1 /* 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.hpp" 30 31 // MacroAssembler extends Assembler by frequently used macros. 32 // 33 // Instructions for which a 'better' code sequence exists depending 34 // on arguments should also go in here. 35 36 class MacroAssembler: public Assembler { 37 friend class LIR_Assembler; 38 39 public: 40 using Assembler::mov; 41 using Assembler::movi; 42 43 protected: 44 45 // Support for VM calls 46 // 47 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 48 // may customize this version by overriding it for its purposes (e.g., to save/restore 49 // additional registers when doing a VM call). 50 virtual void call_VM_leaf_base( 51 address entry_point, // the entry point 52 int number_of_arguments, // the number of arguments to pop after the call 53 Label *retaddr = NULL 54 ); 55 56 virtual void call_VM_leaf_base( 57 address entry_point, // the entry point 58 int number_of_arguments, // the number of arguments to pop after the call 59 Label &retaddr) { 60 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 61 } 62 63 // This is the base routine called by the different versions of call_VM. The interpreter 64 // may customize this version by overriding it for its purposes (e.g., to save/restore 65 // additional registers when doing a VM call). 66 // 67 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 68 // returns the register which contains the thread upon return. If a thread register has been 69 // specified, the return value will correspond to that register. If no last_java_sp is specified 70 // (noreg) than rsp will be used instead. 71 virtual void call_VM_base( // returns the register containing the thread upon return 72 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 73 Register java_thread, // the thread if computed before ; use noreg otherwise 74 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 75 address entry_point, // the entry point 76 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 77 bool check_exceptions // whether to check for pending exceptions after return 78 ); 79 80 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 81 82 // Maximum size of class area in Metaspace when compressed 83 uint64_t use_XOR_for_compressed_class_base; 84 85 public: 86 MacroAssembler(CodeBuffer* code) : Assembler(code) { 87 /* SRDM This is not friendly */ 88 const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1); 89 90 use_XOR_for_compressed_class_base 91 = (operand_valid_for_logical_immediate(false /*is32*/, 92 (uint64_t)Universe::narrow_klass_base()) 93 && ((uint64_t)Universe::narrow_klass_base() 94 > (1ul << log2_intptr(UnscaledClassSpaceMax)))); 95 } 96 97 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 98 // The implementation is only non-empty for the InterpreterMacroAssembler, 99 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 100 virtual void check_and_handle_popframe(Register java_thread); 101 virtual void check_and_handle_earlyret(Register java_thread); 102 103 void safepoint_poll(Label& slow_path); 104 void safepoint_poll_acquire(Label& slow_path); 105 106 // Biased locking support 107 // lock_reg and obj_reg must be loaded up with the appropriate values. 108 // swap_reg is killed. 109 // tmp_reg must be supplied and must not be rscratch1 or rscratch2 110 // Optional slow case is for implementations (interpreter and C1) which branch to 111 // slow case directly. Leaves condition codes set for C2's Fast_Lock node. 112 // Returns offset of first potentially-faulting instruction for null 113 // check info (currently consumed only by C1). If 114 // swap_reg_contains_mark is true then returns -1 as it is assumed 115 // the calling code has already passed any potential faults. 116 int biased_locking_enter(Register lock_reg, Register obj_reg, 117 Register swap_reg, Register tmp_reg, 118 bool swap_reg_contains_mark, 119 Label& done, Label* slow_case = NULL, 120 BiasedLockingCounters* counters = NULL); 121 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); 122 123 124 // Helper functions for statistics gathering. 125 // Unconditional atomic increment. 126 void atomic_incw(Register counter_addr, Register tmp, Register tmp2); 127 void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) { 128 lea(tmp1, counter_addr); 129 atomic_incw(tmp1, tmp2, tmp3); 130 } 131 // Load Effective Address 132 void lea(Register r, const Address &a) { 133 InstructionMark im(this); 134 code_section()->relocate(inst_mark(), a.rspec()); 135 a.lea(this, r); 136 } 137 138 void addmw(Address a, Register incr, Register scratch) { 139 ldrw(scratch, a); 140 addw(scratch, scratch, incr); 141 strw(scratch, a); 142 } 143 144 // Add constant to memory word 145 void addmw(Address a, int imm, Register scratch) { 146 ldrw(scratch, a); 147 if (imm > 0) 148 addw(scratch, scratch, (unsigned)imm); 149 else 150 subw(scratch, scratch, (unsigned)-imm); 151 strw(scratch, a); 152 } 153 154 void bind(Label& L) { 155 Assembler::bind(L); 156 code()->clear_last_membar(); 157 } 158 159 void membar(Membar_mask_bits order_constraint); 160 161 // Frame creation and destruction shared between JITs. 162 void build_frame(int framesize); 163 void remove_frame(int framesize); 164 165 virtual void _call_Unimplemented(address call_site) { 166 mov(rscratch2, call_site); 167 haltsim(); 168 } 169 170 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 171 172 virtual void notify(int type); 173 174 // aliases defined in AARCH64 spec 175 176 template<class T> 177 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 178 // imm is limited to 12 bits. 179 inline void cmp(Register Rd, unsigned imm) { subs(zr, Rd, imm); } 180 181 inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); } 182 inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); } 183 184 void cset(Register Rd, Assembler::Condition cond) { 185 csinc(Rd, zr, zr, ~cond); 186 } 187 void csetw(Register Rd, Assembler::Condition cond) { 188 csincw(Rd, zr, zr, ~cond); 189 } 190 191 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 192 csneg(Rd, Rn, Rn, ~cond); 193 } 194 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 195 csnegw(Rd, Rn, Rn, ~cond); 196 } 197 198 inline void movw(Register Rd, Register Rn) { 199 if (Rd == sp || Rn == sp) { 200 addw(Rd, Rn, 0U); 201 } else { 202 orrw(Rd, zr, Rn); 203 } 204 } 205 inline void mov(Register Rd, Register Rn) { 206 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 207 if (Rd == Rn) { 208 } else if (Rd == sp || Rn == sp) { 209 add(Rd, Rn, 0U); 210 } else { 211 orr(Rd, zr, Rn); 212 } 213 } 214 215 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 216 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 217 218 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 219 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 220 221 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 222 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 223 224 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 225 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 226 } 227 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 228 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 229 } 230 231 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 232 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 233 } 234 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 235 bfm(Rd, Rn, lsb , (lsb + width - 1)); 236 } 237 238 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 239 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 240 } 241 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 242 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 243 } 244 245 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 246 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 247 } 248 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 250 } 251 252 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 253 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 254 } 255 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 257 } 258 259 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 260 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 261 } 262 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 264 } 265 266 inline void asrw(Register Rd, Register Rn, unsigned imm) { 267 sbfmw(Rd, Rn, imm, 31); 268 } 269 270 inline void asr(Register Rd, Register Rn, unsigned imm) { 271 sbfm(Rd, Rn, imm, 63); 272 } 273 274 inline void lslw(Register Rd, Register Rn, unsigned imm) { 275 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 276 } 277 278 inline void lsl(Register Rd, Register Rn, unsigned imm) { 279 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 280 } 281 282 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 283 ubfmw(Rd, Rn, imm, 31); 284 } 285 286 inline void lsr(Register Rd, Register Rn, unsigned imm) { 287 ubfm(Rd, Rn, imm, 63); 288 } 289 290 inline void rorw(Register Rd, Register Rn, unsigned imm) { 291 extrw(Rd, Rn, Rn, imm); 292 } 293 294 inline void ror(Register Rd, Register Rn, unsigned imm) { 295 extr(Rd, Rn, Rn, imm); 296 } 297 298 inline void sxtbw(Register Rd, Register Rn) { 299 sbfmw(Rd, Rn, 0, 7); 300 } 301 inline void sxthw(Register Rd, Register Rn) { 302 sbfmw(Rd, Rn, 0, 15); 303 } 304 inline void sxtb(Register Rd, Register Rn) { 305 sbfm(Rd, Rn, 0, 7); 306 } 307 inline void sxth(Register Rd, Register Rn) { 308 sbfm(Rd, Rn, 0, 15); 309 } 310 inline void sxtw(Register Rd, Register Rn) { 311 sbfm(Rd, Rn, 0, 31); 312 } 313 314 inline void uxtbw(Register Rd, Register Rn) { 315 ubfmw(Rd, Rn, 0, 7); 316 } 317 inline void uxthw(Register Rd, Register Rn) { 318 ubfmw(Rd, Rn, 0, 15); 319 } 320 inline void uxtb(Register Rd, Register Rn) { 321 ubfm(Rd, Rn, 0, 7); 322 } 323 inline void uxth(Register Rd, Register Rn) { 324 ubfm(Rd, Rn, 0, 15); 325 } 326 inline void uxtw(Register Rd, Register Rn) { 327 ubfm(Rd, Rn, 0, 31); 328 } 329 330 inline void cmnw(Register Rn, Register Rm) { 331 addsw(zr, Rn, Rm); 332 } 333 inline void cmn(Register Rn, Register Rm) { 334 adds(zr, Rn, Rm); 335 } 336 337 inline void cmpw(Register Rn, Register Rm) { 338 subsw(zr, Rn, Rm); 339 } 340 inline void cmp(Register Rn, Register Rm) { 341 subs(zr, Rn, Rm); 342 } 343 344 inline void negw(Register Rd, Register Rn) { 345 subw(Rd, zr, Rn); 346 } 347 348 inline void neg(Register Rd, Register Rn) { 349 sub(Rd, zr, Rn); 350 } 351 352 inline void negsw(Register Rd, Register Rn) { 353 subsw(Rd, zr, Rn); 354 } 355 356 inline void negs(Register Rd, Register Rn) { 357 subs(Rd, zr, Rn); 358 } 359 360 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 361 addsw(zr, Rn, Rm, kind, shift); 362 } 363 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 364 adds(zr, Rn, Rm, kind, shift); 365 } 366 367 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 368 subsw(zr, Rn, Rm, kind, shift); 369 } 370 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 371 subs(zr, Rn, Rm, kind, shift); 372 } 373 374 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 375 subw(Rd, zr, Rn, kind, shift); 376 } 377 378 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 379 sub(Rd, zr, Rn, kind, shift); 380 } 381 382 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 383 subsw(Rd, zr, Rn, kind, shift); 384 } 385 386 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 387 subs(Rd, zr, Rn, kind, shift); 388 } 389 390 inline void mnegw(Register Rd, Register Rn, Register Rm) { 391 msubw(Rd, Rn, Rm, zr); 392 } 393 inline void mneg(Register Rd, Register Rn, Register Rm) { 394 msub(Rd, Rn, Rm, zr); 395 } 396 397 inline void mulw(Register Rd, Register Rn, Register Rm) { 398 maddw(Rd, Rn, Rm, zr); 399 } 400 inline void mul(Register Rd, Register Rn, Register Rm) { 401 madd(Rd, Rn, Rm, zr); 402 } 403 404 inline void smnegl(Register Rd, Register Rn, Register Rm) { 405 smsubl(Rd, Rn, Rm, zr); 406 } 407 inline void smull(Register Rd, Register Rn, Register Rm) { 408 smaddl(Rd, Rn, Rm, zr); 409 } 410 411 inline void umnegl(Register Rd, Register Rn, Register Rm) { 412 umsubl(Rd, Rn, Rm, zr); 413 } 414 inline void umull(Register Rd, Register Rn, Register Rm) { 415 umaddl(Rd, Rn, Rm, zr); 416 } 417 418 #define WRAP(INSN) \ 419 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 420 if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr) \ 421 nop(); \ 422 Assembler::INSN(Rd, Rn, Rm, Ra); \ 423 } 424 425 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 426 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 427 #undef WRAP 428 429 430 // macro assembly operations needed for aarch64 431 432 // first two private routines for loading 32 bit or 64 bit constants 433 private: 434 435 void mov_immediate64(Register dst, u_int64_t imm64); 436 void mov_immediate32(Register dst, u_int32_t imm32); 437 438 int push(unsigned int bitset, Register stack); 439 int pop(unsigned int bitset, Register stack); 440 441 void mov(Register dst, Address a); 442 443 public: 444 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 445 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 446 447 // Push and pop everything that might be clobbered by a native 448 // runtime call except rscratch1 and rscratch2. (They are always 449 // scratch, so we don't have to protect them.) Only save the lower 450 // 64 bits of each vector register. 451 void push_call_clobbered_registers(); 452 void pop_call_clobbered_registers(); 453 454 // now mov instructions for loading absolute addresses and 32 or 455 // 64 bit integers 456 457 inline void mov(Register dst, address addr) 458 { 459 mov_immediate64(dst, (u_int64_t)addr); 460 } 461 462 inline void mov(Register dst, u_int64_t imm64) 463 { 464 mov_immediate64(dst, imm64); 465 } 466 467 inline void movw(Register dst, u_int32_t imm32) 468 { 469 mov_immediate32(dst, imm32); 470 } 471 472 inline void mov(Register dst, long l) 473 { 474 mov(dst, (u_int64_t)l); 475 } 476 477 inline void mov(Register dst, int i) 478 { 479 mov(dst, (long)i); 480 } 481 482 void mov(Register dst, RegisterOrConstant src) { 483 if (src.is_register()) 484 mov(dst, src.as_register()); 485 else 486 mov(dst, src.as_constant()); 487 } 488 489 void movptr(Register r, uintptr_t imm64); 490 491 void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32); 492 493 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 494 orr(Vd, T, Vn, Vn); 495 } 496 497 public: 498 499 // Generalized Test Bit And Branch, including a "far" variety which 500 // spans more than 32KiB. 501 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) { 502 assert(cond == EQ || cond == NE, "must be"); 503 504 if (far) 505 cond = ~cond; 506 507 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 508 if (cond == Assembler::EQ) 509 branch = &Assembler::tbz; 510 else 511 branch = &Assembler::tbnz; 512 513 if (far) { 514 Label L; 515 (this->*branch)(Rt, bitpos, L); 516 b(dest); 517 bind(L); 518 } else { 519 (this->*branch)(Rt, bitpos, dest); 520 } 521 } 522 523 // macro instructions for accessing and updating floating point 524 // status register 525 // 526 // FPSR : op1 == 011 527 // CRn == 0100 528 // CRm == 0100 529 // op2 == 001 530 531 inline void get_fpsr(Register reg) 532 { 533 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 534 } 535 536 inline void set_fpsr(Register reg) 537 { 538 msr(0b011, 0b0100, 0b0100, 0b001, reg); 539 } 540 541 inline void clear_fpsr() 542 { 543 msr(0b011, 0b0100, 0b0100, 0b001, zr); 544 } 545 546 // DCZID_EL0: op1 == 011 547 // CRn == 0000 548 // CRm == 0000 549 // op2 == 111 550 inline void get_dczid_el0(Register reg) 551 { 552 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 553 } 554 555 // CTR_EL0: op1 == 011 556 // CRn == 0000 557 // CRm == 0000 558 // op2 == 001 559 inline void get_ctr_el0(Register reg) 560 { 561 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 562 } 563 564 // idiv variant which deals with MINLONG as dividend and -1 as divisor 565 int corrected_idivl(Register result, Register ra, Register rb, 566 bool want_remainder, Register tmp = rscratch1); 567 int corrected_idivq(Register result, Register ra, Register rb, 568 bool want_remainder, Register tmp = rscratch1); 569 570 // Support for NULL-checks 571 // 572 // Generates code that causes a NULL OS exception if the content of reg is NULL. 573 // If the accessed location is M[reg + offset] and the offset is known, provide the 574 // offset. No explicit code generation is needed if the offset is within a certain 575 // range (0 <= offset <= page_size). 576 577 virtual void null_check(Register reg, int offset = -1); 578 static bool needs_explicit_null_check(intptr_t offset); 579 580 static address target_addr_for_insn(address insn_addr, unsigned insn); 581 static address target_addr_for_insn(address insn_addr) { 582 unsigned insn = *(unsigned*)insn_addr; 583 return target_addr_for_insn(insn_addr, insn); 584 } 585 586 // Required platform-specific helpers for Label::patch_instructions. 587 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 588 static int pd_patch_instruction_size(address branch, address target); 589 static void pd_patch_instruction(address branch, address target) { 590 pd_patch_instruction_size(branch, target); 591 } 592 static address pd_call_destination(address branch) { 593 return target_addr_for_insn(branch); 594 } 595 #ifndef PRODUCT 596 static void pd_print_patched_instruction(address branch); 597 #endif 598 599 static int patch_oop(address insn_addr, address o); 600 static int patch_narrow_klass(address insn_addr, narrowKlass n); 601 602 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 603 604 // The following 4 methods return the offset of the appropriate move instruction 605 606 // Support for fast byte/short loading with zero extension (depending on particular CPU) 607 int load_unsigned_byte(Register dst, Address src); 608 int load_unsigned_short(Register dst, Address src); 609 610 // Support for fast byte/short loading with sign extension (depending on particular CPU) 611 int load_signed_byte(Register dst, Address src); 612 int load_signed_short(Register dst, Address src); 613 614 int load_signed_byte32(Register dst, Address src); 615 int load_signed_short32(Register dst, Address src); 616 617 // Support for sign-extension (hi:lo = extend_sign(lo)) 618 void extend_sign(Register hi, Register lo); 619 620 // Load and store values by size and signed-ness 621 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg); 622 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg); 623 624 // Support for inc/dec with optimal instruction selection depending on value 625 626 // x86_64 aliases an unqualified register/address increment and 627 // decrement to call incrementq and decrementq but also supports 628 // explicitly sized calls to incrementq/decrementq or 629 // incrementl/decrementl 630 631 // for aarch64 the proper convention would be to use 632 // increment/decrement for 64 bit operatons and 633 // incrementw/decrementw for 32 bit operations. so when porting 634 // x86_64 code we can leave calls to increment/decrement as is, 635 // replace incrementq/decrementq with increment/decrement and 636 // replace incrementl/decrementl with incrementw/decrementw. 637 638 // n.b. increment/decrement calls with an Address destination will 639 // need to use a scratch register to load the value to be 640 // incremented. increment/decrement calls which add or subtract a 641 // constant value greater than 2^12 will need to use a 2nd scratch 642 // register to hold the constant. so, a register increment/decrement 643 // may trash rscratch2 and an address increment/decrement trash 644 // rscratch and rscratch2 645 646 void decrementw(Address dst, int value = 1); 647 void decrementw(Register reg, int value = 1); 648 649 void decrement(Register reg, int value = 1); 650 void decrement(Address dst, int value = 1); 651 652 void incrementw(Address dst, int value = 1); 653 void incrementw(Register reg, int value = 1); 654 655 void increment(Register reg, int value = 1); 656 void increment(Address dst, int value = 1); 657 658 659 // Alignment 660 void align(int modulus); 661 662 // Stack frame creation/removal 663 void enter() 664 { 665 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 666 mov(rfp, sp); 667 } 668 void leave() 669 { 670 mov(sp, rfp); 671 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 672 } 673 674 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 675 // The pointer will be loaded into the thread register. 676 void get_thread(Register thread); 677 678 679 // Support for VM calls 680 // 681 // It is imperative that all calls into the VM are handled via the call_VM macros. 682 // They make sure that the stack linkage is setup correctly. call_VM's correspond 683 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 684 685 686 void call_VM(Register oop_result, 687 address entry_point, 688 bool check_exceptions = true); 689 void call_VM(Register oop_result, 690 address entry_point, 691 Register arg_1, 692 bool check_exceptions = true); 693 void call_VM(Register oop_result, 694 address entry_point, 695 Register arg_1, Register arg_2, 696 bool check_exceptions = true); 697 void call_VM(Register oop_result, 698 address entry_point, 699 Register arg_1, Register arg_2, Register arg_3, 700 bool check_exceptions = true); 701 702 // Overloadings with last_Java_sp 703 void call_VM(Register oop_result, 704 Register last_java_sp, 705 address entry_point, 706 int number_of_arguments = 0, 707 bool check_exceptions = true); 708 void call_VM(Register oop_result, 709 Register last_java_sp, 710 address entry_point, 711 Register arg_1, bool 712 check_exceptions = true); 713 void call_VM(Register oop_result, 714 Register last_java_sp, 715 address entry_point, 716 Register arg_1, Register arg_2, 717 bool check_exceptions = true); 718 void call_VM(Register oop_result, 719 Register last_java_sp, 720 address entry_point, 721 Register arg_1, Register arg_2, Register arg_3, 722 bool check_exceptions = true); 723 724 void get_vm_result (Register oop_result, Register thread); 725 void get_vm_result_2(Register metadata_result, Register thread); 726 727 // These always tightly bind to MacroAssembler::call_VM_base 728 // bypassing the virtual implementation 729 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 730 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 731 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 732 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 733 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 734 735 void call_VM_leaf(address entry_point, 736 int number_of_arguments = 0); 737 void call_VM_leaf(address entry_point, 738 Register arg_1); 739 void call_VM_leaf(address entry_point, 740 Register arg_1, Register arg_2); 741 void call_VM_leaf(address entry_point, 742 Register arg_1, Register arg_2, Register arg_3); 743 744 // These always tightly bind to MacroAssembler::call_VM_leaf_base 745 // bypassing the virtual implementation 746 void super_call_VM_leaf(address entry_point); 747 void super_call_VM_leaf(address entry_point, Register arg_1); 748 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 749 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 750 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 751 752 // last Java Frame (fills frame anchor) 753 void set_last_Java_frame(Register last_java_sp, 754 Register last_java_fp, 755 address last_java_pc, 756 Register scratch); 757 758 void set_last_Java_frame(Register last_java_sp, 759 Register last_java_fp, 760 Label &last_java_pc, 761 Register scratch); 762 763 void set_last_Java_frame(Register last_java_sp, 764 Register last_java_fp, 765 Register last_java_pc, 766 Register scratch); 767 768 void reset_last_Java_frame(Register thread); 769 770 // thread in the default location (rthread) 771 void reset_last_Java_frame(bool clear_fp); 772 773 // Stores 774 void store_check(Register obj); // store check for obj - register is destroyed afterwards 775 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 776 777 #if INCLUDE_ALL_GCS 778 779 void g1_write_barrier_pre(Register obj, 780 Register pre_val, 781 Register thread, 782 Register tmp, 783 bool tosca_live, 784 bool expand_call); 785 786 void g1_write_barrier_post(Register store_addr, 787 Register new_val, 788 Register thread, 789 Register tmp, 790 Register tmp2); 791 792 #endif // INCLUDE_ALL_GCS 793 794 // oop manipulations 795 void load_klass(Register dst, Register src); 796 void store_klass(Register dst, Register src); 797 void cmp_klass(Register oop, Register trial_klass, Register tmp); 798 799 void resolve_oop_handle(Register result); 800 void load_mirror(Register dst, Register method); 801 802 void load_heap_oop(Register dst, Address src); 803 804 void load_heap_oop_not_null(Register dst, Address src); 805 void store_heap_oop(Address dst, Register src); 806 807 // currently unimplemented 808 // Used for storing NULL. All other oop constants should be 809 // stored using routines that take a jobject. 810 void store_heap_oop_null(Address dst); 811 812 void load_prototype_header(Register dst, Register src); 813 814 void store_klass_gap(Register dst, Register src); 815 816 // This dummy is to prevent a call to store_heap_oop from 817 // converting a zero (like NULL) into a Register by giving 818 // the compiler two choices it can't resolve 819 820 void store_heap_oop(Address dst, void* dummy); 821 822 void encode_heap_oop(Register d, Register s); 823 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 824 void decode_heap_oop(Register d, Register s); 825 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 826 void encode_heap_oop_not_null(Register r); 827 void decode_heap_oop_not_null(Register r); 828 void encode_heap_oop_not_null(Register dst, Register src); 829 void decode_heap_oop_not_null(Register dst, Register src); 830 831 void set_narrow_oop(Register dst, jobject obj); 832 833 void encode_klass_not_null(Register r); 834 void decode_klass_not_null(Register r); 835 void encode_klass_not_null(Register dst, Register src); 836 void decode_klass_not_null(Register dst, Register src); 837 838 void set_narrow_klass(Register dst, Klass* k); 839 840 // if heap base register is used - reinit it with the correct value 841 void reinit_heapbase(); 842 843 DEBUG_ONLY(void verify_heapbase(const char* msg);) 844 845 void push_CPU_state(bool save_vectors = false); 846 void pop_CPU_state(bool restore_vectors = false) ; 847 848 // Round up to a power of two 849 void round_to(Register reg, int modulus); 850 851 // allocation 852 void eden_allocate( 853 Register obj, // result: pointer to object after successful allocation 854 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 855 int con_size_in_bytes, // object size in bytes if known at compile time 856 Register t1, // temp register 857 Label& slow_case // continuation point if fast allocation fails 858 ); 859 void tlab_allocate( 860 Register obj, // result: pointer to object after successful allocation 861 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 862 int con_size_in_bytes, // object size in bytes if known at compile time 863 Register t1, // temp register 864 Register t2, // temp register 865 Label& slow_case // continuation point if fast allocation fails 866 ); 867 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address 868 void zero_memory(Register addr, Register len, Register t1); 869 void verify_tlab(); 870 871 void incr_allocated_bytes(Register thread, 872 Register var_size_in_bytes, int con_size_in_bytes, 873 Register t1 = noreg); 874 875 // interface method calling 876 void lookup_interface_method(Register recv_klass, 877 Register intf_klass, 878 RegisterOrConstant itable_index, 879 Register method_result, 880 Register scan_temp, 881 Label& no_such_interface); 882 883 // virtual method calling 884 // n.b. x86 allows RegisterOrConstant for vtable_index 885 void lookup_virtual_method(Register recv_klass, 886 RegisterOrConstant vtable_index, 887 Register method_result); 888 889 // Test sub_klass against super_klass, with fast and slow paths. 890 891 // The fast path produces a tri-state answer: yes / no / maybe-slow. 892 // One of the three labels can be NULL, meaning take the fall-through. 893 // If super_check_offset is -1, the value is loaded up from super_klass. 894 // No registers are killed, except temp_reg. 895 void check_klass_subtype_fast_path(Register sub_klass, 896 Register super_klass, 897 Register temp_reg, 898 Label* L_success, 899 Label* L_failure, 900 Label* L_slow_path, 901 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 902 903 // The rest of the type check; must be wired to a corresponding fast path. 904 // It does not repeat the fast path logic, so don't use it standalone. 905 // The temp_reg and temp2_reg can be noreg, if no temps are available. 906 // Updates the sub's secondary super cache as necessary. 907 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 908 void check_klass_subtype_slow_path(Register sub_klass, 909 Register super_klass, 910 Register temp_reg, 911 Register temp2_reg, 912 Label* L_success, 913 Label* L_failure, 914 bool set_cond_codes = false); 915 916 // Simplified, combined version, good for typical uses. 917 // Falls through on failure. 918 void check_klass_subtype(Register sub_klass, 919 Register super_klass, 920 Register temp_reg, 921 Label& L_success); 922 923 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 924 925 926 // Debugging 927 928 // only if +VerifyOops 929 void verify_oop(Register reg, const char* s = "broken oop"); 930 void verify_oop_addr(Address addr, const char * s = "broken oop addr"); 931 932 // TODO: verify method and klass metadata (compare against vptr?) 933 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 934 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 935 936 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 937 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 938 939 // only if +VerifyFPU 940 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 941 942 // prints msg, dumps registers and stops execution 943 void stop(const char* msg); 944 945 // prints msg and continues 946 void warn(const char* msg); 947 948 static void debug64(char* msg, int64_t pc, int64_t regs[]); 949 950 void untested() { stop("untested"); } 951 952 void unimplemented(const char* what = ""); 953 954 void should_not_reach_here() { stop("should not reach here"); } 955 956 // Stack overflow checking 957 void bang_stack_with_offset(int offset) { 958 // stack grows down, caller passes positive offset 959 assert(offset > 0, "must bang with negative offset"); 960 sub(rscratch2, sp, offset); 961 str(zr, Address(rscratch2)); 962 } 963 964 // Writes to stack successive pages until offset reached to check for 965 // stack overflow + shadow pages. Also, clobbers tmp 966 void bang_stack_size(Register size, Register tmp); 967 968 // Check for reserved stack access in method being exited (for JIT) 969 void reserved_stack_check(); 970 971 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, 972 Register tmp, 973 int offset); 974 975 // Support for serializing memory accesses between threads 976 void serialize_memory(Register thread, Register tmp); 977 978 // Arithmetics 979 980 void addptr(const Address &dst, int32_t src); 981 void cmpptr(Register src1, Address src2); 982 983 // Various forms of CAS 984 985 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 986 Label &suceed, Label *fail); 987 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 988 Label &suceed, Label *fail); 989 990 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 991 Label &suceed, Label *fail); 992 993 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 994 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 995 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 996 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 997 998 void atomic_xchg(Register prev, Register newv, Register addr); 999 void atomic_xchgw(Register prev, Register newv, Register addr); 1000 void atomic_xchgal(Register prev, Register newv, Register addr); 1001 void atomic_xchgalw(Register prev, Register newv, Register addr); 1002 1003 void orptr(Address adr, RegisterOrConstant src) { 1004 ldr(rscratch1, adr); 1005 if (src.is_register()) 1006 orr(rscratch1, rscratch1, src.as_register()); 1007 else 1008 orr(rscratch1, rscratch1, src.as_constant()); 1009 str(rscratch1, adr); 1010 } 1011 1012 // A generic CAS; success or failure is in the EQ flag. 1013 // Clobbers rscratch1 1014 void cmpxchg(Register addr, Register expected, Register new_val, 1015 enum operand_size size, 1016 bool acquire, bool release, bool weak, 1017 Register result); 1018 1019 // Calls 1020 1021 address trampoline_call(Address entry, CodeBuffer *cbuf = NULL); 1022 1023 static bool far_branches() { 1024 return ReservedCodeCacheSize > branch_range; 1025 } 1026 1027 // Jumps that can reach anywhere in the code cache. 1028 // Trashes tmp. 1029 void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1); 1030 void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1); 1031 1032 static int far_branch_size() { 1033 if (far_branches()) { 1034 return 3 * 4; // adrp, add, br 1035 } else { 1036 return 4; 1037 } 1038 } 1039 1040 // Emit the CompiledIC call idiom 1041 address ic_call(address entry, jint method_index = 0); 1042 1043 public: 1044 1045 // Data 1046 1047 void mov_metadata(Register dst, Metadata* obj); 1048 Address allocate_metadata_address(Metadata* obj); 1049 Address constant_oop_address(jobject obj); 1050 1051 void movoop(Register dst, jobject obj, bool immediate = false); 1052 1053 // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic. 1054 void kernel_crc32(Register crc, Register buf, Register len, 1055 Register table0, Register table1, Register table2, Register table3, 1056 Register tmp, Register tmp2, Register tmp3); 1057 // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic. 1058 void kernel_crc32c(Register crc, Register buf, Register len, 1059 Register table0, Register table1, Register table2, Register table3, 1060 Register tmp, Register tmp2, Register tmp3); 1061 1062 // Stack push and pop individual 64 bit registers 1063 void push(Register src); 1064 void pop(Register dst); 1065 1066 // push all registers onto the stack 1067 void pusha(); 1068 void popa(); 1069 1070 void repne_scan(Register addr, Register value, Register count, 1071 Register scratch); 1072 void repne_scanw(Register addr, Register value, Register count, 1073 Register scratch); 1074 1075 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1076 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1077 1078 // If a constant does not fit in an immediate field, generate some 1079 // number of MOV instructions and then perform the operation 1080 void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 1081 add_sub_imm_insn insn1, 1082 add_sub_reg_insn insn2); 1083 // Seperate vsn which sets the flags 1084 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 1085 add_sub_imm_insn insn1, 1086 add_sub_reg_insn insn2); 1087 1088 #define WRAP(INSN) \ 1089 void INSN(Register Rd, Register Rn, unsigned imm) { \ 1090 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \ 1091 } \ 1092 \ 1093 void INSN(Register Rd, Register Rn, Register Rm, \ 1094 enum shift_kind kind, unsigned shift = 0) { \ 1095 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1096 } \ 1097 \ 1098 void INSN(Register Rd, Register Rn, Register Rm) { \ 1099 Assembler::INSN(Rd, Rn, Rm); \ 1100 } \ 1101 \ 1102 void INSN(Register Rd, Register Rn, Register Rm, \ 1103 ext::operation option, int amount = 0) { \ 1104 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1105 } 1106 1107 WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw) 1108 1109 #undef WRAP 1110 #define WRAP(INSN) \ 1111 void INSN(Register Rd, Register Rn, unsigned imm) { \ 1112 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \ 1113 } \ 1114 \ 1115 void INSN(Register Rd, Register Rn, Register Rm, \ 1116 enum shift_kind kind, unsigned shift = 0) { \ 1117 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1118 } \ 1119 \ 1120 void INSN(Register Rd, Register Rn, Register Rm) { \ 1121 Assembler::INSN(Rd, Rn, Rm); \ 1122 } \ 1123 \ 1124 void INSN(Register Rd, Register Rn, Register Rm, \ 1125 ext::operation option, int amount = 0) { \ 1126 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1127 } 1128 1129 WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw) 1130 1131 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1132 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1133 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1134 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1135 1136 void adrp(Register reg1, const Address &dest, unsigned long &byte_offset); 1137 1138 void tableswitch(Register index, jint lowbound, jint highbound, 1139 Label &jumptable, Label &jumptable_end, int stride = 1) { 1140 adr(rscratch1, jumptable); 1141 subsw(rscratch2, index, lowbound); 1142 subsw(zr, rscratch2, highbound - lowbound); 1143 br(Assembler::HS, jumptable_end); 1144 add(rscratch1, rscratch1, rscratch2, 1145 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1146 br(rscratch1); 1147 } 1148 1149 // Form an address from base + offset in Rd. Rd may or may not 1150 // actually be used: you must use the Address that is returned. It 1151 // is up to you to ensure that the shift provided matches the size 1152 // of your data. 1153 Address form_address(Register Rd, Register base, long byte_offset, int shift); 1154 1155 // Return true iff an address is within the 48-bit AArch64 address 1156 // space. 1157 bool is_valid_AArch64_address(address a) { 1158 return ((uint64_t)a >> 48) == 0; 1159 } 1160 1161 // Load the base of the cardtable byte map into reg. 1162 void load_byte_map_base(Register reg); 1163 1164 // Prolog generator routines to support switch between x86 code and 1165 // generated ARM code 1166 1167 // routine to generate an x86 prolog for a stub function which 1168 // bootstraps into the generated ARM code which directly follows the 1169 // stub 1170 // 1171 1172 public: 1173 // enum used for aarch64--x86 linkage to define return type of x86 function 1174 enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double}; 1175 1176 #ifdef BUILTIN_SIM 1177 void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL); 1178 #else 1179 void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { } 1180 #endif 1181 1182 // special version of call_VM_leaf_base needed for aarch64 simulator 1183 // where we need to specify both the gp and fp arg counts and the 1184 // return type so that the linkage routine from aarch64 to x86 and 1185 // back knows which aarch64 registers to copy to x86 registers and 1186 // which x86 result register to copy back to an aarch64 register 1187 1188 void call_VM_leaf_base1( 1189 address entry_point, // the entry point 1190 int number_of_gp_arguments, // the number of gp reg arguments to pass 1191 int number_of_fp_arguments, // the number of fp reg arguments to pass 1192 ret_type type, // the return type for the call 1193 Label* retaddr = NULL 1194 ); 1195 1196 void ldr_constant(Register dest, const Address &const_addr) { 1197 if (NearCpool) { 1198 ldr(dest, const_addr); 1199 } else { 1200 unsigned long offset; 1201 adrp(dest, InternalAddress(const_addr.target()), offset); 1202 ldr(dest, Address(dest, offset)); 1203 } 1204 } 1205 1206 address read_polling_page(Register r, address page, relocInfo::relocType rtype); 1207 address read_polling_page(Register r, relocInfo::relocType rtype); 1208 void get_polling_page(Register dest, address page, relocInfo::relocType rtype); 1209 1210 // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic. 1211 void update_byte_crc32(Register crc, Register val, Register table); 1212 void update_word_crc32(Register crc, Register v, Register tmp, 1213 Register table0, Register table1, Register table2, Register table3, 1214 bool upper = false); 1215 1216 void string_compare(Register str1, Register str2, 1217 Register cnt1, Register cnt2, Register result, 1218 Register tmp1, 1219 FloatRegister vtmp, FloatRegister vtmpZ, int ae); 1220 1221 void has_negatives(Register ary1, Register len, Register result); 1222 1223 void arrays_equals(Register a1, Register a2, 1224 Register result, Register cnt1, 1225 int elem_size, bool is_string); 1226 1227 void fill_words(Register base, Register cnt, Register value); 1228 void zero_words(Register base, u_int64_t cnt); 1229 void zero_words(Register ptr, Register cnt); 1230 void zero_dcache_blocks(Register base, Register cnt); 1231 1232 static const int zero_words_block_size; 1233 1234 void byte_array_inflate(Register src, Register dst, Register len, 1235 FloatRegister vtmp1, FloatRegister vtmp2, 1236 FloatRegister vtmp3, Register tmp4); 1237 1238 void char_array_compress(Register src, Register dst, Register len, 1239 FloatRegister tmp1Reg, FloatRegister tmp2Reg, 1240 FloatRegister tmp3Reg, FloatRegister tmp4Reg, 1241 Register result); 1242 1243 void encode_iso_array(Register src, Register dst, 1244 Register len, Register result, 1245 FloatRegister Vtmp1, FloatRegister Vtmp2, 1246 FloatRegister Vtmp3, FloatRegister Vtmp4); 1247 void string_indexof(Register str1, Register str2, 1248 Register cnt1, Register cnt2, 1249 Register tmp1, Register tmp2, 1250 Register tmp3, Register tmp4, 1251 int int_cnt1, Register result, int ae); 1252 void string_indexof_char(Register str1, Register cnt1, 1253 Register ch, Register result, 1254 Register tmp1, Register tmp2, Register tmp3); 1255 private: 1256 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1257 Register src1, Register src2); 1258 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1259 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1260 } 1261 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1262 Register y, Register y_idx, Register z, 1263 Register carry, Register product, 1264 Register idx, Register kdx); 1265 void multiply_128_x_128_loop(Register y, Register z, 1266 Register carry, Register carry2, 1267 Register idx, Register jdx, 1268 Register yz_idx1, Register yz_idx2, 1269 Register tmp, Register tmp3, Register tmp4, 1270 Register tmp7, Register product_hi); 1271 void kernel_crc32_using_crc32(Register crc, Register buf, 1272 Register len, Register tmp0, Register tmp1, Register tmp2, 1273 Register tmp3); 1274 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1275 Register len, Register tmp0, Register tmp1, Register tmp2, 1276 Register tmp3); 1277 public: 1278 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1279 Register zlen, Register tmp1, Register tmp2, Register tmp3, 1280 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1281 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1282 // ISB may be needed because of a safepoint 1283 void maybe_isb() { isb(); } 1284 1285 private: 1286 // Return the effective address r + (r1 << ext) + offset. 1287 // Uses rscratch2. 1288 Address offsetted_address(Register r, Register r1, Address::extend ext, 1289 int offset, int size); 1290 1291 private: 1292 // Returns an address on the stack which is reachable with a ldr/str of size 1293 // Uses rscratch2 if the address is not directly reachable 1294 Address spill_address(int size, int offset, Register tmp=rscratch2); 1295 1296 public: 1297 void spill(Register Rx, bool is64, int offset) { 1298 if (is64) { 1299 str(Rx, spill_address(8, offset)); 1300 } else { 1301 strw(Rx, spill_address(4, offset)); 1302 } 1303 } 1304 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1305 str(Vx, T, spill_address(1 << (int)T, offset)); 1306 } 1307 void unspill(Register Rx, bool is64, int offset) { 1308 if (is64) { 1309 ldr(Rx, spill_address(8, offset)); 1310 } else { 1311 ldrw(Rx, spill_address(4, offset)); 1312 } 1313 } 1314 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1315 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1316 } 1317 void spill_copy128(int src_offset, int dst_offset, 1318 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1319 if (src_offset < 512 && (src_offset & 7) == 0 && 1320 dst_offset < 512 && (dst_offset & 7) == 0) { 1321 ldp(tmp1, tmp2, Address(sp, src_offset)); 1322 stp(tmp1, tmp2, Address(sp, dst_offset)); 1323 } else { 1324 unspill(tmp1, true, src_offset); 1325 spill(tmp1, true, dst_offset); 1326 unspill(tmp1, true, src_offset+8); 1327 spill(tmp1, true, dst_offset+8); 1328 } 1329 } 1330 }; 1331 1332 #ifdef ASSERT 1333 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1334 #endif 1335 1336 /** 1337 * class SkipIfEqual: 1338 * 1339 * Instantiating this class will result in assembly code being output that will 1340 * jump around any code emitted between the creation of the instance and it's 1341 * automatic destruction at the end of a scope block, depending on the value of 1342 * the flag passed to the constructor, which will be checked at run-time. 1343 */ 1344 class SkipIfEqual { 1345 private: 1346 MacroAssembler* _masm; 1347 Label _label; 1348 1349 public: 1350 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1351 ~SkipIfEqual(); 1352 }; 1353 1354 struct tableswitch { 1355 Register _reg; 1356 int _insn_index; jint _first_key; jint _last_key; 1357 Label _after; 1358 Label _branches; 1359 }; 1360 1361 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP