock(lockVar.reg);
1317                 }
1318             }
1319         };
1320         syncEnv.info.gaps = new ListBuffer<>();
1321         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1322         code.endScopes(limit);
1323     }
1324 
1325     public void visitTry(final JCTry tree) {
1326         // Generate code for a try statement with given body and catch clauses,
1327         // in a new environment which calls the finally block if there is one.
1328         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1329         final Env<GenContext> oldEnv = env;
1330         tryEnv.info.finalize = new GenFinalizer() {
1331             void gen() {
1332                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1333                 tryEnv.info.gaps.append(code.curCP());
1334                 genLast();
1335             }
1336             void genLast() {
1337                 if (tree.finalizer != null)
1338                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1339             }
1340             boolean hasFinalizer() {
1341                 return tree.finalizer != null;
1342             }
1343         };
1344         tryEnv.info.gaps = new ListBuffer<>();
1345         genTry(tree.body, tree.catchers, tryEnv);
1346     }
1347     //where
1348         /** Generate code for a try or synchronized statement
1349          *  @param body      The body of the try or synchronized statement.
1350          *  @param catchers  The lis of catch clauses.
1351          *  @param env       the environment current for the body.
1352          */
1353         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1354             int limit = code.nextreg;
1355             int startpc = code.curCP();
1356             Code.State stateTry = code.state.dup();
1357             genStat(body, env, CRT_BLOCK);
1358             int endpc = code.curCP();
1359             boolean hasFinalizer =
1360                 env.info.finalize != null &&
1361                 env.info.finalize.hasFinalizer();
1362             List<Integer> gaps = env.info.gaps.toList();
1363             code.statBegin(TreeInfo.endPos(body));
1364             genFinalizer(env);
1365             code.statBegin(TreeInfo.endPos(env.tree));
1366             Chain exitChain = code.branch(goto_);
1367             endFinalizerGap(env);
1368             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1369                 // start off with exception on stack
1370                 code.entryPoint(stateTry, l.head.param.sym.type);
1371                 genCatch(l.head, env, startpc, endpc, gaps);
1372                 genFinalizer(env);
1373                 if (hasFinalizer || l.tail.nonEmpty()) {
1374                     code.statBegin(TreeInfo.endPos(env.tree));
1375                     exitChain = Code.mergeChains(exitChain,
1376                                                  code.branch(goto_));
1377                 }
1378                 endFinalizerGap(env);
1379             }
1380             if (hasFinalizer) {
1381                 // Create a new register segement to avoid allocating
1382                 // the same variables in finalizers and other statements.
1383                 code.newRegSegment();
1384 
1385                 // Add a catch-all clause.
1386 
1387                 // start off with exception on stack
1388                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1389 
1390                 // Register all exception ranges for catch all clause.
1391                 // The range of the catch all clause is from the beginning
1392                 // of the try or synchronized block until the present
1393                 // code pointer excluding all gaps in the current
1394                 // environment's GenContext.
1395                 int startseg = startpc;
1396                 while (env.info.gaps.nonEmpty()) {
1397                     int endseg = env.info.gaps.next().intValue();
1398                     registerCatch(body.pos(), startseg, endseg,
1399                                   catchallpc, 0);
1400                     startseg = env.info.gaps.next().intValue();
1401                 }
1402                 code.statBegin(TreeInfo.finalizerPos(env.tree));
1403                 code.markStatBegin();
1404 
1405                 Item excVar = makeTemp(syms.throwableType);
1406                 excVar.store();
1407                 genFinalizer(env);
1408                 excVar.load();
1409                 registerCatch(body.pos(), startseg,
1410                               env.info.gaps.next().intValue(),
1411                               catchallpc, 0);
1412                 code.emitop0(athrow);
1413                 code.markDead();
1414 
1415                 // If there are jsr's to this finalizer, ...
1416                 if (env.info.cont != null) {
1417                     // Resolve all jsr's.
1418                     code.resolve(env.info.cont);
1419 
1420                     // Mark statement line number
1421                     code.statBegin(TreeInfo.finalizerPos(env.tree));
1422                     code.markStatBegin();
1423 
1424                     // Save return address.
1425                     LocalItem retVar = makeTemp(syms.throwableType);
1426                     retVar.store();
1427 
1428                     // Generate finalizer code.
1429                     env.info.finalize.genLast();
1430 
1431                     // Return.
1432                     code.emitop1w(ret, retVar.reg);
1433                     code.markDead();
1434                 }
1435             }
1436             // Resolve all breaks.
1437             code.resolve(exitChain);
1438 
1439             code.endScopes(limit);
1440         }
1441 
1442         /** Generate code for a catch clause.
1443          *  @param tree     The catch clause.
1444          *  @param env      The environment current in the enclosing try.
1445          *  @param startpc  Start pc of try-block.
1446          *  @param endpc    End pc of try-block.
1447          */
1448         void genCatch(JCCatch tree,
1449                       Env<GenContext> env,
1450                       int startpc, int endpc,
1451                       List<Integer> gaps) {
1452             if (startpc != endpc) {
1453                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1454                         = catchTypesWithAnnotations(tree);
1455                 while (gaps.nonEmpty()) {
1456                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1457                         JCExpression subCatch = subCatch1.snd;
1458                         int catchType = makeRef(tree.pos(), subCatch.type);
1459                         int end = gaps.head.intValue();
1460                         registerCatch(tree.pos(),
1461                                       startpc,  end, code.curCP(),
1462                                       catchType);
1463                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1464                                 tc.position.setCatchInfo(catchType, startpc);
1465                         }
1466                     }
1467                     gaps = gaps.tail;
1468                     startpc = gaps.head.intValue();
1469                     gaps = gaps.tail;
1470                 }
1471                 if (startpc < endpc) {
1472                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1473                         JCExpression subCatch = subCatch1.snd;
1474                         int catchType = makeRef(tree.pos(), subCatch.type);
1475                         registerCatch(tree.pos(),
1476                                       startpc, endpc, code.curCP(),
1477                                       catchType);
1478                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1479                             tc.position.setCatchInfo(catchType, startpc);
1480                         }
1481                     }
1482                 }
1483                 VarSymbol exparam = tree.param.sym;
1484                 code.statBegin(tree.pos);
1485                 code.markStatBegin();
1486                 int limit = code.nextreg;
1487                 code.newLocal(exparam);
1488                 items.makeLocalItem(exparam).store();
1489                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1490                 genStat(tree.body, env, CRT_BLOCK);
1491                 code.endScopes(limit);
1492                 code.statBegin(TreeInfo.endPos(tree.body));
1493             }
1494         }
1495         // where
1496         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1497             return TreeInfo.isMultiCatch(tree) ?
1498                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1499                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1500         }
1501         // where
1502         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1503             List<JCExpression> alts = tree.alternatives;
1504             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1505             alts = alts.tail;
1506 
1507             while(alts != null && alts.head != null) {
1508                 JCExpression alt = alts.head;
1509                 if (alt instanceof JCAnnotatedType) {
1510                     JCAnnotatedType a = (JCAnnotatedType)alt;
1511                     res = res.prepend(new Pair<>(annotate.fromAnnotations(a.annotations), alt));
1512                 } else {
1513                     res = res.prepend(new Pair<>(List.nil(), alt));
1514                 }
1515                 alts = alts.tail;
1516             }
1517             return res.reverse();
1518         }
1519 
1520         /** Register a catch clause in the "Exceptions" code-attribute.
1521          */
1522         void registerCatch(DiagnosticPosition pos,
1523                            int startpc, int endpc,
1524                            int handler_pc, int catch_type) {
1525             char startpc1 = (char)startpc;
1526             char endpc1 = (char)endpc;
1527             char handler_pc1 = (char)handler_pc;
1528             if (startpc1 == startpc &&
1529                 endpc1 == endpc &&
1530                 handler_pc1 == handler_pc) {
1531                 code.addCatch(startpc1, endpc1, handler_pc1,
1532                               (char)catch_type);
1533             } else {
1534                 log.error(pos, "limit.code.too.large.for.try.stmt");
1535                 nerrs++;
1536             }
1537         }
1538 
1539     public void visitIf(JCIf tree) {
1540         int limit = code.nextreg;
1541         Chain thenExit = null;
1542         Assert.check(code.state.stacksize == 0);
1543         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1544                              CRT_FLOW_CONTROLLER);
1545         Chain elseChain = c.jumpFalse();
1546         Assert.check(code.state.stacksize == 0);
1547         if (!c.isFalse()) {
1548             code.resolve(c.trueJumps);
1549             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1550             thenExit = code.branch(goto_);
1551         }
1552         if (elseChain != null) {
1553             code.resolve(elseChain);
1554             if (tree.elsepart != null) {
1555                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1556             }
1557         }
1558         code.resolve(thenExit);
1559         code.endScopes(limit);
1560         Assert.check(code.state.stacksize == 0);
1561     }
1562 
1563     public void visitExec(JCExpressionStatement tree) {
1564         // Optimize x++ to ++x and x-- to --x.
1565         JCExpression e = tree.expr;
1566         switch (e.getTag()) {
1567             case POSTINC:
1568                 ((JCUnary) e).setTag(PREINC);
1569                 break;
1570             case POSTDEC:
1571                 ((JCUnary) e).setTag(PREDEC);
1572                 break;
1573         }
1574         Assert.check(code.state.stacksize == 0);
1575         genExpr(tree.expr, tree.expr.type).drop();
1576         Assert.check(code.state.stacksize == 0);
1577     }
1578 
1579     public void visitBreak(JCBreak tree) {
1580         Env<GenContext> targetEnv = unwind(tree.target, env);
1581         Assert.check(code.state.stacksize == 0);
1582         targetEnv.info.addExit(code.branch(goto_));
1583         endFinalizerGaps(env, targetEnv);
1584     }
1585 
1586     public void visitContinue(JCContinue tree) {
1587         Env<GenContext> targetEnv = unwind(tree.target, env);
1588         Assert.check(code.state.stacksize == 0);
1589         targetEnv.info.addCont(code.branch(goto_));
1590         endFinalizerGaps(env, targetEnv);
1591     }
1592 
1593     public void visitReturn(JCReturn tree) {
1594         int limit = code.nextreg;
1595         final Env<GenContext> targetEnv;
1596 
1597         /* Save and then restore the location of the return in case a finally
1598          * is expanded (with unwind()) in the middle of our bytecodes.
1599          */
1600         int tmpPos = code.pendingStatPos;
1601         if (tree.expr != null) {
1602             Assert.check(code.state.stacksize == 0);
1603             Item r = genExpr(tree.expr, pt).load();
1604             if (hasFinally(env.enclMethod, env)) {
1605                 r = makeTemp(pt);
1606                 r.store();
1607             }
1608             targetEnv = unwind(env.enclMethod, env);
1609             code.pendingStatPos = tmpPos;
1610             r.load();
1611             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1612         } else {
1613             targetEnv = unwind(env.enclMethod, env);
1614             code.pendingStatPos = tmpPos;
1615             code.emitop0(return_);
1616         }
1617         endFinalizerGaps(env, targetEnv);
1618         code.endScopes(limit);
1619     }
1620 
1621     public void visitThrow(JCThrow tree) {
1622         Assert.check(code.state.stacksize == 0);
1623         genExpr(tree.expr, tree.expr.type).load();
1624         code.emitop0(athrow);
1625         Assert.check(code.state.stacksize == 0);
1626     }
1627 
1628 /* ************************************************************************
1629  * Visitor methods for expressions
1630  *************************************************************************/
1631 
1632     public void visitApply(JCMethodInvocation tree) {
1633         setTypeAnnotationPositions(tree.pos);
1634         // Generate code for method.
1635         Item m = genExpr(tree.meth, methodType);
1636         // Generate code for all arguments, where the expected types are
1637         // the parameters of the method's external type (that is, any implicit
1638         // outer instance of a super(...) call appears as first parameter).
1639         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1640         genArgs(tree.args,
1641                 msym.externalType(types).getParameterTypes());
1642         if (!msym.isDynamic()) {
1643             code.statBegin(tree.pos);
1644         }
1645         result = m.invoke();
1646     }
1647 
1648     public void visitConditional(JCConditional tree) {
1649         Chain thenExit = null;
1650         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1651         Chain elseChain = c.jumpFalse();
1652         if (!c.isFalse()) {
1653             code.resolve(c.trueJumps);
1654             int startpc = genCrt ? code.curCP() : 0;
1655             code.statBegin(tree.truepart.pos);
1656             genExpr(tree.truepart, pt).load();
1657             code.state.forceStackTop(tree.type);
1658             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1659                                      startpc, code.curCP());
1660             thenExit = code.branch(goto_);
1661         }
1662         if (elseChain != null) {
1663             code.resolve(elseChain);
1664             int startpc = genCrt ? code.curCP() : 0;
1665             code.statBegin(tree.falsepart.pos);
1666             genExpr(tree.falsepart, pt).load();
1667             code.state.forceStackTop(tree.type);
1668             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1669                                      startpc, code.curCP());
1670         }
1671         code.resolve(thenExit);
1672         result = items.makeStackItem(pt);
1673     }
1674 
1675     private void setTypeAnnotationPositions(int treePos) {
1676         MethodSymbol meth = code.meth;
1677         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1678                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1679 
1680         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1681             if (ta.hasUnknownPosition())
1682                 ta.tryFixPosition();
1683 
1684             if (ta.position.matchesPos(treePos))
1685                 ta.position.updatePosOffset(code.cp);
1686         }
1687 
1688         if (!initOrClinit)
1689             return;
1690 
1691         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1692             if (ta.hasUnknownPosition())
1693                 ta.tryFixPosition();
1694 
1695             if (ta.position.matchesPos(treePos))
1696                 ta.position.updatePosOffset(code.cp);
1697         }
1698 
1699         ClassSymbol clazz = meth.enclClass();
1700         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1701             if (!s.getKind().isField())
1702                 continue;
1703 
1704             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1705                 if (ta.hasUnknownPosition())
1706                     ta.tryFixPosition();
1707 
1708                 if (ta.position.matchesPos(treePos))
1709                     ta.position.updatePosOffset(code.cp);
1710             }
1711         }
1712     }
1713 
1714     public void visitNewClass(JCNewClass tree) {
1715         // Enclosing instances or anonymous classes should have been eliminated
1716         // by now.
1717         Assert.check(tree.encl == null && tree.def == null);
1718         setTypeAnnotationPositions(tree.pos);
1719 
1720         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1721         code.emitop0(dup);
1722 
1723         // Generate code for all arguments, where the expected types are
1724         // the parameters of the constructor's external type (that is,
1725         // any implicit outer instance appears as first parameter).
1726         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1727 
1728         items.makeMemberItem(tree.constructor, true).invoke();
1729         result = items.makeStackItem(tree.type);
1730     }
1731 
1732     public void visitNewArray(JCNewArray tree) {
1733         setTypeAnnotationPositions(tree.pos);
1734 
1735         if (tree.elems != null) {
1736             Type elemtype = types.elemtype(tree.type);
1737             loadIntConst(tree.elems.length());
1738             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1739             int i = 0;
1740             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1741                 arr.duplicate();
1742                 loadIntConst(i);
1743                 i++;
1744                 genExpr(l.head, elemtype).load();
1745                 items.makeIndexedItem(elemtype).store();
1746             }
1747             result = arr;
1748         } else {
1749             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1750                 genExpr(l.head, syms.intType).load();
1751             }
1752             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1753         }
1754     }
1755 //where
1756         /** Generate code to create an array with given element type and number
1757          *  of dimensions.
1758          */
1759         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1760             Type elemtype = types.elemtype(type);
1761             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1762                 log.error(pos, "limit.dimensions");
1763                 nerrs++;
1764             }
1765             int elemcode = Code.arraycode(elemtype);
1766             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1767                 code.emitAnewarray(makeRef(pos, elemtype), type);
1768             } else if (elemcode == 1) {
1769                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1770             } else {
1771                 code.emitNewarray(elemcode, type);
1772             }
1773             return items.makeStackItem(type);
1774         }
1775 
1776     public void visitParens(JCParens tree) {
1777         result = genExpr(tree.expr, tree.expr.type);
1778     }
1779 
1780     public void visitAssign(JCAssign tree) {
1781         Item l = genExpr(tree.lhs, tree.lhs.type);
1782         genExpr(tree.rhs, tree.lhs.type).load();
1783         if (tree.rhs.type.hasTag(BOT)) {
1784             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
1785                for "regarding a reference as having some other type in a manner that can be proved
1786                correct at compile time."
1787             */
1788             code.state.forceStackTop(tree.lhs.type);
1789         }
1790         result = items.makeAssignItem(l);
1791     }
1792 
1793     public void visitAssignop(JCAssignOp tree) {
1794         OperatorSymbol operator = (OperatorSymbol) tree.operator;
1795         Item l;
1796         if (operator.opcode == string_add) {
1797             l = concat.makeConcat(tree);
1798         } else {
1799             // Generate code for first expression
1800             l = genExpr(tree.lhs, tree.lhs.type);
1801 
1802             // If we have an increment of -32768 to +32767 of a local
1803             // int variable we can use an incr instruction instead of
1804             // proceeding further.
1805             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1806                 l instanceof LocalItem &&
1807                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
1808                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
1809                 tree.rhs.type.constValue() != null) {
1810                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
1811                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
1812                 ((LocalItem)l).incr(ival);
1813                 result = l;
1814                 return;
1815             }
1816             // Otherwise, duplicate expression, load one copy
1817             // and complete binary operation.
1818             l.duplicate();
1819             l.coerce(operator.type.getParameterTypes().head).load();
1820             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1821         }
1822         result = items.makeAssignItem(l);
1823     }
1824 
1825     public void visitUnary(JCUnary tree) {
1826         OperatorSymbol operator = (OperatorSymbol)tree.operator;
1827         if (tree.hasTag(NOT)) {
1828             CondItem od = genCond(tree.arg, false);
1829             result = od.negate();
1830         } else {
1831             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1832             switch (tree.getTag()) {
1833             case POS:
1834                 result = od.load();
1835                 break;
1836             case NEG:
1837                 result = od.load();
1838                 code.emitop0(operator.opcode);
1839                 break;
1840             case COMPL:
1841                 result = od.load();
1842                 emitMinusOne(od.typecode);
1843                 code.emitop0(operator.opcode);
1844                 break;
1845             case PREINC: case PREDEC:
1846                 od.duplicate();
1847                 if (od instanceof LocalItem &&
1848                     (operator.opcode == iadd || operator.opcode == isub)) {
1849                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1850                     result = od;
1851                 } else {
1852                     od.load();
1853                     code.emitop0(one(od.typecode));
1854                     code.emitop0(operator.opcode);
1855                     // Perform narrowing primitive conversion if byte,
1856                     // char, or short.  Fix for 4304655.
1857                     if (od.typecode != INTcode &&
1858                         Code.truncate(od.typecode) == INTcode)
1859                       code.emitop0(int2byte + od.typecode - BYTEcode);
1860                     result = items.makeAssignItem(od);
1861                 }
1862                 break;
1863             case POSTINC: case POSTDEC:
1864                 od.duplicate();
1865                 if (od instanceof LocalItem &&
1866                     (operator.opcode == iadd || operator.opcode == isub)) {
1867                     Item res = od.load();
1868                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1869                     result = res;
1870                 } else {
1871                     Item res = od.load();
1872                     od.stash(od.typecode);
1873                     code.emitop0(one(od.typecode));
1874                     code.emitop0(operator.opcode);
1875                     // Perform narrowing primitive conversion if byte,
1876                     // char, or short.  Fix for 4304655.
1877                     if (od.typecode != INTcode &&
1878                         Code.truncate(od.typecode) == INTcode)
1879                       code.emitop0(int2byte + od.typecode - BYTEcode);
1880                     od.store();
1881                     result = res;
1882                 }
1883                 break;
1884             case NULLCHK:
1885                 result = od.load();
1886                 code.emitop0(dup);
1887                 genNullCheck(tree.pos());
1888                 break;
1889             default:
1890                 Assert.error();
1891             }
1892         }
1893     }
1894 
1895     /** Generate a null check from the object value at stack top. */
1896     private void genNullCheck(DiagnosticPosition pos) {
1897         if (allowBetterNullChecks) {
1898             callMethod(pos, syms.objectsType, names.requireNonNull,
1899                     List.of(syms.objectType), true);
1900         } else {
1901             callMethod(pos, syms.objectType, names.getClass,
1902                     List.<Type>nil(), false);
1903         }
1904         code.emitop0(pop);
1905     }
1906 
1907     public void visitBinary(JCBinary tree) {
1908         OperatorSymbol operator = (OperatorSymbol)tree.operator;
1909         if (operator.opcode == string_add) {
1910             result = concat.makeConcat(tree);
1911         } else if (tree.hasTag(AND)) {
1912             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1913             if (!lcond.isFalse()) {
1914                 Chain falseJumps = lcond.jumpFalse();
1915                 code.resolve(lcond.trueJumps);
1916                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1917                 result = items.
1918                     makeCondItem(rcond.opcode,
1919                                  rcond.trueJumps,
1920                                  Code.mergeChains(falseJumps,
1921                                                   rcond.falseJumps));
1922             } else {
1923                 result = lcond;
1924             }
1925         } else if (tree.hasTag(OR)) {
1926             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1927             if (!lcond.isTrue()) {
1928                 Chain trueJumps = lcond.jumpTrue();
1929                 code.resolve(lcond.falseJumps);
1930                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1931                 result = items.
1932                     makeCondItem(rcond.opcode,
1933                                  Code.mergeChains(trueJumps, rcond.trueJumps),
1934                                  rcond.falseJumps);
1935             } else {
1936                 result = lcond;
1937             }
1938         } else {
1939             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
1940             od.load();
1941             result = completeBinop(tree.lhs, tree.rhs, operator);
1942         }
1943     }
1944 
1945 
1946         /** Complete generating code for operation, with left operand
1947          *  already on stack.
1948          *  @param lhs       The tree representing the left operand.
1949          *  @param rhs       The tree representing the right operand.
1950          *  @param operator  The operator symbol.
1951          */
1952         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
1953             MethodType optype = (MethodType)operator.type;
1954             int opcode = operator.opcode;
1955             if (opcode >= if_icmpeq && opcode <= if_icmple &&
1956                 rhs.type.constValue() instanceof Number &&
1957                 ((Number) rhs.type.constValue()).intValue() == 0) {
1958                 opcode = opcode + (ifeq - if_icmpeq);
1959             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
1960                        TreeInfo.isNull(rhs)) {
1961                 opcode = opcode + (if_acmp_null - if_acmpeq);
1962             } else {
1963                 // The expected type of the right operand is
1964                 // the second parameter type of the operator, except for
1965                 // shifts with long shiftcount, where we convert the opcode
1966                 // to a short shift and the expected type to int.
1967                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
1968                 if (opcode >= ishll && opcode <= lushrl) {
1969                     opcode = opcode + (ishl - ishll);
1970                     rtype = syms.intType;
1971                 }
1972                 // Generate code for right operand and load.
1973                 genExpr(rhs, rtype).load();
1974                 // If there are two consecutive opcode instructions,
1975                 // emit the first now.
1976                 if (opcode >= (1 << preShift)) {
1977                     code.emitop0(opcode >> preShift);
1978                     opcode = opcode & 0xFF;
1979                 }
1980             }
1981             if (opcode >= ifeq && opcode <= if_acmpne ||
1982                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
1983                 return items.makeCondItem(opcode);
1984             } else {
1985                 code.emitop0(opcode);
1986                 return items.makeStackItem(optype.restype);
1987             }
1988         }
1989 
1990     public void visitTypeCast(JCTypeCast tree) {
1991         result = genExpr(tree.expr, tree.clazz.type).load();
1992         setTypeAnnotationPositions(tree.pos);
1993         // Additional code is only needed if we cast to a reference type
1994         // which is not statically a supertype of the expression's type.
1995         // For basic types, the coerce(...) in genExpr(...) will do
1996         // the conversion.
1997         if (!tree.clazz.type.isPrimitive() &&
1998            !types.isSameType(tree.expr.type, tree.clazz.type) &&
1999            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2000             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2001         }
2002     }
2003 
2004     public void visitWildcard(JCWildcard tree) {
2005         throw new AssertionError(this.getClass().getName());
2006     }
2007 
2008     public void visitTypeTest(JCInstanceOf tree) {
2009         genExpr(tree.expr, tree.expr.type).load();
2010         setTypeAnnotationPositions(tree.pos);
2011         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2012         result = items.makeStackItem(syms.booleanType);
2013     }
2014 
2015     public void visitIndexed(JCArrayAccess tree) {
2016         genExpr(tree.indexed, tree.indexed.type).load();
2017         genExpr(tree.index, syms.intType).load();
2018         result = items.makeIndexedItem(tree.type);
2019     }
2020 
2021     public void visitIdent(JCIdent tree) {
2022         Symbol sym = tree.sym;
2023         if (tree.name == names._this || tree.name == names._super) {
2024             Item res = tree.name == names._this
2025                 ? items.makeThisItem()
2026                 : items.makeSuperItem();
2027             if (sym.kind == MTH) {
2028                 // Generate code to address the constructor.
2029                 res.load();
2030                 res = items.makeMemberItem(sym, true);
2031             }
2032             result = res;
2033         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2034             result = items.makeLocalItem((VarSymbol)sym);
2035         } else if (isInvokeDynamic(sym)) {
2036             result = items.makeDynamicItem(sym);
2037         } else if ((sym.flags() & STATIC) != 0) {
2038             if (!isAccessSuper(env.enclMethod))
2039                 sym = binaryQualifier(sym, env.enclClass.type);
2040             result = items.makeStaticItem(sym);
2041         } else {
2042             items.makeThisItem().load();
2043             sym = binaryQualifier(sym, env.enclClass.type);
2044             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2045         }
2046     }
2047 
2048     public void visitSelect(JCFieldAccess tree) {
2049         Symbol sym = tree.sym;
2050 
2051         if (tree.name == names._class) {
2052             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2053             result = items.makeStackItem(pt);
2054             return;
2055        }
2056 
2057         Symbol ssym = TreeInfo.symbol(tree.selected);
2058 
2059         // Are we selecting via super?
2060         boolean selectSuper =
2061             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2062 
2063         // Are we accessing a member of the superclass in an access method
2064         // resulting from a qualified super?
2065         boolean accessSuper = isAccessSuper(env.enclMethod);
2066 
2067         Item base = (selectSuper)
2068             ? items.makeSuperItem()
2069             : genExpr(tree.selected, tree.selected.type);
2070 
2071         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2072             // We are seeing a variable that is constant but its selecting
2073             // expression is not.
2074             if ((sym.flags() & STATIC) != 0) {
2075                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2076                     base = base.load();
2077                 base.drop();
2078             } else {
2079                 base.load();
2080                 genNullCheck(tree.selected.pos());
2081             }
2082             result = items.
2083                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2084         } else {
2085             if (isInvokeDynamic(sym)) {
2086                 result = items.makeDynamicItem(sym);
2087                 return;
2088             } else {
2089                 sym = binaryQualifier(sym, tree.selected.type);
2090             }
2091             if ((sym.flags() & STATIC) != 0) {
2092                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2093                     base = base.load();
2094                 base.drop();
2095                 result = items.makeStaticItem(sym);
2096             } else {
2097                 base.load();
2098                 if (sym == syms.lengthVar) {
2099                     code.emitop0(arraylength);
2100                     result = items.makeStackItem(syms.intType);
2101                 } else {
2102                     result = items.
2103                         makeMemberItem(sym,
2104                                        (sym.flags() & PRIVATE) != 0 ||
2105                                        selectSuper || accessSuper);
2106                 }
2107             }
2108         }
2109     }
2110 
2111     public boolean isInvokeDynamic(Symbol sym) {
2112         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2113     }
2114 
2115     public void visitLiteral(JCLiteral tree) {
2116         if (tree.type.hasTag(BOT)) {
2117             code.emitop0(aconst_null);
2118             result = items.makeStackItem(tree.type);
2119         }
2120         else
2121             result = items.makeImmediateItem(tree.type, tree.value);
2122     }
2123 
2124     public void visitLetExpr(LetExpr tree) {
2125         letExprDepth++;
2126         int limit = code.nextreg;
2127         genStats(tree.defs, env);
2128         result = genExpr(tree.expr, tree.expr.type).load();
2129         code.endScopes(limit);
2130         letExprDepth--;
2131     }
2132 
2133     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2134         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2135         if (prunedInfo != null) {
2136             for (JCTree prunedTree: prunedInfo) {
2137                 prunedTree.accept(classReferenceVisitor);
2138             }
2139         }
2140     }
2141 
2142 /* ************************************************************************
2143  * main method
2144  *************************************************************************/
2145 
2146     /** Generate code for a class definition.
2147      *  @param env   The attribution environment that belongs to the
2148      *               outermost class containing this class definition.
2149      *               We need this for resolving some additional symbols.
2150      *  @param cdef  The tree representing the class definition.
2151      *  @return      True if code is generated with no errors.
2152      */
2153     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2154         try {
2155             attrEnv = env;
2156             ClassSymbol c = cdef.sym;
2157             this.toplevel = env.toplevel;
2158             this.endPosTable = toplevel.endPositions;
2159             c.pool = pool;
2160             pool.reset();
2161             /* method normalizeDefs() can add references to external classes into the constant pool
2162              */
2163             cdef.defs = normalizeDefs(cdef.defs, c);
2164             generateReferencesToPrunedTree(c, pool);
2165             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2166             localEnv.toplevel = env.toplevel;
2167             localEnv.enclClass = cdef;
2168 
2169             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2170                 genDef(l.head, localEnv);
2171             }
2172             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2173                 log.error(cdef.pos(), "limit.pool");
2174                 nerrs++;
2175             }
2176             if (nerrs != 0) {
2177                 // if errors, discard code
2178                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2179                     if (l.head.hasTag(METHODDEF))
2180                         ((JCMethodDecl) l.head).sym.code = null;
2181                 }
2182             }
2183             cdef.defs = List.nil(); // discard trees
2184             return nerrs == 0;
2185         } finally {
2186             // note: this method does NOT support recursion.
2187             attrEnv = null;
2188             this.env = null;
2189             toplevel = null;
2190             endPosTable = null;
2191             nerrs = 0;
2192         }
2193     }
2194 
2195 /* ************************************************************************
2196  * Auxiliary classes
2197  *************************************************************************/
2198 
2199     /** An abstract class for finalizer generation.
2200      */
2201     abstract class GenFinalizer {
2202         /** Generate code to clean up when unwinding. */
2203         abstract void gen();
2204 
2205         /** Generate code to clean up at last. */
2206         abstract void genLast();
2207 
2208         /** Does this finalizer have some nontrivial cleanup to perform? */
2209         boolean hasFinalizer() { return true; }
2210     }
2211 
2212     /** code generation contexts,
2213      *  to be used as type parameter for environments.
2214      */
2215     static class GenContext {
2216 
2217         /** A chain for all unresolved jumps that exit the current environment.
2218          */
2219         Chain exit = null;
2220 
2221         /** A chain for all unresolved jumps that continue in the
2222          *  current environment.
2223          */
2224         Chain cont = null;
2225 
2226         /** A closure that generates the finalizer of the current environment.
2227          *  Only set for Synchronized and Try contexts.
2228          */
2229         GenFinalizer finalize = null;
2230 
2231         /** Is this a switch statement?  If so, allocate registers
2232          * even when the variable declaration is unreachable.
2233          */
2234         boolean isSwitch = false;
2235 
2236         /** A list buffer containing all gaps in the finalizer range,
2237          *  where a catch all exception should not apply.
2238          */
2239         ListBuffer<Integer> gaps = null;
2240 
2241         /** Add given chain to exit chain.
2242          */
2243         void addExit(Chain c)  {
2244             exit = Code.mergeChains(c, exit);
2245         }
2246 
2247         /** Add given chain to cont chain.
2248          */
2249         void addCont(Chain c) {
2250             cont = Code.mergeChains(c, cont);
2251         }
2252     }
2253 
2254 }