1 /* 2 * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.util.stream; 26 27 import java.util.AbstractMap; 28 import java.util.AbstractSet; 29 import java.util.ArrayList; 30 import java.util.Collection; 31 import java.util.Collections; 32 import java.util.Comparator; 33 import java.util.DoubleSummaryStatistics; 34 import java.util.EnumSet; 35 import java.util.HashMap; 36 import java.util.HashSet; 37 import java.util.IntSummaryStatistics; 38 import java.util.Iterator; 39 import java.util.List; 40 import java.util.LongSummaryStatistics; 41 import java.util.Map; 42 import java.util.Objects; 43 import java.util.Optional; 44 import java.util.Set; 45 import java.util.StringJoiner; 46 import java.util.concurrent.ConcurrentHashMap; 47 import java.util.concurrent.ConcurrentMap; 48 import java.util.function.BiConsumer; 49 import java.util.function.BiFunction; 50 import java.util.function.BinaryOperator; 51 import java.util.function.Consumer; 52 import java.util.function.Function; 53 import java.util.function.Predicate; 54 import java.util.function.Supplier; 55 import java.util.function.ToDoubleFunction; 56 import java.util.function.ToIntFunction; 57 import java.util.function.ToLongFunction; 58 59 /** 60 * Implementations of {@link Collector} that implement various useful reduction 61 * operations, such as accumulating elements into collections, summarizing 62 * elements according to various criteria, etc. 63 * 64 * <p>The following are examples of using the predefined collectors to perform 65 * common mutable reduction tasks: 66 * 67 * <pre>{@code 68 * // Accumulate names into a List 69 * List<String> list = people.stream() 70 * .map(Person::getName) 71 * .collect(Collectors.toList()); 72 * 73 * // Accumulate names into a TreeSet 74 * Set<String> set = people.stream() 75 * .map(Person::getName) 76 * .collect(Collectors.toCollection(TreeSet::new)); 77 * 78 * // Convert elements to strings and concatenate them, separated by commas 79 * String joined = things.stream() 80 * .map(Object::toString) 81 * .collect(Collectors.joining(", ")); 82 * 83 * // Compute sum of salaries of employee 84 * int total = employees.stream() 85 * .collect(Collectors.summingInt(Employee::getSalary)); 86 * 87 * // Group employees by department 88 * Map<Department, List<Employee>> byDept = employees.stream() 89 * .collect(Collectors.groupingBy(Employee::getDepartment)); 90 * 91 * // Compute sum of salaries by department 92 * Map<Department, Integer> totalByDept = employees.stream() 93 * .collect(Collectors.groupingBy(Employee::getDepartment, 94 * Collectors.summingInt(Employee::getSalary))); 95 * 96 * // Partition students into passing and failing 97 * Map<Boolean, List<Student>> passingFailing = students.stream() 98 * .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD)); 99 * 100 * }</pre> 101 * 102 * @since 1.8 103 */ 104 public final class Collectors { 105 106 static final Set<Collector.Characteristics> CH_CONCURRENT_ID 107 = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, 108 Collector.Characteristics.UNORDERED, 109 Collector.Characteristics.IDENTITY_FINISH)); 110 static final Set<Collector.Characteristics> CH_CONCURRENT_NOID 111 = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, 112 Collector.Characteristics.UNORDERED)); 113 static final Set<Collector.Characteristics> CH_ID 114 = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH)); 115 static final Set<Collector.Characteristics> CH_UNORDERED_ID 116 = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED, 117 Collector.Characteristics.IDENTITY_FINISH)); 118 static final Set<Collector.Characteristics> CH_NOID = Collections.emptySet(); 119 static final Set<Collector.Characteristics> CH_UNORDERED_NOID 120 = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED)); 121 122 private Collectors() { } 123 124 /** 125 * Construct an {@code IllegalStateException} with appropriate message. 126 * 127 * @param k the duplicate key 128 * @param u 1st value to be accumulated/merged 129 * @param v 2nd value to be accumulated/merged 130 */ 131 private static IllegalStateException duplicateKeyException( 132 Object k, Object u, Object v) { 133 return new IllegalStateException(String.format( 134 "Duplicate key %s (attempted merging values %s and %s)", 135 k, u, v)); 136 } 137 138 /** 139 * {@code BinaryOperator<Map>} that merges the contents of its right 140 * argument into its left argument, throwing {@code IllegalStateException} 141 * if duplicate keys are encountered. 142 * 143 * @param <K> type of the map keys 144 * @param <V> type of the map values 145 * @param <M> type of the map 146 * @return a merge function for two maps 147 */ 148 private static <K, V, M extends Map<K,V>> 149 BinaryOperator<M> uniqKeysMapMerger() { 150 return (m1, m2) -> { 151 for (Map.Entry<K,V> e : m2.entrySet()) { 152 K k = e.getKey(); 153 V v = Objects.requireNonNull(e.getValue()); 154 V u = m1.putIfAbsent(k, v); 155 if (u != null) throw duplicateKeyException(k, u, v); 156 } 157 return m1; 158 }; 159 } 160 161 /** 162 * {@code BiConsumer<Map, T>} that accumulates (key, value) pairs 163 * extracted from elements into the map, throwing {@code IllegalStateException} 164 * if duplicate keys are encountered. 165 * 166 * @param keyMapper a function that maps an element into a key 167 * @param valueMapper a function that maps an element into a value 168 * @param <T> type of elements 169 * @param <K> type of map keys 170 * @param <V> type of map values 171 * @return an accumulating consumer 172 */ 173 private static <T, K, V> 174 BiConsumer<Map<K, V>, T> uniqKeysMapAccumulator(Function<? super T, ? extends K> keyMapper, 175 Function<? super T, ? extends V> valueMapper) { 176 return (map, element) -> { 177 K k = keyMapper.apply(element); 178 V v = Objects.requireNonNull(valueMapper.apply(element)); 179 V u = map.putIfAbsent(k, v); 180 if (u != null) throw duplicateKeyException(k, u, v); 181 }; 182 } 183 184 @SuppressWarnings("unchecked") 185 private static <I, R> Function<I, R> castingIdentity() { 186 return i -> (R) i; 187 } 188 189 /** 190 * Simple implementation class for {@code Collector}. 191 * 192 * @param <T> the type of elements to be collected 193 * @param <R> the type of the result 194 */ 195 static class CollectorImpl<T, A, R> implements Collector<T, A, R> { 196 private final Supplier<A> supplier; 197 private final BiConsumer<A, T> accumulator; 198 private final BinaryOperator<A> combiner; 199 private final Function<A, R> finisher; 200 private final Set<Characteristics> characteristics; 201 202 CollectorImpl(Supplier<A> supplier, 203 BiConsumer<A, T> accumulator, 204 BinaryOperator<A> combiner, 205 Function<A,R> finisher, 206 Set<Characteristics> characteristics) { 207 this.supplier = supplier; 208 this.accumulator = accumulator; 209 this.combiner = combiner; 210 this.finisher = finisher; 211 this.characteristics = characteristics; 212 } 213 214 CollectorImpl(Supplier<A> supplier, 215 BiConsumer<A, T> accumulator, 216 BinaryOperator<A> combiner, 217 Set<Characteristics> characteristics) { 218 this(supplier, accumulator, combiner, castingIdentity(), characteristics); 219 } 220 221 @Override 222 public BiConsumer<A, T> accumulator() { 223 return accumulator; 224 } 225 226 @Override 227 public Supplier<A> supplier() { 228 return supplier; 229 } 230 231 @Override 232 public BinaryOperator<A> combiner() { 233 return combiner; 234 } 235 236 @Override 237 public Function<A, R> finisher() { 238 return finisher; 239 } 240 241 @Override 242 public Set<Characteristics> characteristics() { 243 return characteristics; 244 } 245 } 246 247 /** 248 * Returns a {@code Collector} that accumulates the input elements into a 249 * new {@code Collection}, in encounter order. The {@code Collection} is 250 * created by the provided factory. 251 * 252 * @param <T> the type of the input elements 253 * @param <C> the type of the resulting {@code Collection} 254 * @param collectionFactory a supplier providing a new empty {@code Collection} 255 * into which the results will be inserted 256 * @return a {@code Collector} which collects all the input elements into a 257 * {@code Collection}, in encounter order 258 */ 259 public static <T, C extends Collection<T>> 260 Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) { 261 return new CollectorImpl<>(collectionFactory, Collection<T>::add, 262 (r1, r2) -> { r1.addAll(r2); return r1; }, 263 CH_ID); 264 } 265 266 /** 267 * Returns a {@code Collector} that accumulates the input elements into a 268 * new {@code List}. There are no guarantees on the type, mutability, 269 * serializability, or thread-safety of the {@code List} returned; if more 270 * control over the returned {@code List} is required, use {@link #toCollection(Supplier)}. 271 * 272 * @param <T> the type of the input elements 273 * @return a {@code Collector} which collects all the input elements into a 274 * {@code List}, in encounter order 275 */ 276 public static <T> 277 Collector<T, ?, List<T>> toList() { 278 return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add, 279 (left, right) -> { left.addAll(right); return left; }, 280 CH_ID); 281 } 282 283 /** 284 * Returns a {@code Collector} that accumulates the input elements into an 285 * <a href="List.html#unmodifiable">unmodifiable</a> {@code List}. 286 * 287 * @param <T> the type of the input elements 288 * @return a {@code Collector} which collects all the input elements into a 289 * {@code List}, in encounter order 290 * @since 10 291 */ 292 @SuppressWarnings("unchecked") 293 public static <T> 294 Collector<T, ?, List<T>> toUnmodifiableList() { 295 return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add, 296 (left, right) -> { left.addAll(right); return left; }, 297 list -> (List<T>)List.of(list.toArray()), 298 CH_NOID); 299 } 300 301 /** 302 * Returns a {@code Collector} that accumulates the input elements into a 303 * new {@code Set}. There are no guarantees on the type, mutability, 304 * serializability, or thread-safety of the {@code Set} returned; if more 305 * control over the returned {@code Set} is required, use 306 * {@link #toCollection(Supplier)}. 307 * 308 * <p>This is an {@link Collector.Characteristics#UNORDERED unordered} 309 * Collector. 310 * 311 * @param <T> the type of the input elements 312 * @return a {@code Collector} which collects all the input elements into a 313 * {@code Set} 314 */ 315 public static <T> 316 Collector<T, ?, Set<T>> toSet() { 317 return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add, 318 (left, right) -> { 319 if (left.size() < right.size()) { 320 right.addAll(left); return right; 321 } else { 322 left.addAll(right); return left; 323 } 324 }, 325 CH_UNORDERED_ID); 326 } 327 328 /** 329 * Returns a {@code Collector} that accumulates the input elements into an 330 * <a href="Set.html#unmodifiable">unmodifiable</a> {@code Set}. 331 * 332 * <p>This is an {@link Collector.Characteristics#UNORDERED unordered} 333 * Collector. 334 * 335 * @param <T> the type of the input elements 336 * @return a {@code Collector} which collects all the input elements into a 337 * {@code Set} 338 * @since 10 339 */ 340 @SuppressWarnings("unchecked") 341 public static <T> 342 Collector<T, ?, Set<T>> toUnmodifiableSet() { 343 return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add, 344 (left, right) -> { 345 if (left.size() < right.size()) { 346 right.addAll(left); return right; 347 } else { 348 left.addAll(right); return left; 349 } 350 }, 351 set -> (Set<T>)Set.of(set.toArray()), 352 CH_UNORDERED_NOID); 353 } 354 355 /** 356 * Returns a {@code Collector} that concatenates the input elements into a 357 * {@code String}, in encounter order. 358 * 359 * @return a {@code Collector} that concatenates the input elements into a 360 * {@code String}, in encounter order 361 */ 362 public static Collector<CharSequence, ?, String> joining() { 363 return new CollectorImpl<CharSequence, StringBuilder, String>( 364 StringBuilder::new, StringBuilder::append, 365 (r1, r2) -> { r1.append(r2); return r1; }, 366 StringBuilder::toString, CH_NOID); 367 } 368 369 /** 370 * Returns a {@code Collector} that concatenates the input elements, 371 * separated by the specified delimiter, in encounter order. 372 * 373 * @param delimiter the delimiter to be used between each element 374 * @return A {@code Collector} which concatenates CharSequence elements, 375 * separated by the specified delimiter, in encounter order 376 */ 377 public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) { 378 return joining(delimiter, "", ""); 379 } 380 381 /** 382 * Returns a {@code Collector} that concatenates the input elements, 383 * separated by the specified delimiter, with the specified prefix and 384 * suffix, in encounter order. 385 * 386 * @param delimiter the delimiter to be used between each element 387 * @param prefix the sequence of characters to be used at the beginning 388 * of the joined result 389 * @param suffix the sequence of characters to be used at the end 390 * of the joined result 391 * @return A {@code Collector} which concatenates CharSequence elements, 392 * separated by the specified delimiter, in encounter order 393 */ 394 public static Collector<CharSequence, ?, String> joining(CharSequence delimiter, 395 CharSequence prefix, 396 CharSequence suffix) { 397 return new CollectorImpl<>( 398 () -> new StringJoiner(delimiter, prefix, suffix), 399 StringJoiner::add, StringJoiner::merge, 400 StringJoiner::toString, CH_NOID); 401 } 402 403 /** 404 * {@code BinaryOperator<Map>} that merges the contents of its right 405 * argument into its left argument, using the provided merge function to 406 * handle duplicate keys. 407 * 408 * @param <K> type of the map keys 409 * @param <V> type of the map values 410 * @param <M> type of the map 411 * @param mergeFunction A merge function suitable for 412 * {@link Map#merge(Object, Object, BiFunction) Map.merge()} 413 * @return a merge function for two maps 414 */ 415 private static <K, V, M extends Map<K,V>> 416 BinaryOperator<M> mapMerger(BinaryOperator<V> mergeFunction) { 417 return (m1, m2) -> { 418 for (Map.Entry<K,V> e : m2.entrySet()) 419 m1.merge(e.getKey(), e.getValue(), mergeFunction); 420 return m1; 421 }; 422 } 423 424 /** 425 * Adapts a {@code Collector} accepting elements of type {@code U} to one 426 * accepting elements of type {@code T} by applying a mapping function to 427 * each input element before accumulation. 428 * 429 * @apiNote 430 * The {@code mapping()} collectors are most useful when used in a 431 * multi-level reduction, such as downstream of a {@code groupingBy} or 432 * {@code partitioningBy}. For example, given a stream of 433 * {@code Person}, to accumulate the set of last names in each city: 434 * <pre>{@code 435 * Map<City, Set<String>> lastNamesByCity 436 * = people.stream().collect( 437 * groupingBy(Person::getCity, 438 * mapping(Person::getLastName, 439 * toSet()))); 440 * }</pre> 441 * 442 * @param <T> the type of the input elements 443 * @param <U> type of elements accepted by downstream collector 444 * @param <A> intermediate accumulation type of the downstream collector 445 * @param <R> result type of collector 446 * @param mapper a function to be applied to the input elements 447 * @param downstream a collector which will accept mapped values 448 * @return a collector which applies the mapping function to the input 449 * elements and provides the mapped results to the downstream collector 450 */ 451 public static <T, U, A, R> 452 Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper, 453 Collector<? super U, A, R> downstream) { 454 BiConsumer<A, ? super U> downstreamAccumulator = downstream.accumulator(); 455 return new CollectorImpl<>(downstream.supplier(), 456 (r, t) -> downstreamAccumulator.accept(r, mapper.apply(t)), 457 downstream.combiner(), downstream.finisher(), 458 downstream.characteristics()); 459 } 460 461 /** 462 * Adapts a {@code Collector} accepting elements of type {@code U} to one 463 * accepting elements of type {@code T} by applying a flat mapping function 464 * to each input element before accumulation. The flat mapping function 465 * maps an input element to a {@link Stream stream} covering zero or more 466 * output elements that are then accumulated downstream. Each mapped stream 467 * is {@link java.util.stream.BaseStream#close() closed} after its contents 468 * have been placed downstream. (If a mapped stream is {@code null} 469 * an empty stream is used, instead.) 470 * 471 * @apiNote 472 * The {@code flatMapping()} collectors are most useful when used in a 473 * multi-level reduction, such as downstream of a {@code groupingBy} or 474 * {@code partitioningBy}. For example, given a stream of 475 * {@code Order}, to accumulate the set of line items for each customer: 476 * <pre>{@code 477 * Map<String, Set<LineItem>> itemsByCustomerName 478 * = orders.stream().collect( 479 * groupingBy(Order::getCustomerName, 480 * flatMapping(order -> order.getLineItems().stream(), 481 * toSet()))); 482 * }</pre> 483 * 484 * @param <T> the type of the input elements 485 * @param <U> type of elements accepted by downstream collector 486 * @param <A> intermediate accumulation type of the downstream collector 487 * @param <R> result type of collector 488 * @param mapper a function to be applied to the input elements, which 489 * returns a stream of results 490 * @param downstream a collector which will receive the elements of the 491 * stream returned by mapper 492 * @return a collector which applies the mapping function to the input 493 * elements and provides the flat mapped results to the downstream collector 494 * @since 9 495 */ 496 public static <T, U, A, R> 497 Collector<T, ?, R> flatMapping(Function<? super T, ? extends Stream<? extends U>> mapper, 498 Collector<? super U, A, R> downstream) { 499 BiConsumer<A, ? super U> downstreamAccumulator = downstream.accumulator(); 500 return new CollectorImpl<>(downstream.supplier(), 501 (r, t) -> { 502 try (Stream<? extends U> result = mapper.apply(t)) { 503 if (result != null) 504 result.sequential().forEach(u -> downstreamAccumulator.accept(r, u)); 505 } 506 }, 507 downstream.combiner(), downstream.finisher(), 508 downstream.characteristics()); 509 } 510 511 /** 512 * Adapts a {@code Collector} to one accepting elements of the same type 513 * {@code T} by applying the predicate to each input element and only 514 * accumulating if the predicate returns {@code true}. 515 * 516 * @apiNote 517 * The {@code filtering()} collectors are most useful when used in a 518 * multi-level reduction, such as downstream of a {@code groupingBy} or 519 * {@code partitioningBy}. For example, given a stream of 520 * {@code Employee}, to accumulate the employees in each department that have a 521 * salary above a certain threshold: 522 * <pre>{@code 523 * Map<Department, Set<Employee>> wellPaidEmployeesByDepartment 524 * = employees.stream().collect( 525 * groupingBy(Employee::getDepartment, 526 * filtering(e -> e.getSalary() > 2000, 527 * toSet()))); 528 * }</pre> 529 * A filtering collector differs from a stream's {@code filter()} operation. 530 * In this example, suppose there are no employees whose salary is above the 531 * threshold in some department. Using a filtering collector as shown above 532 * would result in a mapping from that department to an empty {@code Set}. 533 * If a stream {@code filter()} operation were done instead, there would be 534 * no mapping for that department at all. 535 * 536 * @param <T> the type of the input elements 537 * @param <A> intermediate accumulation type of the downstream collector 538 * @param <R> result type of collector 539 * @param predicate a predicate to be applied to the input elements 540 * @param downstream a collector which will accept values that match the 541 * predicate 542 * @return a collector which applies the predicate to the input elements 543 * and provides matching elements to the downstream collector 544 * @since 9 545 */ 546 public static <T, A, R> 547 Collector<T, ?, R> filtering(Predicate<? super T> predicate, 548 Collector<? super T, A, R> downstream) { 549 BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); 550 return new CollectorImpl<>(downstream.supplier(), 551 (r, t) -> { 552 if (predicate.test(t)) { 553 downstreamAccumulator.accept(r, t); 554 } 555 }, 556 downstream.combiner(), downstream.finisher(), 557 downstream.characteristics()); 558 } 559 560 /** 561 * Adapts a {@code Collector} to perform an additional finishing 562 * transformation. For example, one could adapt the {@link #toList()} 563 * collector to always produce an immutable list with: 564 * <pre>{@code 565 * List<String> list = people.stream().collect( 566 * collectingAndThen(toList(), 567 * Collections::unmodifiableList)); 568 * }</pre> 569 * 570 * @param <T> the type of the input elements 571 * @param <A> intermediate accumulation type of the downstream collector 572 * @param <R> result type of the downstream collector 573 * @param <RR> result type of the resulting collector 574 * @param downstream a collector 575 * @param finisher a function to be applied to the final result of the downstream collector 576 * @return a collector which performs the action of the downstream collector, 577 * followed by an additional finishing step 578 */ 579 public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream, 580 Function<R,RR> finisher) { 581 Set<Collector.Characteristics> characteristics = downstream.characteristics(); 582 if (characteristics.contains(Collector.Characteristics.IDENTITY_FINISH)) { 583 if (characteristics.size() == 1) 584 characteristics = Collectors.CH_NOID; 585 else { 586 characteristics = EnumSet.copyOf(characteristics); 587 characteristics.remove(Collector.Characteristics.IDENTITY_FINISH); 588 characteristics = Collections.unmodifiableSet(characteristics); 589 } 590 } 591 return new CollectorImpl<>(downstream.supplier(), 592 downstream.accumulator(), 593 downstream.combiner(), 594 downstream.finisher().andThen(finisher), 595 characteristics); 596 } 597 598 /** 599 * Returns a {@code Collector} accepting elements of type {@code T} that 600 * counts the number of input elements. If no elements are present, the 601 * result is 0. 602 * 603 * @implSpec 604 * This produces a result equivalent to: 605 * <pre>{@code 606 * reducing(0L, e -> 1L, Long::sum) 607 * }</pre> 608 * 609 * @param <T> the type of the input elements 610 * @return a {@code Collector} that counts the input elements 611 */ 612 public static <T> Collector<T, ?, Long> 613 counting() { 614 return summingLong(e -> 1L); 615 } 616 617 /** 618 * Returns a {@code Collector} that produces the minimal element according 619 * to a given {@code Comparator}, described as an {@code Optional<T>}. 620 * 621 * @implSpec 622 * This produces a result equivalent to: 623 * <pre>{@code 624 * reducing(BinaryOperator.minBy(comparator)) 625 * }</pre> 626 * 627 * @param <T> the type of the input elements 628 * @param comparator a {@code Comparator} for comparing elements 629 * @return a {@code Collector} that produces the minimal value 630 */ 631 public static <T> Collector<T, ?, Optional<T>> 632 minBy(Comparator<? super T> comparator) { 633 return reducing(BinaryOperator.minBy(comparator)); 634 } 635 636 /** 637 * Returns a {@code Collector} that produces the maximal element according 638 * to a given {@code Comparator}, described as an {@code Optional<T>}. 639 * 640 * @implSpec 641 * This produces a result equivalent to: 642 * <pre>{@code 643 * reducing(BinaryOperator.maxBy(comparator)) 644 * }</pre> 645 * 646 * @param <T> the type of the input elements 647 * @param comparator a {@code Comparator} for comparing elements 648 * @return a {@code Collector} that produces the maximal value 649 */ 650 public static <T> Collector<T, ?, Optional<T>> 651 maxBy(Comparator<? super T> comparator) { 652 return reducing(BinaryOperator.maxBy(comparator)); 653 } 654 655 /** 656 * Returns a {@code Collector} that produces the sum of a integer-valued 657 * function applied to the input elements. If no elements are present, 658 * the result is 0. 659 * 660 * @param <T> the type of the input elements 661 * @param mapper a function extracting the property to be summed 662 * @return a {@code Collector} that produces the sum of a derived property 663 */ 664 public static <T> Collector<T, ?, Integer> 665 summingInt(ToIntFunction<? super T> mapper) { 666 return new CollectorImpl<>( 667 () -> new int[1], 668 (a, t) -> { a[0] += mapper.applyAsInt(t); }, 669 (a, b) -> { a[0] += b[0]; return a; }, 670 a -> a[0], CH_NOID); 671 } 672 673 /** 674 * Returns a {@code Collector} that produces the sum of a long-valued 675 * function applied to the input elements. If no elements are present, 676 * the result is 0. 677 * 678 * @param <T> the type of the input elements 679 * @param mapper a function extracting the property to be summed 680 * @return a {@code Collector} that produces the sum of a derived property 681 */ 682 public static <T> Collector<T, ?, Long> 683 summingLong(ToLongFunction<? super T> mapper) { 684 return new CollectorImpl<>( 685 () -> new long[1], 686 (a, t) -> { a[0] += mapper.applyAsLong(t); }, 687 (a, b) -> { a[0] += b[0]; return a; }, 688 a -> a[0], CH_NOID); 689 } 690 691 /** 692 * Returns a {@code Collector} that produces the sum of a double-valued 693 * function applied to the input elements. If no elements are present, 694 * the result is 0. 695 * 696 * <p>The sum returned can vary depending upon the order in which 697 * values are recorded, due to accumulated rounding error in 698 * addition of values of differing magnitudes. Values sorted by increasing 699 * absolute magnitude tend to yield more accurate results. If any recorded 700 * value is a {@code NaN} or the sum is at any point a {@code NaN} then the 701 * sum will be {@code NaN}. 702 * 703 * @param <T> the type of the input elements 704 * @param mapper a function extracting the property to be summed 705 * @return a {@code Collector} that produces the sum of a derived property 706 */ 707 public static <T> Collector<T, ?, Double> 708 summingDouble(ToDoubleFunction<? super T> mapper) { 709 /* 710 * In the arrays allocated for the collect operation, index 0 711 * holds the high-order bits of the running sum, index 1 holds 712 * the low-order bits of the sum computed via compensated 713 * summation, and index 2 holds the simple sum used to compute 714 * the proper result if the stream contains infinite values of 715 * the same sign. 716 */ 717 return new CollectorImpl<>( 718 () -> new double[3], 719 (a, t) -> { double val = mapper.applyAsDouble(t); 720 sumWithCompensation(a, val); 721 a[2] += val;}, 722 (a, b) -> { sumWithCompensation(a, b[0]); 723 a[2] += b[2]; 724 return sumWithCompensation(a, b[1]); }, 725 a -> computeFinalSum(a), 726 CH_NOID); 727 } 728 729 /** 730 * Incorporate a new double value using Kahan summation / 731 * compensation summation. 732 * 733 * High-order bits of the sum are in intermediateSum[0], low-order 734 * bits of the sum are in intermediateSum[1], any additional 735 * elements are application-specific. 736 * 737 * @param intermediateSum the high-order and low-order words of the intermediate sum 738 * @param value the name value to be included in the running sum 739 */ 740 static double[] sumWithCompensation(double[] intermediateSum, double value) { 741 double tmp = value - intermediateSum[1]; 742 double sum = intermediateSum[0]; 743 double velvel = sum + tmp; // Little wolf of rounding error 744 intermediateSum[1] = (velvel - sum) - tmp; 745 intermediateSum[0] = velvel; 746 return intermediateSum; 747 } 748 749 /** 750 * If the compensated sum is spuriously NaN from accumulating one 751 * or more same-signed infinite values, return the 752 * correctly-signed infinity stored in the simple sum. 753 */ 754 static double computeFinalSum(double[] summands) { 755 // Better error bounds to add both terms as the final sum 756 double tmp = summands[0] + summands[1]; 757 double simpleSum = summands[summands.length - 1]; 758 if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) 759 return simpleSum; 760 else 761 return tmp; 762 } 763 764 /** 765 * Returns a {@code Collector} that produces the arithmetic mean of an integer-valued 766 * function applied to the input elements. If no elements are present, 767 * the result is 0. 768 * 769 * @param <T> the type of the input elements 770 * @param mapper a function extracting the property to be averaged 771 * @return a {@code Collector} that produces the arithmetic mean of a 772 * derived property 773 */ 774 public static <T> Collector<T, ?, Double> 775 averagingInt(ToIntFunction<? super T> mapper) { 776 return new CollectorImpl<>( 777 () -> new long[2], 778 (a, t) -> { a[0] += mapper.applyAsInt(t); a[1]++; }, 779 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, 780 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); 781 } 782 783 /** 784 * Returns a {@code Collector} that produces the arithmetic mean of a long-valued 785 * function applied to the input elements. If no elements are present, 786 * the result is 0. 787 * 788 * @param <T> the type of the input elements 789 * @param mapper a function extracting the property to be averaged 790 * @return a {@code Collector} that produces the arithmetic mean of a 791 * derived property 792 */ 793 public static <T> Collector<T, ?, Double> 794 averagingLong(ToLongFunction<? super T> mapper) { 795 return new CollectorImpl<>( 796 () -> new long[2], 797 (a, t) -> { a[0] += mapper.applyAsLong(t); a[1]++; }, 798 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, 799 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); 800 } 801 802 /** 803 * Returns a {@code Collector} that produces the arithmetic mean of a double-valued 804 * function applied to the input elements. If no elements are present, 805 * the result is 0. 806 * 807 * <p>The average returned can vary depending upon the order in which 808 * values are recorded, due to accumulated rounding error in 809 * addition of values of differing magnitudes. Values sorted by increasing 810 * absolute magnitude tend to yield more accurate results. If any recorded 811 * value is a {@code NaN} or the sum is at any point a {@code NaN} then the 812 * average will be {@code NaN}. 813 * 814 * @implNote The {@code double} format can represent all 815 * consecutive integers in the range -2<sup>53</sup> to 816 * 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup> 817 * values, the divisor in the average computation will saturate at 818 * 2<sup>53</sup>, leading to additional numerical errors. 819 * 820 * @param <T> the type of the input elements 821 * @param mapper a function extracting the property to be averaged 822 * @return a {@code Collector} that produces the arithmetic mean of a 823 * derived property 824 */ 825 public static <T> Collector<T, ?, Double> 826 averagingDouble(ToDoubleFunction<? super T> mapper) { 827 /* 828 * In the arrays allocated for the collect operation, index 0 829 * holds the high-order bits of the running sum, index 1 holds 830 * the low-order bits of the sum computed via compensated 831 * summation, and index 2 holds the number of values seen. 832 */ 833 return new CollectorImpl<>( 834 () -> new double[4], 835 (a, t) -> { double val = mapper.applyAsDouble(t); sumWithCompensation(a, val); a[2]++; a[3]+= val;}, 836 (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; a[3] += b[3]; return a; }, 837 a -> (a[2] == 0) ? 0.0d : (computeFinalSum(a) / a[2]), 838 CH_NOID); 839 } 840 841 /** 842 * Returns a {@code Collector} which performs a reduction of its 843 * input elements under a specified {@code BinaryOperator} using the 844 * provided identity. 845 * 846 * @apiNote 847 * The {@code reducing()} collectors are most useful when used in a 848 * multi-level reduction, downstream of {@code groupingBy} or 849 * {@code partitioningBy}. To perform a simple reduction on a stream, 850 * use {@link Stream#reduce(Object, BinaryOperator)}} instead. 851 * 852 * @param <T> element type for the input and output of the reduction 853 * @param identity the identity value for the reduction (also, the value 854 * that is returned when there are no input elements) 855 * @param op a {@code BinaryOperator<T>} used to reduce the input elements 856 * @return a {@code Collector} which implements the reduction operation 857 * 858 * @see #reducing(BinaryOperator) 859 * @see #reducing(Object, Function, BinaryOperator) 860 */ 861 public static <T> Collector<T, ?, T> 862 reducing(T identity, BinaryOperator<T> op) { 863 return new CollectorImpl<>( 864 boxSupplier(identity), 865 (a, t) -> { a[0] = op.apply(a[0], t); }, 866 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, 867 a -> a[0], 868 CH_NOID); 869 } 870 871 @SuppressWarnings("unchecked") 872 private static <T> Supplier<T[]> boxSupplier(T identity) { 873 return () -> (T[]) new Object[] { identity }; 874 } 875 876 /** 877 * Returns a {@code Collector} which performs a reduction of its 878 * input elements under a specified {@code BinaryOperator}. The result 879 * is described as an {@code Optional<T>}. 880 * 881 * @apiNote 882 * The {@code reducing()} collectors are most useful when used in a 883 * multi-level reduction, downstream of {@code groupingBy} or 884 * {@code partitioningBy}. To perform a simple reduction on a stream, 885 * use {@link Stream#reduce(BinaryOperator)} instead. 886 * 887 * <p>For example, given a stream of {@code Person}, to calculate tallest 888 * person in each city: 889 * <pre>{@code 890 * Comparator<Person> byHeight = Comparator.comparing(Person::getHeight); 891 * Map<City, Optional<Person>> tallestByCity 892 * = people.stream().collect( 893 * groupingBy(Person::getCity, 894 * reducing(BinaryOperator.maxBy(byHeight)))); 895 * }</pre> 896 * 897 * @param <T> element type for the input and output of the reduction 898 * @param op a {@code BinaryOperator<T>} used to reduce the input elements 899 * @return a {@code Collector} which implements the reduction operation 900 * 901 * @see #reducing(Object, BinaryOperator) 902 * @see #reducing(Object, Function, BinaryOperator) 903 */ 904 public static <T> Collector<T, ?, Optional<T>> 905 reducing(BinaryOperator<T> op) { 906 class OptionalBox implements Consumer<T> { 907 T value = null; 908 boolean present = false; 909 910 @Override 911 public void accept(T t) { 912 if (present) { 913 value = op.apply(value, t); 914 } 915 else { 916 value = t; 917 present = true; 918 } 919 } 920 } 921 922 return new CollectorImpl<T, OptionalBox, Optional<T>>( 923 OptionalBox::new, OptionalBox::accept, 924 (a, b) -> { if (b.present) a.accept(b.value); return a; }, 925 a -> Optional.ofNullable(a.value), CH_NOID); 926 } 927 928 /** 929 * Returns a {@code Collector} which performs a reduction of its 930 * input elements under a specified mapping function and 931 * {@code BinaryOperator}. This is a generalization of 932 * {@link #reducing(Object, BinaryOperator)} which allows a transformation 933 * of the elements before reduction. 934 * 935 * @apiNote 936 * The {@code reducing()} collectors are most useful when used in a 937 * multi-level reduction, downstream of {@code groupingBy} or 938 * {@code partitioningBy}. To perform a simple map-reduce on a stream, 939 * use {@link Stream#map(Function)} and {@link Stream#reduce(Object, BinaryOperator)} 940 * instead. 941 * 942 * <p>For example, given a stream of {@code Person}, to calculate the longest 943 * last name of residents in each city: 944 * <pre>{@code 945 * Comparator<String> byLength = Comparator.comparing(String::length); 946 * Map<City, String> longestLastNameByCity 947 * = people.stream().collect( 948 * groupingBy(Person::getCity, 949 * reducing("", 950 * Person::getLastName, 951 * BinaryOperator.maxBy(byLength)))); 952 * }</pre> 953 * 954 * @param <T> the type of the input elements 955 * @param <U> the type of the mapped values 956 * @param identity the identity value for the reduction (also, the value 957 * that is returned when there are no input elements) 958 * @param mapper a mapping function to apply to each input value 959 * @param op a {@code BinaryOperator<U>} used to reduce the mapped values 960 * @return a {@code Collector} implementing the map-reduce operation 961 * 962 * @see #reducing(Object, BinaryOperator) 963 * @see #reducing(BinaryOperator) 964 */ 965 public static <T, U> 966 Collector<T, ?, U> reducing(U identity, 967 Function<? super T, ? extends U> mapper, 968 BinaryOperator<U> op) { 969 return new CollectorImpl<>( 970 boxSupplier(identity), 971 (a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); }, 972 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, 973 a -> a[0], CH_NOID); 974 } 975 976 /** 977 * Returns a {@code Collector} implementing a "group by" operation on 978 * input elements of type {@code T}, grouping elements according to a 979 * classification function, and returning the results in a {@code Map}. 980 * 981 * <p>The classification function maps elements to some key type {@code K}. 982 * The collector produces a {@code Map<K, List<T>>} whose keys are the 983 * values resulting from applying the classification function to the input 984 * elements, and whose corresponding values are {@code List}s containing the 985 * input elements which map to the associated key under the classification 986 * function. 987 * 988 * <p>There are no guarantees on the type, mutability, serializability, or 989 * thread-safety of the {@code Map} or {@code List} objects returned. 990 * @implSpec 991 * This produces a result similar to: 992 * <pre>{@code 993 * groupingBy(classifier, toList()); 994 * }</pre> 995 * 996 * @implNote 997 * The returned {@code Collector} is not concurrent. For parallel stream 998 * pipelines, the {@code combiner} function operates by merging the keys 999 * from one map into another, which can be an expensive operation. If 1000 * preservation of the order in which elements appear in the resulting {@code Map} 1001 * collector is not required, using {@link #groupingByConcurrent(Function)} 1002 * may offer better parallel performance. 1003 * 1004 * @param <T> the type of the input elements 1005 * @param <K> the type of the keys 1006 * @param classifier the classifier function mapping input elements to keys 1007 * @return a {@code Collector} implementing the group-by operation 1008 * 1009 * @see #groupingBy(Function, Collector) 1010 * @see #groupingBy(Function, Supplier, Collector) 1011 * @see #groupingByConcurrent(Function) 1012 */ 1013 public static <T, K> Collector<T, ?, Map<K, List<T>>> 1014 groupingBy(Function<? super T, ? extends K> classifier) { 1015 return groupingBy(classifier, toList()); 1016 } 1017 1018 /** 1019 * Returns a {@code Collector} implementing a cascaded "group by" operation 1020 * on input elements of type {@code T}, grouping elements according to a 1021 * classification function, and then performing a reduction operation on 1022 * the values associated with a given key using the specified downstream 1023 * {@code Collector}. 1024 * 1025 * <p>The classification function maps elements to some key type {@code K}. 1026 * The downstream collector operates on elements of type {@code T} and 1027 * produces a result of type {@code D}. The resulting collector produces a 1028 * {@code Map<K, D>}. 1029 * 1030 * <p>There are no guarantees on the type, mutability, 1031 * serializability, or thread-safety of the {@code Map} returned. 1032 * 1033 * <p>For example, to compute the set of last names of people in each city: 1034 * <pre>{@code 1035 * Map<City, Set<String>> namesByCity 1036 * = people.stream().collect( 1037 * groupingBy(Person::getCity, 1038 * mapping(Person::getLastName, 1039 * toSet()))); 1040 * }</pre> 1041 * 1042 * @implNote 1043 * The returned {@code Collector} is not concurrent. For parallel stream 1044 * pipelines, the {@code combiner} function operates by merging the keys 1045 * from one map into another, which can be an expensive operation. If 1046 * preservation of the order in which elements are presented to the downstream 1047 * collector is not required, using {@link #groupingByConcurrent(Function, Collector)} 1048 * may offer better parallel performance. 1049 * 1050 * @param <T> the type of the input elements 1051 * @param <K> the type of the keys 1052 * @param <A> the intermediate accumulation type of the downstream collector 1053 * @param <D> the result type of the downstream reduction 1054 * @param classifier a classifier function mapping input elements to keys 1055 * @param downstream a {@code Collector} implementing the downstream reduction 1056 * @return a {@code Collector} implementing the cascaded group-by operation 1057 * @see #groupingBy(Function) 1058 * 1059 * @see #groupingBy(Function, Supplier, Collector) 1060 * @see #groupingByConcurrent(Function, Collector) 1061 */ 1062 public static <T, K, A, D> 1063 Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier, 1064 Collector<? super T, A, D> downstream) { 1065 return groupingBy(classifier, HashMap::new, downstream); 1066 } 1067 1068 /** 1069 * Returns a {@code Collector} implementing a cascaded "group by" operation 1070 * on input elements of type {@code T}, grouping elements according to a 1071 * classification function, and then performing a reduction operation on 1072 * the values associated with a given key using the specified downstream 1073 * {@code Collector}. The {@code Map} produced by the Collector is created 1074 * with the supplied factory function. 1075 * 1076 * <p>The classification function maps elements to some key type {@code K}. 1077 * The downstream collector operates on elements of type {@code T} and 1078 * produces a result of type {@code D}. The resulting collector produces a 1079 * {@code Map<K, D>}. 1080 * 1081 * <p>For example, to compute the set of last names of people in each city, 1082 * where the city names are sorted: 1083 * <pre>{@code 1084 * Map<City, Set<String>> namesByCity 1085 * = people.stream().collect( 1086 * groupingBy(Person::getCity, 1087 * TreeMap::new, 1088 * mapping(Person::getLastName, 1089 * toSet()))); 1090 * }</pre> 1091 * 1092 * @implNote 1093 * The returned {@code Collector} is not concurrent. For parallel stream 1094 * pipelines, the {@code combiner} function operates by merging the keys 1095 * from one map into another, which can be an expensive operation. If 1096 * preservation of the order in which elements are presented to the downstream 1097 * collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)} 1098 * may offer better parallel performance. 1099 * 1100 * @param <T> the type of the input elements 1101 * @param <K> the type of the keys 1102 * @param <A> the intermediate accumulation type of the downstream collector 1103 * @param <D> the result type of the downstream reduction 1104 * @param <M> the type of the resulting {@code Map} 1105 * @param classifier a classifier function mapping input elements to keys 1106 * @param downstream a {@code Collector} implementing the downstream reduction 1107 * @param mapFactory a supplier providing a new empty {@code Map} 1108 * into which the results will be inserted 1109 * @return a {@code Collector} implementing the cascaded group-by operation 1110 * 1111 * @see #groupingBy(Function, Collector) 1112 * @see #groupingBy(Function) 1113 * @see #groupingByConcurrent(Function, Supplier, Collector) 1114 */ 1115 public static <T, K, D, A, M extends Map<K, D>> 1116 Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier, 1117 Supplier<M> mapFactory, 1118 Collector<? super T, A, D> downstream) { 1119 Supplier<A> downstreamSupplier = downstream.supplier(); 1120 BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); 1121 BiConsumer<Map<K, A>, T> accumulator = (m, t) -> { 1122 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); 1123 A container = m.computeIfAbsent(key, k -> downstreamSupplier.get()); 1124 downstreamAccumulator.accept(container, t); 1125 }; 1126 BinaryOperator<Map<K, A>> merger = Collectors.<K, A, Map<K, A>>mapMerger(downstream.combiner()); 1127 @SuppressWarnings("unchecked") 1128 Supplier<Map<K, A>> mangledFactory = (Supplier<Map<K, A>>) mapFactory; 1129 1130 if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { 1131 return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID); 1132 } 1133 else { 1134 @SuppressWarnings("unchecked") 1135 Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher(); 1136 Function<Map<K, A>, M> finisher = intermediate -> { 1137 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); 1138 @SuppressWarnings("unchecked") 1139 M castResult = (M) intermediate; 1140 return castResult; 1141 }; 1142 return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID); 1143 } 1144 } 1145 1146 /** 1147 * Returns a concurrent {@code Collector} implementing a "group by" 1148 * operation on input elements of type {@code T}, grouping elements 1149 * according to a classification function. 1150 * 1151 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1152 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1153 * 1154 * <p>The classification function maps elements to some key type {@code K}. 1155 * The collector produces a {@code ConcurrentMap<K, List<T>>} whose keys are the 1156 * values resulting from applying the classification function to the input 1157 * elements, and whose corresponding values are {@code List}s containing the 1158 * input elements which map to the associated key under the classification 1159 * function. 1160 * 1161 * <p>There are no guarantees on the type, mutability, or serializability 1162 * of the {@code ConcurrentMap} or {@code List} objects returned, or of the 1163 * thread-safety of the {@code List} objects returned. 1164 * @implSpec 1165 * This produces a result similar to: 1166 * <pre>{@code 1167 * groupingByConcurrent(classifier, toList()); 1168 * }</pre> 1169 * 1170 * @param <T> the type of the input elements 1171 * @param <K> the type of the keys 1172 * @param classifier a classifier function mapping input elements to keys 1173 * @return a concurrent, unordered {@code Collector} implementing the group-by operation 1174 * 1175 * @see #groupingBy(Function) 1176 * @see #groupingByConcurrent(Function, Collector) 1177 * @see #groupingByConcurrent(Function, Supplier, Collector) 1178 */ 1179 public static <T, K> 1180 Collector<T, ?, ConcurrentMap<K, List<T>>> 1181 groupingByConcurrent(Function<? super T, ? extends K> classifier) { 1182 return groupingByConcurrent(classifier, ConcurrentHashMap::new, toList()); 1183 } 1184 1185 /** 1186 * Returns a concurrent {@code Collector} implementing a cascaded "group by" 1187 * operation on input elements of type {@code T}, grouping elements 1188 * according to a classification function, and then performing a reduction 1189 * operation on the values associated with a given key using the specified 1190 * downstream {@code Collector}. 1191 * 1192 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1193 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1194 * 1195 * <p>The classification function maps elements to some key type {@code K}. 1196 * The downstream collector operates on elements of type {@code T} and 1197 * produces a result of type {@code D}. The resulting collector produces a 1198 * {@code ConcurrentMap<K, D>}. 1199 * 1200 * <p>There are no guarantees on the type, mutability, or serializability 1201 * of the {@code ConcurrentMap} returned. 1202 * 1203 * <p>For example, to compute the set of last names of people in each city, 1204 * where the city names are sorted: 1205 * <pre>{@code 1206 * ConcurrentMap<City, Set<String>> namesByCity 1207 * = people.stream().collect( 1208 * groupingByConcurrent(Person::getCity, 1209 * mapping(Person::getLastName, 1210 * toSet()))); 1211 * }</pre> 1212 * 1213 * @param <T> the type of the input elements 1214 * @param <K> the type of the keys 1215 * @param <A> the intermediate accumulation type of the downstream collector 1216 * @param <D> the result type of the downstream reduction 1217 * @param classifier a classifier function mapping input elements to keys 1218 * @param downstream a {@code Collector} implementing the downstream reduction 1219 * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation 1220 * 1221 * @see #groupingBy(Function, Collector) 1222 * @see #groupingByConcurrent(Function) 1223 * @see #groupingByConcurrent(Function, Supplier, Collector) 1224 */ 1225 public static <T, K, A, D> 1226 Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(Function<? super T, ? extends K> classifier, 1227 Collector<? super T, A, D> downstream) { 1228 return groupingByConcurrent(classifier, ConcurrentHashMap::new, downstream); 1229 } 1230 1231 /** 1232 * Returns a concurrent {@code Collector} implementing a cascaded "group by" 1233 * operation on input elements of type {@code T}, grouping elements 1234 * according to a classification function, and then performing a reduction 1235 * operation on the values associated with a given key using the specified 1236 * downstream {@code Collector}. The {@code ConcurrentMap} produced by the 1237 * Collector is created with the supplied factory function. 1238 * 1239 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1240 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1241 * 1242 * <p>The classification function maps elements to some key type {@code K}. 1243 * The downstream collector operates on elements of type {@code T} and 1244 * produces a result of type {@code D}. The resulting collector produces a 1245 * {@code ConcurrentMap<K, D>}. 1246 * 1247 * <p>For example, to compute the set of last names of people in each city, 1248 * where the city names are sorted: 1249 * <pre>{@code 1250 * ConcurrentMap<City, Set<String>> namesByCity 1251 * = people.stream().collect( 1252 * groupingByConcurrent(Person::getCity, 1253 * ConcurrentSkipListMap::new, 1254 * mapping(Person::getLastName, 1255 * toSet()))); 1256 * }</pre> 1257 * 1258 * @param <T> the type of the input elements 1259 * @param <K> the type of the keys 1260 * @param <A> the intermediate accumulation type of the downstream collector 1261 * @param <D> the result type of the downstream reduction 1262 * @param <M> the type of the resulting {@code ConcurrentMap} 1263 * @param classifier a classifier function mapping input elements to keys 1264 * @param downstream a {@code Collector} implementing the downstream reduction 1265 * @param mapFactory a supplier providing a new empty {@code ConcurrentMap} 1266 * into which the results will be inserted 1267 * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation 1268 * 1269 * @see #groupingByConcurrent(Function) 1270 * @see #groupingByConcurrent(Function, Collector) 1271 * @see #groupingBy(Function, Supplier, Collector) 1272 */ 1273 public static <T, K, A, D, M extends ConcurrentMap<K, D>> 1274 Collector<T, ?, M> groupingByConcurrent(Function<? super T, ? extends K> classifier, 1275 Supplier<M> mapFactory, 1276 Collector<? super T, A, D> downstream) { 1277 Supplier<A> downstreamSupplier = downstream.supplier(); 1278 BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); 1279 BinaryOperator<ConcurrentMap<K, A>> merger = Collectors.<K, A, ConcurrentMap<K, A>>mapMerger(downstream.combiner()); 1280 @SuppressWarnings("unchecked") 1281 Supplier<ConcurrentMap<K, A>> mangledFactory = (Supplier<ConcurrentMap<K, A>>) mapFactory; 1282 BiConsumer<ConcurrentMap<K, A>, T> accumulator; 1283 if (downstream.characteristics().contains(Collector.Characteristics.CONCURRENT)) { 1284 accumulator = (m, t) -> { 1285 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); 1286 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); 1287 downstreamAccumulator.accept(resultContainer, t); 1288 }; 1289 } 1290 else { 1291 accumulator = (m, t) -> { 1292 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); 1293 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); 1294 synchronized (resultContainer) { 1295 downstreamAccumulator.accept(resultContainer, t); 1296 } 1297 }; 1298 } 1299 1300 if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { 1301 return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_CONCURRENT_ID); 1302 } 1303 else { 1304 @SuppressWarnings("unchecked") 1305 Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher(); 1306 Function<ConcurrentMap<K, A>, M> finisher = intermediate -> { 1307 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); 1308 @SuppressWarnings("unchecked") 1309 M castResult = (M) intermediate; 1310 return castResult; 1311 }; 1312 return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_CONCURRENT_NOID); 1313 } 1314 } 1315 1316 /** 1317 * Returns a {@code Collector} which partitions the input elements according 1318 * to a {@code Predicate}, and organizes them into a 1319 * {@code Map<Boolean, List<T>>}. 1320 * 1321 * The returned {@code Map} always contains mappings for both 1322 * {@code false} and {@code true} keys. 1323 * There are no guarantees on the type, mutability, 1324 * serializability, or thread-safety of the {@code Map} or {@code List} 1325 * returned. 1326 * 1327 * @apiNote 1328 * If a partition has no elements, its value in the result Map will be 1329 * an empty List. 1330 * 1331 * @param <T> the type of the input elements 1332 * @param predicate a predicate used for classifying input elements 1333 * @return a {@code Collector} implementing the partitioning operation 1334 * 1335 * @see #partitioningBy(Predicate, Collector) 1336 */ 1337 public static <T> 1338 Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) { 1339 return partitioningBy(predicate, toList()); 1340 } 1341 1342 /** 1343 * Returns a {@code Collector} which partitions the input elements according 1344 * to a {@code Predicate}, reduces the values in each partition according to 1345 * another {@code Collector}, and organizes them into a 1346 * {@code Map<Boolean, D>} whose values are the result of the downstream 1347 * reduction. 1348 * 1349 * <p> 1350 * The returned {@code Map} always contains mappings for both 1351 * {@code false} and {@code true} keys. 1352 * There are no guarantees on the type, mutability, 1353 * serializability, or thread-safety of the {@code Map} returned. 1354 * 1355 * @apiNote 1356 * If a partition has no elements, its value in the result Map will be 1357 * obtained by calling the downstream collector's supplier function and then 1358 * applying the finisher function. 1359 * 1360 * @param <T> the type of the input elements 1361 * @param <A> the intermediate accumulation type of the downstream collector 1362 * @param <D> the result type of the downstream reduction 1363 * @param predicate a predicate used for classifying input elements 1364 * @param downstream a {@code Collector} implementing the downstream 1365 * reduction 1366 * @return a {@code Collector} implementing the cascaded partitioning 1367 * operation 1368 * 1369 * @see #partitioningBy(Predicate) 1370 */ 1371 public static <T, D, A> 1372 Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate, 1373 Collector<? super T, A, D> downstream) { 1374 BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); 1375 BiConsumer<Partition<A>, T> accumulator = (result, t) -> 1376 downstreamAccumulator.accept(predicate.test(t) ? result.forTrue : result.forFalse, t); 1377 BinaryOperator<A> op = downstream.combiner(); 1378 BinaryOperator<Partition<A>> merger = (left, right) -> 1379 new Partition<>(op.apply(left.forTrue, right.forTrue), 1380 op.apply(left.forFalse, right.forFalse)); 1381 Supplier<Partition<A>> supplier = () -> 1382 new Partition<>(downstream.supplier().get(), 1383 downstream.supplier().get()); 1384 if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { 1385 return new CollectorImpl<>(supplier, accumulator, merger, CH_ID); 1386 } 1387 else { 1388 Function<Partition<A>, Map<Boolean, D>> finisher = par -> 1389 new Partition<>(downstream.finisher().apply(par.forTrue), 1390 downstream.finisher().apply(par.forFalse)); 1391 return new CollectorImpl<>(supplier, accumulator, merger, finisher, CH_NOID); 1392 } 1393 } 1394 1395 /** 1396 * Returns a {@code Collector} that accumulates elements into a 1397 * {@code Map} whose keys and values are the result of applying the provided 1398 * mapping functions to the input elements. 1399 * 1400 * <p>If the mapped keys contain duplicates (according to 1401 * {@link Object#equals(Object)}), an {@code IllegalStateException} is 1402 * thrown when the collection operation is performed. If the mapped keys 1403 * may have duplicates, use {@link #toMap(Function, Function, BinaryOperator)} 1404 * instead. 1405 * 1406 * <p>There are no guarantees on the type, mutability, serializability, 1407 * or thread-safety of the {@code Map} returned. 1408 * 1409 * @apiNote 1410 * It is common for either the key or the value to be the input elements. 1411 * In this case, the utility method 1412 * {@link java.util.function.Function#identity()} may be helpful. 1413 * For example, the following produces a {@code Map} mapping 1414 * students to their grade point average: 1415 * <pre>{@code 1416 * Map<Student, Double> studentToGPA 1417 * = students.stream().collect( 1418 * toMap(Function.identity(), 1419 * student -> computeGPA(student))); 1420 * }</pre> 1421 * And the following produces a {@code Map} mapping a unique identifier to 1422 * students: 1423 * <pre>{@code 1424 * Map<String, Student> studentIdToStudent 1425 * = students.stream().collect( 1426 * toMap(Student::getId, 1427 * Function.identity())); 1428 * }</pre> 1429 * 1430 * @implNote 1431 * The returned {@code Collector} is not concurrent. For parallel stream 1432 * pipelines, the {@code combiner} function operates by merging the keys 1433 * from one map into another, which can be an expensive operation. If it is 1434 * not required that results are inserted into the {@code Map} in encounter 1435 * order, using {@link #toConcurrentMap(Function, Function)} 1436 * may offer better parallel performance. 1437 * 1438 * @param <T> the type of the input elements 1439 * @param <K> the output type of the key mapping function 1440 * @param <U> the output type of the value mapping function 1441 * @param keyMapper a mapping function to produce keys 1442 * @param valueMapper a mapping function to produce values 1443 * @return a {@code Collector} which collects elements into a {@code Map} 1444 * whose keys and values are the result of applying mapping functions to 1445 * the input elements 1446 * 1447 * @see #toMap(Function, Function, BinaryOperator) 1448 * @see #toMap(Function, Function, BinaryOperator, Supplier) 1449 * @see #toConcurrentMap(Function, Function) 1450 */ 1451 public static <T, K, U> 1452 Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, 1453 Function<? super T, ? extends U> valueMapper) { 1454 return new CollectorImpl<>(HashMap::new, 1455 uniqKeysMapAccumulator(keyMapper, valueMapper), 1456 uniqKeysMapMerger(), 1457 CH_ID); 1458 } 1459 1460 /** 1461 * Returns a {@code Collector} that accumulates the input elements into an 1462 * <a href="Map.html#unmodifiable">unmodifiable</a> {@code Map}, 1463 * whose keys and values are the result of applying the provided 1464 * mapping functions to the input elements. 1465 * 1466 * <p>If the mapped keys contain duplicates (according to 1467 * {@link Object#equals(Object)}), an {@code IllegalStateException} is 1468 * thrown when the collection operation is performed. If the mapped keys 1469 * may have duplicates, use {@link #toUnmodifiableMap(Function, Function, BinaryOperator)} 1470 * instead. 1471 * 1472 * @param <T> the type of the input elements 1473 * @param <K> the output type of the key mapping function 1474 * @param <U> the output type of the value mapping function 1475 * @param keyMapper a mapping function to produce keys 1476 * @param valueMapper a mapping function to produce values 1477 * @return a {@code Collector} which collects elements into an unmodifiable {@code Map} 1478 * whose keys and values are the result of applying mapping functions to 1479 * the input elements 1480 * 1481 * @see #toUnmodifiableMap(Function, Function, BinaryOperator) 1482 * @since 10 1483 */ 1484 @SuppressWarnings({"rawtypes", "unchecked"}) 1485 public static <T, K, U> 1486 Collector<T, ?, Map<K,U>> toUnmodifiableMap(Function<? super T, ? extends K> keyMapper, 1487 Function<? super T, ? extends U> valueMapper) { 1488 return new CollectorImpl<>(() -> new ArrayList<Map.Entry<K, U>>(), 1489 (list, t) -> list.add(Map.entry(keyMapper.apply(t), valueMapper.apply(t))), 1490 (list1, list2) -> { list1.addAll(list2); return list1; }, 1491 list -> (Map<K,U>)Map.ofEntries(list.toArray(new Map.Entry[0])), 1492 CH_UNORDERED_NOID); 1493 } 1494 1495 /** 1496 * Returns a {@code Collector} that accumulates elements into a 1497 * {@code Map} whose keys and values are the result of applying the provided 1498 * mapping functions to the input elements. 1499 * 1500 * <p>If the mapped 1501 * keys contain duplicates (according to {@link Object#equals(Object)}), 1502 * the value mapping function is applied to each equal element, and the 1503 * results are merged using the provided merging function. 1504 * 1505 * <p>There are no guarantees on the type, mutability, serializability, 1506 * or thread-safety of the {@code Map} returned. 1507 * 1508 * @apiNote 1509 * There are multiple ways to deal with collisions between multiple elements 1510 * mapping to the same key. The other forms of {@code toMap} simply use 1511 * a merge function that throws unconditionally, but you can easily write 1512 * more flexible merge policies. For example, if you have a stream 1513 * of {@code Person}, and you want to produce a "phone book" mapping name to 1514 * address, but it is possible that two persons have the same name, you can 1515 * do as follows to gracefully deal with these collisions, and produce a 1516 * {@code Map} mapping names to a concatenated list of addresses: 1517 * <pre>{@code 1518 * Map<String, String> phoneBook 1519 * = people.stream().collect( 1520 * toMap(Person::getName, 1521 * Person::getAddress, 1522 * (s, a) -> s + ", " + a)); 1523 * }</pre> 1524 * 1525 * @implNote 1526 * The returned {@code Collector} is not concurrent. For parallel stream 1527 * pipelines, the {@code combiner} function operates by merging the keys 1528 * from one map into another, which can be an expensive operation. If it is 1529 * not required that results are merged into the {@code Map} in encounter 1530 * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator)} 1531 * may offer better parallel performance. 1532 * 1533 * @param <T> the type of the input elements 1534 * @param <K> the output type of the key mapping function 1535 * @param <U> the output type of the value mapping function 1536 * @param keyMapper a mapping function to produce keys 1537 * @param valueMapper a mapping function to produce values 1538 * @param mergeFunction a merge function, used to resolve collisions between 1539 * values associated with the same key, as supplied 1540 * to {@link Map#merge(Object, Object, BiFunction)} 1541 * @return a {@code Collector} which collects elements into a {@code Map} 1542 * whose keys are the result of applying a key mapping function to the input 1543 * elements, and whose values are the result of applying a value mapping 1544 * function to all input elements equal to the key and combining them 1545 * using the merge function 1546 * 1547 * @see #toMap(Function, Function) 1548 * @see #toMap(Function, Function, BinaryOperator, Supplier) 1549 * @see #toConcurrentMap(Function, Function, BinaryOperator) 1550 */ 1551 public static <T, K, U> 1552 Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, 1553 Function<? super T, ? extends U> valueMapper, 1554 BinaryOperator<U> mergeFunction) { 1555 return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new); 1556 } 1557 1558 1559 /** 1560 * Returns a {@code Collector} that accumulates the input elements into an 1561 * <a href="Map.html#unmodifiable">unmodifiable</a> {@code Map}, 1562 * whose keys and values are the result of applying the provided 1563 * mapping functions to the input elements. 1564 * 1565 * <p>If the mapped 1566 * keys contain duplicates (according to {@link Object#equals(Object)}), 1567 * the value mapping function is applied to each equal element, and the 1568 * results are merged using the provided merging function. 1569 * 1570 * @param <T> the type of the input elements 1571 * @param <K> the output type of the key mapping function 1572 * @param <U> the output type of the value mapping function 1573 * @param keyMapper a mapping function to produce keys 1574 * @param valueMapper a mapping function to produce values 1575 * @param mergeFunction a merge function, used to resolve collisions between 1576 * values associated with the same key, as supplied 1577 * to {@link Map#merge(Object, Object, BiFunction)} 1578 * @return a {@code Collector} which collects elements into an unmodifiable {@code Map} 1579 * whose keys are the result of applying a key mapping function to the input 1580 * elements, and whose values are the result of applying a value mapping 1581 * function to all input elements equal to the key and combining them 1582 * using the merge function 1583 * 1584 * @see #toUnmodifiableMap(Function, Function) 1585 * @since 10 1586 */ 1587 @SuppressWarnings({"rawtypes", "unchecked"}) 1588 public static <T, K, U> 1589 Collector<T, ?, Map<K,U>> toUnmodifiableMap(Function<? super T, ? extends K> keyMapper, 1590 Function<? super T, ? extends U> valueMapper, 1591 BinaryOperator<U> mergeFunction) { 1592 return collectingAndThen( 1593 toMap(keyMapper, valueMapper, mergeFunction, HashMap::new), 1594 hm -> (Map<K,U>)Map.ofEntries(hm.entrySet().toArray(new Map.Entry[0]))); 1595 } 1596 1597 /** 1598 * Returns a {@code Collector} that accumulates elements into a 1599 * {@code Map} whose keys and values are the result of applying the provided 1600 * mapping functions to the input elements. 1601 * 1602 * <p>If the mapped 1603 * keys contain duplicates (according to {@link Object#equals(Object)}), 1604 * the value mapping function is applied to each equal element, and the 1605 * results are merged using the provided merging function. The {@code Map} 1606 * is created by a provided supplier function. 1607 * 1608 * @implNote 1609 * The returned {@code Collector} is not concurrent. For parallel stream 1610 * pipelines, the {@code combiner} function operates by merging the keys 1611 * from one map into another, which can be an expensive operation. If it is 1612 * not required that results are merged into the {@code Map} in encounter 1613 * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)} 1614 * may offer better parallel performance. 1615 * 1616 * @param <T> the type of the input elements 1617 * @param <K> the output type of the key mapping function 1618 * @param <U> the output type of the value mapping function 1619 * @param <M> the type of the resulting {@code Map} 1620 * @param keyMapper a mapping function to produce keys 1621 * @param valueMapper a mapping function to produce values 1622 * @param mergeFunction a merge function, used to resolve collisions between 1623 * values associated with the same key, as supplied 1624 * to {@link Map#merge(Object, Object, BiFunction)} 1625 * @param mapFactory a supplier providing a new empty {@code Map} 1626 * into which the results will be inserted 1627 * @return a {@code Collector} which collects elements into a {@code Map} 1628 * whose keys are the result of applying a key mapping function to the input 1629 * elements, and whose values are the result of applying a value mapping 1630 * function to all input elements equal to the key and combining them 1631 * using the merge function 1632 * 1633 * @see #toMap(Function, Function) 1634 * @see #toMap(Function, Function, BinaryOperator) 1635 * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) 1636 */ 1637 public static <T, K, U, M extends Map<K, U>> 1638 Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper, 1639 Function<? super T, ? extends U> valueMapper, 1640 BinaryOperator<U> mergeFunction, 1641 Supplier<M> mapFactory) { 1642 BiConsumer<M, T> accumulator 1643 = (map, element) -> map.merge(keyMapper.apply(element), 1644 valueMapper.apply(element), mergeFunction); 1645 return new CollectorImpl<>(mapFactory, accumulator, mapMerger(mergeFunction), CH_ID); 1646 } 1647 1648 /** 1649 * Returns a concurrent {@code Collector} that accumulates elements into a 1650 * {@code ConcurrentMap} whose keys and values are the result of applying 1651 * the provided mapping functions to the input elements. 1652 * 1653 * <p>If the mapped keys contain duplicates (according to 1654 * {@link Object#equals(Object)}), an {@code IllegalStateException} is 1655 * thrown when the collection operation is performed. If the mapped keys 1656 * may have duplicates, use 1657 * {@link #toConcurrentMap(Function, Function, BinaryOperator)} instead. 1658 * 1659 * <p>There are no guarantees on the type, mutability, or serializability 1660 * of the {@code ConcurrentMap} returned. 1661 * 1662 * @apiNote 1663 * It is common for either the key or the value to be the input elements. 1664 * In this case, the utility method 1665 * {@link java.util.function.Function#identity()} may be helpful. 1666 * For example, the following produces a {@code ConcurrentMap} mapping 1667 * students to their grade point average: 1668 * <pre>{@code 1669 * ConcurrentMap<Student, Double> studentToGPA 1670 * = students.stream().collect( 1671 * toConcurrentMap(Function.identity(), 1672 * student -> computeGPA(student))); 1673 * }</pre> 1674 * And the following produces a {@code ConcurrentMap} mapping a 1675 * unique identifier to students: 1676 * <pre>{@code 1677 * ConcurrentMap<String, Student> studentIdToStudent 1678 * = students.stream().collect( 1679 * toConcurrentMap(Student::getId, 1680 * Function.identity())); 1681 * }</pre> 1682 * 1683 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1684 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1685 * 1686 * @param <T> the type of the input elements 1687 * @param <K> the output type of the key mapping function 1688 * @param <U> the output type of the value mapping function 1689 * @param keyMapper the mapping function to produce keys 1690 * @param valueMapper the mapping function to produce values 1691 * @return a concurrent, unordered {@code Collector} which collects elements into a 1692 * {@code ConcurrentMap} whose keys are the result of applying a key mapping 1693 * function to the input elements, and whose values are the result of 1694 * applying a value mapping function to the input elements 1695 * 1696 * @see #toMap(Function, Function) 1697 * @see #toConcurrentMap(Function, Function, BinaryOperator) 1698 * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) 1699 */ 1700 public static <T, K, U> 1701 Collector<T, ?, ConcurrentMap<K,U>> toConcurrentMap(Function<? super T, ? extends K> keyMapper, 1702 Function<? super T, ? extends U> valueMapper) { 1703 return new CollectorImpl<>(ConcurrentHashMap::new, 1704 uniqKeysMapAccumulator(keyMapper, valueMapper), 1705 uniqKeysMapMerger(), 1706 CH_CONCURRENT_ID); 1707 } 1708 1709 /** 1710 * Returns a concurrent {@code Collector} that accumulates elements into a 1711 * {@code ConcurrentMap} whose keys and values are the result of applying 1712 * the provided mapping functions to the input elements. 1713 * 1714 * <p>If the mapped keys contain duplicates (according to {@link Object#equals(Object)}), 1715 * the value mapping function is applied to each equal element, and the 1716 * results are merged using the provided merging function. 1717 * 1718 * <p>There are no guarantees on the type, mutability, or serializability 1719 * of the {@code ConcurrentMap} returned. 1720 * 1721 * @apiNote 1722 * There are multiple ways to deal with collisions between multiple elements 1723 * mapping to the same key. The other forms of {@code toConcurrentMap} simply use 1724 * a merge function that throws unconditionally, but you can easily write 1725 * more flexible merge policies. For example, if you have a stream 1726 * of {@code Person}, and you want to produce a "phone book" mapping name to 1727 * address, but it is possible that two persons have the same name, you can 1728 * do as follows to gracefully deal with these collisions, and produce a 1729 * {@code ConcurrentMap} mapping names to a concatenated list of addresses: 1730 * <pre>{@code 1731 * ConcurrentMap<String, String> phoneBook 1732 * = people.stream().collect( 1733 * toConcurrentMap(Person::getName, 1734 * Person::getAddress, 1735 * (s, a) -> s + ", " + a)); 1736 * }</pre> 1737 * 1738 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1739 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1740 * 1741 * @param <T> the type of the input elements 1742 * @param <K> the output type of the key mapping function 1743 * @param <U> the output type of the value mapping function 1744 * @param keyMapper a mapping function to produce keys 1745 * @param valueMapper a mapping function to produce values 1746 * @param mergeFunction a merge function, used to resolve collisions between 1747 * values associated with the same key, as supplied 1748 * to {@link Map#merge(Object, Object, BiFunction)} 1749 * @return a concurrent, unordered {@code Collector} which collects elements into a 1750 * {@code ConcurrentMap} whose keys are the result of applying a key mapping 1751 * function to the input elements, and whose values are the result of 1752 * applying a value mapping function to all input elements equal to the key 1753 * and combining them using the merge function 1754 * 1755 * @see #toConcurrentMap(Function, Function) 1756 * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) 1757 * @see #toMap(Function, Function, BinaryOperator) 1758 */ 1759 public static <T, K, U> 1760 Collector<T, ?, ConcurrentMap<K,U>> 1761 toConcurrentMap(Function<? super T, ? extends K> keyMapper, 1762 Function<? super T, ? extends U> valueMapper, 1763 BinaryOperator<U> mergeFunction) { 1764 return toConcurrentMap(keyMapper, valueMapper, mergeFunction, ConcurrentHashMap::new); 1765 } 1766 1767 /** 1768 * Returns a concurrent {@code Collector} that accumulates elements into a 1769 * {@code ConcurrentMap} whose keys and values are the result of applying 1770 * the provided mapping functions to the input elements. 1771 * 1772 * <p>If the mapped keys contain duplicates (according to {@link Object#equals(Object)}), 1773 * the value mapping function is applied to each equal element, and the 1774 * results are merged using the provided merging function. The 1775 * {@code ConcurrentMap} is created by a provided supplier function. 1776 * 1777 * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and 1778 * {@link Collector.Characteristics#UNORDERED unordered} Collector. 1779 * 1780 * @param <T> the type of the input elements 1781 * @param <K> the output type of the key mapping function 1782 * @param <U> the output type of the value mapping function 1783 * @param <M> the type of the resulting {@code ConcurrentMap} 1784 * @param keyMapper a mapping function to produce keys 1785 * @param valueMapper a mapping function to produce values 1786 * @param mergeFunction a merge function, used to resolve collisions between 1787 * values associated with the same key, as supplied 1788 * to {@link Map#merge(Object, Object, BiFunction)} 1789 * @param mapFactory a supplier providing a new empty {@code ConcurrentMap} 1790 * into which the results will be inserted 1791 * @return a concurrent, unordered {@code Collector} which collects elements into a 1792 * {@code ConcurrentMap} whose keys are the result of applying a key mapping 1793 * function to the input elements, and whose values are the result of 1794 * applying a value mapping function to all input elements equal to the key 1795 * and combining them using the merge function 1796 * 1797 * @see #toConcurrentMap(Function, Function) 1798 * @see #toConcurrentMap(Function, Function, BinaryOperator) 1799 * @see #toMap(Function, Function, BinaryOperator, Supplier) 1800 */ 1801 public static <T, K, U, M extends ConcurrentMap<K, U>> 1802 Collector<T, ?, M> toConcurrentMap(Function<? super T, ? extends K> keyMapper, 1803 Function<? super T, ? extends U> valueMapper, 1804 BinaryOperator<U> mergeFunction, 1805 Supplier<M> mapFactory) { 1806 BiConsumer<M, T> accumulator 1807 = (map, element) -> map.merge(keyMapper.apply(element), 1808 valueMapper.apply(element), mergeFunction); 1809 return new CollectorImpl<>(mapFactory, accumulator, mapMerger(mergeFunction), CH_CONCURRENT_ID); 1810 } 1811 1812 /** 1813 * Returns a {@code Collector} which applies an {@code int}-producing 1814 * mapping function to each input element, and returns summary statistics 1815 * for the resulting values. 1816 * 1817 * @param <T> the type of the input elements 1818 * @param mapper a mapping function to apply to each element 1819 * @return a {@code Collector} implementing the summary-statistics reduction 1820 * 1821 * @see #summarizingDouble(ToDoubleFunction) 1822 * @see #summarizingLong(ToLongFunction) 1823 */ 1824 public static <T> 1825 Collector<T, ?, IntSummaryStatistics> summarizingInt(ToIntFunction<? super T> mapper) { 1826 return new CollectorImpl<T, IntSummaryStatistics, IntSummaryStatistics>( 1827 IntSummaryStatistics::new, 1828 (r, t) -> r.accept(mapper.applyAsInt(t)), 1829 (l, r) -> { l.combine(r); return l; }, CH_ID); 1830 } 1831 1832 /** 1833 * Returns a {@code Collector} which applies an {@code long}-producing 1834 * mapping function to each input element, and returns summary statistics 1835 * for the resulting values. 1836 * 1837 * @param <T> the type of the input elements 1838 * @param mapper the mapping function to apply to each element 1839 * @return a {@code Collector} implementing the summary-statistics reduction 1840 * 1841 * @see #summarizingDouble(ToDoubleFunction) 1842 * @see #summarizingInt(ToIntFunction) 1843 */ 1844 public static <T> 1845 Collector<T, ?, LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper) { 1846 return new CollectorImpl<T, LongSummaryStatistics, LongSummaryStatistics>( 1847 LongSummaryStatistics::new, 1848 (r, t) -> r.accept(mapper.applyAsLong(t)), 1849 (l, r) -> { l.combine(r); return l; }, CH_ID); 1850 } 1851 1852 /** 1853 * Returns a {@code Collector} which applies an {@code double}-producing 1854 * mapping function to each input element, and returns summary statistics 1855 * for the resulting values. 1856 * 1857 * @param <T> the type of the input elements 1858 * @param mapper a mapping function to apply to each element 1859 * @return a {@code Collector} implementing the summary-statistics reduction 1860 * 1861 * @see #summarizingLong(ToLongFunction) 1862 * @see #summarizingInt(ToIntFunction) 1863 */ 1864 public static <T> 1865 Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<? super T> mapper) { 1866 return new CollectorImpl<T, DoubleSummaryStatistics, DoubleSummaryStatistics>( 1867 DoubleSummaryStatistics::new, 1868 (r, t) -> r.accept(mapper.applyAsDouble(t)), 1869 (l, r) -> { l.combine(r); return l; }, CH_ID); 1870 } 1871 1872 /** 1873 * Implementation class used by partitioningBy. 1874 */ 1875 private static final class Partition<T> 1876 extends AbstractMap<Boolean, T> 1877 implements Map<Boolean, T> { 1878 final T forTrue; 1879 final T forFalse; 1880 1881 Partition(T forTrue, T forFalse) { 1882 this.forTrue = forTrue; 1883 this.forFalse = forFalse; 1884 } 1885 1886 @Override 1887 public Set<Map.Entry<Boolean, T>> entrySet() { 1888 return new AbstractSet<>() { 1889 @Override 1890 public Iterator<Map.Entry<Boolean, T>> iterator() { 1891 Map.Entry<Boolean, T> falseEntry = new SimpleImmutableEntry<>(false, forFalse); 1892 Map.Entry<Boolean, T> trueEntry = new SimpleImmutableEntry<>(true, forTrue); 1893 return List.of(falseEntry, trueEntry).iterator(); 1894 } 1895 1896 @Override 1897 public int size() { 1898 return 2; 1899 } 1900 }; 1901 } 1902 } 1903 }