1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result);
 311   void load_mirror(Register mirror, Register method);
 312 
 313   // oop manipulations
 314   void load_klass(Register dst, Register src);
 315   void store_klass(Register dst, Register src);
 316 
 317   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 318                       Register tmp1, Register thread_tmp);
 319   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 320                        Register tmp1, Register tmp2);
 321 
 322   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 323                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 324   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 325                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 326   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 327                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 328 
 329   // Used for storing NULL. All other oop constants should be
 330   // stored using routines that take a jobject.
 331   void store_heap_oop_null(Address dst);
 332 
 333   void load_prototype_header(Register dst, Register src);
 334 
 335 #ifdef _LP64
 336   void store_klass_gap(Register dst, Register src);
 337 
 338   // This dummy is to prevent a call to store_heap_oop from
 339   // converting a zero (like NULL) into a Register by giving
 340   // the compiler two choices it can't resolve
 341 
 342   void store_heap_oop(Address dst, void* dummy);
 343 
 344   void encode_heap_oop(Register r);
 345   void decode_heap_oop(Register r);
 346   void encode_heap_oop_not_null(Register r);
 347   void decode_heap_oop_not_null(Register r);
 348   void encode_heap_oop_not_null(Register dst, Register src);
 349   void decode_heap_oop_not_null(Register dst, Register src);
 350 
 351   void set_narrow_oop(Register dst, jobject obj);
 352   void set_narrow_oop(Address dst, jobject obj);
 353   void cmp_narrow_oop(Register dst, jobject obj);
 354   void cmp_narrow_oop(Address dst, jobject obj);
 355 
 356   void encode_klass_not_null(Register r);
 357   void decode_klass_not_null(Register r);
 358   void encode_klass_not_null(Register dst, Register src);
 359   void decode_klass_not_null(Register dst, Register src);
 360   void set_narrow_klass(Register dst, Klass* k);
 361   void set_narrow_klass(Address dst, Klass* k);
 362   void cmp_narrow_klass(Register dst, Klass* k);
 363   void cmp_narrow_klass(Address dst, Klass* k);
 364 
 365   // Returns the byte size of the instructions generated by decode_klass_not_null()
 366   // when compressed klass pointers are being used.
 367   static int instr_size_for_decode_klass_not_null();
 368 
 369   // if heap base register is used - reinit it with the correct value
 370   void reinit_heapbase();
 371 
 372   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 373 
 374 #endif // _LP64
 375 
 376   // Int division/remainder for Java
 377   // (as idivl, but checks for special case as described in JVM spec.)
 378   // returns idivl instruction offset for implicit exception handling
 379   int corrected_idivl(Register reg);
 380 
 381   // Long division/remainder for Java
 382   // (as idivq, but checks for special case as described in JVM spec.)
 383   // returns idivq instruction offset for implicit exception handling
 384   int corrected_idivq(Register reg);
 385 
 386   void int3();
 387 
 388   // Long operation macros for a 32bit cpu
 389   // Long negation for Java
 390   void lneg(Register hi, Register lo);
 391 
 392   // Long multiplication for Java
 393   // (destroys contents of eax, ebx, ecx and edx)
 394   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 395 
 396   // Long shifts for Java
 397   // (semantics as described in JVM spec.)
 398   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 399   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 400 
 401   // Long compare for Java
 402   // (semantics as described in JVM spec.)
 403   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 404 
 405 
 406   // misc
 407 
 408   // Sign extension
 409   void sign_extend_short(Register reg);
 410   void sign_extend_byte(Register reg);
 411 
 412   // Division by power of 2, rounding towards 0
 413   void division_with_shift(Register reg, int shift_value);
 414 
 415   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 416   //
 417   // CF (corresponds to C0) if x < y
 418   // PF (corresponds to C2) if unordered
 419   // ZF (corresponds to C3) if x = y
 420   //
 421   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 422   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 423   void fcmp(Register tmp);
 424   // Variant of the above which allows y to be further down the stack
 425   // and which only pops x and y if specified. If pop_right is
 426   // specified then pop_left must also be specified.
 427   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 428 
 429   // Floating-point comparison for Java
 430   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 431   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 432   // (semantics as described in JVM spec.)
 433   void fcmp2int(Register dst, bool unordered_is_less);
 434   // Variant of the above which allows y to be further down the stack
 435   // and which only pops x and y if specified. If pop_right is
 436   // specified then pop_left must also be specified.
 437   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 438 
 439   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 440   // tmp is a temporary register, if none is available use noreg
 441   void fremr(Register tmp);
 442 
 443   // dst = c = a * b + c
 444   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 445   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 446 
 447   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 448   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 449   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 450   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // branch to L if FPU flag C2 is set/not set
 458   // tmp is a temporary register, if none is available use noreg
 459   void jC2 (Register tmp, Label& L);
 460   void jnC2(Register tmp, Label& L);
 461 
 462   // Pop ST (ffree & fincstp combined)
 463   void fpop();
 464 
 465   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 466   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 467   void load_float(Address src);
 468 
 469   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 470   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 471   void store_float(Address dst);
 472 
 473   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_double(Address src);
 476 
 477   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_double(Address dst);
 480 
 481   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 482   void push_fTOS();
 483 
 484   // pops double TOS element from CPU stack and pushes on FPU stack
 485   void pop_fTOS();
 486 
 487   void empty_FPU_stack();
 488 
 489   void push_IU_state();
 490   void pop_IU_state();
 491 
 492   void push_FPU_state();
 493   void pop_FPU_state();
 494 
 495   void push_CPU_state();
 496   void pop_CPU_state();
 497 
 498   // Round up to a power of two
 499   void round_to(Register reg, int modulus);
 500 
 501   // Callee saved registers handling
 502   void push_callee_saved_registers();
 503   void pop_callee_saved_registers();
 504 
 505   // allocation
 506   void eden_allocate(
 507     Register obj,                      // result: pointer to object after successful allocation
 508     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 509     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 510     Register t1,                       // temp register
 511     Label&   slow_case                 // continuation point if fast allocation fails
 512   );
 513   void tlab_allocate(
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Register t2,                       // temp register
 519     Label&   slow_case                 // continuation point if fast allocation fails
 520   );
 521   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 522 
 523   void incr_allocated_bytes(Register thread,
 524                             Register var_size_in_bytes, int con_size_in_bytes,
 525                             Register t1 = noreg);
 526 
 527   // interface method calling
 528   void lookup_interface_method(Register recv_klass,
 529                                Register intf_klass,
 530                                RegisterOrConstant itable_index,
 531                                Register method_result,
 532                                Register scan_temp,
 533                                Label& no_such_interface,
 534                                bool return_method = true);
 535 
 536   // virtual method calling
 537   void lookup_virtual_method(Register recv_klass,
 538                              RegisterOrConstant vtable_index,
 539                              Register method_result);
 540 
 541   // Test sub_klass against super_klass, with fast and slow paths.
 542 
 543   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 544   // One of the three labels can be NULL, meaning take the fall-through.
 545   // If super_check_offset is -1, the value is loaded up from super_klass.
 546   // No registers are killed, except temp_reg.
 547   void check_klass_subtype_fast_path(Register sub_klass,
 548                                      Register super_klass,
 549                                      Register temp_reg,
 550                                      Label* L_success,
 551                                      Label* L_failure,
 552                                      Label* L_slow_path,
 553                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 554 
 555   // The rest of the type check; must be wired to a corresponding fast path.
 556   // It does not repeat the fast path logic, so don't use it standalone.
 557   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 558   // Updates the sub's secondary super cache as necessary.
 559   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 560   void check_klass_subtype_slow_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Register temp2_reg,
 564                                      Label* L_success,
 565                                      Label* L_failure,
 566                                      bool set_cond_codes = false);
 567 
 568   // Simplified, combined version, good for typical uses.
 569   // Falls through on failure.
 570   void check_klass_subtype(Register sub_klass,
 571                            Register super_klass,
 572                            Register temp_reg,
 573                            Label& L_success);
 574 
 575   // method handles (JSR 292)
 576   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 577 
 578   //----
 579   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 580 
 581   // Debugging
 582 
 583   // only if +VerifyOops
 584   // TODO: Make these macros with file and line like sparc version!
 585   void verify_oop(Register reg, const char* s = "broken oop");
 586   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 587 
 588   // TODO: verify method and klass metadata (compare against vptr?)
 589   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 590   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 591 
 592 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 593 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 594 
 595   // only if +VerifyFPU
 596   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 597 
 598   // Verify or restore cpu control state after JNI call
 599   void restore_cpu_control_state_after_jni();
 600 
 601   // prints msg, dumps registers and stops execution
 602   void stop(const char* msg);
 603 
 604   // prints msg and continues
 605   void warn(const char* msg);
 606 
 607   // dumps registers and other state
 608   void print_state();
 609 
 610   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 611   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 612   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 613   static void print_state64(int64_t pc, int64_t regs[]);
 614 
 615   void os_breakpoint();
 616 
 617   void untested()                                { stop("untested"); }
 618 
 619   void unimplemented(const char* what = "");
 620 
 621   void should_not_reach_here()                   { stop("should not reach here"); }
 622 
 623   void print_CPU_state();
 624 
 625   // Stack overflow checking
 626   void bang_stack_with_offset(int offset) {
 627     // stack grows down, caller passes positive offset
 628     assert(offset > 0, "must bang with negative offset");
 629     movl(Address(rsp, (-offset)), rax);
 630   }
 631 
 632   // Writes to stack successive pages until offset reached to check for
 633   // stack overflow + shadow pages.  Also, clobbers tmp
 634   void bang_stack_size(Register size, Register tmp);
 635 
 636   // Check for reserved stack access in method being exited (for JIT)
 637   void reserved_stack_check();
 638 
 639   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 640                                                 Register tmp,
 641                                                 int offset);
 642 
 643   // Support for serializing memory accesses between threads
 644   void serialize_memory(Register thread, Register tmp);
 645 
 646   // If thread_reg is != noreg the code assumes the register passed contains
 647   // the thread (required on 64 bit).
 648   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 649 
 650   void verify_tlab();
 651 
 652   // Biased locking support
 653   // lock_reg and obj_reg must be loaded up with the appropriate values.
 654   // swap_reg must be rax, and is killed.
 655   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 656   // be killed; if not supplied, push/pop will be used internally to
 657   // allocate a temporary (inefficient, avoid if possible).
 658   // Optional slow case is for implementations (interpreter and C1) which branch to
 659   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 660   // Returns offset of first potentially-faulting instruction for null
 661   // check info (currently consumed only by C1). If
 662   // swap_reg_contains_mark is true then returns -1 as it is assumed
 663   // the calling code has already passed any potential faults.
 664   int biased_locking_enter(Register lock_reg, Register obj_reg,
 665                            Register swap_reg, Register tmp_reg,
 666                            bool swap_reg_contains_mark,
 667                            Label& done, Label* slow_case = NULL,
 668                            BiasedLockingCounters* counters = NULL);
 669   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 670 #ifdef COMPILER2
 671   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 672   // See full desription in macroAssembler_x86.cpp.
 673   void fast_lock(Register obj, Register box, Register tmp,
 674                  Register scr, Register cx1, Register cx2,
 675                  BiasedLockingCounters* counters,
 676                  RTMLockingCounters* rtm_counters,
 677                  RTMLockingCounters* stack_rtm_counters,
 678                  Metadata* method_data,
 679                  bool use_rtm, bool profile_rtm);
 680   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 681 #if INCLUDE_RTM_OPT
 682   void rtm_counters_update(Register abort_status, Register rtm_counters);
 683   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 684   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 685                                    RTMLockingCounters* rtm_counters,
 686                                    Metadata* method_data);
 687   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 688                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 689   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 690   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 691   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 692                          Register retry_on_abort_count,
 693                          RTMLockingCounters* stack_rtm_counters,
 694                          Metadata* method_data, bool profile_rtm,
 695                          Label& DONE_LABEL, Label& IsInflated);
 696   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 697                             Register scr, Register retry_on_busy_count,
 698                             Register retry_on_abort_count,
 699                             RTMLockingCounters* rtm_counters,
 700                             Metadata* method_data, bool profile_rtm,
 701                             Label& DONE_LABEL);
 702 #endif
 703 #endif
 704 
 705   Condition negate_condition(Condition cond);
 706 
 707   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 708   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 709   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 710   // here in MacroAssembler. The major exception to this rule is call
 711 
 712   // Arithmetics
 713 
 714 
 715   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 716   void addptr(Address dst, Register src);
 717 
 718   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 719   void addptr(Register dst, int32_t src);
 720   void addptr(Register dst, Register src);
 721   void addptr(Register dst, RegisterOrConstant src) {
 722     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 723     else                   addptr(dst,       src.as_register());
 724   }
 725 
 726   void andptr(Register dst, int32_t src);
 727   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 728 
 729   void cmp8(AddressLiteral src1, int imm);
 730 
 731   // renamed to drag out the casting of address to int32_t/intptr_t
 732   void cmp32(Register src1, int32_t imm);
 733 
 734   void cmp32(AddressLiteral src1, int32_t imm);
 735   // compare reg - mem, or reg - &mem
 736   void cmp32(Register src1, AddressLiteral src2);
 737 
 738   void cmp32(Register src1, Address src2);
 739 
 740 #ifndef _LP64
 741   void cmpklass(Address dst, Metadata* obj);
 742   void cmpklass(Register dst, Metadata* obj);
 743   void cmpoop(Address dst, jobject obj);
 744 #endif // _LP64
 745 
 746   void cmpoop(Register src1, Register src2);
 747   void cmpoop(Register src1, Address src2);
 748   void cmpoop(Register dst, jobject obj);
 749 
 750   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 751   void cmpptr(Address src1, AddressLiteral src2);
 752 
 753   void cmpptr(Register src1, AddressLiteral src2);
 754 
 755   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758 
 759   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761 
 762   // cmp64 to avoild hiding cmpq
 763   void cmp64(Register src1, AddressLiteral src);
 764 
 765   void cmpxchgptr(Register reg, Address adr);
 766 
 767   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 768 
 769 
 770   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 771   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 772 
 773 
 774   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 775 
 776   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 777 
 778   void shlptr(Register dst, int32_t shift);
 779   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 780 
 781   void shrptr(Register dst, int32_t shift);
 782   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 783 
 784   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 785   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 786 
 787   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 788 
 789   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 790   void subptr(Register dst, int32_t src);
 791   // Force generation of a 4 byte immediate value even if it fits into 8bit
 792   void subptr_imm32(Register dst, int32_t src);
 793   void subptr(Register dst, Register src);
 794   void subptr(Register dst, RegisterOrConstant src) {
 795     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 796     else                   subptr(dst,       src.as_register());
 797   }
 798 
 799   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 801 
 802   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 804 
 805   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 806 
 807 
 808 
 809   // Helper functions for statistics gathering.
 810   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 811   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 812   // Unconditional atomic increment.
 813   void atomic_incl(Address counter_addr);
 814   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 815 #ifdef _LP64
 816   void atomic_incq(Address counter_addr);
 817   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 818 #endif
 819   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 820   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 821 
 822   void lea(Register dst, AddressLiteral adr);
 823   void lea(Address dst, AddressLiteral adr);
 824   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 825 
 826   void leal32(Register dst, Address src) { leal(dst, src); }
 827 
 828   // Import other testl() methods from the parent class or else
 829   // they will be hidden by the following overriding declaration.
 830   using Assembler::testl;
 831   void testl(Register dst, AddressLiteral src);
 832 
 833   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 837 
 838   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 839   void testptr(Register src1, Register src2);
 840 
 841   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 842   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 843 
 844   // Calls
 845 
 846   void call(Label& L, relocInfo::relocType rtype);
 847   void call(Register entry);
 848 
 849   // NOTE: this call transfers to the effective address of entry NOT
 850   // the address contained by entry. This is because this is more natural
 851   // for jumps/calls.
 852   void call(AddressLiteral entry);
 853 
 854   // Emit the CompiledIC call idiom
 855   void ic_call(address entry, jint method_index = 0);
 856 
 857   // Jumps
 858 
 859   // NOTE: these jumps tranfer to the effective address of dst NOT
 860   // the address contained by dst. This is because this is more natural
 861   // for jumps/calls.
 862   void jump(AddressLiteral dst);
 863   void jump_cc(Condition cc, AddressLiteral dst);
 864 
 865   // 32bit can do a case table jump in one instruction but we no longer allow the base
 866   // to be installed in the Address class. This jump will tranfers to the address
 867   // contained in the location described by entry (not the address of entry)
 868   void jump(ArrayAddress entry);
 869 
 870   // Floating
 871 
 872   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 873   void andpd(XMMRegister dst, AddressLiteral src);
 874   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 875 
 876   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 877   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 878   void andps(XMMRegister dst, AddressLiteral src);
 879 
 880   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 881   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 882   void comiss(XMMRegister dst, AddressLiteral src);
 883 
 884   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 885   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 886   void comisd(XMMRegister dst, AddressLiteral src);
 887 
 888   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 889   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 890 
 891   void fldcw(Address src) { Assembler::fldcw(src); }
 892   void fldcw(AddressLiteral src);
 893 
 894   void fld_s(int index)   { Assembler::fld_s(index); }
 895   void fld_s(Address src) { Assembler::fld_s(src); }
 896   void fld_s(AddressLiteral src);
 897 
 898   void fld_d(Address src) { Assembler::fld_d(src); }
 899   void fld_d(AddressLiteral src);
 900 
 901   void fld_x(Address src) { Assembler::fld_x(src); }
 902   void fld_x(AddressLiteral src);
 903 
 904   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 905   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 906 
 907   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 908   void ldmxcsr(AddressLiteral src);
 909 
 910 #ifdef _LP64
 911  private:
 912   void sha256_AVX2_one_round_compute(
 913     Register  reg_old_h,
 914     Register  reg_a,
 915     Register  reg_b,
 916     Register  reg_c,
 917     Register  reg_d,
 918     Register  reg_e,
 919     Register  reg_f,
 920     Register  reg_g,
 921     Register  reg_h,
 922     int iter);
 923   void sha256_AVX2_four_rounds_compute_first(int start);
 924   void sha256_AVX2_four_rounds_compute_last(int start);
 925   void sha256_AVX2_one_round_and_sched(
 926         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 927         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 928         XMMRegister xmm_2,     /* ymm6 */
 929         XMMRegister xmm_3,     /* ymm7 */
 930         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 931         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 932         Register    reg_c,      /* edi */
 933         Register    reg_d,      /* esi */
 934         Register    reg_e,      /* r8d */
 935         Register    reg_f,      /* r9d */
 936         Register    reg_g,      /* r10d */
 937         Register    reg_h,      /* r11d */
 938         int iter);
 939 
 940   void addm(int disp, Register r1, Register r2);
 941 
 942  public:
 943   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 944                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 945                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 946                    bool multi_block, XMMRegister shuf_mask);
 947 #endif
 948 
 949 #ifdef _LP64
 950  private:
 951   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 952                                      Register e, Register f, Register g, Register h, int iteration);
 953 
 954   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 955                                           Register a, Register b, Register c, Register d, Register e, Register f,
 956                                           Register g, Register h, int iteration);
 957 
 958   void addmq(int disp, Register r1, Register r2);
 959  public:
 960   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 961                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 962                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 963                    XMMRegister shuf_mask);
 964 #endif
 965 
 966   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 967                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 968                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 969                  bool multi_block);
 970 
 971 #ifdef _LP64
 972   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 973                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 974                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 975                    bool multi_block, XMMRegister shuf_mask);
 976 #else
 977   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 978                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 979                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 980                    bool multi_block);
 981 #endif
 982 
 983   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 984                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 985                 Register rax, Register rcx, Register rdx, Register tmp);
 986 
 987 #ifdef _LP64
 988   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 991 
 992   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 993                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 994                   Register rax, Register rcx, Register rdx, Register r11);
 995 
 996   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 997                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 998                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 999 
1000   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1001                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1002                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1003                 Register tmp3, Register tmp4);
1004 
1005   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rcx, Register rdx, Register tmp1,
1008                 Register tmp2, Register tmp3, Register tmp4);
1009   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp1,
1012                 Register tmp2, Register tmp3, Register tmp4);
1013 #else
1014   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1);
1017 
1018   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                 Register rax, Register rcx, Register rdx, Register tmp);
1021 
1022   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1023                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1024                 Register rdx, Register tmp);
1025 
1026   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rbx, Register rdx);
1029 
1030   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032                 Register rax, Register rcx, Register rdx, Register tmp);
1033 
1034   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1035                         Register edx, Register ebx, Register esi, Register edi,
1036                         Register ebp, Register esp);
1037 
1038   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1039                          Register esi, Register edi, Register ebp, Register esp);
1040 
1041   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1042                         Register edx, Register ebx, Register esi, Register edi,
1043                         Register ebp, Register esp);
1044 
1045   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp);
1048 #endif
1049 
1050   void increase_precision();
1051   void restore_precision();
1052 
1053 private:
1054 
1055   // these are private because users should be doing movflt/movdbl
1056 
1057   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1058   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1059   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1060   void movss(XMMRegister dst, AddressLiteral src);
1061 
1062   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1063   void movlpd(XMMRegister dst, AddressLiteral src);
1064 
1065 public:
1066 
1067   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1068   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1069   void addsd(XMMRegister dst, AddressLiteral src);
1070 
1071   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1072   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1073   void addss(XMMRegister dst, AddressLiteral src);
1074 
1075   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1076   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1077   void addpd(XMMRegister dst, AddressLiteral src);
1078 
1079   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1080   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1081   void divsd(XMMRegister dst, AddressLiteral src);
1082 
1083   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1084   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1085   void divss(XMMRegister dst, AddressLiteral src);
1086 
1087   // Move Unaligned Double Quadword
1088   void movdqu(Address     dst, XMMRegister src);
1089   void movdqu(XMMRegister dst, Address src);
1090   void movdqu(XMMRegister dst, XMMRegister src);
1091   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1092   // AVX Unaligned forms
1093   void vmovdqu(Address     dst, XMMRegister src);
1094   void vmovdqu(XMMRegister dst, Address src);
1095   void vmovdqu(XMMRegister dst, XMMRegister src);
1096   void vmovdqu(XMMRegister dst, AddressLiteral src);
1097   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1098   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1099   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1100   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1101 
1102   // Move Aligned Double Quadword
1103   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1104   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1105   void movdqa(XMMRegister dst, AddressLiteral src);
1106 
1107   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1108   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1109   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1110   void movsd(XMMRegister dst, AddressLiteral src);
1111 
1112   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1113   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1114   void mulpd(XMMRegister dst, AddressLiteral src);
1115 
1116   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1117   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1118   void mulsd(XMMRegister dst, AddressLiteral src);
1119 
1120   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1121   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1122   void mulss(XMMRegister dst, AddressLiteral src);
1123 
1124   // Carry-Less Multiplication Quadword
1125   void pclmulldq(XMMRegister dst, XMMRegister src) {
1126     // 0x00 - multiply lower 64 bits [0:63]
1127     Assembler::pclmulqdq(dst, src, 0x00);
1128   }
1129   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1130     // 0x11 - multiply upper 64 bits [64:127]
1131     Assembler::pclmulqdq(dst, src, 0x11);
1132   }
1133 
1134   void pcmpeqb(XMMRegister dst, XMMRegister src);
1135   void pcmpeqw(XMMRegister dst, XMMRegister src);
1136 
1137   void pcmpestri(XMMRegister dst, Address src, int imm8);
1138   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1139 
1140   void pmovzxbw(XMMRegister dst, XMMRegister src);
1141   void pmovzxbw(XMMRegister dst, Address src);
1142 
1143   void pmovmskb(Register dst, XMMRegister src);
1144 
1145   void ptest(XMMRegister dst, XMMRegister src);
1146 
1147   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1148   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1149   void sqrtsd(XMMRegister dst, AddressLiteral src);
1150 
1151   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1152   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1153   void sqrtss(XMMRegister dst, AddressLiteral src);
1154 
1155   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1156   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1157   void subsd(XMMRegister dst, AddressLiteral src);
1158 
1159   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1160   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1161   void subss(XMMRegister dst, AddressLiteral src);
1162 
1163   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1164   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1165   void ucomiss(XMMRegister dst, AddressLiteral src);
1166 
1167   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1168   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1169   void ucomisd(XMMRegister dst, AddressLiteral src);
1170 
1171   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1172   void xorpd(XMMRegister dst, XMMRegister src);
1173   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1174   void xorpd(XMMRegister dst, AddressLiteral src);
1175 
1176   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1177   void xorps(XMMRegister dst, XMMRegister src);
1178   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1179   void xorps(XMMRegister dst, AddressLiteral src);
1180 
1181   // Shuffle Bytes
1182   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1183   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1184   void pshufb(XMMRegister dst, AddressLiteral src);
1185   // AVX 3-operands instructions
1186 
1187   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1188   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1189   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1190 
1191   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1192   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1193   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1194 
1195   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1196   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1197 
1198   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1199   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1200 
1201   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1202   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1203 
1204   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1205   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1206   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1207 
1208   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1209 
1210   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1211   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1212 
1213   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1214   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1215 
1216   void vpmovmskb(Register dst, XMMRegister src);
1217 
1218   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1220 
1221   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1225   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1226 
1227   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1228   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1229 
1230   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1231   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1232 
1233   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1234   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1235 
1236   void vptest(XMMRegister dst, XMMRegister src);
1237 
1238   void punpcklbw(XMMRegister dst, XMMRegister src);
1239   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1240 
1241   void pshufd(XMMRegister dst, Address src, int mode);
1242   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1243 
1244   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1245   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1246 
1247   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1248   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1249   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1250 
1251   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1252   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1253   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1254 
1255   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1256   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1257   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1258 
1259   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1260   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1261   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1262 
1263   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1264   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1265   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1266 
1267   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1268   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1269   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1270 
1271   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1272   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1273   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1274 
1275   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1276   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1277   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1278 
1279   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1281 
1282   // AVX Vector instructions
1283 
1284   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1285   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1286   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1287 
1288   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1289   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1290   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1291 
1292   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1293     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1294       Assembler::vpxor(dst, nds, src, vector_len);
1295     else
1296       Assembler::vxorpd(dst, nds, src, vector_len);
1297   }
1298   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1299     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1300       Assembler::vpxor(dst, nds, src, vector_len);
1301     else
1302       Assembler::vxorpd(dst, nds, src, vector_len);
1303   }
1304 
1305   // Simple version for AVX2 256bit vectors
1306   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1307   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1308 
1309   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1310     if (UseAVX > 2) {
1311       Assembler::vinserti32x4(dst, dst, src, imm8);
1312     } else if (UseAVX > 1) {
1313       // vinserti128 is available only in AVX2
1314       Assembler::vinserti128(dst, nds, src, imm8);
1315     } else {
1316       Assembler::vinsertf128(dst, nds, src, imm8);
1317     }
1318   }
1319 
1320   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1321     if (UseAVX > 2) {
1322       Assembler::vinserti32x4(dst, dst, src, imm8);
1323     } else if (UseAVX > 1) {
1324       // vinserti128 is available only in AVX2
1325       Assembler::vinserti128(dst, nds, src, imm8);
1326     } else {
1327       Assembler::vinsertf128(dst, nds, src, imm8);
1328     }
1329   }
1330 
1331   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1332     if (UseAVX > 2) {
1333       Assembler::vextracti32x4(dst, src, imm8);
1334     } else if (UseAVX > 1) {
1335       // vextracti128 is available only in AVX2
1336       Assembler::vextracti128(dst, src, imm8);
1337     } else {
1338       Assembler::vextractf128(dst, src, imm8);
1339     }
1340   }
1341 
1342   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1343     if (UseAVX > 2) {
1344       Assembler::vextracti32x4(dst, src, imm8);
1345     } else if (UseAVX > 1) {
1346       // vextracti128 is available only in AVX2
1347       Assembler::vextracti128(dst, src, imm8);
1348     } else {
1349       Assembler::vextractf128(dst, src, imm8);
1350     }
1351   }
1352 
1353   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1354   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1355     vinserti128(dst, dst, src, 1);
1356   }
1357   void vinserti128_high(XMMRegister dst, Address src) {
1358     vinserti128(dst, dst, src, 1);
1359   }
1360   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1361     vextracti128(dst, src, 1);
1362   }
1363   void vextracti128_high(Address dst, XMMRegister src) {
1364     vextracti128(dst, src, 1);
1365   }
1366 
1367   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1368     if (UseAVX > 2) {
1369       Assembler::vinsertf32x4(dst, dst, src, 1);
1370     } else {
1371       Assembler::vinsertf128(dst, dst, src, 1);
1372     }
1373   }
1374 
1375   void vinsertf128_high(XMMRegister dst, Address src) {
1376     if (UseAVX > 2) {
1377       Assembler::vinsertf32x4(dst, dst, src, 1);
1378     } else {
1379       Assembler::vinsertf128(dst, dst, src, 1);
1380     }
1381   }
1382 
1383   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1384     if (UseAVX > 2) {
1385       Assembler::vextractf32x4(dst, src, 1);
1386     } else {
1387       Assembler::vextractf128(dst, src, 1);
1388     }
1389   }
1390 
1391   void vextractf128_high(Address dst, XMMRegister src) {
1392     if (UseAVX > 2) {
1393       Assembler::vextractf32x4(dst, src, 1);
1394     } else {
1395       Assembler::vextractf128(dst, src, 1);
1396     }
1397   }
1398 
1399   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1400   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1401     Assembler::vinserti64x4(dst, dst, src, 1);
1402   }
1403   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1404     Assembler::vinsertf64x4(dst, dst, src, 1);
1405   }
1406   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1407     Assembler::vextracti64x4(dst, src, 1);
1408   }
1409   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1410     Assembler::vextractf64x4(dst, src, 1);
1411   }
1412   void vextractf64x4_high(Address dst, XMMRegister src) {
1413     Assembler::vextractf64x4(dst, src, 1);
1414   }
1415   void vinsertf64x4_high(XMMRegister dst, Address src) {
1416     Assembler::vinsertf64x4(dst, dst, src, 1);
1417   }
1418 
1419   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1420   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1421     vinserti128(dst, dst, src, 0);
1422   }
1423   void vinserti128_low(XMMRegister dst, Address src) {
1424     vinserti128(dst, dst, src, 0);
1425   }
1426   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1427     vextracti128(dst, src, 0);
1428   }
1429   void vextracti128_low(Address dst, XMMRegister src) {
1430     vextracti128(dst, src, 0);
1431   }
1432 
1433   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1434     if (UseAVX > 2) {
1435       Assembler::vinsertf32x4(dst, dst, src, 0);
1436     } else {
1437       Assembler::vinsertf128(dst, dst, src, 0);
1438     }
1439   }
1440 
1441   void vinsertf128_low(XMMRegister dst, Address src) {
1442     if (UseAVX > 2) {
1443       Assembler::vinsertf32x4(dst, dst, src, 0);
1444     } else {
1445       Assembler::vinsertf128(dst, dst, src, 0);
1446     }
1447   }
1448 
1449   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1450     if (UseAVX > 2) {
1451       Assembler::vextractf32x4(dst, src, 0);
1452     } else {
1453       Assembler::vextractf128(dst, src, 0);
1454     }
1455   }
1456 
1457   void vextractf128_low(Address dst, XMMRegister src) {
1458     if (UseAVX > 2) {
1459       Assembler::vextractf32x4(dst, src, 0);
1460     } else {
1461       Assembler::vextractf128(dst, src, 0);
1462     }
1463   }
1464 
1465   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1466   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1467     Assembler::vinserti64x4(dst, dst, src, 0);
1468   }
1469   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1470     Assembler::vinsertf64x4(dst, dst, src, 0);
1471   }
1472   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1473     Assembler::vextracti64x4(dst, src, 0);
1474   }
1475   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1476     Assembler::vextractf64x4(dst, src, 0);
1477   }
1478   void vextractf64x4_low(Address dst, XMMRegister src) {
1479     Assembler::vextractf64x4(dst, src, 0);
1480   }
1481   void vinsertf64x4_low(XMMRegister dst, Address src) {
1482     Assembler::vinsertf64x4(dst, dst, src, 0);
1483   }
1484 
1485   // Carry-Less Multiplication Quadword
1486   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1487     // 0x00 - multiply lower 64 bits [0:63]
1488     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1489   }
1490   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1491     // 0x11 - multiply upper 64 bits [64:127]
1492     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1493   }
1494   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1495     // 0x00 - multiply lower 64 bits [0:63]
1496     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1497   }
1498   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1499     // 0x11 - multiply upper 64 bits [64:127]
1500     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1501   }
1502 
1503   // Data
1504 
1505   void cmov32( Condition cc, Register dst, Address  src);
1506   void cmov32( Condition cc, Register dst, Register src);
1507 
1508   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1509 
1510   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1511   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1512 
1513   void movoop(Register dst, jobject obj);
1514   void movoop(Address dst, jobject obj);
1515 
1516   void mov_metadata(Register dst, Metadata* obj);
1517   void mov_metadata(Address dst, Metadata* obj);
1518 
1519   void movptr(ArrayAddress dst, Register src);
1520   // can this do an lea?
1521   void movptr(Register dst, ArrayAddress src);
1522 
1523   void movptr(Register dst, Address src);
1524 
1525 #ifdef _LP64
1526   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1527 #else
1528   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1529 #endif
1530 
1531   void movptr(Register dst, intptr_t src);
1532   void movptr(Register dst, Register src);
1533   void movptr(Address dst, intptr_t src);
1534 
1535   void movptr(Address dst, Register src);
1536 
1537   void movptr(Register dst, RegisterOrConstant src) {
1538     if (src.is_constant()) movptr(dst, src.as_constant());
1539     else                   movptr(dst, src.as_register());
1540   }
1541 
1542 #ifdef _LP64
1543   // Generally the next two are only used for moving NULL
1544   // Although there are situations in initializing the mark word where
1545   // they could be used. They are dangerous.
1546 
1547   // They only exist on LP64 so that int32_t and intptr_t are not the same
1548   // and we have ambiguous declarations.
1549 
1550   void movptr(Address dst, int32_t imm32);
1551   void movptr(Register dst, int32_t imm32);
1552 #endif // _LP64
1553 
1554   // to avoid hiding movl
1555   void mov32(AddressLiteral dst, Register src);
1556   void mov32(Register dst, AddressLiteral src);
1557 
1558   // to avoid hiding movb
1559   void movbyte(ArrayAddress dst, int src);
1560 
1561   // Import other mov() methods from the parent class or else
1562   // they will be hidden by the following overriding declaration.
1563   using Assembler::movdl;
1564   using Assembler::movq;
1565   void movdl(XMMRegister dst, AddressLiteral src);
1566   void movq(XMMRegister dst, AddressLiteral src);
1567 
1568   // Can push value or effective address
1569   void pushptr(AddressLiteral src);
1570 
1571   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1572   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1573 
1574   void pushoop(jobject obj);
1575   void pushklass(Metadata* obj);
1576 
1577   // sign extend as need a l to ptr sized element
1578   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1579   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1580 
1581   // C2 compiled method's prolog code.
1582   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1583 
1584   // clear memory of size 'cnt' qwords, starting at 'base';
1585   // if 'is_large' is set, do not try to produce short loop
1586   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1587 
1588 #ifdef COMPILER2
1589   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1590                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1591 
1592   // IndexOf strings.
1593   // Small strings are loaded through stack if they cross page boundary.
1594   void string_indexof(Register str1, Register str2,
1595                       Register cnt1, Register cnt2,
1596                       int int_cnt2,  Register result,
1597                       XMMRegister vec, Register tmp,
1598                       int ae);
1599 
1600   // IndexOf for constant substrings with size >= 8 elements
1601   // which don't need to be loaded through stack.
1602   void string_indexofC8(Register str1, Register str2,
1603                       Register cnt1, Register cnt2,
1604                       int int_cnt2,  Register result,
1605                       XMMRegister vec, Register tmp,
1606                       int ae);
1607 
1608     // Smallest code: we don't need to load through stack,
1609     // check string tail.
1610 
1611   // helper function for string_compare
1612   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1613                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1614                           Address::ScaleFactor scale2, Register index, int ae);
1615   // Compare strings.
1616   void string_compare(Register str1, Register str2,
1617                       Register cnt1, Register cnt2, Register result,
1618                       XMMRegister vec1, int ae);
1619 
1620   // Search for Non-ASCII character (Negative byte value) in a byte array,
1621   // return true if it has any and false otherwise.
1622   void has_negatives(Register ary1, Register len,
1623                      Register result, Register tmp1,
1624                      XMMRegister vec1, XMMRegister vec2);
1625 
1626   // Compare char[] or byte[] arrays.
1627   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1628                      Register limit, Register result, Register chr,
1629                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1630 
1631 #endif
1632 
1633   // Fill primitive arrays
1634   void generate_fill(BasicType t, bool aligned,
1635                      Register to, Register value, Register count,
1636                      Register rtmp, XMMRegister xtmp);
1637 
1638   void encode_iso_array(Register src, Register dst, Register len,
1639                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1640                         XMMRegister tmp4, Register tmp5, Register result);
1641 
1642 #ifdef _LP64
1643   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1644   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1645                              Register y, Register y_idx, Register z,
1646                              Register carry, Register product,
1647                              Register idx, Register kdx);
1648   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1649                               Register yz_idx, Register idx,
1650                               Register carry, Register product, int offset);
1651   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1652                                     Register carry, Register carry2,
1653                                     Register idx, Register jdx,
1654                                     Register yz_idx1, Register yz_idx2,
1655                                     Register tmp, Register tmp3, Register tmp4);
1656   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1657                                Register yz_idx, Register idx, Register jdx,
1658                                Register carry, Register product,
1659                                Register carry2);
1660   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1661                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1662   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1663                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1664   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1665                             Register tmp2);
1666   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1667                        Register rdxReg, Register raxReg);
1668   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1669   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1670                        Register tmp3, Register tmp4);
1671   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1672                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1673 
1674   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1675                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1676                Register raxReg);
1677   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1678                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1679                Register raxReg);
1680   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1681                            Register result, Register tmp1, Register tmp2,
1682                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1683 #endif
1684 
1685   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1686   void update_byte_crc32(Register crc, Register val, Register table);
1687   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1688   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1689   // Note on a naming convention:
1690   // Prefix w = register only used on a Westmere+ architecture
1691   // Prefix n = register only used on a Nehalem architecture
1692 #ifdef _LP64
1693   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1694                        Register tmp1, Register tmp2, Register tmp3);
1695 #else
1696   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1697                        Register tmp1, Register tmp2, Register tmp3,
1698                        XMMRegister xtmp1, XMMRegister xtmp2);
1699 #endif
1700   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1701                         Register in_out,
1702                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1703                         XMMRegister w_xtmp2,
1704                         Register tmp1,
1705                         Register n_tmp2, Register n_tmp3);
1706   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1707                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1708                        Register tmp1, Register tmp2,
1709                        Register n_tmp3);
1710   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1711                          Register in_out1, Register in_out2, Register in_out3,
1712                          Register tmp1, Register tmp2, Register tmp3,
1713                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1714                          Register tmp4, Register tmp5,
1715                          Register n_tmp6);
1716   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1717                             Register tmp1, Register tmp2, Register tmp3,
1718                             Register tmp4, Register tmp5, Register tmp6,
1719                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1720                             bool is_pclmulqdq_supported);
1721   // Fold 128-bit data chunk
1722   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1723   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1724   // Fold 8-bit data
1725   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1726   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1727   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1728 
1729   // Compress char[] array to byte[].
1730   void char_array_compress(Register src, Register dst, Register len,
1731                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1732                            XMMRegister tmp4, Register tmp5, Register result);
1733 
1734   // Inflate byte[] array to char[].
1735   void byte_array_inflate(Register src, Register dst, Register len,
1736                           XMMRegister tmp1, Register tmp2);
1737 
1738 };
1739 
1740 /**
1741  * class SkipIfEqual:
1742  *
1743  * Instantiating this class will result in assembly code being output that will
1744  * jump around any code emitted between the creation of the instance and it's
1745  * automatic destruction at the end of a scope block, depending on the value of
1746  * the flag passed to the constructor, which will be checked at run-time.
1747  */
1748 class SkipIfEqual {
1749  private:
1750   MacroAssembler* _masm;
1751   Label _label;
1752 
1753  public:
1754    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1755    ~SkipIfEqual();
1756 };
1757 
1758 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP