1 /*
   2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 
  29 import java.util.*;
  30 import jdk.internal.HotSpotIntrinsicCandidate;
  31 
  32 import static java.lang.invoke.MethodHandleStatics.*;
  33 
  34 /**
  35  * A method handle is a typed, directly executable reference to an underlying method,
  36  * constructor, field, or similar low-level operation, with optional
  37  * transformations of arguments or return values.
  38  * These transformations are quite general, and include such patterns as
  39  * {@linkplain #asType conversion},
  40  * {@linkplain #bindTo insertion},
  41  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
  42  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
  43  *
  44  * <h1>Method handle contents</h1>
  45  * Method handles are dynamically and strongly typed according to their parameter and return types.
  46  * They are not distinguished by the name or the defining class of their underlying methods.
  47  * A method handle must be invoked using a symbolic type descriptor which matches
  48  * the method handle's own {@linkplain #type type descriptor}.
  49  * <p>
  50  * Every method handle reports its type descriptor via the {@link #type type} accessor.
  51  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
  52  * whose structure is a series of classes, one of which is
  53  * the return type of the method (or {@code void.class} if none).
  54  * <p>
  55  * A method handle's type controls the types of invocations it accepts,
  56  * and the kinds of transformations that apply to it.
  57  * <p>
  58  * A method handle contains a pair of special invoker methods
  59  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
  60  * Both invoker methods provide direct access to the method handle's
  61  * underlying method, constructor, field, or other operation,
  62  * as modified by transformations of arguments and return values.
  63  * Both invokers accept calls which exactly match the method handle's own type.
  64  * The plain, inexact invoker also accepts a range of other call types.
  65  * <p>
  66  * Method handles are immutable and have no visible state.
  67  * Of course, they can be bound to underlying methods or data which exhibit state.
  68  * With respect to the Java Memory Model, any method handle will behave
  69  * as if all of its (internal) fields are final variables.  This means that any method
  70  * handle made visible to the application will always be fully formed.
  71  * This is true even if the method handle is published through a shared
  72  * variable in a data race.
  73  * <p>
  74  * Method handles cannot be subclassed by the user.
  75  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
  76  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
  77  * operation.  The programmer should not draw conclusions about a method handle
  78  * from its specific class, as the method handle class hierarchy (if any)
  79  * may change from time to time or across implementations from different vendors.
  80  *
  81  * <h1>Method handle compilation</h1>
  82  * A Java method call expression naming {@code invokeExact} or {@code invoke}
  83  * can invoke a method handle from Java source code.
  84  * From the viewpoint of source code, these methods can take any arguments
  85  * and their result can be cast to any return type.
  86  * Formally this is accomplished by giving the invoker methods
  87  * {@code Object} return types and variable arity {@code Object} arguments,
  88  * but they have an additional quality called <em>signature polymorphism</em>
  89  * which connects this freedom of invocation directly to the JVM execution stack.
  90  * <p>
  91  * As is usual with virtual methods, source-level calls to {@code invokeExact}
  92  * and {@code invoke} compile to an {@code invokevirtual} instruction.
  93  * More unusually, the compiler must record the actual argument types,
  94  * and may not perform method invocation conversions on the arguments.
  95  * Instead, it must push them on the stack according to their own unconverted types.
  96  * The method handle object itself is pushed on the stack before the arguments.
  97  * The compiler then calls the method handle with a symbolic type descriptor which
  98  * describes the argument and return types.
  99  * <p>
 100  * To issue a complete symbolic type descriptor, the compiler must also determine
 101  * the return type.  This is based on a cast on the method invocation expression,
 102  * if there is one, or else {@code Object} if the invocation is an expression
 103  * or else {@code void} if the invocation is a statement.
 104  * The cast may be to a primitive type (but not {@code void}).
 105  * <p>
 106  * As a corner case, an uncasted {@code null} argument is given
 107  * a symbolic type descriptor of {@code java.lang.Void}.
 108  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
 109  * {@code Void} except the null reference.
 110  *
 111  * <h1>Method handle invocation</h1>
 112  * The first time a {@code invokevirtual} instruction is executed
 113  * it is linked, by symbolically resolving the names in the instruction
 114  * and verifying that the method call is statically legal.
 115  * This is true of calls to {@code invokeExact} and {@code invoke}.
 116  * In this case, the symbolic type descriptor emitted by the compiler is checked for
 117  * correct syntax and names it contains are resolved.
 118  * Thus, an {@code invokevirtual} instruction which invokes
 119  * a method handle will always link, as long
 120  * as the symbolic type descriptor is syntactically well-formed
 121  * and the types exist.
 122  * <p>
 123  * When the {@code invokevirtual} is executed after linking,
 124  * the receiving method handle's type is first checked by the JVM
 125  * to ensure that it matches the symbolic type descriptor.
 126  * If the type match fails, it means that the method which the
 127  * caller is invoking is not present on the individual
 128  * method handle being invoked.
 129  * <p>
 130  * In the case of {@code invokeExact}, the type descriptor of the invocation
 131  * (after resolving symbolic type names) must exactly match the method type
 132  * of the receiving method handle.
 133  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
 134  * must be a valid argument to the receiver's {@link #asType asType} method.
 135  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
 136  * <p>
 137  * After type matching, a call to {@code invokeExact} directly
 138  * and immediately invoke the method handle's underlying method
 139  * (or other behavior, as the case may be).
 140  * <p>
 141  * A call to plain {@code invoke} works the same as a call to
 142  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
 143  * exactly matches the method handle's own type.
 144  * If there is a type mismatch, {@code invoke} attempts
 145  * to adjust the type of the receiving method handle,
 146  * as if by a call to {@link #asType asType},
 147  * to obtain an exactly invokable method handle {@code M2}.
 148  * This allows a more powerful negotiation of method type
 149  * between caller and callee.
 150  * <p>
 151  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
 152  * and implementations are therefore not required to materialize it.)
 153  *
 154  * <h1>Invocation checking</h1>
 155  * In typical programs, method handle type matching will usually succeed.
 156  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
 157  * either directly (in the case of {@code invokeExact}) or indirectly as if
 158  * by a failed call to {@code asType} (in the case of {@code invoke}).
 159  * <p>
 160  * Thus, a method type mismatch which might show up as a linkage error
 161  * in a statically typed program can show up as
 162  * a dynamic {@code WrongMethodTypeException}
 163  * in a program which uses method handles.
 164  * <p>
 165  * Because method types contain "live" {@code Class} objects,
 166  * method type matching takes into account both types names and class loaders.
 167  * Thus, even if a method handle {@code M} is created in one
 168  * class loader {@code L1} and used in another {@code L2},
 169  * method handle calls are type-safe, because the caller's symbolic type
 170  * descriptor, as resolved in {@code L2},
 171  * is matched against the original callee method's symbolic type descriptor,
 172  * as resolved in {@code L1}.
 173  * The resolution in {@code L1} happens when {@code M} is created
 174  * and its type is assigned, while the resolution in {@code L2} happens
 175  * when the {@code invokevirtual} instruction is linked.
 176  * <p>
 177  * Apart from the checking of type descriptors,
 178  * a method handle's capability to call its underlying method is unrestricted.
 179  * If a method handle is formed on a non-public method by a class
 180  * that has access to that method, the resulting handle can be used
 181  * in any place by any caller who receives a reference to it.
 182  * <p>
 183  * Unlike with the Core Reflection API, where access is checked every time
 184  * a reflective method is invoked,
 185  * method handle access checking is performed
 186  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
 187  * In the case of {@code ldc} (see below), access checking is performed as part of linking
 188  * the constant pool entry underlying the constant method handle.
 189  * <p>
 190  * Thus, handles to non-public methods, or to methods in non-public classes,
 191  * should generally be kept secret.
 192  * They should not be passed to untrusted code unless their use from
 193  * the untrusted code would be harmless.
 194  *
 195  * <h1>Method handle creation</h1>
 196  * Java code can create a method handle that directly accesses
 197  * any method, constructor, or field that is accessible to that code.
 198  * This is done via a reflective, capability-based API called
 199  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
 200  * For example, a static method handle can be obtained
 201  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
 202  * There are also conversion methods from Core Reflection API objects,
 203  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 204  * <p>
 205  * Like classes and strings, method handles that correspond to accessible
 206  * fields, methods, and constructors can also be represented directly
 207  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
 208  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
 209  * refers directly to an associated {@code CONSTANT_Methodref},
 210  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
 211  * constant pool entry.
 212  * (For full details on method handle constants,
 213  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
 214  * <p>
 215  * Method handles produced by lookups or constant loads from methods or
 216  * constructors with the variable arity modifier bit ({@code 0x0080})
 217  * have a corresponding variable arity, as if they were defined with
 218  * the help of {@link #asVarargsCollector asVarargsCollector}
 219  * or {@link #withVarargs withVarargs}.
 220  * <p>
 221  * A method reference may refer either to a static or non-static method.
 222  * In the non-static case, the method handle type includes an explicit
 223  * receiver argument, prepended before any other arguments.
 224  * In the method handle's type, the initial receiver argument is typed
 225  * according to the class under which the method was initially requested.
 226  * (E.g., if a non-static method handle is obtained via {@code ldc},
 227  * the type of the receiver is the class named in the constant pool entry.)
 228  * <p>
 229  * Method handle constants are subject to the same link-time access checks
 230  * their corresponding bytecode instructions, and the {@code ldc} instruction
 231  * will throw corresponding linkage errors if the bytecode behaviors would
 232  * throw such errors.
 233  * <p>
 234  * As a corollary of this, access to protected members is restricted
 235  * to receivers only of the accessing class, or one of its subclasses,
 236  * and the accessing class must in turn be a subclass (or package sibling)
 237  * of the protected member's defining class.
 238  * If a method reference refers to a protected non-static method or field
 239  * of a class outside the current package, the receiver argument will
 240  * be narrowed to the type of the accessing class.
 241  * <p>
 242  * When a method handle to a virtual method is invoked, the method is
 243  * always looked up in the receiver (that is, the first argument).
 244  * <p>
 245  * A non-virtual method handle to a specific virtual method implementation
 246  * can also be created.  These do not perform virtual lookup based on
 247  * receiver type.  Such a method handle simulates the effect of
 248  * an {@code invokespecial} instruction to the same method.
 249  *
 250  * <h1>Usage examples</h1>
 251  * Here are some examples of usage:
 252  * <blockquote><pre>{@code
 253 Object x, y; String s; int i;
 254 MethodType mt; MethodHandle mh;
 255 MethodHandles.Lookup lookup = MethodHandles.lookup();
 256 // mt is (char,char)String
 257 mt = MethodType.methodType(String.class, char.class, char.class);
 258 mh = lookup.findVirtual(String.class, "replace", mt);
 259 s = (String) mh.invokeExact("daddy",'d','n');
 260 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
 261 assertEquals(s, "nanny");
 262 // weakly typed invocation (using MHs.invoke)
 263 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
 264 assertEquals(s, "savvy");
 265 // mt is (Object[])List
 266 mt = MethodType.methodType(java.util.List.class, Object[].class);
 267 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 268 assert(mh.isVarargsCollector());
 269 x = mh.invoke("one", "two");
 270 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
 271 assertEquals(x, java.util.Arrays.asList("one","two"));
 272 // mt is (Object,Object,Object)Object
 273 mt = MethodType.genericMethodType(3);
 274 mh = mh.asType(mt);
 275 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
 276 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 277 assertEquals(x, java.util.Arrays.asList(1,2,3));
 278 // mt is ()int
 279 mt = MethodType.methodType(int.class);
 280 mh = lookup.findVirtual(java.util.List.class, "size", mt);
 281 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
 282 // invokeExact(Ljava/util/List;)I
 283 assert(i == 3);
 284 mt = MethodType.methodType(void.class, String.class);
 285 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
 286 mh.invokeExact(System.out, "Hello, world.");
 287 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
 288  * }</pre></blockquote>
 289  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
 290  * generates a single invokevirtual instruction with
 291  * the symbolic type descriptor indicated in the following comment.
 292  * In these examples, the helper method {@code assertEquals} is assumed to
 293  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
 294  * on its arguments, and asserts that the result is true.
 295  *
 296  * <h1>Exceptions</h1>
 297  * The methods {@code invokeExact} and {@code invoke} are declared
 298  * to throw {@link java.lang.Throwable Throwable},
 299  * which is to say that there is no static restriction on what a method handle
 300  * can throw.  Since the JVM does not distinguish between checked
 301  * and unchecked exceptions (other than by their class, of course),
 302  * there is no particular effect on bytecode shape from ascribing
 303  * checked exceptions to method handle invocations.  But in Java source
 304  * code, methods which perform method handle calls must either explicitly
 305  * throw {@code Throwable}, or else must catch all
 306  * throwables locally, rethrowing only those which are legal in the context,
 307  * and wrapping ones which are illegal.
 308  *
 309  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
 310  * The unusual compilation and linkage behavior of
 311  * {@code invokeExact} and plain {@code invoke}
 312  * is referenced by the term <em>signature polymorphism</em>.
 313  * As defined in the Java Language Specification,
 314  * a signature polymorphic method is one which can operate with
 315  * any of a wide range of call signatures and return types.
 316  * <p>
 317  * In source code, a call to a signature polymorphic method will
 318  * compile, regardless of the requested symbolic type descriptor.
 319  * As usual, the Java compiler emits an {@code invokevirtual}
 320  * instruction with the given symbolic type descriptor against the named method.
 321  * The unusual part is that the symbolic type descriptor is derived from
 322  * the actual argument and return types, not from the method declaration.
 323  * <p>
 324  * When the JVM processes bytecode containing signature polymorphic calls,
 325  * it will successfully link any such call, regardless of its symbolic type descriptor.
 326  * (In order to retain type safety, the JVM will guard such calls with suitable
 327  * dynamic type checks, as described elsewhere.)
 328  * <p>
 329  * Bytecode generators, including the compiler back end, are required to emit
 330  * untransformed symbolic type descriptors for these methods.
 331  * Tools which determine symbolic linkage are required to accept such
 332  * untransformed descriptors, without reporting linkage errors.
 333  *
 334  * <h1>Interoperation between method handles and the Core Reflection API</h1>
 335  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
 336  * any class member represented by a Core Reflection API object
 337  * can be converted to a behaviorally equivalent method handle.
 338  * For example, a reflective {@link java.lang.reflect.Method Method} can
 339  * be converted to a method handle using
 340  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 341  * The resulting method handles generally provide more direct and efficient
 342  * access to the underlying class members.
 343  * <p>
 344  * As a special case,
 345  * when the Core Reflection API is used to view the signature polymorphic
 346  * methods {@code invokeExact} or plain {@code invoke} in this class,
 347  * they appear as ordinary non-polymorphic methods.
 348  * Their reflective appearance, as viewed by
 349  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 350  * is unaffected by their special status in this API.
 351  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
 352  * will report exactly those modifier bits required for any similarly
 353  * declared method, including in this case {@code native} and {@code varargs} bits.
 354  * <p>
 355  * As with any reflected method, these methods (when reflected) may be
 356  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
 357  * However, such reflective calls do not result in method handle invocations.
 358  * Such a call, if passed the required argument
 359  * (a single one, of type {@code Object[]}), will ignore the argument and
 360  * will throw an {@code UnsupportedOperationException}.
 361  * <p>
 362  * Since {@code invokevirtual} instructions can natively
 363  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
 364  * with the normal presentation of these methods via bytecodes.
 365  * Thus, these two native methods, when reflectively viewed by
 366  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
 367  * <p>
 368  * In order to obtain an invoker method for a particular type descriptor,
 369  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
 370  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
 371  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
 372  * API is also able to return a method handle
 373  * to call {@code invokeExact} or plain {@code invoke},
 374  * for any specified type descriptor .
 375  *
 376  * <h1>Interoperation between method handles and Java generics</h1>
 377  * A method handle can be obtained on a method, constructor, or field
 378  * which is declared with Java generic types.
 379  * As with the Core Reflection API, the type of the method handle
 380  * will constructed from the erasure of the source-level type.
 381  * When a method handle is invoked, the types of its arguments
 382  * or the return value cast type may be generic types or type instances.
 383  * If this occurs, the compiler will replace those
 384  * types by their erasures when it constructs the symbolic type descriptor
 385  * for the {@code invokevirtual} instruction.
 386  * <p>
 387  * Method handles do not represent
 388  * their function-like types in terms of Java parameterized (generic) types,
 389  * because there are three mismatches between function-like types and parameterized
 390  * Java types.
 391  * <ul>
 392  * <li>Method types range over all possible arities,
 393  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
 394  * Generics are not variadic, and so cannot represent this.</li>
 395  * <li>Method types can specify arguments of primitive types,
 396  * which Java generic types cannot range over.</li>
 397  * <li>Higher order functions over method handles (combinators) are
 398  * often generic across a wide range of function types, including
 399  * those of multiple arities.  It is impossible to represent such
 400  * genericity with a Java type parameter.</li>
 401  * </ul>
 402  *
 403  * <h1><a name="maxarity"></a>Arity limits</h1>
 404  * The JVM imposes on all methods and constructors of any kind an absolute
 405  * limit of 255 stacked arguments.  This limit can appear more restrictive
 406  * in certain cases:
 407  * <ul>
 408  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
 409  * <li>A non-static method consumes an extra argument for the object on which the method is called.
 410  * <li>A constructor consumes an extra argument for the object which is being constructed.
 411  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
 412  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
 413  * </ul>
 414  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
 415  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
 416  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
 417  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
 418  *
 419  * @see MethodType
 420  * @see MethodHandles
 421  * @author John Rose, JSR 292 EG
 422  */
 423 public abstract class MethodHandle {
 424 
 425     /**
 426      * Internal marker interface which distinguishes (to the Java compiler)
 427      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
 428      */
 429     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
 430     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
 431     @interface PolymorphicSignature { }
 432 
 433     private final MethodType type;
 434     /*private*/ final LambdaForm form;
 435     // form is not private so that invokers can easily fetch it
 436     /*private*/ MethodHandle asTypeCache;
 437     // asTypeCache is not private so that invokers can easily fetch it
 438     /*non-public*/ byte customizationCount;
 439     // customizationCount should be accessible from invokers
 440 
 441     /**
 442      * Reports the type of this method handle.
 443      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
 444      * @return the method handle type
 445      */
 446     public MethodType type() {
 447         return type;
 448     }
 449 
 450     /**
 451      * Package-private constructor for the method handle implementation hierarchy.
 452      * Method handle inheritance will be contained completely within
 453      * the {@code java.lang.invoke} package.
 454      */
 455     // @param type type (permanently assigned) of the new method handle
 456     /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
 457         this.type = Objects.requireNonNull(type);
 458         this.form = Objects.requireNonNull(form).uncustomize();
 459 
 460         this.form.prepare();  // TO DO:  Try to delay this step until just before invocation.
 461     }
 462 
 463     /**
 464      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
 465      * The symbolic type descriptor at the call site of {@code invokeExact} must
 466      * exactly match this method handle's {@link #type type}.
 467      * No conversions are allowed on arguments or return values.
 468      * <p>
 469      * When this method is observed via the Core Reflection API,
 470      * it will appear as a single native method, taking an object array and returning an object.
 471      * If this native method is invoked directly via
 472      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 473      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 474      * it will throw an {@code UnsupportedOperationException}.
 475      * @param args the signature-polymorphic parameter list, statically represented using varargs
 476      * @return the signature-polymorphic result, statically represented using {@code Object}
 477      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
 478      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 479      */
 480     @HotSpotIntrinsicCandidate
 481     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
 482 
 483     /**
 484      * Invokes the method handle, allowing any caller type descriptor,
 485      * and optionally performing conversions on arguments and return values.
 486      * <p>
 487      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
 488      * the call proceeds as if by {@link #invokeExact invokeExact}.
 489      * <p>
 490      * Otherwise, the call proceeds as if this method handle were first
 491      * adjusted by calling {@link #asType asType} to adjust this method handle
 492      * to the required type, and then the call proceeds as if by
 493      * {@link #invokeExact invokeExact} on the adjusted method handle.
 494      * <p>
 495      * There is no guarantee that the {@code asType} call is actually made.
 496      * If the JVM can predict the results of making the call, it may perform
 497      * adaptations directly on the caller's arguments,
 498      * and call the target method handle according to its own exact type.
 499      * <p>
 500      * The resolved type descriptor at the call site of {@code invoke} must
 501      * be a valid argument to the receivers {@code asType} method.
 502      * In particular, the caller must specify the same argument arity
 503      * as the callee's type,
 504      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
 505      * <p>
 506      * When this method is observed via the Core Reflection API,
 507      * it will appear as a single native method, taking an object array and returning an object.
 508      * If this native method is invoked directly via
 509      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 510      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 511      * it will throw an {@code UnsupportedOperationException}.
 512      * @param args the signature-polymorphic parameter list, statically represented using varargs
 513      * @return the signature-polymorphic result, statically represented using {@code Object}
 514      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
 515      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
 516      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 517      */
 518     @HotSpotIntrinsicCandidate
 519     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
 520 
 521     /**
 522      * Private method for trusted invocation of a method handle respecting simplified signatures.
 523      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
 524      * <p>
 525      * The caller signature is restricted to the following basic types:
 526      * Object, int, long, float, double, and void return.
 527      * <p>
 528      * The caller is responsible for maintaining type correctness by ensuring
 529      * that the each outgoing argument value is a member of the range of the corresponding
 530      * callee argument type.
 531      * (The caller should therefore issue appropriate casts and integer narrowing
 532      * operations on outgoing argument values.)
 533      * The caller can assume that the incoming result value is part of the range
 534      * of the callee's return type.
 535      * @param args the signature-polymorphic parameter list, statically represented using varargs
 536      * @return the signature-polymorphic result, statically represented using {@code Object}
 537      */
 538     @HotSpotIntrinsicCandidate
 539     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
 540 
 541     /**
 542      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
 543      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 544      * The trailing (not leading) argument must be a MemberName.
 545      * @param args the signature-polymorphic parameter list, statically represented using varargs
 546      * @return the signature-polymorphic result, statically represented using {@code Object}
 547      */
 548     @HotSpotIntrinsicCandidate
 549     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
 550 
 551     /**
 552      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
 553      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 554      * The trailing (not leading) argument must be a MemberName.
 555      * @param args the signature-polymorphic parameter list, statically represented using varargs
 556      * @return the signature-polymorphic result, statically represented using {@code Object}
 557      */
 558     @HotSpotIntrinsicCandidate
 559     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
 560 
 561     /**
 562      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
 563      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 564      * The trailing (not leading) argument must be a MemberName.
 565      * @param args the signature-polymorphic parameter list, statically represented using varargs
 566      * @return the signature-polymorphic result, statically represented using {@code Object}
 567      */
 568     @HotSpotIntrinsicCandidate
 569     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
 570 
 571     /**
 572      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
 573      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 574      * The trailing (not leading) argument must be a MemberName.
 575      * @param args the signature-polymorphic parameter list, statically represented using varargs
 576      * @return the signature-polymorphic result, statically represented using {@code Object}
 577      */
 578     @HotSpotIntrinsicCandidate
 579     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
 580 
 581     /**
 582      * Performs a variable arity invocation, passing the arguments in the given list
 583      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 584      * which mentions only the type {@code Object}, and whose arity is the length
 585      * of the argument list.
 586      * <p>
 587      * Specifically, execution proceeds as if by the following steps,
 588      * although the methods are not guaranteed to be called if the JVM
 589      * can predict their effects.
 590      * <ul>
 591      * <li>Determine the length of the argument array as {@code N}.
 592      *     For a null reference, {@code N=0}. </li>
 593      * <li>Determine the general type {@code TN} of {@code N} arguments as
 594      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
 595      * <li>Force the original target method handle {@code MH0} to the
 596      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
 597      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
 598      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
 599      *     MH1.invokeExact(A0, ...). </li>
 600      * <li>Take the return value as an {@code Object} reference. </li>
 601      * </ul>
 602      * <p>
 603      * Because of the action of the {@code asType} step, the following argument
 604      * conversions are applied as necessary:
 605      * <ul>
 606      * <li>reference casting
 607      * <li>unboxing
 608      * <li>widening primitive conversions
 609      * </ul>
 610      * <p>
 611      * The result returned by the call is boxed if it is a primitive,
 612      * or forced to null if the return type is void.
 613      * <p>
 614      * This call is equivalent to the following code:
 615      * <blockquote><pre>{@code
 616      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
 617      * Object result = invoker.invokeExact(this, arguments);
 618      * }</pre></blockquote>
 619      * <p>
 620      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
 621      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
 622      * It can therefore be used as a bridge between native or reflective code and method handles.
 623      *
 624      * @param arguments the arguments to pass to the target
 625      * @return the result returned by the target
 626      * @throws ClassCastException if an argument cannot be converted by reference casting
 627      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 628      * @throws Throwable anything thrown by the target method invocation
 629      * @see MethodHandles#spreadInvoker
 630      */
 631     public Object invokeWithArguments(Object... arguments) throws Throwable {
 632         MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
 633         return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
 634     }
 635 
 636     /**
 637      * Performs a variable arity invocation, passing the arguments in the given array
 638      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 639      * which mentions only the type {@code Object}, and whose arity is the length
 640      * of the argument array.
 641      * <p>
 642      * This method is also equivalent to the following code:
 643      * <blockquote><pre>{@code
 644      *   invokeWithArguments(arguments.toArray()
 645      * }</pre></blockquote>
 646      *
 647      * @param arguments the arguments to pass to the target
 648      * @return the result returned by the target
 649      * @throws NullPointerException if {@code arguments} is a null reference
 650      * @throws ClassCastException if an argument cannot be converted by reference casting
 651      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 652      * @throws Throwable anything thrown by the target method invocation
 653      */
 654     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
 655         return invokeWithArguments(arguments.toArray());
 656     }
 657 
 658     /**
 659      * Produces an adapter method handle which adapts the type of the
 660      * current method handle to a new type.
 661      * The resulting method handle is guaranteed to report a type
 662      * which is equal to the desired new type.
 663      * <p>
 664      * If the original type and new type are equal, returns {@code this}.
 665      * <p>
 666      * The new method handle, when invoked, will perform the following
 667      * steps:
 668      * <ul>
 669      * <li>Convert the incoming argument list to match the original
 670      *     method handle's argument list.
 671      * <li>Invoke the original method handle on the converted argument list.
 672      * <li>Convert any result returned by the original method handle
 673      *     to the return type of new method handle.
 674      * </ul>
 675      * <p>
 676      * This method provides the crucial behavioral difference between
 677      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
 678      * The two methods
 679      * perform the same steps when the caller's type descriptor exactly matches
 680      * the callee's, but when the types differ, plain {@link #invoke invoke}
 681      * also calls {@code asType} (or some internal equivalent) in order
 682      * to match up the caller's and callee's types.
 683      * <p>
 684      * If the current method is a variable arity method handle
 685      * argument list conversion may involve the conversion and collection
 686      * of several arguments into an array, as
 687      * {@linkplain #asVarargsCollector described elsewhere}.
 688      * In every other case, all conversions are applied <em>pairwise</em>,
 689      * which means that each argument or return value is converted to
 690      * exactly one argument or return value (or no return value).
 691      * The applied conversions are defined by consulting the
 692      * the corresponding component types of the old and new
 693      * method handle types.
 694      * <p>
 695      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
 696      * or old and new return types.  Specifically, for some valid index {@code i}, let
 697      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
 698      * Or else, going the other way for return values, let
 699      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
 700      * If the types are the same, the new method handle makes no change
 701      * to the corresponding argument or return value (if any).
 702      * Otherwise, one of the following conversions is applied
 703      * if possible:
 704      * <ul>
 705      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
 706      *     (The types do not need to be related in any particular way.
 707      *     This is because a dynamic value of null can convert to any reference type.)
 708      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
 709      *     conversion (JLS 5.3) is applied, if one exists.
 710      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
 711      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
 712      *     a Java casting conversion (JLS 5.5) is applied if one exists.
 713      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
 714      *     which is then widened as needed to <em>T1</em>.)
 715      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
 716      *     conversion will be applied at runtime, possibly followed
 717      *     by a Java method invocation conversion (JLS 5.3)
 718      *     on the primitive value.  (These are the primitive widening conversions.)
 719      *     <em>T0</em> must be a wrapper class or a supertype of one.
 720      *     (In the case where <em>T0</em> is Object, these are the conversions
 721      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
 722      *     The unboxing conversion must have a possibility of success, which means that
 723      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
 724      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
 725      *     primitive value can be widened to <em>T1</em>.
 726      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
 727      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
 728      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
 729      *     a zero value is introduced.
 730      * </ul>
 731      * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
 732      * because neither corresponds specifically to the <em>dynamic type</em> of any
 733      * actual argument or return value.)
 734      * <p>
 735      * The method handle conversion cannot be made if any one of the required
 736      * pairwise conversions cannot be made.
 737      * <p>
 738      * At runtime, the conversions applied to reference arguments
 739      * or return values may require additional runtime checks which can fail.
 740      * An unboxing operation may fail because the original reference is null,
 741      * causing a {@link java.lang.NullPointerException NullPointerException}.
 742      * An unboxing operation or a reference cast may also fail on a reference
 743      * to an object of the wrong type,
 744      * causing a {@link java.lang.ClassCastException ClassCastException}.
 745      * Although an unboxing operation may accept several kinds of wrappers,
 746      * if none are available, a {@code ClassCastException} will be thrown.
 747      *
 748      * @param newType the expected type of the new method handle
 749      * @return a method handle which delegates to {@code this} after performing
 750      *           any necessary argument conversions, and arranges for any
 751      *           necessary return value conversions
 752      * @throws NullPointerException if {@code newType} is a null reference
 753      * @throws WrongMethodTypeException if the conversion cannot be made
 754      * @see MethodHandles#explicitCastArguments
 755      */
 756     public MethodHandle asType(MethodType newType) {
 757         // Fast path alternative to a heavyweight {@code asType} call.
 758         // Return 'this' if the conversion will be a no-op.
 759         if (newType == type) {
 760             return this;
 761         }
 762         // Return 'this.asTypeCache' if the conversion is already memoized.
 763         MethodHandle atc = asTypeCached(newType);
 764         if (atc != null) {
 765             return atc;
 766         }
 767         return asTypeUncached(newType);
 768     }
 769 
 770     private MethodHandle asTypeCached(MethodType newType) {
 771         MethodHandle atc = asTypeCache;
 772         if (atc != null && newType == atc.type) {
 773             return atc;
 774         }
 775         return null;
 776     }
 777 
 778     /** Override this to change asType behavior. */
 779     /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
 780         if (!type.isConvertibleTo(newType))
 781             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
 782         return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
 783     }
 784 
 785     /**
 786      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
 787      * and spreads its elements as positional arguments.
 788      * The new method handle adapts, as its <i>target</i>,
 789      * the current method handle.  The type of the adapter will be
 790      * the same as the type of the target, except that the final
 791      * {@code arrayLength} parameters of the target's type are replaced
 792      * by a single array parameter of type {@code arrayType}.
 793      * <p>
 794      * If the array element type differs from any of the corresponding
 795      * argument types on the original target,
 796      * the original target is adapted to take the array elements directly,
 797      * as if by a call to {@link #asType asType}.
 798      * <p>
 799      * When called, the adapter replaces a trailing array argument
 800      * by the array's elements, each as its own argument to the target.
 801      * (The order of the arguments is preserved.)
 802      * They are converted pairwise by casting and/or unboxing
 803      * to the types of the trailing parameters of the target.
 804      * Finally the target is called.
 805      * What the target eventually returns is returned unchanged by the adapter.
 806      * <p>
 807      * Before calling the target, the adapter verifies that the array
 808      * contains exactly enough elements to provide a correct argument count
 809      * to the target method handle.
 810      * (The array may also be null when zero elements are required.)
 811      * <p>
 812      * If, when the adapter is called, the supplied array argument does
 813      * not have the correct number of elements, the adapter will throw
 814      * an {@link IllegalArgumentException} instead of invoking the target.
 815      * <p>
 816      * Here are some simple examples of array-spreading method handles:
 817      * <blockquote><pre>{@code
 818 MethodHandle equals = publicLookup()
 819   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
 820 assert( (boolean) equals.invokeExact("me", (Object)"me"));
 821 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
 822 // spread both arguments from a 2-array:
 823 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
 824 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
 825 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
 826 // try to spread from anything but a 2-array:
 827 for (int n = 0; n <= 10; n++) {
 828   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
 829   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
 830   catch (IllegalArgumentException ex) { } // OK
 831 }
 832 // spread both arguments from a String array:
 833 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
 834 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
 835 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
 836 // spread second arguments from a 1-array:
 837 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
 838 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
 839 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
 840 // spread no arguments from a 0-array or null:
 841 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
 842 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
 843 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
 844 // asSpreader and asCollector are approximate inverses:
 845 for (int n = 0; n <= 2; n++) {
 846     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
 847         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
 848         assert( (boolean) equals2.invokeWithArguments("me", "me"));
 849         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
 850     }
 851 }
 852 MethodHandle caToString = publicLookup()
 853   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
 854 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
 855 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
 856 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
 857 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
 858 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
 859      * }</pre></blockquote>
 860      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
 861      * @param arrayLength the number of arguments to spread from an incoming array argument
 862      * @return a new method handle which spreads its final array argument,
 863      *         before calling the original method handle
 864      * @throws NullPointerException if {@code arrayType} is a null reference
 865      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
 866      *         or if target does not have at least
 867      *         {@code arrayLength} parameter types,
 868      *         or if {@code arrayLength} is negative,
 869      *         or if the resulting method handle's type would have
 870      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 871      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 872      * @see #asCollector
 873      */
 874     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
 875         return asSpreader(type().parameterCount() - arrayLength, arrayType, arrayLength);
 876     }
 877 
 878     /**
 879      * Makes an <em>array-spreading</em> method handle, which accepts an array argument at a given position and spreads
 880      * its elements as positional arguments in place of the array. The new method handle adapts, as its <i>target</i>,
 881      * the current method handle. The type of the adapter will be the same as the type of the target, except that the
 882      * {@code arrayLength} parameters of the target's type, starting at the zero-based position {@code spreadArgPos},
 883      * are replaced by a single array parameter of type {@code arrayType}.
 884      * <p>
 885      * This method behaves very much like {@link #asSpreader(Class, int)}, but accepts an additional {@code spreadArgPos}
 886      * argument to indicate at which position in the parameter list the spreading should take place.
 887      * <p>
 888      * @apiNote Example:
 889      * <blockquote><pre>{@code
 890     MethodHandle compare = LOOKUP.findStatic(Objects.class, "compare", methodType(int.class, Object.class, Object.class, Comparator.class));
 891     MethodHandle compare2FromArray = compare.asSpreader(0, Object[].class, 2);
 892     Object[] ints = new Object[]{3, 9, 7, 7};
 893     Comparator<Integer> cmp = (a, b) -> a - b;
 894     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 0, 2), cmp) < 0);
 895     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 1, 3), cmp) > 0);
 896     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 2, 4), cmp) == 0);
 897      * }</pre></blockquote>
 898      * @param spreadArgPos the position (zero-based index) in the argument list at which spreading should start.
 899      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
 900      * @param arrayLength the number of arguments to spread from an incoming array argument
 901      * @return a new method handle which spreads an array argument at a given position,
 902      *         before calling the original method handle
 903      * @throws NullPointerException if {@code arrayType} is a null reference
 904      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
 905      *         or if target does not have at least
 906      *         {@code arrayLength} parameter types,
 907      *         or if {@code arrayLength} is negative,
 908      *         or if {@code spreadArgPos} has an illegal value (negative, or together with arrayLength exceeding the
 909      *         number of arguments),
 910      *         or if the resulting method handle's type would have
 911      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 912      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 913      *
 914      * @see #asSpreader(Class, int)
 915      * @since 9
 916      */
 917     public MethodHandle asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength) {
 918         MethodType postSpreadType = asSpreaderChecks(arrayType, spreadArgPos, arrayLength);
 919         MethodHandle afterSpread = this.asType(postSpreadType);
 920         BoundMethodHandle mh = afterSpread.rebind();
 921         LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
 922         MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, spreadArgPos + arrayLength, arrayType);
 923         return mh.copyWith(preSpreadType, lform);
 924     }
 925 
 926     /**
 927      * See if {@code asSpreader} can be validly called with the given arguments.
 928      * Return the type of the method handle call after spreading but before conversions.
 929      */
 930     private MethodType asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength) {
 931         spreadArrayChecks(arrayType, arrayLength);
 932         int nargs = type().parameterCount();
 933         if (nargs < arrayLength || arrayLength < 0)
 934             throw newIllegalArgumentException("bad spread array length");
 935         if (pos < 0 || pos + arrayLength > nargs) {
 936             throw newIllegalArgumentException("bad spread position");
 937         }
 938         Class<?> arrayElement = arrayType.getComponentType();
 939         MethodType mtype = type();
 940         boolean match = true, fail = false;
 941         for (int i = pos; i < pos + arrayLength; i++) {
 942             Class<?> ptype = mtype.parameterType(i);
 943             if (ptype != arrayElement) {
 944                 match = false;
 945                 if (!MethodType.canConvert(arrayElement, ptype)) {
 946                     fail = true;
 947                     break;
 948                 }
 949             }
 950         }
 951         if (match)  return mtype;
 952         MethodType needType = mtype.asSpreaderType(arrayType, pos, arrayLength);
 953         if (!fail)  return needType;
 954         // elicit an error:
 955         this.asType(needType);
 956         throw newInternalError("should not return", null);
 957     }
 958 
 959     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
 960         Class<?> arrayElement = arrayType.getComponentType();
 961         if (arrayElement == null)
 962             throw newIllegalArgumentException("not an array type", arrayType);
 963         if ((arrayLength & 0x7F) != arrayLength) {
 964             if ((arrayLength & 0xFF) != arrayLength)
 965                 throw newIllegalArgumentException("array length is not legal", arrayLength);
 966             assert(arrayLength >= 128);
 967             if (arrayElement == long.class ||
 968                 arrayElement == double.class)
 969                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
 970         }
 971     }
 972     /**
 973       * Adapts this method handle to be {@linkplain #asVarargsCollector variable arity} 
 974       * if the boolean flag is true, else {@linkplain #asFixedArity fixed arity}.
 975       * If the method handle is already of the proper arity mode, it is returned
 976       * unchanged.
 977       * <p>This method is sometimes useful when adapting a method handle that
 978       * may be variable arity, to ensure that the resulting adapter is also
 979       * variable arity if and only if the original handle was.  For example,
 980       * this code changes the first argument of a handle to {@code int} without
 981       * disturbing its variable arity property:
 982       * {@code mh.asType(mh.type().changeParameterType(0,int.class)).withVarargs(mh.isVarargsCollector())}
 983       * @param makeVarargs true if the return method handle should have variable arity behavior
 984       * @return a method handle of the same type, with possibly adjusted variable arity behavior
 985       * @throws IllegalArgumentException if {@code makeVarargs} is true and
 986       *         this method handle does not have a trailing array parameter
 987       * @since 9
 988      */
 989      public MethodHandle withVarargs(boolean makeVarargs) {
 990         if (!makeVarargs) {
 991             return asFixedArity();
 992         } else if (!isVarargsCollector()) {
 993             return asVarargsCollector(type().lastParameterType());
 994         } else {
 995             return this;
 996         }
 997     }
 998 
 999     /**
1000      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
1001      * positional arguments and collects them into an array argument.
1002      * The new method handle adapts, as its <i>target</i>,
1003      * the current method handle.  The type of the adapter will be
1004      * the same as the type of the target, except that a single trailing
1005      * parameter (usually of type {@code arrayType}) is replaced by
1006      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1007      * <p>
1008      * If the array type differs from the final argument type on the original target,
1009      * the original target is adapted to take the array type directly,
1010      * as if by a call to {@link #asType asType}.
1011      * <p>
1012      * When called, the adapter replaces its trailing {@code arrayLength}
1013      * arguments by a single new array of type {@code arrayType}, whose elements
1014      * comprise (in order) the replaced arguments.
1015      * Finally the target is called.
1016      * What the target eventually returns is returned unchanged by the adapter.
1017      * <p>
1018      * (The array may also be a shared constant when {@code arrayLength} is zero.)
1019      * <p>
1020      * (<em>Note:</em> The {@code arrayType} is often identical to the last
1021      * parameter type of the original target.
1022      * It is an explicit argument for symmetry with {@code asSpreader}, and also
1023      * to allow the target to use a simple {@code Object} as its last parameter type.)
1024      * <p>
1025      * In order to create a collecting adapter which is not restricted to a particular
1026      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector}
1027      * or {@link #withVarargs withVarargs} instead.
1028      * <p>
1029      * Here are some examples of array-collecting method handles:
1030      * <blockquote><pre>{@code
1031 MethodHandle deepToString = publicLookup()
1032   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1033 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
1034 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
1035 assertEquals(methodType(String.class, Object.class), ts1.type());
1036 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
1037 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
1038 // arrayType can be a subtype of Object[]
1039 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
1040 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
1041 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
1042 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
1043 assertEquals("[]", (String) ts0.invokeExact());
1044 // collectors can be nested, Lisp-style
1045 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
1046 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
1047 // arrayType can be any primitive array type
1048 MethodHandle bytesToString = publicLookup()
1049   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
1050   .asCollector(byte[].class, 3);
1051 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
1052 MethodHandle longsToString = publicLookup()
1053   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
1054   .asCollector(long[].class, 1);
1055 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
1056      * }</pre></blockquote>
1057      * <p>
1058      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1059      * variable-arity method handle}, even if the original target method handle was.
1060      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1061      * @param arrayLength the number of arguments to collect into a new array argument
1062      * @return a new method handle which collects some trailing argument
1063      *         into an array, before calling the original method handle
1064      * @throws NullPointerException if {@code arrayType} is a null reference
1065      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1066      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
1067      *         or {@code arrayLength} is not a legal array size,
1068      *         or the resulting method handle's type would have
1069      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1070      * @throws WrongMethodTypeException if the implied {@code asType} call fails
1071      * @see #asSpreader
1072      * @see #asVarargsCollector
1073      */
1074     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1075         return asCollector(type().parameterCount() - 1, arrayType, arrayLength);
1076     }
1077 
1078     /**
1079      * Makes an <em>array-collecting</em> method handle, which accepts a given number of positional arguments starting
1080      * at a given position, and collects them into an array argument. The new method handle adapts, as its
1081      * <i>target</i>, the current method handle. The type of the adapter will be the same as the type of the target,
1082      * except that the parameter at the position indicated by {@code collectArgPos} (usually of type {@code arrayType})
1083      * is replaced by {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1084      * <p>
1085      * This method behaves very much like {@link #asCollector(Class, int)}, but differs in that its {@code
1086      * collectArgPos} argument indicates at which position in the parameter list arguments should be collected. This
1087      * index is zero-based.
1088      * <p>
1089      * @apiNote Examples:
1090      * <blockquote><pre>{@code
1091     StringWriter swr = new StringWriter();
1092     MethodHandle swWrite = LOOKUP.findVirtual(StringWriter.class, "write", methodType(void.class, char[].class, int.class, int.class)).bindTo(swr);
1093     MethodHandle swWrite4 = swWrite.asCollector(0, char[].class, 4);
1094     swWrite4.invoke('A', 'B', 'C', 'D', 1, 2);
1095     assertEquals("BC", swr.toString());
1096     swWrite4.invoke('P', 'Q', 'R', 'S', 0, 4);
1097     assertEquals("BCPQRS", swr.toString());
1098     swWrite4.invoke('W', 'X', 'Y', 'Z', 3, 1);
1099     assertEquals("BCPQRSZ", swr.toString());
1100      * }</pre></blockquote>
1101      * <p>
1102      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1103      * variable-arity method handle}, even if the original target method handle was.
1104      * @param collectArgPos the zero-based position in the parameter list at which to start collecting.
1105      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1106      * @param arrayLength the number of arguments to collect into a new array argument
1107      * @return a new method handle which collects some arguments
1108      *         into an array, before calling the original method handle
1109      * @throws NullPointerException if {@code arrayType} is a null reference
1110      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1111      *         or {@code arrayType} is not assignable to this method handle's array parameter type,
1112      *         or {@code arrayLength} is not a legal array size,
1113      *         or {@code collectArgPos} has an illegal value (negative, or greater than the number of arguments),
1114      *         or the resulting method handle's type would have
1115      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1116      * @throws WrongMethodTypeException if the implied {@code asType} call fails
1117      *
1118      * @see #asCollector(Class, int)
1119      * @since 9
1120      */
1121     public MethodHandle asCollector(int collectArgPos, Class<?> arrayType, int arrayLength) {
1122         asCollectorChecks(arrayType, collectArgPos, arrayLength);
1123         BoundMethodHandle mh = rebind();
1124         MethodType resultType = type().asCollectorType(arrayType, collectArgPos, arrayLength);
1125         MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1126         LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
1127         if (lform != null) {
1128             return mh.copyWith(resultType, lform);
1129         }
1130         lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
1131         return mh.copyWithExtendL(resultType, lform, newArray);
1132     }
1133 
1134     /**
1135      * See if {@code asCollector} can be validly called with the given arguments.
1136      * Return false if the last parameter is not an exact match to arrayType.
1137      */
1138     /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int pos, int arrayLength) {
1139         spreadArrayChecks(arrayType, arrayLength);
1140         int nargs = type().parameterCount();
1141         if (pos < 0 || pos >= nargs) {
1142             throw newIllegalArgumentException("bad collect position");
1143         }
1144         if (nargs != 0) {
1145             Class<?> param = type().parameterType(pos);
1146             if (param == arrayType)  return true;
1147             if (param.isAssignableFrom(arrayType))  return false;
1148         }
1149         throw newIllegalArgumentException("array type not assignable to argument", this, arrayType);
1150     }
1151 
1152     /**
1153      * Makes a <em>variable arity</em> adapter which is able to accept
1154      * any number of trailing positional arguments and collect them
1155      * into an array argument.
1156      * <p>
1157      * The type and behavior of the adapter will be the same as
1158      * the type and behavior of the target, except that certain
1159      * {@code invoke} and {@code asType} requests can lead to
1160      * trailing positional arguments being collected into target's
1161      * trailing parameter.
1162      * Also, the last parameter type of the adapter will be
1163      * {@code arrayType}, even if the target has a different
1164      * last parameter type.
1165      * <p>
1166      * This transformation may return {@code this} if the method handle is
1167      * already of variable arity and its trailing parameter type
1168      * is identical to {@code arrayType}.
1169      * <p>
1170      * When called with {@link #invokeExact invokeExact}, the adapter invokes
1171      * the target with no argument changes.
1172      * (<em>Note:</em> This behavior is different from a
1173      * {@linkplain #asCollector fixed arity collector},
1174      * since it accepts a whole array of indeterminate length,
1175      * rather than a fixed number of arguments.)
1176      * <p>
1177      * When called with plain, inexact {@link #invoke invoke}, if the caller
1178      * type is the same as the adapter, the adapter invokes the target as with
1179      * {@code invokeExact}.
1180      * (This is the normal behavior for {@code invoke} when types match.)
1181      * <p>
1182      * Otherwise, if the caller and adapter arity are the same, and the
1183      * trailing parameter type of the caller is a reference type identical to
1184      * or assignable to the trailing parameter type of the adapter,
1185      * the arguments and return values are converted pairwise,
1186      * as if by {@link #asType asType} on a fixed arity
1187      * method handle.
1188      * <p>
1189      * Otherwise, the arities differ, or the adapter's trailing parameter
1190      * type is not assignable from the corresponding caller type.
1191      * In this case, the adapter replaces all trailing arguments from
1192      * the original trailing argument position onward, by
1193      * a new array of type {@code arrayType}, whose elements
1194      * comprise (in order) the replaced arguments.
1195      * <p>
1196      * The caller type must provides as least enough arguments,
1197      * and of the correct type, to satisfy the target's requirement for
1198      * positional arguments before the trailing array argument.
1199      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
1200      * where {@code N} is the arity of the target.
1201      * Also, there must exist conversions from the incoming arguments
1202      * to the target's arguments.
1203      * As with other uses of plain {@code invoke}, if these basic
1204      * requirements are not fulfilled, a {@code WrongMethodTypeException}
1205      * may be thrown.
1206      * <p>
1207      * In all cases, what the target eventually returns is returned unchanged by the adapter.
1208      * <p>
1209      * In the final case, it is exactly as if the target method handle were
1210      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
1211      * to the arity required by the caller type.
1212      * (As with {@code asCollector}, if the array length is zero,
1213      * a shared constant may be used instead of a new array.
1214      * If the implied call to {@code asCollector} would throw
1215      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
1216      * the call to the variable arity adapter must throw
1217      * {@code WrongMethodTypeException}.)
1218      * <p>
1219      * The behavior of {@link #asType asType} is also specialized for
1220      * variable arity adapters, to maintain the invariant that
1221      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1222      * call to adjust the target type, followed by {@code invokeExact}.
1223      * Therefore, a variable arity adapter responds
1224      * to an {@code asType} request by building a fixed arity collector,
1225      * if and only if the adapter and requested type differ either
1226      * in arity or trailing argument type.
1227      * The resulting fixed arity collector has its type further adjusted
1228      * (if necessary) to the requested type by pairwise conversion,
1229      * as if by another application of {@code asType}.
1230      * <p>
1231      * When a method handle is obtained by executing an {@code ldc} instruction
1232      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
1233      * as a variable arity method (with the modifier bit {@code 0x0080}),
1234      * the method handle will accept multiple arities, as if the method handle
1235      * constant were created by means of a call to {@code asVarargsCollector}.
1236      * <p>
1237      * In order to create a collecting adapter which collects a predetermined
1238      * number of arguments, and whose type reflects this predetermined number,
1239      * use {@link #asCollector asCollector} instead.
1240      * <p>
1241      * No method handle transformations produce new method handles with
1242      * variable arity, unless they are documented as doing so.
1243      * Therefore, besides {@code asVarargsCollector} and {@code withVarargs},
1244      * all methods in {@code MethodHandle} and {@code MethodHandles}
1245      * will return a method handle with fixed arity,
1246      * except in the cases where they are specified to return their original
1247      * operand (e.g., {@code asType} of the method handle's own type).
1248      * <p>
1249      * Calling {@code asVarargsCollector} on a method handle which is already
1250      * of variable arity will produce a method handle with the same type and behavior.
1251      * It may (or may not) return the original variable arity method handle.
1252      * <p>
1253      * Here is an example, of a list-making variable arity method handle:
1254      * <blockquote><pre>{@code
1255 MethodHandle deepToString = publicLookup()
1256   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1257 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
1258 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
1259 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
1260 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
1261 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
1262 // findStatic of Arrays.asList(...) produces a variable arity method handle:
1263 MethodHandle asList = publicLookup()
1264   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
1265 assertEquals(methodType(List.class, Object[].class), asList.type());
1266 assert(asList.isVarargsCollector());
1267 assertEquals("[]", asList.invoke().toString());
1268 assertEquals("[1]", asList.invoke(1).toString());
1269 assertEquals("[two, too]", asList.invoke("two", "too").toString());
1270 String[] argv = { "three", "thee", "tee" };
1271 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1272 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1273 List ls = (List) asList.invoke((Object)argv);
1274 assertEquals(1, ls.size());
1275 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
1276      * }</pre></blockquote>
1277      * <p style="font-size:smaller;">
1278      * <em>Discussion:</em>
1279      * These rules are designed as a dynamically-typed variation
1280      * of the Java rules for variable arity methods.
1281      * In both cases, callers to a variable arity method or method handle
1282      * can either pass zero or more positional arguments, or else pass
1283      * pre-collected arrays of any length.  Users should be aware of the
1284      * special role of the final argument, and of the effect of a
1285      * type match on that final argument, which determines whether
1286      * or not a single trailing argument is interpreted as a whole
1287      * array or a single element of an array to be collected.
1288      * Note that the dynamic type of the trailing argument has no
1289      * effect on this decision, only a comparison between the symbolic
1290      * type descriptor of the call site and the type descriptor of the method handle.)
1291      *
1292      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1293      * @return a new method handle which can collect any number of trailing arguments
1294      *         into an array, before calling the original method handle
1295      * @throws NullPointerException if {@code arrayType} is a null reference
1296      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1297      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
1298      * @see #asCollector
1299      * @see #isVarargsCollector
1300      * @see #withVarargs
1301      * @see #asFixedArity
1302      */
1303     public MethodHandle asVarargsCollector(Class<?> arrayType) {
1304         Objects.requireNonNull(arrayType);
1305         boolean lastMatch = asCollectorChecks(arrayType, type().parameterCount() - 1, 0);
1306         if (isVarargsCollector() && lastMatch)
1307             return this;
1308         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1309     }
1310 
1311     /**
1312      * Determines if this method handle
1313      * supports {@linkplain #asVarargsCollector variable arity} calls.
1314      * Such method handles arise from the following sources:
1315      * <ul>
1316      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1317      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1318      *     which resolves to a variable arity Java method or constructor
1319      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
1320      *     which resolves to a variable arity Java method or constructor
1321      * </ul>
1322      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1323      * @see #asVarargsCollector
1324      * @see #asFixedArity
1325      */
1326     public boolean isVarargsCollector() {
1327         return false;
1328     }
1329 
1330     /**
1331      * Makes a <em>fixed arity</em> method handle which is otherwise
1332      * equivalent to the current method handle.
1333      * <p>
1334      * If the current method handle is not of
1335      * {@linkplain #asVarargsCollector variable arity},
1336      * the current method handle is returned.
1337      * This is true even if the current method handle
1338      * could not be a valid input to {@code asVarargsCollector}.
1339      * <p>
1340      * Otherwise, the resulting fixed-arity method handle has the same
1341      * type and behavior of the current method handle,
1342      * except that {@link #isVarargsCollector isVarargsCollector}
1343      * will be false.
1344      * The fixed-arity method handle may (or may not) be the
1345      * a previous argument to {@code asVarargsCollector}.
1346      * <p>
1347      * Here is an example, of a list-making variable arity method handle:
1348      * <blockquote><pre>{@code
1349 MethodHandle asListVar = publicLookup()
1350   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
1351   .asVarargsCollector(Object[].class);
1352 MethodHandle asListFix = asListVar.asFixedArity();
1353 assertEquals("[1]", asListVar.invoke(1).toString());
1354 Exception caught = null;
1355 try { asListFix.invoke((Object)1); }
1356 catch (Exception ex) { caught = ex; }
1357 assert(caught instanceof ClassCastException);
1358 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
1359 try { asListFix.invoke("two", "too"); }
1360 catch (Exception ex) { caught = ex; }
1361 assert(caught instanceof WrongMethodTypeException);
1362 Object[] argv = { "three", "thee", "tee" };
1363 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
1364 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
1365 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
1366 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
1367      * }</pre></blockquote>
1368      *
1369      * @return a new method handle which accepts only a fixed number of arguments
1370      * @see #asVarargsCollector
1371      * @see #isVarargsCollector
1372      * @see #withVarargs
1373      */
1374     public MethodHandle asFixedArity() {
1375         assert(!isVarargsCollector());
1376         return this;
1377     }
1378 
1379     /**
1380      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1381      * The new method handle adapts, as its <i>target</i>,
1382      * the current method handle by binding it to the given argument.
1383      * The type of the bound handle will be
1384      * the same as the type of the target, except that a single leading
1385      * reference parameter will be omitted.
1386      * <p>
1387      * When called, the bound handle inserts the given value {@code x}
1388      * as a new leading argument to the target.  The other arguments are
1389      * also passed unchanged.
1390      * What the target eventually returns is returned unchanged by the bound handle.
1391      * <p>
1392      * The reference {@code x} must be convertible to the first parameter
1393      * type of the target.
1394      * <p>
1395      * <em>Note:</em>  Because method handles are immutable, the target method handle
1396      * retains its original type and behavior.
1397      * <p>
1398      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1399      * variable-arity method handle}, even if the original target method handle was.
1400      * @param x  the value to bind to the first argument of the target
1401      * @return a new method handle which prepends the given value to the incoming
1402      *         argument list, before calling the original method handle
1403      * @throws IllegalArgumentException if the target does not have a
1404      *         leading parameter type that is a reference type
1405      * @throws ClassCastException if {@code x} cannot be converted
1406      *         to the leading parameter type of the target
1407      * @see MethodHandles#insertArguments
1408      */
1409     public MethodHandle bindTo(Object x) {
1410         x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
1411         return bindArgumentL(0, x);
1412     }
1413 
1414     /**
1415      * Returns a string representation of the method handle,
1416      * starting with the string {@code "MethodHandle"} and
1417      * ending with the string representation of the method handle's type.
1418      * In other words, this method returns a string equal to the value of:
1419      * <blockquote><pre>{@code
1420      * "MethodHandle" + type().toString()
1421      * }</pre></blockquote>
1422      * <p>
1423      * (<em>Note:</em>  Future releases of this API may add further information
1424      * to the string representation.
1425      * Therefore, the present syntax should not be parsed by applications.)
1426      *
1427      * @return a string representation of the method handle
1428      */
1429     @Override
1430     public String toString() {
1431         if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1432         return standardString();
1433     }
1434     String standardString() {
1435         return "MethodHandle"+type;
1436     }
1437     /** Return a string with a several lines describing the method handle structure.
1438      *  This string would be suitable for display in an IDE debugger.
1439      */
1440     String debugString() {
1441         return type+" : "+internalForm()+internalProperties();
1442     }
1443 
1444     //// Implementation methods.
1445     //// Sub-classes can override these default implementations.
1446     //// All these methods assume arguments are already validated.
1447 
1448     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1449 
1450     BoundMethodHandle bindArgumentL(int pos, Object value) {
1451         return rebind().bindArgumentL(pos, value);
1452     }
1453 
1454     /*non-public*/
1455     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
1456         if (!member.isVarargs())  return this;
1457         try {
1458             return this.withVarargs(true);
1459         } catch (IllegalArgumentException ex) {
1460             throw member.makeAccessException("cannot make variable arity", null);
1461         }
1462     }
1463 
1464     /*non-public*/
1465     MethodHandle viewAsType(MethodType newType, boolean strict) {
1466         // No actual conversions, just a new view of the same method.
1467         // Note that this operation must not produce a DirectMethodHandle,
1468         // because retyped DMHs, like any transformed MHs,
1469         // cannot be cracked into MethodHandleInfo.
1470         assert viewAsTypeChecks(newType, strict);
1471         BoundMethodHandle mh = rebind();
1472         return mh.copyWith(newType, mh.form);
1473     }
1474 
1475     /*non-public*/
1476     boolean viewAsTypeChecks(MethodType newType, boolean strict) {
1477         if (strict) {
1478             assert(type().isViewableAs(newType, true))
1479                 : Arrays.asList(this, newType);
1480         } else {
1481             assert(type().basicType().isViewableAs(newType.basicType(), true))
1482                 : Arrays.asList(this, newType);
1483         }
1484         return true;
1485     }
1486 
1487     // Decoding
1488 
1489     /*non-public*/
1490     LambdaForm internalForm() {
1491         return form;
1492     }
1493 
1494     /*non-public*/
1495     MemberName internalMemberName() {
1496         return null;  // DMH returns DMH.member
1497     }
1498 
1499     /*non-public*/
1500     Class<?> internalCallerClass() {
1501         return null;  // caller-bound MH for @CallerSensitive method returns caller
1502     }
1503 
1504     /*non-public*/
1505     MethodHandleImpl.Intrinsic intrinsicName() {
1506         // no special intrinsic meaning to most MHs
1507         return MethodHandleImpl.Intrinsic.NONE;
1508     }
1509 
1510     /*non-public*/
1511     MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
1512         if (member != null) {
1513             return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
1514         } else if (internalMemberName() == null) {
1515             // The required internaMemberName is null, and this MH (like most) doesn't have one.
1516             return this;
1517         } else {
1518             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
1519             MethodHandle result = rebind();
1520             assert (result.internalMemberName() == null);
1521             return result;
1522         }
1523     }
1524 
1525     /*non-public*/
1526     boolean isInvokeSpecial() {
1527         return false;  // DMH.Special returns true
1528     }
1529 
1530     /*non-public*/
1531     Object internalValues() {
1532         return null;
1533     }
1534 
1535     /*non-public*/
1536     Object internalProperties() {
1537         // Override to something to follow this.form, like "\n& FOO=bar"
1538         return "";
1539     }
1540 
1541     //// Method handle implementation methods.
1542     //// Sub-classes can override these default implementations.
1543     //// All these methods assume arguments are already validated.
1544 
1545     /*non-public*/
1546     abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
1547 
1548     /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
1549      *  Many transforms are implemented only for BMHs.
1550      *  @return a behaviorally equivalent BMH
1551      */
1552     abstract BoundMethodHandle rebind();
1553 
1554     /**
1555      * Replace the old lambda form of this method handle with a new one.
1556      * The new one must be functionally equivalent to the old one.
1557      * Threads may continue running the old form indefinitely,
1558      * but it is likely that the new one will be preferred for new executions.
1559      * Use with discretion.
1560      */
1561     /*non-public*/
1562     void updateForm(LambdaForm newForm) {
1563         assert(newForm.customized == null || newForm.customized == this);
1564         if (form == newForm)  return;
1565         newForm.prepare();  // as in MethodHandle.<init>
1566         UNSAFE.putObject(this, FORM_OFFSET, newForm);
1567         UNSAFE.fullFence();
1568     }
1569 
1570     /** Craft a LambdaForm customized for this particular MethodHandle */
1571     /*non-public*/
1572     void customize() {
1573         if (form.customized == null) {
1574             LambdaForm newForm = form.customize(this);
1575             updateForm(newForm);
1576         } else {
1577             assert(form.customized == this);
1578         }
1579     }
1580 
1581     private static final long FORM_OFFSET;
1582     static {
1583         try {
1584             FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
1585         } catch (ReflectiveOperationException ex) {
1586             throw newInternalError(ex);
1587         }
1588     }
1589 }