1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/countbitsnode.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/mathexactnode.hpp"
  45 #include "opto/movenode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/nativeLookup.hpp"
  54 #include "prims/unsafe.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #ifdef TRACE_HAVE_INTRINSICS
  57 #include "trace/traceMacros.hpp"
  58 #endif
  59 
  60 class LibraryIntrinsic : public InlineCallGenerator {
  61   // Extend the set of intrinsics known to the runtime:
  62  public:
  63  private:
  64   bool             _is_virtual;
  65   bool             _does_virtual_dispatch;
  66   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  67   int8_t           _last_predicate; // Last generated predicate
  68   vmIntrinsics::ID _intrinsic_id;
  69 
  70  public:
  71   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  72     : InlineCallGenerator(m),
  73       _is_virtual(is_virtual),
  74       _does_virtual_dispatch(does_virtual_dispatch),
  75       _predicates_count((int8_t)predicates_count),
  76       _last_predicate((int8_t)-1),
  77       _intrinsic_id(id)
  78   {
  79   }
  80   virtual bool is_intrinsic() const { return true; }
  81   virtual bool is_virtual()   const { return _is_virtual; }
  82   virtual bool is_predicated() const { return _predicates_count > 0; }
  83   virtual int  predicates_count() const { return _predicates_count; }
  84   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  85   virtual JVMState* generate(JVMState* jvms);
  86   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  87   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  88 };
  89 
  90 
  91 // Local helper class for LibraryIntrinsic:
  92 class LibraryCallKit : public GraphKit {
  93  private:
  94   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  95   Node*             _result;        // the result node, if any
  96   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  97 
  98   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  99 
 100  public:
 101   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 102     : GraphKit(jvms),
 103       _intrinsic(intrinsic),
 104       _result(NULL)
 105   {
 106     // Check if this is a root compile.  In that case we don't have a caller.
 107     if (!jvms->has_method()) {
 108       _reexecute_sp = sp();
 109     } else {
 110       // Find out how many arguments the interpreter needs when deoptimizing
 111       // and save the stack pointer value so it can used by uncommon_trap.
 112       // We find the argument count by looking at the declared signature.
 113       bool ignored_will_link;
 114       ciSignature* declared_signature = NULL;
 115       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 116       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 117       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 118     }
 119   }
 120 
 121   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 122 
 123   ciMethod*         caller()    const    { return jvms()->method(); }
 124   int               bci()       const    { return jvms()->bci(); }
 125   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 126   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 127   ciMethod*         callee()    const    { return _intrinsic->method(); }
 128 
 129   bool  try_to_inline(int predicate);
 130   Node* try_to_predicate(int predicate);
 131 
 132   void push_result() {
 133     // Push the result onto the stack.
 134     if (!stopped() && result() != NULL) {
 135       BasicType bt = result()->bottom_type()->basic_type();
 136       push_node(bt, result());
 137     }
 138   }
 139 
 140  private:
 141   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 142     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 143   }
 144 
 145   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 146   void  set_result(RegionNode* region, PhiNode* value);
 147   Node*     result() { return _result; }
 148 
 149   virtual int reexecute_sp() { return _reexecute_sp; }
 150 
 151   // Helper functions to inline natives
 152   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 153   Node* generate_slow_guard(Node* test, RegionNode* region);
 154   Node* generate_fair_guard(Node* test, RegionNode* region);
 155   Node* generate_negative_guard(Node* index, RegionNode* region,
 156                                 // resulting CastII of index:
 157                                 Node* *pos_index = NULL);
 158   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 159                              Node* array_length,
 160                              RegionNode* region);
 161   void  generate_string_range_check(Node* array, Node* offset,
 162                                     Node* length, bool char_count);
 163   Node* generate_current_thread(Node* &tls_output);
 164   Node* load_mirror_from_klass(Node* klass);
 165   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 166                                       RegionNode* region, int null_path,
 167                                       int offset);
 168   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 169                                RegionNode* region, int null_path) {
 170     int offset = java_lang_Class::klass_offset_in_bytes();
 171     return load_klass_from_mirror_common(mirror, never_see_null,
 172                                          region, null_path,
 173                                          offset);
 174   }
 175   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 176                                      RegionNode* region, int null_path) {
 177     int offset = java_lang_Class::array_klass_offset_in_bytes();
 178     return load_klass_from_mirror_common(mirror, never_see_null,
 179                                          region, null_path,
 180                                          offset);
 181   }
 182   Node* generate_access_flags_guard(Node* kls,
 183                                     int modifier_mask, int modifier_bits,
 184                                     RegionNode* region);
 185   Node* generate_interface_guard(Node* kls, RegionNode* region);
 186   Node* generate_array_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, false, false);
 188   }
 189   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, true);
 191   }
 192   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, true, false);
 194   }
 195   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, true);
 197   }
 198   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 199                                     bool obj_array, bool not_array);
 200   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 201   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 202                                      bool is_virtual = false, bool is_static = false);
 203   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 204     return generate_method_call(method_id, false, true);
 205   }
 206   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, true, false);
 208   }
 209   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 210   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 211 
 212   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 216   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 217                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfChar();
 219   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 220   bool inline_string_toBytesU();
 221   bool inline_string_getCharsU();
 222   bool inline_string_copy(bool compress);
 223   bool inline_string_char_access(bool is_store);
 224   Node* round_double_node(Node* n);
 225   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_math_native(vmIntrinsics::ID id);
 227   bool inline_math(vmIntrinsics::ID id);
 228   template <typename OverflowOp>
 229   bool inline_math_overflow(Node* arg1, Node* arg2);
 230   void inline_math_mathExact(Node* math, Node* test);
 231   bool inline_math_addExactI(bool is_increment);
 232   bool inline_math_addExactL(bool is_increment);
 233   bool inline_math_multiplyExactI();
 234   bool inline_math_multiplyExactL();
 235   bool inline_math_multiplyHigh();
 236   bool inline_math_negateExactI();
 237   bool inline_math_negateExactL();
 238   bool inline_math_subtractExactI(bool is_decrement);
 239   bool inline_math_subtractExactL(bool is_decrement);
 240   bool inline_min_max(vmIntrinsics::ID id);
 241   bool inline_notify(vmIntrinsics::ID id);
 242   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 243   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 244   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 245   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 246   // Helper for inline_unsafe_access.
 247   // Generates the guards that check whether the result of
 248   // Unsafe.getObject should be recorded in an SATB log buffer.
 249   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 250 
 251   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 252   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 253   static bool klass_needs_init_guard(Node* kls);
 254   bool inline_unsafe_allocate();
 255   bool inline_unsafe_newArray(bool uninitialized);
 256   bool inline_unsafe_copyMemory();
 257   bool inline_native_currentThread();
 258 
 259   bool inline_native_time_funcs(address method, const char* funcName);
 260 #ifdef TRACE_HAVE_INTRINSICS
 261   bool inline_native_classID();
 262   bool inline_native_getBufferWriter();
 263 #endif
 264   bool inline_native_isInterrupted();
 265   bool inline_native_Class_query(vmIntrinsics::ID id);
 266   bool inline_native_subtype_check();
 267   bool inline_native_getLength();
 268   bool inline_array_copyOf(bool is_copyOfRange);
 269   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 270   bool inline_preconditions_checkIndex();
 271   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 272   bool inline_native_clone(bool is_virtual);
 273   bool inline_native_Reflection_getCallerClass();
 274   // Helper function for inlining native object hash method
 275   bool inline_native_hashcode(bool is_virtual, bool is_static);
 276   bool inline_native_getClass();
 277 
 278   // Helper functions for inlining arraycopy
 279   bool inline_arraycopy();
 280   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 281                                                 RegionNode* slow_region);
 282   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 283   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 284                                       uint new_idx);
 285 
 286   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 287   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 288   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 289   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 290   bool inline_unsafe_fence(vmIntrinsics::ID id);
 291   bool inline_onspinwait();
 292   bool inline_fp_conversions(vmIntrinsics::ID id);
 293   bool inline_number_methods(vmIntrinsics::ID id);
 294   bool inline_reference_get();
 295   bool inline_Class_cast();
 296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 298   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 299   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 300   Node* inline_counterMode_AESCrypt_predicate();
 301   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 302   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 303   bool inline_ghash_processBlocks();
 304   bool inline_base64_encodeBlock();
 305   bool inline_sha_implCompress(vmIntrinsics::ID id);
 306   bool inline_digestBase_implCompressMB(int predicate);
 307   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 308                                  bool long_state, address stubAddr, const char *stubName,
 309                                  Node* src_start, Node* ofs, Node* limit);
 310   Node* get_state_from_sha_object(Node *sha_object);
 311   Node* get_state_from_sha5_object(Node *sha_object);
 312   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 313   bool inline_encodeISOArray();
 314   bool inline_updateCRC32();
 315   bool inline_updateBytesCRC32();
 316   bool inline_updateByteBufferCRC32();
 317   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 318   bool inline_updateBytesCRC32C();
 319   bool inline_updateDirectByteBufferCRC32C();
 320   bool inline_updateBytesAdler32();
 321   bool inline_updateByteBufferAdler32();
 322   bool inline_multiplyToLen();
 323   bool inline_hasNegatives();
 324   bool inline_squareToLen();
 325   bool inline_mulAdd();
 326   bool inline_montgomeryMultiply();
 327   bool inline_montgomerySquare();
 328   bool inline_vectorizedMismatch();
 329   bool inline_fma(vmIntrinsics::ID id);
 330 
 331   bool inline_profileBoolean();
 332   bool inline_isCompileConstant();
 333   void clear_upper_avx() {
 334 #ifdef X86
 335     if (UseAVX >= 2) {
 336       C->set_clear_upper_avx(true);
 337     }
 338 #endif
 339   }
 340 };
 341 
 342 //---------------------------make_vm_intrinsic----------------------------
 343 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 344   vmIntrinsics::ID id = m->intrinsic_id();
 345   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 346 
 347   if (!m->is_loaded()) {
 348     // Do not attempt to inline unloaded methods.
 349     return NULL;
 350   }
 351 
 352   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 353   bool is_available = false;
 354 
 355   {
 356     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 357     // the compiler must transition to '_thread_in_vm' state because both
 358     // methods access VM-internal data.
 359     VM_ENTRY_MARK;
 360     methodHandle mh(THREAD, m->get_Method());
 361     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 362                    !C->directive()->is_intrinsic_disabled(mh) &&
 363                    !vmIntrinsics::is_disabled_by_flags(mh);
 364 
 365   }
 366 
 367   if (is_available) {
 368     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 369     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 370     return new LibraryIntrinsic(m, is_virtual,
 371                                 vmIntrinsics::predicates_needed(id),
 372                                 vmIntrinsics::does_virtual_dispatch(id),
 373                                 (vmIntrinsics::ID) id);
 374   } else {
 375     return NULL;
 376   }
 377 }
 378 
 379 //----------------------register_library_intrinsics-----------------------
 380 // Initialize this file's data structures, for each Compile instance.
 381 void Compile::register_library_intrinsics() {
 382   // Nothing to do here.
 383 }
 384 
 385 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 386   LibraryCallKit kit(jvms, this);
 387   Compile* C = kit.C;
 388   int nodes = C->unique();
 389 #ifndef PRODUCT
 390   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 391     char buf[1000];
 392     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 393     tty->print_cr("Intrinsic %s", str);
 394   }
 395 #endif
 396   ciMethod* callee = kit.callee();
 397   const int bci    = kit.bci();
 398 
 399   // Try to inline the intrinsic.
 400   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 401       kit.try_to_inline(_last_predicate)) {
 402     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 403                                           : "(intrinsic)";
 404     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 405     if (C->print_intrinsics() || C->print_inlining()) {
 406       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 407     }
 408     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 409     if (C->log()) {
 410       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 411                      vmIntrinsics::name_at(intrinsic_id()),
 412                      (is_virtual() ? " virtual='1'" : ""),
 413                      C->unique() - nodes);
 414     }
 415     // Push the result from the inlined method onto the stack.
 416     kit.push_result();
 417     C->print_inlining_update(this);
 418     return kit.transfer_exceptions_into_jvms();
 419   }
 420 
 421   // The intrinsic bailed out
 422   if (jvms->has_method()) {
 423     // Not a root compile.
 424     const char* msg;
 425     if (callee->intrinsic_candidate()) {
 426       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 427     } else {
 428       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 429                          : "failed to inline (intrinsic), method not annotated";
 430     }
 431     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 432     if (C->print_intrinsics() || C->print_inlining()) {
 433       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 434     }
 435   } else {
 436     // Root compile
 437     ResourceMark rm;
 438     stringStream msg_stream;
 439     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 440                      vmIntrinsics::name_at(intrinsic_id()),
 441                      is_virtual() ? " (virtual)" : "", bci);
 442     const char *msg = msg_stream.as_string();
 443     log_debug(jit, inlining)("%s", msg);
 444     if (C->print_intrinsics() || C->print_inlining()) {
 445       tty->print("%s", msg);
 446     }
 447   }
 448   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 449   C->print_inlining_update(this);
 450   return NULL;
 451 }
 452 
 453 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 454   LibraryCallKit kit(jvms, this);
 455   Compile* C = kit.C;
 456   int nodes = C->unique();
 457   _last_predicate = predicate;
 458 #ifndef PRODUCT
 459   assert(is_predicated() && predicate < predicates_count(), "sanity");
 460   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 461     char buf[1000];
 462     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 463     tty->print_cr("Predicate for intrinsic %s", str);
 464   }
 465 #endif
 466   ciMethod* callee = kit.callee();
 467   const int bci    = kit.bci();
 468 
 469   Node* slow_ctl = kit.try_to_predicate(predicate);
 470   if (!kit.failing()) {
 471     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 472                                           : "(intrinsic, predicate)";
 473     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 474     if (C->print_intrinsics() || C->print_inlining()) {
 475       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 476     }
 477     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 478     if (C->log()) {
 479       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 480                      vmIntrinsics::name_at(intrinsic_id()),
 481                      (is_virtual() ? " virtual='1'" : ""),
 482                      C->unique() - nodes);
 483     }
 484     return slow_ctl; // Could be NULL if the check folds.
 485   }
 486 
 487   // The intrinsic bailed out
 488   if (jvms->has_method()) {
 489     // Not a root compile.
 490     const char* msg = "failed to generate predicate for intrinsic";
 491     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 492     if (C->print_intrinsics() || C->print_inlining()) {
 493       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 494     }
 495   } else {
 496     // Root compile
 497     ResourceMark rm;
 498     stringStream msg_stream;
 499     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 500                      vmIntrinsics::name_at(intrinsic_id()),
 501                      is_virtual() ? " (virtual)" : "", bci);
 502     const char *msg = msg_stream.as_string();
 503     log_debug(jit, inlining)("%s", msg);
 504     if (C->print_intrinsics() || C->print_inlining()) {
 505       C->print_inlining_stream()->print("%s", msg);
 506     }
 507   }
 508   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 509   return NULL;
 510 }
 511 
 512 bool LibraryCallKit::try_to_inline(int predicate) {
 513   // Handle symbolic names for otherwise undistinguished boolean switches:
 514   const bool is_store       = true;
 515   const bool is_compress    = true;
 516   const bool is_static      = true;
 517   const bool is_volatile    = true;
 518 
 519   if (!jvms()->has_method()) {
 520     // Root JVMState has a null method.
 521     assert(map()->memory()->Opcode() == Op_Parm, "");
 522     // Insert the memory aliasing node
 523     set_all_memory(reset_memory());
 524   }
 525   assert(merged_memory(), "");
 526 
 527 
 528   switch (intrinsic_id()) {
 529   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 530   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 531   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 532 
 533   case vmIntrinsics::_dsin:
 534   case vmIntrinsics::_dcos:
 535   case vmIntrinsics::_dtan:
 536   case vmIntrinsics::_dabs:
 537   case vmIntrinsics::_datan2:
 538   case vmIntrinsics::_dsqrt:
 539   case vmIntrinsics::_dexp:
 540   case vmIntrinsics::_dlog:
 541   case vmIntrinsics::_dlog10:
 542   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 543 
 544   case vmIntrinsics::_min:
 545   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 546 
 547   case vmIntrinsics::_notify:
 548   case vmIntrinsics::_notifyAll:
 549     if (InlineNotify) {
 550       return inline_notify(intrinsic_id());
 551     }
 552     return false;
 553 
 554   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 555   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 556   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 557   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 558   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 559   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 560   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 561   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 562   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 563   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 564   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 565   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 566   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 567 
 568   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 569 
 570   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 571   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 572   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 573   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 574 
 575   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 576   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 577   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 578   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 579   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 580   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 581   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 582 
 583   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 584   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 585 
 586   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 587   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 588   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 589   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 590 
 591   case vmIntrinsics::_compressStringC:
 592   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 593   case vmIntrinsics::_inflateStringC:
 594   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 595 
 596   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 597   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 598   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 599   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 600   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 601   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 602   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 603   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 604   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 605 
 606   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 607   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 608   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 609   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 610   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 611   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 612   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 613   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 614   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 615 
 616   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 617   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 618   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 619   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 620   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 621   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 622   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 623   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 624   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 625 
 626   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 627   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 628   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 629   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 630   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 631   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 632   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 633   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 634   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 635 
 636   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 637   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 638   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 639   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 640 
 641   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 642   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 643   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 644   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 645 
 646   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 647   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 648   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 649   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 650   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 651   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 652   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 653   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 654   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 655 
 656   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 657   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 658   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 659   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 660   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 661   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 662   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 663   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 664   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 665 
 666   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 667   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 668   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 669   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 670   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 671   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 672   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 673   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 674   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 675 
 676   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 677   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 678   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 679   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 680   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 681   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 682   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 683   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 684   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 685 
 686   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 687   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 688   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 689   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 690   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 691 
 692   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 693   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 694   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 695   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 696   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 697   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 698   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 699   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 700   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 701   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 702   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 703   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 704   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 705   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 706   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 707   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 708   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 709   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 710   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 711   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 712 
 713   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 714   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 715   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 716   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 717   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 718   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 719   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 720   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 721   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 722   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 723   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 724   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 725   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 726   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 727   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 728 
 729   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 730   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 731   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 732   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 733 
 734   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 735   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 736   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 737   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 738   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 739 
 740   case vmIntrinsics::_loadFence:
 741   case vmIntrinsics::_storeFence:
 742   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 743 
 744   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 745 
 746   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 747   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 748 
 749 #ifdef TRACE_HAVE_INTRINSICS
 750   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 751   case vmIntrinsics::_getClassId:               return inline_native_classID();
 752   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 753 #endif
 754   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 755   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 756   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 757   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 758   case vmIntrinsics::_getLength:                return inline_native_getLength();
 759   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 760   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 761   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 762   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 763   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 764   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 765 
 766   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 767   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 768 
 769   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 770 
 771   case vmIntrinsics::_isInstance:
 772   case vmIntrinsics::_getModifiers:
 773   case vmIntrinsics::_isInterface:
 774   case vmIntrinsics::_isArray:
 775   case vmIntrinsics::_isPrimitive:
 776   case vmIntrinsics::_getSuperclass:
 777   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 778 
 779   case vmIntrinsics::_floatToRawIntBits:
 780   case vmIntrinsics::_floatToIntBits:
 781   case vmIntrinsics::_intBitsToFloat:
 782   case vmIntrinsics::_doubleToRawLongBits:
 783   case vmIntrinsics::_doubleToLongBits:
 784   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 785 
 786   case vmIntrinsics::_numberOfLeadingZeros_i:
 787   case vmIntrinsics::_numberOfLeadingZeros_l:
 788   case vmIntrinsics::_numberOfTrailingZeros_i:
 789   case vmIntrinsics::_numberOfTrailingZeros_l:
 790   case vmIntrinsics::_bitCount_i:
 791   case vmIntrinsics::_bitCount_l:
 792   case vmIntrinsics::_reverseBytes_i:
 793   case vmIntrinsics::_reverseBytes_l:
 794   case vmIntrinsics::_reverseBytes_s:
 795   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 796 
 797   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 798 
 799   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 800 
 801   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 802 
 803   case vmIntrinsics::_aescrypt_encryptBlock:
 804   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 805 
 806   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 807   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 808     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 809 
 810   case vmIntrinsics::_counterMode_AESCrypt:
 811     return inline_counterMode_AESCrypt(intrinsic_id());
 812 
 813   case vmIntrinsics::_sha_implCompress:
 814   case vmIntrinsics::_sha2_implCompress:
 815   case vmIntrinsics::_sha5_implCompress:
 816     return inline_sha_implCompress(intrinsic_id());
 817 
 818   case vmIntrinsics::_digestBase_implCompressMB:
 819     return inline_digestBase_implCompressMB(predicate);
 820 
 821   case vmIntrinsics::_multiplyToLen:
 822     return inline_multiplyToLen();
 823 
 824   case vmIntrinsics::_squareToLen:
 825     return inline_squareToLen();
 826 
 827   case vmIntrinsics::_mulAdd:
 828     return inline_mulAdd();
 829 
 830   case vmIntrinsics::_montgomeryMultiply:
 831     return inline_montgomeryMultiply();
 832   case vmIntrinsics::_montgomerySquare:
 833     return inline_montgomerySquare();
 834 
 835   case vmIntrinsics::_vectorizedMismatch:
 836     return inline_vectorizedMismatch();
 837 
 838   case vmIntrinsics::_ghash_processBlocks:
 839     return inline_ghash_processBlocks();
 840   case vmIntrinsics::_base64_encodeBlock:
 841     return inline_base64_encodeBlock();
 842 
 843   case vmIntrinsics::_encodeISOArray:
 844   case vmIntrinsics::_encodeByteISOArray:
 845     return inline_encodeISOArray();
 846 
 847   case vmIntrinsics::_updateCRC32:
 848     return inline_updateCRC32();
 849   case vmIntrinsics::_updateBytesCRC32:
 850     return inline_updateBytesCRC32();
 851   case vmIntrinsics::_updateByteBufferCRC32:
 852     return inline_updateByteBufferCRC32();
 853 
 854   case vmIntrinsics::_updateBytesCRC32C:
 855     return inline_updateBytesCRC32C();
 856   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 857     return inline_updateDirectByteBufferCRC32C();
 858 
 859   case vmIntrinsics::_updateBytesAdler32:
 860     return inline_updateBytesAdler32();
 861   case vmIntrinsics::_updateByteBufferAdler32:
 862     return inline_updateByteBufferAdler32();
 863 
 864   case vmIntrinsics::_profileBoolean:
 865     return inline_profileBoolean();
 866   case vmIntrinsics::_isCompileConstant:
 867     return inline_isCompileConstant();
 868 
 869   case vmIntrinsics::_hasNegatives:
 870     return inline_hasNegatives();
 871 
 872   case vmIntrinsics::_fmaD:
 873   case vmIntrinsics::_fmaF:
 874     return inline_fma(intrinsic_id());
 875 
 876   default:
 877     // If you get here, it may be that someone has added a new intrinsic
 878     // to the list in vmSymbols.hpp without implementing it here.
 879 #ifndef PRODUCT
 880     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 881       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 882                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 883     }
 884 #endif
 885     return false;
 886   }
 887 }
 888 
 889 Node* LibraryCallKit::try_to_predicate(int predicate) {
 890   if (!jvms()->has_method()) {
 891     // Root JVMState has a null method.
 892     assert(map()->memory()->Opcode() == Op_Parm, "");
 893     // Insert the memory aliasing node
 894     set_all_memory(reset_memory());
 895   }
 896   assert(merged_memory(), "");
 897 
 898   switch (intrinsic_id()) {
 899   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 900     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 901   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 902     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 903   case vmIntrinsics::_counterMode_AESCrypt:
 904     return inline_counterMode_AESCrypt_predicate();
 905   case vmIntrinsics::_digestBase_implCompressMB:
 906     return inline_digestBase_implCompressMB_predicate(predicate);
 907 
 908   default:
 909     // If you get here, it may be that someone has added a new intrinsic
 910     // to the list in vmSymbols.hpp without implementing it here.
 911 #ifndef PRODUCT
 912     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 913       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 914                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 915     }
 916 #endif
 917     Node* slow_ctl = control();
 918     set_control(top()); // No fast path instrinsic
 919     return slow_ctl;
 920   }
 921 }
 922 
 923 //------------------------------set_result-------------------------------
 924 // Helper function for finishing intrinsics.
 925 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 926   record_for_igvn(region);
 927   set_control(_gvn.transform(region));
 928   set_result( _gvn.transform(value));
 929   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 930 }
 931 
 932 //------------------------------generate_guard---------------------------
 933 // Helper function for generating guarded fast-slow graph structures.
 934 // The given 'test', if true, guards a slow path.  If the test fails
 935 // then a fast path can be taken.  (We generally hope it fails.)
 936 // In all cases, GraphKit::control() is updated to the fast path.
 937 // The returned value represents the control for the slow path.
 938 // The return value is never 'top'; it is either a valid control
 939 // or NULL if it is obvious that the slow path can never be taken.
 940 // Also, if region and the slow control are not NULL, the slow edge
 941 // is appended to the region.
 942 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 943   if (stopped()) {
 944     // Already short circuited.
 945     return NULL;
 946   }
 947 
 948   // Build an if node and its projections.
 949   // If test is true we take the slow path, which we assume is uncommon.
 950   if (_gvn.type(test) == TypeInt::ZERO) {
 951     // The slow branch is never taken.  No need to build this guard.
 952     return NULL;
 953   }
 954 
 955   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 956 
 957   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 958   if (if_slow == top()) {
 959     // The slow branch is never taken.  No need to build this guard.
 960     return NULL;
 961   }
 962 
 963   if (region != NULL)
 964     region->add_req(if_slow);
 965 
 966   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 967   set_control(if_fast);
 968 
 969   return if_slow;
 970 }
 971 
 972 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 973   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 974 }
 975 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 976   return generate_guard(test, region, PROB_FAIR);
 977 }
 978 
 979 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 980                                                      Node* *pos_index) {
 981   if (stopped())
 982     return NULL;                // already stopped
 983   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 984     return NULL;                // index is already adequately typed
 985   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 986   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 987   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 988   if (is_neg != NULL && pos_index != NULL) {
 989     // Emulate effect of Parse::adjust_map_after_if.
 990     Node* ccast = new CastIINode(index, TypeInt::POS);
 991     ccast->set_req(0, control());
 992     (*pos_index) = _gvn.transform(ccast);
 993   }
 994   return is_neg;
 995 }
 996 
 997 // Make sure that 'position' is a valid limit index, in [0..length].
 998 // There are two equivalent plans for checking this:
 999 //   A. (offset + copyLength)  unsigned<=  arrayLength
1000 //   B. offset  <=  (arrayLength - copyLength)
1001 // We require that all of the values above, except for the sum and
1002 // difference, are already known to be non-negative.
1003 // Plan A is robust in the face of overflow, if offset and copyLength
1004 // are both hugely positive.
1005 //
1006 // Plan B is less direct and intuitive, but it does not overflow at
1007 // all, since the difference of two non-negatives is always
1008 // representable.  Whenever Java methods must perform the equivalent
1009 // check they generally use Plan B instead of Plan A.
1010 // For the moment we use Plan A.
1011 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1012                                                   Node* subseq_length,
1013                                                   Node* array_length,
1014                                                   RegionNode* region) {
1015   if (stopped())
1016     return NULL;                // already stopped
1017   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1018   if (zero_offset && subseq_length->eqv_uncast(array_length))
1019     return NULL;                // common case of whole-array copy
1020   Node* last = subseq_length;
1021   if (!zero_offset)             // last += offset
1022     last = _gvn.transform(new AddINode(last, offset));
1023   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1024   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1025   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1026   return is_over;
1027 }
1028 
1029 // Emit range checks for the given String.value byte array
1030 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1031   if (stopped()) {
1032     return; // already stopped
1033   }
1034   RegionNode* bailout = new RegionNode(1);
1035   record_for_igvn(bailout);
1036   if (char_count) {
1037     // Convert char count to byte count
1038     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1039   }
1040 
1041   // Offset and count must not be negative
1042   generate_negative_guard(offset, bailout);
1043   generate_negative_guard(count, bailout);
1044   // Offset + count must not exceed length of array
1045   generate_limit_guard(offset, count, load_array_length(array), bailout);
1046 
1047   if (bailout->req() > 1) {
1048     PreserveJVMState pjvms(this);
1049     set_control(_gvn.transform(bailout));
1050     uncommon_trap(Deoptimization::Reason_intrinsic,
1051                   Deoptimization::Action_maybe_recompile);
1052   }
1053 }
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called with
1069 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1070 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1071 // containing the lengths of str1 and str2.
1072 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1073   Node* result = NULL;
1074   switch (opcode) {
1075   case Op_StrIndexOf:
1076     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1077                                 str1_start, cnt1, str2_start, cnt2, ae);
1078     break;
1079   case Op_StrComp:
1080     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1081                              str1_start, cnt1, str2_start, cnt2, ae);
1082     break;
1083   case Op_StrEquals:
1084     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1085     // Use the constant length if there is one because optimized match rule may exist.
1086     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1087                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1088     break;
1089   default:
1090     ShouldNotReachHere();
1091     return NULL;
1092   }
1093 
1094   // All these intrinsics have checks.
1095   C->set_has_split_ifs(true); // Has chance for split-if optimization
1096   clear_upper_avx();
1097 
1098   return _gvn.transform(result);
1099 }
1100 
1101 //------------------------------inline_string_compareTo------------------------
1102 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1103   Node* arg1 = argument(0);
1104   Node* arg2 = argument(1);
1105 
1106   // Get start addr and length of first argument
1107   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1108   Node* arg1_cnt    = load_array_length(arg1);
1109 
1110   // Get start addr and length of second argument
1111   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1112   Node* arg2_cnt    = load_array_length(arg2);
1113 
1114   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1115   set_result(result);
1116   return true;
1117 }
1118 
1119 //------------------------------inline_string_equals------------------------
1120 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1121   Node* arg1 = argument(0);
1122   Node* arg2 = argument(1);
1123 
1124   // paths (plus control) merge
1125   RegionNode* region = new RegionNode(3);
1126   Node* phi = new PhiNode(region, TypeInt::BOOL);
1127 
1128   if (!stopped()) {
1129     // Get start addr and length of first argument
1130     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1131     Node* arg1_cnt    = load_array_length(arg1);
1132 
1133     // Get start addr and length of second argument
1134     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1135     Node* arg2_cnt    = load_array_length(arg2);
1136 
1137     // Check for arg1_cnt != arg2_cnt
1138     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1139     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1140     Node* if_ne = generate_slow_guard(bol, NULL);
1141     if (if_ne != NULL) {
1142       phi->init_req(2, intcon(0));
1143       region->init_req(2, if_ne);
1144     }
1145 
1146     // Check for count == 0 is done by assembler code for StrEquals.
1147 
1148     if (!stopped()) {
1149       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1150       phi->init_req(1, equals);
1151       region->init_req(1, control());
1152     }
1153   }
1154 
1155   // post merge
1156   set_control(_gvn.transform(region));
1157   record_for_igvn(region);
1158 
1159   set_result(_gvn.transform(phi));
1160   return true;
1161 }
1162 
1163 //------------------------------inline_array_equals----------------------------
1164 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1165   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1166   Node* arg1 = argument(0);
1167   Node* arg2 = argument(1);
1168 
1169   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1170   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1171   clear_upper_avx();
1172 
1173   return true;
1174 }
1175 
1176 //------------------------------inline_hasNegatives------------------------------
1177 bool LibraryCallKit::inline_hasNegatives() {
1178   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1179     return false;
1180   }
1181 
1182   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1183   // no receiver since it is static method
1184   Node* ba         = argument(0);
1185   Node* offset     = argument(1);
1186   Node* len        = argument(2);
1187 
1188   // Range checks
1189   generate_string_range_check(ba, offset, len, false);
1190   if (stopped()) {
1191     return true;
1192   }
1193   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1194   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1195   set_result(_gvn.transform(result));
1196   return true;
1197 }
1198 
1199 bool LibraryCallKit::inline_preconditions_checkIndex() {
1200   Node* index = argument(0);
1201   Node* length = argument(1);
1202   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1203     return false;
1204   }
1205 
1206   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1207   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1208 
1209   {
1210     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1211     uncommon_trap(Deoptimization::Reason_intrinsic,
1212                   Deoptimization::Action_make_not_entrant);
1213   }
1214 
1215   if (stopped()) {
1216     return false;
1217   }
1218 
1219   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1220   BoolTest::mask btest = BoolTest::lt;
1221   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1222   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1223   _gvn.set_type(rc, rc->Value(&_gvn));
1224   if (!rc_bool->is_Con()) {
1225     record_for_igvn(rc);
1226   }
1227   set_control(_gvn.transform(new IfTrueNode(rc)));
1228   {
1229     PreserveJVMState pjvms(this);
1230     set_control(_gvn.transform(new IfFalseNode(rc)));
1231     uncommon_trap(Deoptimization::Reason_range_check,
1232                   Deoptimization::Action_make_not_entrant);
1233   }
1234 
1235   if (stopped()) {
1236     return false;
1237   }
1238 
1239   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1240   result->set_req(0, control());
1241   result = _gvn.transform(result);
1242   set_result(result);
1243   replace_in_map(index, result);
1244   clear_upper_avx();
1245   return true;
1246 }
1247 
1248 //------------------------------inline_string_indexOf------------------------
1249 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1250   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1251     return false;
1252   }
1253   Node* src = argument(0);
1254   Node* tgt = argument(1);
1255 
1256   // Make the merge point
1257   RegionNode* result_rgn = new RegionNode(4);
1258   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1259 
1260   // Get start addr and length of source string
1261   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1262   Node* src_count = load_array_length(src);
1263 
1264   // Get start addr and length of substring
1265   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1266   Node* tgt_count = load_array_length(tgt);
1267 
1268   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1269     // Divide src size by 2 if String is UTF16 encoded
1270     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1271   }
1272   if (ae == StrIntrinsicNode::UU) {
1273     // Divide substring size by 2 if String is UTF16 encoded
1274     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1275   }
1276 
1277   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1278   if (result != NULL) {
1279     result_phi->init_req(3, result);
1280     result_rgn->init_req(3, control());
1281   }
1282   set_control(_gvn.transform(result_rgn));
1283   record_for_igvn(result_rgn);
1284   set_result(_gvn.transform(result_phi));
1285 
1286   return true;
1287 }
1288 
1289 //-----------------------------inline_string_indexOf-----------------------
1290 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1291   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1292     return false;
1293   }
1294   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1295     return false;
1296   }
1297   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1298   Node* src         = argument(0); // byte[]
1299   Node* src_count   = argument(1); // char count
1300   Node* tgt         = argument(2); // byte[]
1301   Node* tgt_count   = argument(3); // char count
1302   Node* from_index  = argument(4); // char index
1303 
1304   // Multiply byte array index by 2 if String is UTF16 encoded
1305   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1306   src_count = _gvn.transform(new SubINode(src_count, from_index));
1307   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1308   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1309 
1310   // Range checks
1311   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1312   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1313   if (stopped()) {
1314     return true;
1315   }
1316 
1317   RegionNode* region = new RegionNode(5);
1318   Node* phi = new PhiNode(region, TypeInt::INT);
1319 
1320   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1321   if (result != NULL) {
1322     // The result is index relative to from_index if substring was found, -1 otherwise.
1323     // Generate code which will fold into cmove.
1324     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1325     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1326 
1327     Node* if_lt = generate_slow_guard(bol, NULL);
1328     if (if_lt != NULL) {
1329       // result == -1
1330       phi->init_req(3, result);
1331       region->init_req(3, if_lt);
1332     }
1333     if (!stopped()) {
1334       result = _gvn.transform(new AddINode(result, from_index));
1335       phi->init_req(4, result);
1336       region->init_req(4, control());
1337     }
1338   }
1339 
1340   set_control(_gvn.transform(region));
1341   record_for_igvn(region);
1342   set_result(_gvn.transform(phi));
1343   clear_upper_avx();
1344 
1345   return true;
1346 }
1347 
1348 // Create StrIndexOfNode with fast path checks
1349 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1350                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1351   // Check for substr count > string count
1352   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1353   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1354   Node* if_gt = generate_slow_guard(bol, NULL);
1355   if (if_gt != NULL) {
1356     phi->init_req(1, intcon(-1));
1357     region->init_req(1, if_gt);
1358   }
1359   if (!stopped()) {
1360     // Check for substr count == 0
1361     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1362     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1363     Node* if_zero = generate_slow_guard(bol, NULL);
1364     if (if_zero != NULL) {
1365       phi->init_req(2, intcon(0));
1366       region->init_req(2, if_zero);
1367     }
1368   }
1369   if (!stopped()) {
1370     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1371   }
1372   return NULL;
1373 }
1374 
1375 //-----------------------------inline_string_indexOfChar-----------------------
1376 bool LibraryCallKit::inline_string_indexOfChar() {
1377   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1378     return false;
1379   }
1380   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1381     return false;
1382   }
1383   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1384   Node* src         = argument(0); // byte[]
1385   Node* tgt         = argument(1); // tgt is int ch
1386   Node* from_index  = argument(2);
1387   Node* max         = argument(3);
1388 
1389   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1390   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1391   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1392 
1393   // Range checks
1394   generate_string_range_check(src, src_offset, src_count, true);
1395   if (stopped()) {
1396     return true;
1397   }
1398 
1399   RegionNode* region = new RegionNode(3);
1400   Node* phi = new PhiNode(region, TypeInt::INT);
1401 
1402   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1403   C->set_has_split_ifs(true); // Has chance for split-if optimization
1404   _gvn.transform(result);
1405 
1406   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1407   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1408 
1409   Node* if_lt = generate_slow_guard(bol, NULL);
1410   if (if_lt != NULL) {
1411     // result == -1
1412     phi->init_req(2, result);
1413     region->init_req(2, if_lt);
1414   }
1415   if (!stopped()) {
1416     result = _gvn.transform(new AddINode(result, from_index));
1417     phi->init_req(1, result);
1418     region->init_req(1, control());
1419   }
1420   set_control(_gvn.transform(region));
1421   record_for_igvn(region);
1422   set_result(_gvn.transform(phi));
1423 
1424   return true;
1425 }
1426 //---------------------------inline_string_copy---------------------
1427 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1428 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1429 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1430 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1431 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1432 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1433 bool LibraryCallKit::inline_string_copy(bool compress) {
1434   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1435     return false;
1436   }
1437   int nargs = 5;  // 2 oops, 3 ints
1438   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1439 
1440   Node* src         = argument(0);
1441   Node* src_offset  = argument(1);
1442   Node* dst         = argument(2);
1443   Node* dst_offset  = argument(3);
1444   Node* length      = argument(4);
1445 
1446   // Check for allocation before we add nodes that would confuse
1447   // tightly_coupled_allocation()
1448   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1449 
1450   // Figure out the size and type of the elements we will be copying.
1451   const Type* src_type = src->Value(&_gvn);
1452   const Type* dst_type = dst->Value(&_gvn);
1453   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1454   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1455   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1456          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1457          "Unsupported array types for inline_string_copy");
1458 
1459   // Convert char[] offsets to byte[] offsets
1460   bool convert_src = (compress && src_elem == T_BYTE);
1461   bool convert_dst = (!compress && dst_elem == T_BYTE);
1462   if (convert_src) {
1463     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1464   } else if (convert_dst) {
1465     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1466   }
1467 
1468   // Range checks
1469   generate_string_range_check(src, src_offset, length, convert_src);
1470   generate_string_range_check(dst, dst_offset, length, convert_dst);
1471   if (stopped()) {
1472     return true;
1473   }
1474 
1475   Node* src_start = array_element_address(src, src_offset, src_elem);
1476   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1477   // 'src_start' points to src array + scaled offset
1478   // 'dst_start' points to dst array + scaled offset
1479   Node* count = NULL;
1480   if (compress) {
1481     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1482   } else {
1483     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1484   }
1485 
1486   if (alloc != NULL) {
1487     if (alloc->maybe_set_complete(&_gvn)) {
1488       // "You break it, you buy it."
1489       InitializeNode* init = alloc->initialization();
1490       assert(init->is_complete(), "we just did this");
1491       init->set_complete_with_arraycopy();
1492       assert(dst->is_CheckCastPP(), "sanity");
1493       assert(dst->in(0)->in(0) == init, "dest pinned");
1494     }
1495     // Do not let stores that initialize this object be reordered with
1496     // a subsequent store that would make this object accessible by
1497     // other threads.
1498     // Record what AllocateNode this StoreStore protects so that
1499     // escape analysis can go from the MemBarStoreStoreNode to the
1500     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1501     // based on the escape status of the AllocateNode.
1502     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1503   }
1504   if (compress) {
1505     set_result(_gvn.transform(count));
1506   }
1507   clear_upper_avx();
1508 
1509   return true;
1510 }
1511 
1512 #ifdef _LP64
1513 #define XTOP ,top() /*additional argument*/
1514 #else  //_LP64
1515 #define XTOP        /*no additional argument*/
1516 #endif //_LP64
1517 
1518 //------------------------inline_string_toBytesU--------------------------
1519 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1520 bool LibraryCallKit::inline_string_toBytesU() {
1521   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1522     return false;
1523   }
1524   // Get the arguments.
1525   Node* value     = argument(0);
1526   Node* offset    = argument(1);
1527   Node* length    = argument(2);
1528 
1529   Node* newcopy = NULL;
1530 
1531   // Set the original stack and the reexecute bit for the interpreter to reexecute
1532   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1533   { PreserveReexecuteState preexecs(this);
1534     jvms()->set_should_reexecute(true);
1535 
1536     // Check if a null path was taken unconditionally.
1537     value = null_check(value);
1538 
1539     RegionNode* bailout = new RegionNode(1);
1540     record_for_igvn(bailout);
1541 
1542     // Range checks
1543     generate_negative_guard(offset, bailout);
1544     generate_negative_guard(length, bailout);
1545     generate_limit_guard(offset, length, load_array_length(value), bailout);
1546     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1547     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1548 
1549     if (bailout->req() > 1) {
1550       PreserveJVMState pjvms(this);
1551       set_control(_gvn.transform(bailout));
1552       uncommon_trap(Deoptimization::Reason_intrinsic,
1553                     Deoptimization::Action_maybe_recompile);
1554     }
1555     if (stopped()) {
1556       return true;
1557     }
1558 
1559     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1560     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1561     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1562     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1563 
1564     // Calculate starting addresses.
1565     Node* src_start = array_element_address(value, offset, T_CHAR);
1566     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1567 
1568     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1569     const TypeInt* toffset = gvn().type(offset)->is_int();
1570     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1571 
1572     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1573     const char* copyfunc_name = "arraycopy";
1574     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1575     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1576                       OptoRuntime::fast_arraycopy_Type(),
1577                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1578                       src_start, dst_start, ConvI2X(length) XTOP);
1579     // Do not let reads from the cloned object float above the arraycopy.
1580     if (alloc != NULL) {
1581       if (alloc->maybe_set_complete(&_gvn)) {
1582         // "You break it, you buy it."
1583         InitializeNode* init = alloc->initialization();
1584         assert(init->is_complete(), "we just did this");
1585         init->set_complete_with_arraycopy();
1586         assert(newcopy->is_CheckCastPP(), "sanity");
1587         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1588       }
1589       // Do not let stores that initialize this object be reordered with
1590       // a subsequent store that would make this object accessible by
1591       // other threads.
1592       // Record what AllocateNode this StoreStore protects so that
1593       // escape analysis can go from the MemBarStoreStoreNode to the
1594       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1595       // based on the escape status of the AllocateNode.
1596       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1597     } else {
1598       insert_mem_bar(Op_MemBarCPUOrder);
1599     }
1600   } // original reexecute is set back here
1601 
1602   C->set_has_split_ifs(true); // Has chance for split-if optimization
1603   if (!stopped()) {
1604     set_result(newcopy);
1605   }
1606   clear_upper_avx();
1607 
1608   return true;
1609 }
1610 
1611 //------------------------inline_string_getCharsU--------------------------
1612 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1613 bool LibraryCallKit::inline_string_getCharsU() {
1614   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1615     return false;
1616   }
1617 
1618   // Get the arguments.
1619   Node* src       = argument(0);
1620   Node* src_begin = argument(1);
1621   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1622   Node* dst       = argument(3);
1623   Node* dst_begin = argument(4);
1624 
1625   // Check for allocation before we add nodes that would confuse
1626   // tightly_coupled_allocation()
1627   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1628 
1629   // Check if a null path was taken unconditionally.
1630   src = null_check(src);
1631   dst = null_check(dst);
1632   if (stopped()) {
1633     return true;
1634   }
1635 
1636   // Get length and convert char[] offset to byte[] offset
1637   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1638   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1639 
1640   // Range checks
1641   generate_string_range_check(src, src_begin, length, true);
1642   generate_string_range_check(dst, dst_begin, length, false);
1643   if (stopped()) {
1644     return true;
1645   }
1646 
1647   if (!stopped()) {
1648     // Calculate starting addresses.
1649     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1650     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1651 
1652     // Check if array addresses are aligned to HeapWordSize
1653     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1654     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1655     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1656                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1657 
1658     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1659     const char* copyfunc_name = "arraycopy";
1660     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1661     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1662                       OptoRuntime::fast_arraycopy_Type(),
1663                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1664                       src_start, dst_start, ConvI2X(length) XTOP);
1665     // Do not let reads from the cloned object float above the arraycopy.
1666     if (alloc != NULL) {
1667       if (alloc->maybe_set_complete(&_gvn)) {
1668         // "You break it, you buy it."
1669         InitializeNode* init = alloc->initialization();
1670         assert(init->is_complete(), "we just did this");
1671         init->set_complete_with_arraycopy();
1672         assert(dst->is_CheckCastPP(), "sanity");
1673         assert(dst->in(0)->in(0) == init, "dest pinned");
1674       }
1675       // Do not let stores that initialize this object be reordered with
1676       // a subsequent store that would make this object accessible by
1677       // other threads.
1678       // Record what AllocateNode this StoreStore protects so that
1679       // escape analysis can go from the MemBarStoreStoreNode to the
1680       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1681       // based on the escape status of the AllocateNode.
1682       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1683     } else {
1684       insert_mem_bar(Op_MemBarCPUOrder);
1685     }
1686   }
1687 
1688   C->set_has_split_ifs(true); // Has chance for split-if optimization
1689   return true;
1690 }
1691 
1692 //----------------------inline_string_char_access----------------------------
1693 // Store/Load char to/from byte[] array.
1694 // static void StringUTF16.putChar(byte[] val, int index, int c)
1695 // static char StringUTF16.getChar(byte[] val, int index)
1696 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1697   Node* value  = argument(0);
1698   Node* index  = argument(1);
1699   Node* ch = is_store ? argument(2) : NULL;
1700 
1701   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1702   // correctly requires matched array shapes.
1703   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1704           "sanity: byte[] and char[] bases agree");
1705   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1706           "sanity: byte[] and char[] scales agree");
1707 
1708   // Bail when getChar over constants is requested: constant folding would
1709   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1710   // Java method would constant fold nicely instead.
1711   if (!is_store && value->is_Con() && index->is_Con()) {
1712     return false;
1713   }
1714 
1715   Node* adr = array_element_address(value, index, T_CHAR);
1716   if (adr->is_top()) {
1717     return false;
1718   }
1719   if (is_store) {
1720     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1721                            false, false, true /* mismatched */);
1722   } else {
1723     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1724                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1725     set_result(ch);
1726   }
1727   return true;
1728 }
1729 
1730 //--------------------------round_double_node--------------------------------
1731 // Round a double node if necessary.
1732 Node* LibraryCallKit::round_double_node(Node* n) {
1733   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1734     n = _gvn.transform(new RoundDoubleNode(0, n));
1735   return n;
1736 }
1737 
1738 //------------------------------inline_math-----------------------------------
1739 // public static double Math.abs(double)
1740 // public static double Math.sqrt(double)
1741 // public static double Math.log(double)
1742 // public static double Math.log10(double)
1743 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1744   Node* arg = round_double_node(argument(0));
1745   Node* n = NULL;
1746   switch (id) {
1747   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1748   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1749   default:  fatal_unexpected_iid(id);  break;
1750   }
1751   set_result(_gvn.transform(n));
1752   return true;
1753 }
1754 
1755 //------------------------------runtime_math-----------------------------
1756 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1757   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1758          "must be (DD)D or (D)D type");
1759 
1760   // Inputs
1761   Node* a = round_double_node(argument(0));
1762   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1763 
1764   const TypePtr* no_memory_effects = NULL;
1765   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1766                                  no_memory_effects,
1767                                  a, top(), b, b ? top() : NULL);
1768   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1769 #ifdef ASSERT
1770   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1771   assert(value_top == top(), "second value must be top");
1772 #endif
1773 
1774   set_result(value);
1775   return true;
1776 }
1777 
1778 //------------------------------inline_math_native-----------------------------
1779 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1780 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1781   switch (id) {
1782     // These intrinsics are not properly supported on all hardware
1783   case vmIntrinsics::_dsin:
1784     return StubRoutines::dsin() != NULL ?
1785       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1786       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1787   case vmIntrinsics::_dcos:
1788     return StubRoutines::dcos() != NULL ?
1789       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1790       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1791   case vmIntrinsics::_dtan:
1792     return StubRoutines::dtan() != NULL ?
1793       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1794       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1795   case vmIntrinsics::_dlog:
1796     return StubRoutines::dlog() != NULL ?
1797       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1798       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1799   case vmIntrinsics::_dlog10:
1800     return StubRoutines::dlog10() != NULL ?
1801       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1802       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1803 
1804     // These intrinsics are supported on all hardware
1805   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1806   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1807 
1808   case vmIntrinsics::_dexp:
1809     return StubRoutines::dexp() != NULL ?
1810       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1811       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1812   case vmIntrinsics::_dpow: {
1813     Node* exp = round_double_node(argument(2));
1814     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1815     if (d != NULL && d->getd() == 2.0) {
1816       // Special case: pow(x, 2.0) => x * x
1817       Node* base = round_double_node(argument(0));
1818       set_result(_gvn.transform(new MulDNode(base, base)));
1819       return true;
1820     }
1821     return StubRoutines::dexp() != NULL ?
1822       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1823       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1824   }
1825 #undef FN_PTR
1826 
1827    // These intrinsics are not yet correctly implemented
1828   case vmIntrinsics::_datan2:
1829     return false;
1830 
1831   default:
1832     fatal_unexpected_iid(id);
1833     return false;
1834   }
1835 }
1836 
1837 static bool is_simple_name(Node* n) {
1838   return (n->req() == 1         // constant
1839           || (n->is_Type() && n->as_Type()->type()->singleton())
1840           || n->is_Proj()       // parameter or return value
1841           || n->is_Phi()        // local of some sort
1842           );
1843 }
1844 
1845 //----------------------------inline_notify-----------------------------------*
1846 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1847   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1848   address func;
1849   if (id == vmIntrinsics::_notify) {
1850     func = OptoRuntime::monitor_notify_Java();
1851   } else {
1852     func = OptoRuntime::monitor_notifyAll_Java();
1853   }
1854   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1855   make_slow_call_ex(call, env()->Throwable_klass(), false);
1856   return true;
1857 }
1858 
1859 
1860 //----------------------------inline_min_max-----------------------------------
1861 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1862   set_result(generate_min_max(id, argument(0), argument(1)));
1863   return true;
1864 }
1865 
1866 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1867   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1868   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1869   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1870   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1871 
1872   {
1873     PreserveJVMState pjvms(this);
1874     PreserveReexecuteState preexecs(this);
1875     jvms()->set_should_reexecute(true);
1876 
1877     set_control(slow_path);
1878     set_i_o(i_o());
1879 
1880     uncommon_trap(Deoptimization::Reason_intrinsic,
1881                   Deoptimization::Action_none);
1882   }
1883 
1884   set_control(fast_path);
1885   set_result(math);
1886 }
1887 
1888 template <typename OverflowOp>
1889 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1890   typedef typename OverflowOp::MathOp MathOp;
1891 
1892   MathOp* mathOp = new MathOp(arg1, arg2);
1893   Node* operation = _gvn.transform( mathOp );
1894   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1895   inline_math_mathExact(operation, ofcheck);
1896   return true;
1897 }
1898 
1899 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1900   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1901 }
1902 
1903 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1904   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1905 }
1906 
1907 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1908   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1909 }
1910 
1911 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1912   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1913 }
1914 
1915 bool LibraryCallKit::inline_math_negateExactI() {
1916   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1917 }
1918 
1919 bool LibraryCallKit::inline_math_negateExactL() {
1920   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1921 }
1922 
1923 bool LibraryCallKit::inline_math_multiplyExactI() {
1924   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1925 }
1926 
1927 bool LibraryCallKit::inline_math_multiplyExactL() {
1928   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1929 }
1930 
1931 bool LibraryCallKit::inline_math_multiplyHigh() {
1932   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1933   return true;
1934 }
1935 
1936 Node*
1937 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1938   // These are the candidate return value:
1939   Node* xvalue = x0;
1940   Node* yvalue = y0;
1941 
1942   if (xvalue == yvalue) {
1943     return xvalue;
1944   }
1945 
1946   bool want_max = (id == vmIntrinsics::_max);
1947 
1948   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1949   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1950   if (txvalue == NULL || tyvalue == NULL)  return top();
1951   // This is not really necessary, but it is consistent with a
1952   // hypothetical MaxINode::Value method:
1953   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1954 
1955   // %%% This folding logic should (ideally) be in a different place.
1956   // Some should be inside IfNode, and there to be a more reliable
1957   // transformation of ?: style patterns into cmoves.  We also want
1958   // more powerful optimizations around cmove and min/max.
1959 
1960   // Try to find a dominating comparison of these guys.
1961   // It can simplify the index computation for Arrays.copyOf
1962   // and similar uses of System.arraycopy.
1963   // First, compute the normalized version of CmpI(x, y).
1964   int   cmp_op = Op_CmpI;
1965   Node* xkey = xvalue;
1966   Node* ykey = yvalue;
1967   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1968   if (ideal_cmpxy->is_Cmp()) {
1969     // E.g., if we have CmpI(length - offset, count),
1970     // it might idealize to CmpI(length, count + offset)
1971     cmp_op = ideal_cmpxy->Opcode();
1972     xkey = ideal_cmpxy->in(1);
1973     ykey = ideal_cmpxy->in(2);
1974   }
1975 
1976   // Start by locating any relevant comparisons.
1977   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1978   Node* cmpxy = NULL;
1979   Node* cmpyx = NULL;
1980   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1981     Node* cmp = start_from->fast_out(k);
1982     if (cmp->outcnt() > 0 &&            // must have prior uses
1983         cmp->in(0) == NULL &&           // must be context-independent
1984         cmp->Opcode() == cmp_op) {      // right kind of compare
1985       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1986       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1987     }
1988   }
1989 
1990   const int NCMPS = 2;
1991   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1992   int cmpn;
1993   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1994     if (cmps[cmpn] != NULL)  break;     // find a result
1995   }
1996   if (cmpn < NCMPS) {
1997     // Look for a dominating test that tells us the min and max.
1998     int depth = 0;                // Limit search depth for speed
1999     Node* dom = control();
2000     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2001       if (++depth >= 100)  break;
2002       Node* ifproj = dom;
2003       if (!ifproj->is_Proj())  continue;
2004       Node* iff = ifproj->in(0);
2005       if (!iff->is_If())  continue;
2006       Node* bol = iff->in(1);
2007       if (!bol->is_Bool())  continue;
2008       Node* cmp = bol->in(1);
2009       if (cmp == NULL)  continue;
2010       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2011         if (cmps[cmpn] == cmp)  break;
2012       if (cmpn == NCMPS)  continue;
2013       BoolTest::mask btest = bol->as_Bool()->_test._test;
2014       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2015       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2016       // At this point, we know that 'x btest y' is true.
2017       switch (btest) {
2018       case BoolTest::eq:
2019         // They are proven equal, so we can collapse the min/max.
2020         // Either value is the answer.  Choose the simpler.
2021         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2022           return yvalue;
2023         return xvalue;
2024       case BoolTest::lt:          // x < y
2025       case BoolTest::le:          // x <= y
2026         return (want_max ? yvalue : xvalue);
2027       case BoolTest::gt:          // x > y
2028       case BoolTest::ge:          // x >= y
2029         return (want_max ? xvalue : yvalue);
2030       default:
2031         break;
2032       }
2033     }
2034   }
2035 
2036   // We failed to find a dominating test.
2037   // Let's pick a test that might GVN with prior tests.
2038   Node*          best_bol   = NULL;
2039   BoolTest::mask best_btest = BoolTest::illegal;
2040   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2041     Node* cmp = cmps[cmpn];
2042     if (cmp == NULL)  continue;
2043     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2044       Node* bol = cmp->fast_out(j);
2045       if (!bol->is_Bool())  continue;
2046       BoolTest::mask btest = bol->as_Bool()->_test._test;
2047       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2048       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2049       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2050         best_bol   = bol->as_Bool();
2051         best_btest = btest;
2052       }
2053     }
2054   }
2055 
2056   Node* answer_if_true  = NULL;
2057   Node* answer_if_false = NULL;
2058   switch (best_btest) {
2059   default:
2060     if (cmpxy == NULL)
2061       cmpxy = ideal_cmpxy;
2062     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2063     // and fall through:
2064   case BoolTest::lt:          // x < y
2065   case BoolTest::le:          // x <= y
2066     answer_if_true  = (want_max ? yvalue : xvalue);
2067     answer_if_false = (want_max ? xvalue : yvalue);
2068     break;
2069   case BoolTest::gt:          // x > y
2070   case BoolTest::ge:          // x >= y
2071     answer_if_true  = (want_max ? xvalue : yvalue);
2072     answer_if_false = (want_max ? yvalue : xvalue);
2073     break;
2074   }
2075 
2076   jint hi, lo;
2077   if (want_max) {
2078     // We can sharpen the minimum.
2079     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2080     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2081   } else {
2082     // We can sharpen the maximum.
2083     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2084     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2085   }
2086 
2087   // Use a flow-free graph structure, to avoid creating excess control edges
2088   // which could hinder other optimizations.
2089   // Since Math.min/max is often used with arraycopy, we want
2090   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2091   Node* cmov = CMoveNode::make(NULL, best_bol,
2092                                answer_if_false, answer_if_true,
2093                                TypeInt::make(lo, hi, widen));
2094 
2095   return _gvn.transform(cmov);
2096 
2097   /*
2098   // This is not as desirable as it may seem, since Min and Max
2099   // nodes do not have a full set of optimizations.
2100   // And they would interfere, anyway, with 'if' optimizations
2101   // and with CMoveI canonical forms.
2102   switch (id) {
2103   case vmIntrinsics::_min:
2104     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2105   case vmIntrinsics::_max:
2106     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2107   default:
2108     ShouldNotReachHere();
2109   }
2110   */
2111 }
2112 
2113 inline int
2114 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2115   const TypePtr* base_type = TypePtr::NULL_PTR;
2116   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2117   if (base_type == NULL) {
2118     // Unknown type.
2119     return Type::AnyPtr;
2120   } else if (base_type == TypePtr::NULL_PTR) {
2121     // Since this is a NULL+long form, we have to switch to a rawptr.
2122     base   = _gvn.transform(new CastX2PNode(offset));
2123     offset = MakeConX(0);
2124     return Type::RawPtr;
2125   } else if (base_type->base() == Type::RawPtr) {
2126     return Type::RawPtr;
2127   } else if (base_type->isa_oopptr()) {
2128     // Base is never null => always a heap address.
2129     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2130       return Type::OopPtr;
2131     }
2132     // Offset is small => always a heap address.
2133     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2134     if (offset_type != NULL &&
2135         base_type->offset() == 0 &&     // (should always be?)
2136         offset_type->_lo >= 0 &&
2137         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2138       return Type::OopPtr;
2139     } else if (type == T_OBJECT) {
2140       // off heap access to an oop doesn't make any sense. Has to be on
2141       // heap.
2142       return Type::OopPtr;
2143     }
2144     // Otherwise, it might either be oop+off or NULL+addr.
2145     return Type::AnyPtr;
2146   } else {
2147     // No information:
2148     return Type::AnyPtr;
2149   }
2150 }
2151 
2152 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2153   Node* uncasted_base = base;
2154   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2155   if (kind == Type::RawPtr) {
2156     return basic_plus_adr(top(), uncasted_base, offset);
2157   } else if (kind == Type::AnyPtr) {
2158     assert(base == uncasted_base, "unexpected base change");
2159     if (can_cast) {
2160       if (!_gvn.type(base)->speculative_maybe_null() &&
2161           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2162         // According to profiling, this access is always on
2163         // heap. Casting the base to not null and thus avoiding membars
2164         // around the access should allow better optimizations
2165         Node* null_ctl = top();
2166         base = null_check_oop(base, &null_ctl, true, true, true);
2167         assert(null_ctl->is_top(), "no null control here");
2168         return basic_plus_adr(base, offset);
2169       } else if (_gvn.type(base)->speculative_always_null() &&
2170                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2171         // According to profiling, this access is always off
2172         // heap.
2173         base = null_assert(base);
2174         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2175         offset = MakeConX(0);
2176         return basic_plus_adr(top(), raw_base, offset);
2177       }
2178     }
2179     // We don't know if it's an on heap or off heap access. Fall back
2180     // to raw memory access.
2181     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2182     return basic_plus_adr(top(), raw, offset);
2183   } else {
2184     assert(base == uncasted_base, "unexpected base change");
2185     // We know it's an on heap access so base can't be null
2186     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2187       base = must_be_not_null(base, true);
2188     }
2189     return basic_plus_adr(base, offset);
2190   }
2191 }
2192 
2193 //--------------------------inline_number_methods-----------------------------
2194 // inline int     Integer.numberOfLeadingZeros(int)
2195 // inline int        Long.numberOfLeadingZeros(long)
2196 //
2197 // inline int     Integer.numberOfTrailingZeros(int)
2198 // inline int        Long.numberOfTrailingZeros(long)
2199 //
2200 // inline int     Integer.bitCount(int)
2201 // inline int        Long.bitCount(long)
2202 //
2203 // inline char  Character.reverseBytes(char)
2204 // inline short     Short.reverseBytes(short)
2205 // inline int     Integer.reverseBytes(int)
2206 // inline long       Long.reverseBytes(long)
2207 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2208   Node* arg = argument(0);
2209   Node* n = NULL;
2210   switch (id) {
2211   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2212   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2213   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2214   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2215   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2216   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2217   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2218   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2219   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2220   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2221   default:  fatal_unexpected_iid(id);  break;
2222   }
2223   set_result(_gvn.transform(n));
2224   return true;
2225 }
2226 
2227 //----------------------------inline_unsafe_access----------------------------
2228 
2229 // Helper that guards and inserts a pre-barrier.
2230 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2231                                         Node* pre_val, bool need_mem_bar) {
2232   // We could be accessing the referent field of a reference object. If so, when G1
2233   // is enabled, we need to log the value in the referent field in an SATB buffer.
2234   // This routine performs some compile time filters and generates suitable
2235   // runtime filters that guard the pre-barrier code.
2236   // Also add memory barrier for non volatile load from the referent field
2237   // to prevent commoning of loads across safepoint.
2238   if (!UseG1GC && !need_mem_bar)
2239     return;
2240 
2241   // Some compile time checks.
2242 
2243   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2244   const TypeX* otype = offset->find_intptr_t_type();
2245   if (otype != NULL && otype->is_con() &&
2246       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2247     // Constant offset but not the reference_offset so just return
2248     return;
2249   }
2250 
2251   // We only need to generate the runtime guards for instances.
2252   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2253   if (btype != NULL) {
2254     if (btype->isa_aryptr()) {
2255       // Array type so nothing to do
2256       return;
2257     }
2258 
2259     const TypeInstPtr* itype = btype->isa_instptr();
2260     if (itype != NULL) {
2261       // Can the klass of base_oop be statically determined to be
2262       // _not_ a sub-class of Reference and _not_ Object?
2263       ciKlass* klass = itype->klass();
2264       if ( klass->is_loaded() &&
2265           !klass->is_subtype_of(env()->Reference_klass()) &&
2266           !env()->Object_klass()->is_subtype_of(klass)) {
2267         return;
2268       }
2269     }
2270   }
2271 
2272   // The compile time filters did not reject base_oop/offset so
2273   // we need to generate the following runtime filters
2274   //
2275   // if (offset == java_lang_ref_Reference::_reference_offset) {
2276   //   if (instance_of(base, java.lang.ref.Reference)) {
2277   //     pre_barrier(_, pre_val, ...);
2278   //   }
2279   // }
2280 
2281   float likely   = PROB_LIKELY(  0.999);
2282   float unlikely = PROB_UNLIKELY(0.999);
2283 
2284   IdealKit ideal(this);
2285 #define __ ideal.
2286 
2287   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2288 
2289   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2290       // Update graphKit memory and control from IdealKit.
2291       sync_kit(ideal);
2292 
2293       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2294       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2295 
2296       // Update IdealKit memory and control from graphKit.
2297       __ sync_kit(this);
2298 
2299       Node* one = __ ConI(1);
2300       // is_instof == 0 if base_oop == NULL
2301       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2302 
2303         // Update graphKit from IdeakKit.
2304         sync_kit(ideal);
2305 
2306         // Use the pre-barrier to record the value in the referent field
2307         pre_barrier(false /* do_load */,
2308                     __ ctrl(),
2309                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2310                     pre_val /* pre_val */,
2311                     T_OBJECT);
2312         if (need_mem_bar) {
2313           // Add memory barrier to prevent commoning reads from this field
2314           // across safepoint since GC can change its value.
2315           insert_mem_bar(Op_MemBarCPUOrder);
2316         }
2317         // Update IdealKit from graphKit.
2318         __ sync_kit(this);
2319 
2320       } __ end_if(); // _ref_type != ref_none
2321   } __ end_if(); // offset == referent_offset
2322 
2323   // Final sync IdealKit and GraphKit.
2324   final_sync(ideal);
2325 #undef __
2326 }
2327 
2328 
2329 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2330   // Attempt to infer a sharper value type from the offset and base type.
2331   ciKlass* sharpened_klass = NULL;
2332 
2333   // See if it is an instance field, with an object type.
2334   if (alias_type->field() != NULL) {
2335     if (alias_type->field()->type()->is_klass()) {
2336       sharpened_klass = alias_type->field()->type()->as_klass();
2337     }
2338   }
2339 
2340   // See if it is a narrow oop array.
2341   if (adr_type->isa_aryptr()) {
2342     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2343       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2344       if (elem_type != NULL) {
2345         sharpened_klass = elem_type->klass();
2346       }
2347     }
2348   }
2349 
2350   // The sharpened class might be unloaded if there is no class loader
2351   // contraint in place.
2352   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2353     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2354 
2355 #ifndef PRODUCT
2356     if (C->print_intrinsics() || C->print_inlining()) {
2357       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2358       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2359     }
2360 #endif
2361     // Sharpen the value type.
2362     return tjp;
2363   }
2364   return NULL;
2365 }
2366 
2367 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2368   if (callee()->is_static())  return false;  // caller must have the capability!
2369   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2370   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2371   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2372 
2373 #ifndef PRODUCT
2374   {
2375     ResourceMark rm;
2376     // Check the signatures.
2377     ciSignature* sig = callee()->signature();
2378 #ifdef ASSERT
2379     if (!is_store) {
2380       // Object getObject(Object base, int/long offset), etc.
2381       BasicType rtype = sig->return_type()->basic_type();
2382       assert(rtype == type, "getter must return the expected value");
2383       assert(sig->count() == 2, "oop getter has 2 arguments");
2384       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2385       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2386     } else {
2387       // void putObject(Object base, int/long offset, Object x), etc.
2388       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2389       assert(sig->count() == 3, "oop putter has 3 arguments");
2390       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2391       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2392       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2393       assert(vtype == type, "putter must accept the expected value");
2394     }
2395 #endif // ASSERT
2396  }
2397 #endif //PRODUCT
2398 
2399   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2400 
2401   Node* receiver = argument(0);  // type: oop
2402 
2403   // Build address expression.
2404   Node* adr;
2405   Node* heap_base_oop = top();
2406   Node* offset = top();
2407   Node* val;
2408 
2409   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2410   Node* base = argument(1);  // type: oop
2411   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2412   offset = argument(2);  // type: long
2413   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2414   // to be plain byte offsets, which are also the same as those accepted
2415   // by oopDesc::field_addr.
2416   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2417          "fieldOffset must be byte-scaled");
2418   // 32-bit machines ignore the high half!
2419   offset = ConvL2X(offset);
2420   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2421 
2422   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2423     heap_base_oop = base;
2424   } else if (type == T_OBJECT) {
2425     return false; // off-heap oop accesses are not supported
2426   }
2427 
2428   // Can base be NULL? Otherwise, always on-heap access.
2429   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2430 
2431   val = is_store ? argument(4) : NULL;
2432 
2433   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2434 
2435   // Try to categorize the address.
2436   Compile::AliasType* alias_type = C->alias_type(adr_type);
2437   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2438 
2439   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2440       alias_type->adr_type() == TypeAryPtr::RANGE) {
2441     return false; // not supported
2442   }
2443 
2444   bool mismatched = false;
2445   BasicType bt = alias_type->basic_type();
2446   if (bt != T_ILLEGAL) {
2447     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2448     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2449       // Alias type doesn't differentiate between byte[] and boolean[]).
2450       // Use address type to get the element type.
2451       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2452     }
2453     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2454       // accessing an array field with getObject is not a mismatch
2455       bt = T_OBJECT;
2456     }
2457     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2458       // Don't intrinsify mismatched object accesses
2459       return false;
2460     }
2461     mismatched = (bt != type);
2462   } else if (alias_type->adr_type()->isa_oopptr()) {
2463     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2464   }
2465 
2466   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2467 
2468   // First guess at the value type.
2469   const Type *value_type = Type::get_const_basic_type(type);
2470 
2471   // We will need memory barriers unless we can determine a unique
2472   // alias category for this reference.  (Note:  If for some reason
2473   // the barriers get omitted and the unsafe reference begins to "pollute"
2474   // the alias analysis of the rest of the graph, either Compile::can_alias
2475   // or Compile::must_alias will throw a diagnostic assert.)
2476   bool need_mem_bar = false;
2477   switch (kind) {
2478       case Relaxed:
2479           need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2480           break;
2481       case Opaque:
2482           // Opaque uses CPUOrder membars for protection against code movement.
2483       case Acquire:
2484       case Release:
2485       case Volatile:
2486           need_mem_bar = true;
2487           break;
2488       default:
2489           ShouldNotReachHere();
2490   }
2491 
2492   // Some accesses require access atomicity for all types, notably longs and doubles.
2493   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2494   bool requires_atomic_access = false;
2495   switch (kind) {
2496       case Relaxed:
2497           requires_atomic_access = AlwaysAtomicAccesses;
2498           break;
2499       case Opaque:
2500           // Opaque accesses are atomic.
2501       case Acquire:
2502       case Release:
2503       case Volatile:
2504           requires_atomic_access = true;
2505           break;
2506       default:
2507           ShouldNotReachHere();
2508   }
2509 
2510   // Figure out the memory ordering.
2511   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2512   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2513 
2514   // If we are reading the value of the referent field of a Reference
2515   // object (either by using Unsafe directly or through reflection)
2516   // then, if G1 is enabled, we need to record the referent in an
2517   // SATB log buffer using the pre-barrier mechanism.
2518   // Also we need to add memory barrier to prevent commoning reads
2519   // from this field across safepoint since GC can change its value.
2520   bool need_read_barrier = !is_store &&
2521                            offset != top() && heap_base_oop != top();
2522 
2523   if (!is_store && type == T_OBJECT) {
2524     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2525     if (tjp != NULL) {
2526       value_type = tjp;
2527     }
2528   }
2529 
2530   receiver = null_check(receiver);
2531   if (stopped()) {
2532     return true;
2533   }
2534   // Heap pointers get a null-check from the interpreter,
2535   // as a courtesy.  However, this is not guaranteed by Unsafe,
2536   // and it is not possible to fully distinguish unintended nulls
2537   // from intended ones in this API.
2538 
2539   // We need to emit leading and trailing CPU membars (see below) in
2540   // addition to memory membars for special access modes. This is a little
2541   // too strong, but avoids the need to insert per-alias-type
2542   // volatile membars (for stores; compare Parse::do_put_xxx), which
2543   // we cannot do effectively here because we probably only have a
2544   // rough approximation of type.
2545 
2546   switch(kind) {
2547     case Relaxed:
2548     case Opaque:
2549     case Acquire:
2550       break;
2551     case Release:
2552     case Volatile:
2553       if (is_store) {
2554         insert_mem_bar(Op_MemBarRelease);
2555       } else {
2556         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2557           insert_mem_bar(Op_MemBarVolatile);
2558         }
2559       }
2560       break;
2561     default:
2562       ShouldNotReachHere();
2563   }
2564 
2565   // Memory barrier to prevent normal and 'unsafe' accesses from
2566   // bypassing each other.  Happens after null checks, so the
2567   // exception paths do not take memory state from the memory barrier,
2568   // so there's no problems making a strong assert about mixing users
2569   // of safe & unsafe memory.
2570   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2571 
2572   if (!is_store) {
2573     Node* p = NULL;
2574     // Try to constant fold a load from a constant field
2575     ciField* field = alias_type->field();
2576     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2577       // final or stable field
2578       p = make_constant_from_field(field, heap_base_oop);
2579     }
2580     if (p == NULL) {
2581       // To be valid, unsafe loads may depend on other conditions than
2582       // the one that guards them: pin the Load node
2583       LoadNode::ControlDependency dep = LoadNode::Pinned;
2584       Node* ctrl = control();
2585       // non volatile loads may be able to float
2586       if (!need_mem_bar && adr_type->isa_instptr()) {
2587         assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2588         intptr_t offset = Type::OffsetBot;
2589         AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2590         if (offset >= 0) {
2591           int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2592           if (offset < s) {
2593             // Guaranteed to be a valid access, no need to pin it
2594             dep = LoadNode::DependsOnlyOnTest;
2595             ctrl = NULL;
2596           }
2597         }
2598       }
2599       p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2600       // load value
2601       switch (type) {
2602       case T_BOOLEAN:
2603       {
2604         // Normalize the value returned by getBoolean in the following cases
2605         if (mismatched ||
2606             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2607             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2608                                                                  //   and the unsafe access is made to large offset
2609                                                                  //   (i.e., larger than the maximum offset necessary for any
2610                                                                  //   field access)
2611             ) {
2612           IdealKit ideal = IdealKit(this);
2613 #define __ ideal.
2614           IdealVariable normalized_result(ideal);
2615           __ declarations_done();
2616           __ set(normalized_result, p);
2617           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2618           __ set(normalized_result, ideal.ConI(1));
2619           ideal.end_if();
2620           final_sync(ideal);
2621           p = __ value(normalized_result);
2622 #undef __
2623         }
2624       }
2625       case T_CHAR:
2626       case T_BYTE:
2627       case T_SHORT:
2628       case T_INT:
2629       case T_LONG:
2630       case T_FLOAT:
2631       case T_DOUBLE:
2632         break;
2633       case T_OBJECT:
2634         if (need_read_barrier) {
2635           // We do not require a mem bar inside pre_barrier if need_mem_bar
2636           // is set: the barriers would be emitted by us.
2637           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2638         }
2639         break;
2640       case T_ADDRESS:
2641         // Cast to an int type.
2642         p = _gvn.transform(new CastP2XNode(NULL, p));
2643         p = ConvX2UL(p);
2644         break;
2645       default:
2646         fatal("unexpected type %d: %s", type, type2name(type));
2647         break;
2648       }
2649     }
2650     // The load node has the control of the preceding MemBarCPUOrder.  All
2651     // following nodes will have the control of the MemBarCPUOrder inserted at
2652     // the end of this method.  So, pushing the load onto the stack at a later
2653     // point is fine.
2654     set_result(p);
2655   } else {
2656     // place effect of store into memory
2657     switch (type) {
2658     case T_DOUBLE:
2659       val = dstore_rounding(val);
2660       break;
2661     case T_ADDRESS:
2662       // Repackage the long as a pointer.
2663       val = ConvL2X(val);
2664       val = _gvn.transform(new CastX2PNode(val));
2665       break;
2666     default:
2667       break;
2668     }
2669 
2670     if (type == T_OBJECT) {
2671       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2672     } else {
2673       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2674     }
2675   }
2676 
2677   switch(kind) {
2678     case Relaxed:
2679     case Opaque:
2680     case Release:
2681       break;
2682     case Acquire:
2683     case Volatile:
2684       if (!is_store) {
2685         insert_mem_bar(Op_MemBarAcquire);
2686       } else {
2687         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2688           insert_mem_bar(Op_MemBarVolatile);
2689         }
2690       }
2691       break;
2692     default:
2693       ShouldNotReachHere();
2694   }
2695 
2696   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2697 
2698   return true;
2699 }
2700 
2701 //----------------------------inline_unsafe_load_store----------------------------
2702 // This method serves a couple of different customers (depending on LoadStoreKind):
2703 //
2704 // LS_cmp_swap:
2705 //
2706 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2707 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2708 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2709 //
2710 // LS_cmp_swap_weak:
2711 //
2712 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2713 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2714 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2715 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2716 //
2717 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2718 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2719 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2720 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2721 //
2722 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2723 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2724 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2725 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2726 //
2727 // LS_cmp_exchange:
2728 //
2729 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2730 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2731 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2732 //
2733 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2734 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2735 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2736 //
2737 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2738 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2739 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2740 //
2741 // LS_get_add:
2742 //
2743 //   int  getAndAddInt( Object o, long offset, int  delta)
2744 //   long getAndAddLong(Object o, long offset, long delta)
2745 //
2746 // LS_get_set:
2747 //
2748 //   int    getAndSet(Object o, long offset, int    newValue)
2749 //   long   getAndSet(Object o, long offset, long   newValue)
2750 //   Object getAndSet(Object o, long offset, Object newValue)
2751 //
2752 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2753   // This basic scheme here is the same as inline_unsafe_access, but
2754   // differs in enough details that combining them would make the code
2755   // overly confusing.  (This is a true fact! I originally combined
2756   // them, but even I was confused by it!) As much code/comments as
2757   // possible are retained from inline_unsafe_access though to make
2758   // the correspondences clearer. - dl
2759 
2760   if (callee()->is_static())  return false;  // caller must have the capability!
2761 
2762 #ifndef PRODUCT
2763   BasicType rtype;
2764   {
2765     ResourceMark rm;
2766     // Check the signatures.
2767     ciSignature* sig = callee()->signature();
2768     rtype = sig->return_type()->basic_type();
2769     switch(kind) {
2770       case LS_get_add:
2771       case LS_get_set: {
2772       // Check the signatures.
2773 #ifdef ASSERT
2774       assert(rtype == type, "get and set must return the expected type");
2775       assert(sig->count() == 3, "get and set has 3 arguments");
2776       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2777       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2778       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2779       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2780 #endif // ASSERT
2781         break;
2782       }
2783       case LS_cmp_swap:
2784       case LS_cmp_swap_weak: {
2785       // Check the signatures.
2786 #ifdef ASSERT
2787       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2788       assert(sig->count() == 4, "CAS has 4 arguments");
2789       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2790       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2791 #endif // ASSERT
2792         break;
2793       }
2794       case LS_cmp_exchange: {
2795       // Check the signatures.
2796 #ifdef ASSERT
2797       assert(rtype == type, "CAS must return the expected type");
2798       assert(sig->count() == 4, "CAS has 4 arguments");
2799       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2800       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2801 #endif // ASSERT
2802         break;
2803       }
2804       default:
2805         ShouldNotReachHere();
2806     }
2807   }
2808 #endif //PRODUCT
2809 
2810   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2811 
2812   // Get arguments:
2813   Node* receiver = NULL;
2814   Node* base     = NULL;
2815   Node* offset   = NULL;
2816   Node* oldval   = NULL;
2817   Node* newval   = NULL;
2818   switch(kind) {
2819     case LS_cmp_swap:
2820     case LS_cmp_swap_weak:
2821     case LS_cmp_exchange: {
2822       const bool two_slot_type = type2size[type] == 2;
2823       receiver = argument(0);  // type: oop
2824       base     = argument(1);  // type: oop
2825       offset   = argument(2);  // type: long
2826       oldval   = argument(4);  // type: oop, int, or long
2827       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2828       break;
2829     }
2830     case LS_get_add:
2831     case LS_get_set: {
2832       receiver = argument(0);  // type: oop
2833       base     = argument(1);  // type: oop
2834       offset   = argument(2);  // type: long
2835       oldval   = NULL;
2836       newval   = argument(4);  // type: oop, int, or long
2837       break;
2838     }
2839     default:
2840       ShouldNotReachHere();
2841   }
2842 
2843   // Build field offset expression.
2844   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2845   // to be plain byte offsets, which are also the same as those accepted
2846   // by oopDesc::field_addr.
2847   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2848   // 32-bit machines ignore the high half of long offsets
2849   offset = ConvL2X(offset);
2850   Node* adr = make_unsafe_address(base, offset, type, false);
2851   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2852 
2853   Compile::AliasType* alias_type = C->alias_type(adr_type);
2854   BasicType bt = alias_type->basic_type();
2855   if (bt != T_ILLEGAL &&
2856       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2857     // Don't intrinsify mismatched object accesses.
2858     return false;
2859   }
2860 
2861   // For CAS, unlike inline_unsafe_access, there seems no point in
2862   // trying to refine types. Just use the coarse types here.
2863   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2864   const Type *value_type = Type::get_const_basic_type(type);
2865 
2866   switch (kind) {
2867     case LS_get_set:
2868     case LS_cmp_exchange: {
2869       if (type == T_OBJECT) {
2870         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2871         if (tjp != NULL) {
2872           value_type = tjp;
2873         }
2874       }
2875       break;
2876     }
2877     case LS_cmp_swap:
2878     case LS_cmp_swap_weak:
2879     case LS_get_add:
2880       break;
2881     default:
2882       ShouldNotReachHere();
2883   }
2884 
2885   // Null check receiver.
2886   receiver = null_check(receiver);
2887   if (stopped()) {
2888     return true;
2889   }
2890 
2891   int alias_idx = C->get_alias_index(adr_type);
2892 
2893   // Memory-model-wise, a LoadStore acts like a little synchronized
2894   // block, so needs barriers on each side.  These don't translate
2895   // into actual barriers on most machines, but we still need rest of
2896   // compiler to respect ordering.
2897 
2898   switch (access_kind) {
2899     case Relaxed:
2900     case Acquire:
2901       break;
2902     case Release:
2903       insert_mem_bar(Op_MemBarRelease);
2904       break;
2905     case Volatile:
2906       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2907         insert_mem_bar(Op_MemBarVolatile);
2908       } else {
2909         insert_mem_bar(Op_MemBarRelease);
2910       }
2911       break;
2912     default:
2913       ShouldNotReachHere();
2914   }
2915   insert_mem_bar(Op_MemBarCPUOrder);
2916 
2917   // Figure out the memory ordering.
2918   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2919 
2920   // 4984716: MemBars must be inserted before this
2921   //          memory node in order to avoid a false
2922   //          dependency which will confuse the scheduler.
2923   Node *mem = memory(alias_idx);
2924 
2925   // For now, we handle only those cases that actually exist: ints,
2926   // longs, and Object. Adding others should be straightforward.
2927   Node* load_store = NULL;
2928   switch(type) {
2929   case T_BYTE:
2930     switch(kind) {
2931       case LS_get_add:
2932         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2933         break;
2934       case LS_get_set:
2935         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2936         break;
2937       case LS_cmp_swap_weak:
2938         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2939         break;
2940       case LS_cmp_swap:
2941         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2942         break;
2943       case LS_cmp_exchange:
2944         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2945         break;
2946       default:
2947         ShouldNotReachHere();
2948     }
2949     break;
2950   case T_SHORT:
2951     switch(kind) {
2952       case LS_get_add:
2953         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2954         break;
2955       case LS_get_set:
2956         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2957         break;
2958       case LS_cmp_swap_weak:
2959         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2960         break;
2961       case LS_cmp_swap:
2962         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2963         break;
2964       case LS_cmp_exchange:
2965         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2966         break;
2967       default:
2968         ShouldNotReachHere();
2969     }
2970     break;
2971   case T_INT:
2972     switch(kind) {
2973       case LS_get_add:
2974         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2975         break;
2976       case LS_get_set:
2977         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2978         break;
2979       case LS_cmp_swap_weak:
2980         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2981         break;
2982       case LS_cmp_swap:
2983         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2984         break;
2985       case LS_cmp_exchange:
2986         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2987         break;
2988       default:
2989         ShouldNotReachHere();
2990     }
2991     break;
2992   case T_LONG:
2993     switch(kind) {
2994       case LS_get_add:
2995         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2996         break;
2997       case LS_get_set:
2998         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2999         break;
3000       case LS_cmp_swap_weak:
3001         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
3002         break;
3003       case LS_cmp_swap:
3004         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
3005         break;
3006       case LS_cmp_exchange:
3007         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
3008         break;
3009       default:
3010         ShouldNotReachHere();
3011     }
3012     break;
3013   case T_OBJECT:
3014     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3015     // could be delayed during Parse (for example, in adjust_map_after_if()).
3016     // Execute transformation here to avoid barrier generation in such case.
3017     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3018       newval = _gvn.makecon(TypePtr::NULL_PTR);
3019 
3020     // Reference stores need a store barrier.
3021     switch(kind) {
3022       case LS_get_set: {
3023         // If pre-barrier must execute before the oop store, old value will require do_load here.
3024         if (!can_move_pre_barrier()) {
3025           pre_barrier(true /* do_load*/,
3026                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3027                       NULL /* pre_val*/,
3028                       T_OBJECT);
3029         } // Else move pre_barrier to use load_store value, see below.
3030         break;
3031       }
3032       case LS_cmp_swap_weak:
3033       case LS_cmp_swap:
3034       case LS_cmp_exchange: {
3035         // Same as for newval above:
3036         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3037           oldval = _gvn.makecon(TypePtr::NULL_PTR);
3038         }
3039         // The only known value which might get overwritten is oldval.
3040         pre_barrier(false /* do_load */,
3041                     control(), NULL, NULL, max_juint, NULL, NULL,
3042                     oldval /* pre_val */,
3043                     T_OBJECT);
3044         break;
3045       }
3046       default:
3047         ShouldNotReachHere();
3048     }
3049 
3050 #ifdef _LP64
3051     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3052       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3053 
3054       switch(kind) {
3055         case LS_get_set:
3056           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3057           break;
3058         case LS_cmp_swap_weak: {
3059           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3060           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3061           break;
3062         }
3063         case LS_cmp_swap: {
3064           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3065           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3066           break;
3067         }
3068         case LS_cmp_exchange: {
3069           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3070           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3071           break;
3072         }
3073         default:
3074           ShouldNotReachHere();
3075       }
3076     } else
3077 #endif
3078     switch (kind) {
3079       case LS_get_set:
3080         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3081         break;
3082       case LS_cmp_swap_weak:
3083         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3084         break;
3085       case LS_cmp_swap:
3086         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3087         break;
3088       case LS_cmp_exchange:
3089         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3090         break;
3091       default:
3092         ShouldNotReachHere();
3093     }
3094 
3095     // Emit the post barrier only when the actual store happened. This makes sense
3096     // to check only for LS_cmp_* that can fail to set the value.
3097     // LS_cmp_exchange does not produce any branches by default, so there is no
3098     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3099     // CompareAndExchange and move branches here, it would make sense to conditionalize
3100     // post_barriers for LS_cmp_exchange as well.
3101     //
3102     // CAS success path is marked more likely since we anticipate this is a performance
3103     // critical path, while CAS failure path can use the penalty for going through unlikely
3104     // path as backoff. Which is still better than doing a store barrier there.
3105     switch (kind) {
3106       case LS_get_set:
3107       case LS_cmp_exchange: {
3108         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3109         break;
3110       }
3111       case LS_cmp_swap_weak:
3112       case LS_cmp_swap: {
3113         IdealKit ideal(this);
3114         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3115           sync_kit(ideal);
3116           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3117           ideal.sync_kit(this);
3118         } ideal.end_if();
3119         final_sync(ideal);
3120         break;
3121       }
3122       default:
3123         ShouldNotReachHere();
3124     }
3125     break;
3126   default:
3127     fatal("unexpected type %d: %s", type, type2name(type));
3128     break;
3129   }
3130 
3131   // SCMemProjNodes represent the memory state of a LoadStore. Their
3132   // main role is to prevent LoadStore nodes from being optimized away
3133   // when their results aren't used.
3134   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3135   set_memory(proj, alias_idx);
3136 
3137   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3138 #ifdef _LP64
3139     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3140       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3141     }
3142 #endif
3143     if (can_move_pre_barrier() && kind == LS_get_set) {
3144       // Don't need to load pre_val. The old value is returned by load_store.
3145       // The pre_barrier can execute after the xchg as long as no safepoint
3146       // gets inserted between them.
3147       pre_barrier(false /* do_load */,
3148                   control(), NULL, NULL, max_juint, NULL, NULL,
3149                   load_store /* pre_val */,
3150                   T_OBJECT);
3151     }
3152   }
3153 
3154   // Add the trailing membar surrounding the access
3155   insert_mem_bar(Op_MemBarCPUOrder);
3156 
3157   switch (access_kind) {
3158     case Relaxed:
3159     case Release:
3160       break; // do nothing
3161     case Acquire:
3162     case Volatile:
3163       insert_mem_bar(Op_MemBarAcquire);
3164       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3165       break;
3166     default:
3167       ShouldNotReachHere();
3168   }
3169 
3170   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3171   set_result(load_store);
3172   return true;
3173 }
3174 
3175 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3176   MemNode::MemOrd mo = MemNode::unset;
3177   switch(kind) {
3178     case Opaque:
3179     case Relaxed:  mo = MemNode::unordered; break;
3180     case Acquire:  mo = MemNode::acquire;   break;
3181     case Release:  mo = MemNode::release;   break;
3182     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3183     default:
3184       ShouldNotReachHere();
3185   }
3186   guarantee(mo != MemNode::unset, "Should select memory ordering");
3187   return mo;
3188 }
3189 
3190 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3191   MemNode::MemOrd mo = MemNode::unset;
3192   switch(kind) {
3193     case Opaque:
3194     case Relaxed:  mo = MemNode::unordered; break;
3195     case Acquire:  mo = MemNode::acquire;   break;
3196     case Release:  mo = MemNode::release;   break;
3197     case Volatile: mo = MemNode::seqcst;    break;
3198     default:
3199       ShouldNotReachHere();
3200   }
3201   guarantee(mo != MemNode::unset, "Should select memory ordering");
3202   return mo;
3203 }
3204 
3205 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3206   // Regardless of form, don't allow previous ld/st to move down,
3207   // then issue acquire, release, or volatile mem_bar.
3208   insert_mem_bar(Op_MemBarCPUOrder);
3209   switch(id) {
3210     case vmIntrinsics::_loadFence:
3211       insert_mem_bar(Op_LoadFence);
3212       return true;
3213     case vmIntrinsics::_storeFence:
3214       insert_mem_bar(Op_StoreFence);
3215       return true;
3216     case vmIntrinsics::_fullFence:
3217       insert_mem_bar(Op_MemBarVolatile);
3218       return true;
3219     default:
3220       fatal_unexpected_iid(id);
3221       return false;
3222   }
3223 }
3224 
3225 bool LibraryCallKit::inline_onspinwait() {
3226   insert_mem_bar(Op_OnSpinWait);
3227   return true;
3228 }
3229 
3230 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3231   if (!kls->is_Con()) {
3232     return true;
3233   }
3234   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3235   if (klsptr == NULL) {
3236     return true;
3237   }
3238   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3239   // don't need a guard for a klass that is already initialized
3240   return !ik->is_initialized();
3241 }
3242 
3243 //----------------------------inline_unsafe_allocate---------------------------
3244 // public native Object Unsafe.allocateInstance(Class<?> cls);
3245 bool LibraryCallKit::inline_unsafe_allocate() {
3246   if (callee()->is_static())  return false;  // caller must have the capability!
3247 
3248   null_check_receiver();  // null-check, then ignore
3249   Node* cls = null_check(argument(1));
3250   if (stopped())  return true;
3251 
3252   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3253   kls = null_check(kls);
3254   if (stopped())  return true;  // argument was like int.class
3255 
3256   Node* test = NULL;
3257   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3258     // Note:  The argument might still be an illegal value like
3259     // Serializable.class or Object[].class.   The runtime will handle it.
3260     // But we must make an explicit check for initialization.
3261     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3262     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3263     // can generate code to load it as unsigned byte.
3264     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3265     Node* bits = intcon(InstanceKlass::fully_initialized);
3266     test = _gvn.transform(new SubINode(inst, bits));
3267     // The 'test' is non-zero if we need to take a slow path.
3268   }
3269 
3270   Node* obj = new_instance(kls, test);
3271   set_result(obj);
3272   return true;
3273 }
3274 
3275 //------------------------inline_native_time_funcs--------------
3276 // inline code for System.currentTimeMillis() and System.nanoTime()
3277 // these have the same type and signature
3278 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3279   const TypeFunc* tf = OptoRuntime::void_long_Type();
3280   const TypePtr* no_memory_effects = NULL;
3281   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3282   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3283 #ifdef ASSERT
3284   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3285   assert(value_top == top(), "second value must be top");
3286 #endif
3287   set_result(value);
3288   return true;
3289 }
3290 
3291 #ifdef TRACE_HAVE_INTRINSICS
3292 
3293 /*
3294 * oop -> myklass
3295 * myklass->trace_id |= USED
3296 * return myklass->trace_id & ~0x3
3297 */
3298 bool LibraryCallKit::inline_native_classID() {
3299   Node* cls = null_check(argument(0), T_OBJECT);
3300   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3301   kls = null_check(kls, T_OBJECT);
3302 
3303   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3304   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3305   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3306 
3307   Node* clsused = longcon(0x01l); // set the class bit
3308   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3309   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3310   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3311 
3312 #ifdef TRACE_ID_META_BITS
3313   Node* mbits = longcon(~TRACE_ID_META_BITS);
3314   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3315 #endif
3316 #ifdef TRACE_ID_CLASS_SHIFT
3317   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3318   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3319 #endif
3320 
3321   set_result(tvalue);
3322   return true;
3323 
3324 }
3325 
3326 bool LibraryCallKit::inline_native_getBufferWriter() {
3327   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3328 
3329   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3330                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3331                                   );
3332 
3333   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3334 
3335   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3336   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3337 
3338   IfNode* iff_jobj_null =
3339     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3340 
3341   enum { _normal_path = 1,
3342          _null_path = 2,
3343          PATH_LIMIT };
3344 
3345   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3346   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3347 
3348   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3349   result_rgn->init_req(_null_path, jobj_is_null);
3350   result_val->init_req(_null_path, null());
3351 
3352   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3353   result_rgn->init_req(_normal_path, jobj_is_not_null);
3354 
3355   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3356   result_val->init_req(_normal_path, res);
3357 
3358   set_result(result_rgn, result_val);
3359 
3360   return true;
3361 }
3362 
3363 #endif
3364 
3365 //------------------------inline_native_currentThread------------------
3366 bool LibraryCallKit::inline_native_currentThread() {
3367   Node* junk = NULL;
3368   set_result(generate_current_thread(junk));
3369   return true;
3370 }
3371 
3372 //------------------------inline_native_isInterrupted------------------
3373 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3374 bool LibraryCallKit::inline_native_isInterrupted() {
3375   // Add a fast path to t.isInterrupted(clear_int):
3376   //   (t == Thread.current() &&
3377   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3378   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3379   // So, in the common case that the interrupt bit is false,
3380   // we avoid making a call into the VM.  Even if the interrupt bit
3381   // is true, if the clear_int argument is false, we avoid the VM call.
3382   // However, if the receiver is not currentThread, we must call the VM,
3383   // because there must be some locking done around the operation.
3384 
3385   // We only go to the fast case code if we pass two guards.
3386   // Paths which do not pass are accumulated in the slow_region.
3387 
3388   enum {
3389     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3390     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3391     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3392     PATH_LIMIT
3393   };
3394 
3395   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3396   // out of the function.
3397   insert_mem_bar(Op_MemBarCPUOrder);
3398 
3399   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3400   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3401 
3402   RegionNode* slow_region = new RegionNode(1);
3403   record_for_igvn(slow_region);
3404 
3405   // (a) Receiving thread must be the current thread.
3406   Node* rec_thr = argument(0);
3407   Node* tls_ptr = NULL;
3408   Node* cur_thr = generate_current_thread(tls_ptr);
3409   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3410   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3411 
3412   generate_slow_guard(bol_thr, slow_region);
3413 
3414   // (b) Interrupt bit on TLS must be false.
3415   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3416   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3417   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3418 
3419   // Set the control input on the field _interrupted read to prevent it floating up.
3420   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3421   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3422   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3423 
3424   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3425 
3426   // First fast path:  if (!TLS._interrupted) return false;
3427   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3428   result_rgn->init_req(no_int_result_path, false_bit);
3429   result_val->init_req(no_int_result_path, intcon(0));
3430 
3431   // drop through to next case
3432   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3433 
3434 #ifndef _WINDOWS
3435   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3436   Node* clr_arg = argument(1);
3437   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3438   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3439   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3440 
3441   // Second fast path:  ... else if (!clear_int) return true;
3442   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3443   result_rgn->init_req(no_clear_result_path, false_arg);
3444   result_val->init_req(no_clear_result_path, intcon(1));
3445 
3446   // drop through to next case
3447   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3448 #else
3449   // To return true on Windows you must read the _interrupted field
3450   // and check the event state i.e. take the slow path.
3451 #endif // _WINDOWS
3452 
3453   // (d) Otherwise, go to the slow path.
3454   slow_region->add_req(control());
3455   set_control( _gvn.transform(slow_region));
3456 
3457   if (stopped()) {
3458     // There is no slow path.
3459     result_rgn->init_req(slow_result_path, top());
3460     result_val->init_req(slow_result_path, top());
3461   } else {
3462     // non-virtual because it is a private non-static
3463     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3464 
3465     Node* slow_val = set_results_for_java_call(slow_call);
3466     // this->control() comes from set_results_for_java_call
3467 
3468     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3469     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3470 
3471     // These two phis are pre-filled with copies of of the fast IO and Memory
3472     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3473     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3474 
3475     result_rgn->init_req(slow_result_path, control());
3476     result_io ->init_req(slow_result_path, i_o());
3477     result_mem->init_req(slow_result_path, reset_memory());
3478     result_val->init_req(slow_result_path, slow_val);
3479 
3480     set_all_memory(_gvn.transform(result_mem));
3481     set_i_o(       _gvn.transform(result_io));
3482   }
3483 
3484   C->set_has_split_ifs(true); // Has chance for split-if optimization
3485   set_result(result_rgn, result_val);
3486   return true;
3487 }
3488 
3489 //---------------------------load_mirror_from_klass----------------------------
3490 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3491 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3492   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3493   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3494   return make_load(NULL, load, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3495 }
3496 
3497 //-----------------------load_klass_from_mirror_common-------------------------
3498 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3499 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3500 // and branch to the given path on the region.
3501 // If never_see_null, take an uncommon trap on null, so we can optimistically
3502 // compile for the non-null case.
3503 // If the region is NULL, force never_see_null = true.
3504 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3505                                                     bool never_see_null,
3506                                                     RegionNode* region,
3507                                                     int null_path,
3508                                                     int offset) {
3509   if (region == NULL)  never_see_null = true;
3510   Node* p = basic_plus_adr(mirror, offset);
3511   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3512   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3513   Node* null_ctl = top();
3514   kls = null_check_oop(kls, &null_ctl, never_see_null);
3515   if (region != NULL) {
3516     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3517     region->init_req(null_path, null_ctl);
3518   } else {
3519     assert(null_ctl == top(), "no loose ends");
3520   }
3521   return kls;
3522 }
3523 
3524 //--------------------(inline_native_Class_query helpers)---------------------
3525 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3526 // Fall through if (mods & mask) == bits, take the guard otherwise.
3527 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3528   // Branch around if the given klass has the given modifier bit set.
3529   // Like generate_guard, adds a new path onto the region.
3530   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3531   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3532   Node* mask = intcon(modifier_mask);
3533   Node* bits = intcon(modifier_bits);
3534   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3535   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3536   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3537   return generate_fair_guard(bol, region);
3538 }
3539 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3540   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3541 }
3542 
3543 //-------------------------inline_native_Class_query-------------------
3544 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3545   const Type* return_type = TypeInt::BOOL;
3546   Node* prim_return_value = top();  // what happens if it's a primitive class?
3547   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3548   bool expect_prim = false;     // most of these guys expect to work on refs
3549 
3550   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3551 
3552   Node* mirror = argument(0);
3553   Node* obj    = top();
3554 
3555   switch (id) {
3556   case vmIntrinsics::_isInstance:
3557     // nothing is an instance of a primitive type
3558     prim_return_value = intcon(0);
3559     obj = argument(1);
3560     break;
3561   case vmIntrinsics::_getModifiers:
3562     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3563     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3564     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3565     break;
3566   case vmIntrinsics::_isInterface:
3567     prim_return_value = intcon(0);
3568     break;
3569   case vmIntrinsics::_isArray:
3570     prim_return_value = intcon(0);
3571     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3572     break;
3573   case vmIntrinsics::_isPrimitive:
3574     prim_return_value = intcon(1);
3575     expect_prim = true;  // obviously
3576     break;
3577   case vmIntrinsics::_getSuperclass:
3578     prim_return_value = null();
3579     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3580     break;
3581   case vmIntrinsics::_getClassAccessFlags:
3582     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3583     return_type = TypeInt::INT;  // not bool!  6297094
3584     break;
3585   default:
3586     fatal_unexpected_iid(id);
3587     break;
3588   }
3589 
3590   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3591   if (mirror_con == NULL)  return false;  // cannot happen?
3592 
3593 #ifndef PRODUCT
3594   if (C->print_intrinsics() || C->print_inlining()) {
3595     ciType* k = mirror_con->java_mirror_type();
3596     if (k) {
3597       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3598       k->print_name();
3599       tty->cr();
3600     }
3601   }
3602 #endif
3603 
3604   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3605   RegionNode* region = new RegionNode(PATH_LIMIT);
3606   record_for_igvn(region);
3607   PhiNode* phi = new PhiNode(region, return_type);
3608 
3609   // The mirror will never be null of Reflection.getClassAccessFlags, however
3610   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3611   // if it is. See bug 4774291.
3612 
3613   // For Reflection.getClassAccessFlags(), the null check occurs in
3614   // the wrong place; see inline_unsafe_access(), above, for a similar
3615   // situation.
3616   mirror = null_check(mirror);
3617   // If mirror or obj is dead, only null-path is taken.
3618   if (stopped())  return true;
3619 
3620   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3621 
3622   // Now load the mirror's klass metaobject, and null-check it.
3623   // Side-effects region with the control path if the klass is null.
3624   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3625   // If kls is null, we have a primitive mirror.
3626   phi->init_req(_prim_path, prim_return_value);
3627   if (stopped()) { set_result(region, phi); return true; }
3628   bool safe_for_replace = (region->in(_prim_path) == top());
3629 
3630   Node* p;  // handy temp
3631   Node* null_ctl;
3632 
3633   // Now that we have the non-null klass, we can perform the real query.
3634   // For constant classes, the query will constant-fold in LoadNode::Value.
3635   Node* query_value = top();
3636   switch (id) {
3637   case vmIntrinsics::_isInstance:
3638     // nothing is an instance of a primitive type
3639     query_value = gen_instanceof(obj, kls, safe_for_replace);
3640     break;
3641 
3642   case vmIntrinsics::_getModifiers:
3643     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3644     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3645     break;
3646 
3647   case vmIntrinsics::_isInterface:
3648     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3649     if (generate_interface_guard(kls, region) != NULL)
3650       // A guard was added.  If the guard is taken, it was an interface.
3651       phi->add_req(intcon(1));
3652     // If we fall through, it's a plain class.
3653     query_value = intcon(0);
3654     break;
3655 
3656   case vmIntrinsics::_isArray:
3657     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3658     if (generate_array_guard(kls, region) != NULL)
3659       // A guard was added.  If the guard is taken, it was an array.
3660       phi->add_req(intcon(1));
3661     // If we fall through, it's a plain class.
3662     query_value = intcon(0);
3663     break;
3664 
3665   case vmIntrinsics::_isPrimitive:
3666     query_value = intcon(0); // "normal" path produces false
3667     break;
3668 
3669   case vmIntrinsics::_getSuperclass:
3670     // The rules here are somewhat unfortunate, but we can still do better
3671     // with random logic than with a JNI call.
3672     // Interfaces store null or Object as _super, but must report null.
3673     // Arrays store an intermediate super as _super, but must report Object.
3674     // Other types can report the actual _super.
3675     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3676     if (generate_interface_guard(kls, region) != NULL)
3677       // A guard was added.  If the guard is taken, it was an interface.
3678       phi->add_req(null());
3679     if (generate_array_guard(kls, region) != NULL)
3680       // A guard was added.  If the guard is taken, it was an array.
3681       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3682     // If we fall through, it's a plain class.  Get its _super.
3683     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3684     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3685     null_ctl = top();
3686     kls = null_check_oop(kls, &null_ctl);
3687     if (null_ctl != top()) {
3688       // If the guard is taken, Object.superClass is null (both klass and mirror).
3689       region->add_req(null_ctl);
3690       phi   ->add_req(null());
3691     }
3692     if (!stopped()) {
3693       query_value = load_mirror_from_klass(kls);
3694     }
3695     break;
3696 
3697   case vmIntrinsics::_getClassAccessFlags:
3698     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3699     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3700     break;
3701 
3702   default:
3703     fatal_unexpected_iid(id);
3704     break;
3705   }
3706 
3707   // Fall-through is the normal case of a query to a real class.
3708   phi->init_req(1, query_value);
3709   region->init_req(1, control());
3710 
3711   C->set_has_split_ifs(true); // Has chance for split-if optimization
3712   set_result(region, phi);
3713   return true;
3714 }
3715 
3716 //-------------------------inline_Class_cast-------------------
3717 bool LibraryCallKit::inline_Class_cast() {
3718   Node* mirror = argument(0); // Class
3719   Node* obj    = argument(1);
3720   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3721   if (mirror_con == NULL) {
3722     return false;  // dead path (mirror->is_top()).
3723   }
3724   if (obj == NULL || obj->is_top()) {
3725     return false;  // dead path
3726   }
3727   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3728 
3729   // First, see if Class.cast() can be folded statically.
3730   // java_mirror_type() returns non-null for compile-time Class constants.
3731   ciType* tm = mirror_con->java_mirror_type();
3732   if (tm != NULL && tm->is_klass() &&
3733       tp != NULL && tp->klass() != NULL) {
3734     if (!tp->klass()->is_loaded()) {
3735       // Don't use intrinsic when class is not loaded.
3736       return false;
3737     } else {
3738       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3739       if (static_res == Compile::SSC_always_true) {
3740         // isInstance() is true - fold the code.
3741         set_result(obj);
3742         return true;
3743       } else if (static_res == Compile::SSC_always_false) {
3744         // Don't use intrinsic, have to throw ClassCastException.
3745         // If the reference is null, the non-intrinsic bytecode will
3746         // be optimized appropriately.
3747         return false;
3748       }
3749     }
3750   }
3751 
3752   // Bailout intrinsic and do normal inlining if exception path is frequent.
3753   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3754     return false;
3755   }
3756 
3757   // Generate dynamic checks.
3758   // Class.cast() is java implementation of _checkcast bytecode.
3759   // Do checkcast (Parse::do_checkcast()) optimizations here.
3760 
3761   mirror = null_check(mirror);
3762   // If mirror is dead, only null-path is taken.
3763   if (stopped()) {
3764     return true;
3765   }
3766 
3767   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3768   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3769   RegionNode* region = new RegionNode(PATH_LIMIT);
3770   record_for_igvn(region);
3771 
3772   // Now load the mirror's klass metaobject, and null-check it.
3773   // If kls is null, we have a primitive mirror and
3774   // nothing is an instance of a primitive type.
3775   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3776 
3777   Node* res = top();
3778   if (!stopped()) {
3779     Node* bad_type_ctrl = top();
3780     // Do checkcast optimizations.
3781     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3782     region->init_req(_bad_type_path, bad_type_ctrl);
3783   }
3784   if (region->in(_prim_path) != top() ||
3785       region->in(_bad_type_path) != top()) {
3786     // Let Interpreter throw ClassCastException.
3787     PreserveJVMState pjvms(this);
3788     set_control(_gvn.transform(region));
3789     uncommon_trap(Deoptimization::Reason_intrinsic,
3790                   Deoptimization::Action_maybe_recompile);
3791   }
3792   if (!stopped()) {
3793     set_result(res);
3794   }
3795   return true;
3796 }
3797 
3798 
3799 //--------------------------inline_native_subtype_check------------------------
3800 // This intrinsic takes the JNI calls out of the heart of
3801 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3802 bool LibraryCallKit::inline_native_subtype_check() {
3803   // Pull both arguments off the stack.
3804   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3805   args[0] = argument(0);
3806   args[1] = argument(1);
3807   Node* klasses[2];             // corresponding Klasses: superk, subk
3808   klasses[0] = klasses[1] = top();
3809 
3810   enum {
3811     // A full decision tree on {superc is prim, subc is prim}:
3812     _prim_0_path = 1,           // {P,N} => false
3813                                 // {P,P} & superc!=subc => false
3814     _prim_same_path,            // {P,P} & superc==subc => true
3815     _prim_1_path,               // {N,P} => false
3816     _ref_subtype_path,          // {N,N} & subtype check wins => true
3817     _both_ref_path,             // {N,N} & subtype check loses => false
3818     PATH_LIMIT
3819   };
3820 
3821   RegionNode* region = new RegionNode(PATH_LIMIT);
3822   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3823   record_for_igvn(region);
3824 
3825   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3826   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3827   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3828 
3829   // First null-check both mirrors and load each mirror's klass metaobject.
3830   int which_arg;
3831   for (which_arg = 0; which_arg <= 1; which_arg++) {
3832     Node* arg = args[which_arg];
3833     arg = null_check(arg);
3834     if (stopped())  break;
3835     args[which_arg] = arg;
3836 
3837     Node* p = basic_plus_adr(arg, class_klass_offset);
3838     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3839     klasses[which_arg] = _gvn.transform(kls);
3840   }
3841 
3842   // Having loaded both klasses, test each for null.
3843   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3844   for (which_arg = 0; which_arg <= 1; which_arg++) {
3845     Node* kls = klasses[which_arg];
3846     Node* null_ctl = top();
3847     kls = null_check_oop(kls, &null_ctl, never_see_null);
3848     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3849     region->init_req(prim_path, null_ctl);
3850     if (stopped())  break;
3851     klasses[which_arg] = kls;
3852   }
3853 
3854   if (!stopped()) {
3855     // now we have two reference types, in klasses[0..1]
3856     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3857     Node* superk = klasses[0];  // the receiver
3858     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3859     // now we have a successful reference subtype check
3860     region->set_req(_ref_subtype_path, control());
3861   }
3862 
3863   // If both operands are primitive (both klasses null), then
3864   // we must return true when they are identical primitives.
3865   // It is convenient to test this after the first null klass check.
3866   set_control(region->in(_prim_0_path)); // go back to first null check
3867   if (!stopped()) {
3868     // Since superc is primitive, make a guard for the superc==subc case.
3869     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3870     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3871     generate_guard(bol_eq, region, PROB_FAIR);
3872     if (region->req() == PATH_LIMIT+1) {
3873       // A guard was added.  If the added guard is taken, superc==subc.
3874       region->swap_edges(PATH_LIMIT, _prim_same_path);
3875       region->del_req(PATH_LIMIT);
3876     }
3877     region->set_req(_prim_0_path, control()); // Not equal after all.
3878   }
3879 
3880   // these are the only paths that produce 'true':
3881   phi->set_req(_prim_same_path,   intcon(1));
3882   phi->set_req(_ref_subtype_path, intcon(1));
3883 
3884   // pull together the cases:
3885   assert(region->req() == PATH_LIMIT, "sane region");
3886   for (uint i = 1; i < region->req(); i++) {
3887     Node* ctl = region->in(i);
3888     if (ctl == NULL || ctl == top()) {
3889       region->set_req(i, top());
3890       phi   ->set_req(i, top());
3891     } else if (phi->in(i) == NULL) {
3892       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3893     }
3894   }
3895 
3896   set_control(_gvn.transform(region));
3897   set_result(_gvn.transform(phi));
3898   return true;
3899 }
3900 
3901 //---------------------generate_array_guard_common------------------------
3902 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3903                                                   bool obj_array, bool not_array) {
3904 
3905   if (stopped()) {
3906     return NULL;
3907   }
3908 
3909   // If obj_array/non_array==false/false:
3910   // Branch around if the given klass is in fact an array (either obj or prim).
3911   // If obj_array/non_array==false/true:
3912   // Branch around if the given klass is not an array klass of any kind.
3913   // If obj_array/non_array==true/true:
3914   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3915   // If obj_array/non_array==true/false:
3916   // Branch around if the kls is an oop array (Object[] or subtype)
3917   //
3918   // Like generate_guard, adds a new path onto the region.
3919   jint  layout_con = 0;
3920   Node* layout_val = get_layout_helper(kls, layout_con);
3921   if (layout_val == NULL) {
3922     bool query = (obj_array
3923                   ? Klass::layout_helper_is_objArray(layout_con)
3924                   : Klass::layout_helper_is_array(layout_con));
3925     if (query == not_array) {
3926       return NULL;                       // never a branch
3927     } else {                             // always a branch
3928       Node* always_branch = control();
3929       if (region != NULL)
3930         region->add_req(always_branch);
3931       set_control(top());
3932       return always_branch;
3933     }
3934   }
3935   // Now test the correct condition.
3936   jint  nval = (obj_array
3937                 ? (jint)(Klass::_lh_array_tag_type_value
3938                    <<    Klass::_lh_array_tag_shift)
3939                 : Klass::_lh_neutral_value);
3940   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3941   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3942   // invert the test if we are looking for a non-array
3943   if (not_array)  btest = BoolTest(btest).negate();
3944   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3945   return generate_fair_guard(bol, region);
3946 }
3947 
3948 
3949 //-----------------------inline_native_newArray--------------------------
3950 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3951 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3952 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3953   Node* mirror;
3954   Node* count_val;
3955   if (uninitialized) {
3956     mirror    = argument(1);
3957     count_val = argument(2);
3958   } else {
3959     mirror    = argument(0);
3960     count_val = argument(1);
3961   }
3962 
3963   mirror = null_check(mirror);
3964   // If mirror or obj is dead, only null-path is taken.
3965   if (stopped())  return true;
3966 
3967   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3968   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3969   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3970   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3971   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3972 
3973   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3974   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3975                                                   result_reg, _slow_path);
3976   Node* normal_ctl   = control();
3977   Node* no_array_ctl = result_reg->in(_slow_path);
3978 
3979   // Generate code for the slow case.  We make a call to newArray().
3980   set_control(no_array_ctl);
3981   if (!stopped()) {
3982     // Either the input type is void.class, or else the
3983     // array klass has not yet been cached.  Either the
3984     // ensuing call will throw an exception, or else it
3985     // will cache the array klass for next time.
3986     PreserveJVMState pjvms(this);
3987     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3988     Node* slow_result = set_results_for_java_call(slow_call);
3989     // this->control() comes from set_results_for_java_call
3990     result_reg->set_req(_slow_path, control());
3991     result_val->set_req(_slow_path, slow_result);
3992     result_io ->set_req(_slow_path, i_o());
3993     result_mem->set_req(_slow_path, reset_memory());
3994   }
3995 
3996   set_control(normal_ctl);
3997   if (!stopped()) {
3998     // Normal case:  The array type has been cached in the java.lang.Class.
3999     // The following call works fine even if the array type is polymorphic.
4000     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4001     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4002     result_reg->init_req(_normal_path, control());
4003     result_val->init_req(_normal_path, obj);
4004     result_io ->init_req(_normal_path, i_o());
4005     result_mem->init_req(_normal_path, reset_memory());
4006 
4007     if (uninitialized) {
4008       // Mark the allocation so that zeroing is skipped
4009       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
4010       alloc->maybe_set_complete(&_gvn);
4011     }
4012   }
4013 
4014   // Return the combined state.
4015   set_i_o(        _gvn.transform(result_io)  );
4016   set_all_memory( _gvn.transform(result_mem));
4017 
4018   C->set_has_split_ifs(true); // Has chance for split-if optimization
4019   set_result(result_reg, result_val);
4020   return true;
4021 }
4022 
4023 //----------------------inline_native_getLength--------------------------
4024 // public static native int java.lang.reflect.Array.getLength(Object array);
4025 bool LibraryCallKit::inline_native_getLength() {
4026   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4027 
4028   Node* array = null_check(argument(0));
4029   // If array is dead, only null-path is taken.
4030   if (stopped())  return true;
4031 
4032   // Deoptimize if it is a non-array.
4033   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
4034 
4035   if (non_array != NULL) {
4036     PreserveJVMState pjvms(this);
4037     set_control(non_array);
4038     uncommon_trap(Deoptimization::Reason_intrinsic,
4039                   Deoptimization::Action_maybe_recompile);
4040   }
4041 
4042   // If control is dead, only non-array-path is taken.
4043   if (stopped())  return true;
4044 
4045   // The works fine even if the array type is polymorphic.
4046   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4047   Node* result = load_array_length(array);
4048 
4049   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4050   set_result(result);
4051   return true;
4052 }
4053 
4054 //------------------------inline_array_copyOf----------------------------
4055 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4056 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4057 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4058   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4059 
4060   // Get the arguments.
4061   Node* original          = argument(0);
4062   Node* start             = is_copyOfRange? argument(1): intcon(0);
4063   Node* end               = is_copyOfRange? argument(2): argument(1);
4064   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4065 
4066   Node* newcopy = NULL;
4067 
4068   // Set the original stack and the reexecute bit for the interpreter to reexecute
4069   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4070   { PreserveReexecuteState preexecs(this);
4071     jvms()->set_should_reexecute(true);
4072 
4073     array_type_mirror = null_check(array_type_mirror);
4074     original          = null_check(original);
4075 
4076     // Check if a null path was taken unconditionally.
4077     if (stopped())  return true;
4078 
4079     Node* orig_length = load_array_length(original);
4080 
4081     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4082     klass_node = null_check(klass_node);
4083 
4084     RegionNode* bailout = new RegionNode(1);
4085     record_for_igvn(bailout);
4086 
4087     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4088     // Bail out if that is so.
4089     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4090     if (not_objArray != NULL) {
4091       // Improve the klass node's type from the new optimistic assumption:
4092       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4093       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4094       Node* cast = new CastPPNode(klass_node, akls);
4095       cast->init_req(0, control());
4096       klass_node = _gvn.transform(cast);
4097     }
4098 
4099     // Bail out if either start or end is negative.
4100     generate_negative_guard(start, bailout, &start);
4101     generate_negative_guard(end,   bailout, &end);
4102 
4103     Node* length = end;
4104     if (_gvn.type(start) != TypeInt::ZERO) {
4105       length = _gvn.transform(new SubINode(end, start));
4106     }
4107 
4108     // Bail out if length is negative.
4109     // Without this the new_array would throw
4110     // NegativeArraySizeException but IllegalArgumentException is what
4111     // should be thrown
4112     generate_negative_guard(length, bailout, &length);
4113 
4114     if (bailout->req() > 1) {
4115       PreserveJVMState pjvms(this);
4116       set_control(_gvn.transform(bailout));
4117       uncommon_trap(Deoptimization::Reason_intrinsic,
4118                     Deoptimization::Action_maybe_recompile);
4119     }
4120 
4121     if (!stopped()) {
4122       // How many elements will we copy from the original?
4123       // The answer is MinI(orig_length - start, length).
4124       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4125       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4126 
4127       // Generate a direct call to the right arraycopy function(s).
4128       // We know the copy is disjoint but we might not know if the
4129       // oop stores need checking.
4130       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4131       // This will fail a store-check if x contains any non-nulls.
4132 
4133       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4134       // loads/stores but it is legal only if we're sure the
4135       // Arrays.copyOf would succeed. So we need all input arguments
4136       // to the copyOf to be validated, including that the copy to the
4137       // new array won't trigger an ArrayStoreException. That subtype
4138       // check can be optimized if we know something on the type of
4139       // the input array from type speculation.
4140       if (_gvn.type(klass_node)->singleton()) {
4141         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4142         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4143 
4144         int test = C->static_subtype_check(superk, subk);
4145         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4146           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4147           if (t_original->speculative_type() != NULL) {
4148             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4149           }
4150         }
4151       }
4152 
4153       bool validated = false;
4154       // Reason_class_check rather than Reason_intrinsic because we
4155       // want to intrinsify even if this traps.
4156       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4157         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4158                                                    klass_node);
4159 
4160         if (not_subtype_ctrl != top()) {
4161           PreserveJVMState pjvms(this);
4162           set_control(not_subtype_ctrl);
4163           uncommon_trap(Deoptimization::Reason_class_check,
4164                         Deoptimization::Action_make_not_entrant);
4165           assert(stopped(), "Should be stopped");
4166         }
4167         validated = true;
4168       }
4169 
4170       if (!stopped()) {
4171         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4172 
4173         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4174                                                 load_object_klass(original), klass_node);
4175         if (!is_copyOfRange) {
4176           ac->set_copyof(validated);
4177         } else {
4178           ac->set_copyofrange(validated);
4179         }
4180         Node* n = _gvn.transform(ac);
4181         if (n == ac) {
4182           ac->connect_outputs(this);
4183         } else {
4184           assert(validated, "shouldn't transform if all arguments not validated");
4185           set_all_memory(n);
4186         }
4187       }
4188     }
4189   } // original reexecute is set back here
4190 
4191   C->set_has_split_ifs(true); // Has chance for split-if optimization
4192   if (!stopped()) {
4193     set_result(newcopy);
4194   }
4195   return true;
4196 }
4197 
4198 
4199 //----------------------generate_virtual_guard---------------------------
4200 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4201 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4202                                              RegionNode* slow_region) {
4203   ciMethod* method = callee();
4204   int vtable_index = method->vtable_index();
4205   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4206          "bad index %d", vtable_index);
4207   // Get the Method* out of the appropriate vtable entry.
4208   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4209                      vtable_index*vtableEntry::size_in_bytes() +
4210                      vtableEntry::method_offset_in_bytes();
4211   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4212   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4213 
4214   // Compare the target method with the expected method (e.g., Object.hashCode).
4215   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4216 
4217   Node* native_call = makecon(native_call_addr);
4218   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4219   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4220 
4221   return generate_slow_guard(test_native, slow_region);
4222 }
4223 
4224 //-----------------------generate_method_call----------------------------
4225 // Use generate_method_call to make a slow-call to the real
4226 // method if the fast path fails.  An alternative would be to
4227 // use a stub like OptoRuntime::slow_arraycopy_Java.
4228 // This only works for expanding the current library call,
4229 // not another intrinsic.  (E.g., don't use this for making an
4230 // arraycopy call inside of the copyOf intrinsic.)
4231 CallJavaNode*
4232 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4233   // When compiling the intrinsic method itself, do not use this technique.
4234   guarantee(callee() != C->method(), "cannot make slow-call to self");
4235 
4236   ciMethod* method = callee();
4237   // ensure the JVMS we have will be correct for this call
4238   guarantee(method_id == method->intrinsic_id(), "must match");
4239 
4240   const TypeFunc* tf = TypeFunc::make(method);
4241   CallJavaNode* slow_call;
4242   if (is_static) {
4243     assert(!is_virtual, "");
4244     slow_call = new CallStaticJavaNode(C, tf,
4245                            SharedRuntime::get_resolve_static_call_stub(),
4246                            method, bci());
4247   } else if (is_virtual) {
4248     null_check_receiver();
4249     int vtable_index = Method::invalid_vtable_index;
4250     if (UseInlineCaches) {
4251       // Suppress the vtable call
4252     } else {
4253       // hashCode and clone are not a miranda methods,
4254       // so the vtable index is fixed.
4255       // No need to use the linkResolver to get it.
4256        vtable_index = method->vtable_index();
4257        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4258               "bad index %d", vtable_index);
4259     }
4260     slow_call = new CallDynamicJavaNode(tf,
4261                           SharedRuntime::get_resolve_virtual_call_stub(),
4262                           method, vtable_index, bci());
4263   } else {  // neither virtual nor static:  opt_virtual
4264     null_check_receiver();
4265     slow_call = new CallStaticJavaNode(C, tf,
4266                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4267                                 method, bci());
4268     slow_call->set_optimized_virtual(true);
4269   }
4270   set_arguments_for_java_call(slow_call);
4271   set_edges_for_java_call(slow_call);
4272   return slow_call;
4273 }
4274 
4275 
4276 /**
4277  * Build special case code for calls to hashCode on an object. This call may
4278  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4279  * slightly different code.
4280  */
4281 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4282   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4283   assert(!(is_virtual && is_static), "either virtual, special, or static");
4284 
4285   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4286 
4287   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4288   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4289   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4290   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4291   Node* obj = NULL;
4292   if (!is_static) {
4293     // Check for hashing null object
4294     obj = null_check_receiver();
4295     if (stopped())  return true;        // unconditionally null
4296     result_reg->init_req(_null_path, top());
4297     result_val->init_req(_null_path, top());
4298   } else {
4299     // Do a null check, and return zero if null.
4300     // System.identityHashCode(null) == 0
4301     obj = argument(0);
4302     Node* null_ctl = top();
4303     obj = null_check_oop(obj, &null_ctl);
4304     result_reg->init_req(_null_path, null_ctl);
4305     result_val->init_req(_null_path, _gvn.intcon(0));
4306   }
4307 
4308   // Unconditionally null?  Then return right away.
4309   if (stopped()) {
4310     set_control( result_reg->in(_null_path));
4311     if (!stopped())
4312       set_result(result_val->in(_null_path));
4313     return true;
4314   }
4315 
4316   // We only go to the fast case code if we pass a number of guards.  The
4317   // paths which do not pass are accumulated in the slow_region.
4318   RegionNode* slow_region = new RegionNode(1);
4319   record_for_igvn(slow_region);
4320 
4321   // If this is a virtual call, we generate a funny guard.  We pull out
4322   // the vtable entry corresponding to hashCode() from the target object.
4323   // If the target method which we are calling happens to be the native
4324   // Object hashCode() method, we pass the guard.  We do not need this
4325   // guard for non-virtual calls -- the caller is known to be the native
4326   // Object hashCode().
4327   if (is_virtual) {
4328     // After null check, get the object's klass.
4329     Node* obj_klass = load_object_klass(obj);
4330     generate_virtual_guard(obj_klass, slow_region);
4331   }
4332 
4333   // Get the header out of the object, use LoadMarkNode when available
4334   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4335   // The control of the load must be NULL. Otherwise, the load can move before
4336   // the null check after castPP removal.
4337   Node* no_ctrl = NULL;
4338   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4339 
4340   // Test the header to see if it is unlocked.
4341   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4342   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4343   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4344   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4345   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4346 
4347   generate_slow_guard(test_unlocked, slow_region);
4348 
4349   // Get the hash value and check to see that it has been properly assigned.
4350   // We depend on hash_mask being at most 32 bits and avoid the use of
4351   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4352   // vm: see markOop.hpp.
4353   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4354   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4355   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4356   // This hack lets the hash bits live anywhere in the mark object now, as long
4357   // as the shift drops the relevant bits into the low 32 bits.  Note that
4358   // Java spec says that HashCode is an int so there's no point in capturing
4359   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4360   hshifted_header      = ConvX2I(hshifted_header);
4361   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4362 
4363   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4364   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4365   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4366 
4367   generate_slow_guard(test_assigned, slow_region);
4368 
4369   Node* init_mem = reset_memory();
4370   // fill in the rest of the null path:
4371   result_io ->init_req(_null_path, i_o());
4372   result_mem->init_req(_null_path, init_mem);
4373 
4374   result_val->init_req(_fast_path, hash_val);
4375   result_reg->init_req(_fast_path, control());
4376   result_io ->init_req(_fast_path, i_o());
4377   result_mem->init_req(_fast_path, init_mem);
4378 
4379   // Generate code for the slow case.  We make a call to hashCode().
4380   set_control(_gvn.transform(slow_region));
4381   if (!stopped()) {
4382     // No need for PreserveJVMState, because we're using up the present state.
4383     set_all_memory(init_mem);
4384     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4385     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4386     Node* slow_result = set_results_for_java_call(slow_call);
4387     // this->control() comes from set_results_for_java_call
4388     result_reg->init_req(_slow_path, control());
4389     result_val->init_req(_slow_path, slow_result);
4390     result_io  ->set_req(_slow_path, i_o());
4391     result_mem ->set_req(_slow_path, reset_memory());
4392   }
4393 
4394   // Return the combined state.
4395   set_i_o(        _gvn.transform(result_io)  );
4396   set_all_memory( _gvn.transform(result_mem));
4397 
4398   set_result(result_reg, result_val);
4399   return true;
4400 }
4401 
4402 //---------------------------inline_native_getClass----------------------------
4403 // public final native Class<?> java.lang.Object.getClass();
4404 //
4405 // Build special case code for calls to getClass on an object.
4406 bool LibraryCallKit::inline_native_getClass() {
4407   Node* obj = null_check_receiver();
4408   if (stopped())  return true;
4409   set_result(load_mirror_from_klass(load_object_klass(obj)));
4410   return true;
4411 }
4412 
4413 //-----------------inline_native_Reflection_getCallerClass---------------------
4414 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4415 //
4416 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4417 //
4418 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4419 // in that it must skip particular security frames and checks for
4420 // caller sensitive methods.
4421 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4422 #ifndef PRODUCT
4423   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4424     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4425   }
4426 #endif
4427 
4428   if (!jvms()->has_method()) {
4429 #ifndef PRODUCT
4430     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4431       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4432     }
4433 #endif
4434     return false;
4435   }
4436 
4437   // Walk back up the JVM state to find the caller at the required
4438   // depth.
4439   JVMState* caller_jvms = jvms();
4440 
4441   // Cf. JVM_GetCallerClass
4442   // NOTE: Start the loop at depth 1 because the current JVM state does
4443   // not include the Reflection.getCallerClass() frame.
4444   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4445     ciMethod* m = caller_jvms->method();
4446     switch (n) {
4447     case 0:
4448       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4449       break;
4450     case 1:
4451       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4452       if (!m->caller_sensitive()) {
4453 #ifndef PRODUCT
4454         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4455           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4456         }
4457 #endif
4458         return false;  // bail-out; let JVM_GetCallerClass do the work
4459       }
4460       break;
4461     default:
4462       if (!m->is_ignored_by_security_stack_walk()) {
4463         // We have reached the desired frame; return the holder class.
4464         // Acquire method holder as java.lang.Class and push as constant.
4465         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4466         ciInstance* caller_mirror = caller_klass->java_mirror();
4467         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4468 
4469 #ifndef PRODUCT
4470         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4471           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4472           tty->print_cr("  JVM state at this point:");
4473           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4474             ciMethod* m = jvms()->of_depth(i)->method();
4475             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4476           }
4477         }
4478 #endif
4479         return true;
4480       }
4481       break;
4482     }
4483   }
4484 
4485 #ifndef PRODUCT
4486   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4487     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4488     tty->print_cr("  JVM state at this point:");
4489     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4490       ciMethod* m = jvms()->of_depth(i)->method();
4491       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4492     }
4493   }
4494 #endif
4495 
4496   return false;  // bail-out; let JVM_GetCallerClass do the work
4497 }
4498 
4499 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4500   Node* arg = argument(0);
4501   Node* result = NULL;
4502 
4503   switch (id) {
4504   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4505   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4506   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4507   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4508 
4509   case vmIntrinsics::_doubleToLongBits: {
4510     // two paths (plus control) merge in a wood
4511     RegionNode *r = new RegionNode(3);
4512     Node *phi = new PhiNode(r, TypeLong::LONG);
4513 
4514     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4515     // Build the boolean node
4516     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4517 
4518     // Branch either way.
4519     // NaN case is less traveled, which makes all the difference.
4520     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4521     Node *opt_isnan = _gvn.transform(ifisnan);
4522     assert( opt_isnan->is_If(), "Expect an IfNode");
4523     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4524     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4525 
4526     set_control(iftrue);
4527 
4528     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4529     Node *slow_result = longcon(nan_bits); // return NaN
4530     phi->init_req(1, _gvn.transform( slow_result ));
4531     r->init_req(1, iftrue);
4532 
4533     // Else fall through
4534     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4535     set_control(iffalse);
4536 
4537     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4538     r->init_req(2, iffalse);
4539 
4540     // Post merge
4541     set_control(_gvn.transform(r));
4542     record_for_igvn(r);
4543 
4544     C->set_has_split_ifs(true); // Has chance for split-if optimization
4545     result = phi;
4546     assert(result->bottom_type()->isa_long(), "must be");
4547     break;
4548   }
4549 
4550   case vmIntrinsics::_floatToIntBits: {
4551     // two paths (plus control) merge in a wood
4552     RegionNode *r = new RegionNode(3);
4553     Node *phi = new PhiNode(r, TypeInt::INT);
4554 
4555     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4556     // Build the boolean node
4557     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4558 
4559     // Branch either way.
4560     // NaN case is less traveled, which makes all the difference.
4561     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4562     Node *opt_isnan = _gvn.transform(ifisnan);
4563     assert( opt_isnan->is_If(), "Expect an IfNode");
4564     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4565     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4566 
4567     set_control(iftrue);
4568 
4569     static const jint nan_bits = 0x7fc00000;
4570     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4571     phi->init_req(1, _gvn.transform( slow_result ));
4572     r->init_req(1, iftrue);
4573 
4574     // Else fall through
4575     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4576     set_control(iffalse);
4577 
4578     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4579     r->init_req(2, iffalse);
4580 
4581     // Post merge
4582     set_control(_gvn.transform(r));
4583     record_for_igvn(r);
4584 
4585     C->set_has_split_ifs(true); // Has chance for split-if optimization
4586     result = phi;
4587     assert(result->bottom_type()->isa_int(), "must be");
4588     break;
4589   }
4590 
4591   default:
4592     fatal_unexpected_iid(id);
4593     break;
4594   }
4595   set_result(_gvn.transform(result));
4596   return true;
4597 }
4598 
4599 //----------------------inline_unsafe_copyMemory-------------------------
4600 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4601 bool LibraryCallKit::inline_unsafe_copyMemory() {
4602   if (callee()->is_static())  return false;  // caller must have the capability!
4603   null_check_receiver();  // null-check receiver
4604   if (stopped())  return true;
4605 
4606   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4607 
4608   Node* src_ptr =         argument(1);   // type: oop
4609   Node* src_off = ConvL2X(argument(2));  // type: long
4610   Node* dst_ptr =         argument(4);   // type: oop
4611   Node* dst_off = ConvL2X(argument(5));  // type: long
4612   Node* size    = ConvL2X(argument(7));  // type: long
4613 
4614   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4615          "fieldOffset must be byte-scaled");
4616 
4617   Node* src = make_unsafe_address(src_ptr, src_off);
4618   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4619 
4620   // Conservatively insert a memory barrier on all memory slices.
4621   // Do not let writes of the copy source or destination float below the copy.
4622   insert_mem_bar(Op_MemBarCPUOrder);
4623 
4624   // Call it.  Note that the length argument is not scaled.
4625   make_runtime_call(RC_LEAF|RC_NO_FP,
4626                     OptoRuntime::fast_arraycopy_Type(),
4627                     StubRoutines::unsafe_arraycopy(),
4628                     "unsafe_arraycopy",
4629                     TypeRawPtr::BOTTOM,
4630                     src, dst, size XTOP);
4631 
4632   // Do not let reads of the copy destination float above the copy.
4633   insert_mem_bar(Op_MemBarCPUOrder);
4634 
4635   return true;
4636 }
4637 
4638 //------------------------clone_coping-----------------------------------
4639 // Helper function for inline_native_clone.
4640 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4641   assert(obj_size != NULL, "");
4642   Node* raw_obj = alloc_obj->in(1);
4643   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4644 
4645   AllocateNode* alloc = NULL;
4646   if (ReduceBulkZeroing) {
4647     // We will be completely responsible for initializing this object -
4648     // mark Initialize node as complete.
4649     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4650     // The object was just allocated - there should be no any stores!
4651     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4652     // Mark as complete_with_arraycopy so that on AllocateNode
4653     // expansion, we know this AllocateNode is initialized by an array
4654     // copy and a StoreStore barrier exists after the array copy.
4655     alloc->initialization()->set_complete_with_arraycopy();
4656   }
4657 
4658   // Copy the fastest available way.
4659   // TODO: generate fields copies for small objects instead.
4660   Node* src  = obj;
4661   Node* dest = alloc_obj;
4662   Node* size = _gvn.transform(obj_size);
4663 
4664   // Exclude the header but include array length to copy by 8 bytes words.
4665   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4666   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4667                             instanceOopDesc::base_offset_in_bytes();
4668   // base_off:
4669   // 8  - 32-bit VM
4670   // 12 - 64-bit VM, compressed klass
4671   // 16 - 64-bit VM, normal klass
4672   if (base_off % BytesPerLong != 0) {
4673     assert(UseCompressedClassPointers, "");
4674     if (is_array) {
4675       // Exclude length to copy by 8 bytes words.
4676       base_off += sizeof(int);
4677     } else {
4678       // Include klass to copy by 8 bytes words.
4679       base_off = instanceOopDesc::klass_offset_in_bytes();
4680     }
4681     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4682   }
4683   src  = basic_plus_adr(src,  base_off);
4684   dest = basic_plus_adr(dest, base_off);
4685 
4686   // Compute the length also, if needed:
4687   Node* countx = size;
4688   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4689   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4690 
4691   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4692 
4693   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4694   ac->set_clonebasic();
4695   Node* n = _gvn.transform(ac);
4696   if (n == ac) {
4697     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4698   } else {
4699     set_all_memory(n);
4700   }
4701 
4702   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4703   if (card_mark) {
4704     assert(!is_array, "");
4705     // Put in store barrier for any and all oops we are sticking
4706     // into this object.  (We could avoid this if we could prove
4707     // that the object type contains no oop fields at all.)
4708     Node* no_particular_value = NULL;
4709     Node* no_particular_field = NULL;
4710     int raw_adr_idx = Compile::AliasIdxRaw;
4711     post_barrier(control(),
4712                  memory(raw_adr_type),
4713                  alloc_obj,
4714                  no_particular_field,
4715                  raw_adr_idx,
4716                  no_particular_value,
4717                  T_OBJECT,
4718                  false);
4719   }
4720 
4721   // Do not let reads from the cloned object float above the arraycopy.
4722   if (alloc != NULL) {
4723     // Do not let stores that initialize this object be reordered with
4724     // a subsequent store that would make this object accessible by
4725     // other threads.
4726     // Record what AllocateNode this StoreStore protects so that
4727     // escape analysis can go from the MemBarStoreStoreNode to the
4728     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4729     // based on the escape status of the AllocateNode.
4730     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4731   } else {
4732     insert_mem_bar(Op_MemBarCPUOrder);
4733   }
4734 }
4735 
4736 //------------------------inline_native_clone----------------------------
4737 // protected native Object java.lang.Object.clone();
4738 //
4739 // Here are the simple edge cases:
4740 //  null receiver => normal trap
4741 //  virtual and clone was overridden => slow path to out-of-line clone
4742 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4743 //
4744 // The general case has two steps, allocation and copying.
4745 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4746 //
4747 // Copying also has two cases, oop arrays and everything else.
4748 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4749 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4750 //
4751 // These steps fold up nicely if and when the cloned object's klass
4752 // can be sharply typed as an object array, a type array, or an instance.
4753 //
4754 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4755   PhiNode* result_val;
4756 
4757   // Set the reexecute bit for the interpreter to reexecute
4758   // the bytecode that invokes Object.clone if deoptimization happens.
4759   { PreserveReexecuteState preexecs(this);
4760     jvms()->set_should_reexecute(true);
4761 
4762     Node* obj = null_check_receiver();
4763     if (stopped())  return true;
4764 
4765     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4766 
4767     // If we are going to clone an instance, we need its exact type to
4768     // know the number and types of fields to convert the clone to
4769     // loads/stores. Maybe a speculative type can help us.
4770     if (!obj_type->klass_is_exact() &&
4771         obj_type->speculative_type() != NULL &&
4772         obj_type->speculative_type()->is_instance_klass()) {
4773       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4774       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4775           !spec_ik->has_injected_fields()) {
4776         ciKlass* k = obj_type->klass();
4777         if (!k->is_instance_klass() ||
4778             k->as_instance_klass()->is_interface() ||
4779             k->as_instance_klass()->has_subklass()) {
4780           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4781         }
4782       }
4783     }
4784 
4785     Node* obj_klass = load_object_klass(obj);
4786     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4787     const TypeOopPtr*   toop   = ((tklass != NULL)
4788                                 ? tklass->as_instance_type()
4789                                 : TypeInstPtr::NOTNULL);
4790 
4791     // Conservatively insert a memory barrier on all memory slices.
4792     // Do not let writes into the original float below the clone.
4793     insert_mem_bar(Op_MemBarCPUOrder);
4794 
4795     // paths into result_reg:
4796     enum {
4797       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4798       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4799       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4800       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4801       PATH_LIMIT
4802     };
4803     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4804     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4805     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4806     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4807     record_for_igvn(result_reg);
4808 
4809     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4810     int raw_adr_idx = Compile::AliasIdxRaw;
4811 
4812     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4813     if (array_ctl != NULL) {
4814       // It's an array.
4815       PreserveJVMState pjvms(this);
4816       set_control(array_ctl);
4817       Node* obj_length = load_array_length(obj);
4818       Node* obj_size  = NULL;
4819       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4820 
4821       if (!use_ReduceInitialCardMarks()) {
4822         // If it is an oop array, it requires very special treatment,
4823         // because card marking is required on each card of the array.
4824         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4825         if (is_obja != NULL) {
4826           PreserveJVMState pjvms2(this);
4827           set_control(is_obja);
4828           // Generate a direct call to the right arraycopy function(s).
4829           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4830           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4831           ac->set_cloneoop();
4832           Node* n = _gvn.transform(ac);
4833           assert(n == ac, "cannot disappear");
4834           ac->connect_outputs(this);
4835 
4836           result_reg->init_req(_objArray_path, control());
4837           result_val->init_req(_objArray_path, alloc_obj);
4838           result_i_o ->set_req(_objArray_path, i_o());
4839           result_mem ->set_req(_objArray_path, reset_memory());
4840         }
4841       }
4842       // Otherwise, there are no card marks to worry about.
4843       // (We can dispense with card marks if we know the allocation
4844       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4845       //  causes the non-eden paths to take compensating steps to
4846       //  simulate a fresh allocation, so that no further
4847       //  card marks are required in compiled code to initialize
4848       //  the object.)
4849 
4850       if (!stopped()) {
4851         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4852 
4853         // Present the results of the copy.
4854         result_reg->init_req(_array_path, control());
4855         result_val->init_req(_array_path, alloc_obj);
4856         result_i_o ->set_req(_array_path, i_o());
4857         result_mem ->set_req(_array_path, reset_memory());
4858       }
4859     }
4860 
4861     // We only go to the instance fast case code if we pass a number of guards.
4862     // The paths which do not pass are accumulated in the slow_region.
4863     RegionNode* slow_region = new RegionNode(1);
4864     record_for_igvn(slow_region);
4865     if (!stopped()) {
4866       // It's an instance (we did array above).  Make the slow-path tests.
4867       // If this is a virtual call, we generate a funny guard.  We grab
4868       // the vtable entry corresponding to clone() from the target object.
4869       // If the target method which we are calling happens to be the
4870       // Object clone() method, we pass the guard.  We do not need this
4871       // guard for non-virtual calls; the caller is known to be the native
4872       // Object clone().
4873       if (is_virtual) {
4874         generate_virtual_guard(obj_klass, slow_region);
4875       }
4876 
4877       // The object must be easily cloneable and must not have a finalizer.
4878       // Both of these conditions may be checked in a single test.
4879       // We could optimize the test further, but we don't care.
4880       generate_access_flags_guard(obj_klass,
4881                                   // Test both conditions:
4882                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4883                                   // Must be cloneable but not finalizer:
4884                                   JVM_ACC_IS_CLONEABLE_FAST,
4885                                   slow_region);
4886     }
4887 
4888     if (!stopped()) {
4889       // It's an instance, and it passed the slow-path tests.
4890       PreserveJVMState pjvms(this);
4891       Node* obj_size  = NULL;
4892       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4893       // is reexecuted if deoptimization occurs and there could be problems when merging
4894       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4895       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4896 
4897       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4898 
4899       // Present the results of the slow call.
4900       result_reg->init_req(_instance_path, control());
4901       result_val->init_req(_instance_path, alloc_obj);
4902       result_i_o ->set_req(_instance_path, i_o());
4903       result_mem ->set_req(_instance_path, reset_memory());
4904     }
4905 
4906     // Generate code for the slow case.  We make a call to clone().
4907     set_control(_gvn.transform(slow_region));
4908     if (!stopped()) {
4909       PreserveJVMState pjvms(this);
4910       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4911       Node* slow_result = set_results_for_java_call(slow_call);
4912       // this->control() comes from set_results_for_java_call
4913       result_reg->init_req(_slow_path, control());
4914       result_val->init_req(_slow_path, slow_result);
4915       result_i_o ->set_req(_slow_path, i_o());
4916       result_mem ->set_req(_slow_path, reset_memory());
4917     }
4918 
4919     // Return the combined state.
4920     set_control(    _gvn.transform(result_reg));
4921     set_i_o(        _gvn.transform(result_i_o));
4922     set_all_memory( _gvn.transform(result_mem));
4923   } // original reexecute is set back here
4924 
4925   set_result(_gvn.transform(result_val));
4926   return true;
4927 }
4928 
4929 // If we have a tighly coupled allocation, the arraycopy may take care
4930 // of the array initialization. If one of the guards we insert between
4931 // the allocation and the arraycopy causes a deoptimization, an
4932 // unitialized array will escape the compiled method. To prevent that
4933 // we set the JVM state for uncommon traps between the allocation and
4934 // the arraycopy to the state before the allocation so, in case of
4935 // deoptimization, we'll reexecute the allocation and the
4936 // initialization.
4937 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4938   if (alloc != NULL) {
4939     ciMethod* trap_method = alloc->jvms()->method();
4940     int trap_bci = alloc->jvms()->bci();
4941 
4942     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4943           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4944       // Make sure there's no store between the allocation and the
4945       // arraycopy otherwise visible side effects could be rexecuted
4946       // in case of deoptimization and cause incorrect execution.
4947       bool no_interfering_store = true;
4948       Node* mem = alloc->in(TypeFunc::Memory);
4949       if (mem->is_MergeMem()) {
4950         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4951           Node* n = mms.memory();
4952           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4953             assert(n->is_Store(), "what else?");
4954             no_interfering_store = false;
4955             break;
4956           }
4957         }
4958       } else {
4959         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4960           Node* n = mms.memory();
4961           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4962             assert(n->is_Store(), "what else?");
4963             no_interfering_store = false;
4964             break;
4965           }
4966         }
4967       }
4968 
4969       if (no_interfering_store) {
4970         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4971         uint size = alloc->req();
4972         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4973         old_jvms->set_map(sfpt);
4974         for (uint i = 0; i < size; i++) {
4975           sfpt->init_req(i, alloc->in(i));
4976         }
4977         // re-push array length for deoptimization
4978         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4979         old_jvms->set_sp(old_jvms->sp()+1);
4980         old_jvms->set_monoff(old_jvms->monoff()+1);
4981         old_jvms->set_scloff(old_jvms->scloff()+1);
4982         old_jvms->set_endoff(old_jvms->endoff()+1);
4983         old_jvms->set_should_reexecute(true);
4984 
4985         sfpt->set_i_o(map()->i_o());
4986         sfpt->set_memory(map()->memory());
4987         sfpt->set_control(map()->control());
4988 
4989         JVMState* saved_jvms = jvms();
4990         saved_reexecute_sp = _reexecute_sp;
4991 
4992         set_jvms(sfpt->jvms());
4993         _reexecute_sp = jvms()->sp();
4994 
4995         return saved_jvms;
4996       }
4997     }
4998   }
4999   return NULL;
5000 }
5001 
5002 // In case of a deoptimization, we restart execution at the
5003 // allocation, allocating a new array. We would leave an uninitialized
5004 // array in the heap that GCs wouldn't expect. Move the allocation
5005 // after the traps so we don't allocate the array if we
5006 // deoptimize. This is possible because tightly_coupled_allocation()
5007 // guarantees there's no observer of the allocated array at this point
5008 // and the control flow is simple enough.
5009 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
5010                                                     int saved_reexecute_sp, uint new_idx) {
5011   if (saved_jvms != NULL && !stopped()) {
5012     assert(alloc != NULL, "only with a tightly coupled allocation");
5013     // restore JVM state to the state at the arraycopy
5014     saved_jvms->map()->set_control(map()->control());
5015     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
5016     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
5017     // If we've improved the types of some nodes (null check) while
5018     // emitting the guards, propagate them to the current state
5019     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
5020     set_jvms(saved_jvms);
5021     _reexecute_sp = saved_reexecute_sp;
5022 
5023     // Remove the allocation from above the guards
5024     CallProjections callprojs;
5025     alloc->extract_projections(&callprojs, true);
5026     InitializeNode* init = alloc->initialization();
5027     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5028     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5029     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5030     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5031 
5032     // move the allocation here (after the guards)
5033     _gvn.hash_delete(alloc);
5034     alloc->set_req(TypeFunc::Control, control());
5035     alloc->set_req(TypeFunc::I_O, i_o());
5036     Node *mem = reset_memory();
5037     set_all_memory(mem);
5038     alloc->set_req(TypeFunc::Memory, mem);
5039     set_control(init->proj_out_or_null(TypeFunc::Control));
5040     set_i_o(callprojs.fallthrough_ioproj);
5041 
5042     // Update memory as done in GraphKit::set_output_for_allocation()
5043     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5044     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5045     if (ary_type->isa_aryptr() && length_type != NULL) {
5046       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5047     }
5048     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5049     int            elemidx  = C->get_alias_index(telemref);
5050     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5051     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5052 
5053     Node* allocx = _gvn.transform(alloc);
5054     assert(allocx == alloc, "where has the allocation gone?");
5055     assert(dest->is_CheckCastPP(), "not an allocation result?");
5056 
5057     _gvn.hash_delete(dest);
5058     dest->set_req(0, control());
5059     Node* destx = _gvn.transform(dest);
5060     assert(destx == dest, "where has the allocation result gone?");
5061   }
5062 }
5063 
5064 
5065 //------------------------------inline_arraycopy-----------------------
5066 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5067 //                                                      Object dest, int destPos,
5068 //                                                      int length);
5069 bool LibraryCallKit::inline_arraycopy() {
5070   // Get the arguments.
5071   Node* src         = argument(0);  // type: oop
5072   Node* src_offset  = argument(1);  // type: int
5073   Node* dest        = argument(2);  // type: oop
5074   Node* dest_offset = argument(3);  // type: int
5075   Node* length      = argument(4);  // type: int
5076 
5077   uint new_idx = C->unique();
5078 
5079   // Check for allocation before we add nodes that would confuse
5080   // tightly_coupled_allocation()
5081   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5082 
5083   int saved_reexecute_sp = -1;
5084   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5085   // See arraycopy_restore_alloc_state() comment
5086   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5087   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5088   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5089   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5090 
5091   // The following tests must be performed
5092   // (1) src and dest are arrays.
5093   // (2) src and dest arrays must have elements of the same BasicType
5094   // (3) src and dest must not be null.
5095   // (4) src_offset must not be negative.
5096   // (5) dest_offset must not be negative.
5097   // (6) length must not be negative.
5098   // (7) src_offset + length must not exceed length of src.
5099   // (8) dest_offset + length must not exceed length of dest.
5100   // (9) each element of an oop array must be assignable
5101 
5102   // (3) src and dest must not be null.
5103   // always do this here because we need the JVM state for uncommon traps
5104   Node* null_ctl = top();
5105   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5106   assert(null_ctl->is_top(), "no null control here");
5107   dest = null_check(dest, T_ARRAY);
5108 
5109   if (!can_emit_guards) {
5110     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5111     // guards but the arraycopy node could still take advantage of a
5112     // tightly allocated allocation. tightly_coupled_allocation() is
5113     // called again to make sure it takes the null check above into
5114     // account: the null check is mandatory and if it caused an
5115     // uncommon trap to be emitted then the allocation can't be
5116     // considered tightly coupled in this context.
5117     alloc = tightly_coupled_allocation(dest, NULL);
5118   }
5119 
5120   bool validated = false;
5121 
5122   const Type* src_type  = _gvn.type(src);
5123   const Type* dest_type = _gvn.type(dest);
5124   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5125   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5126 
5127   // Do we have the type of src?
5128   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5129   // Do we have the type of dest?
5130   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5131   // Is the type for src from speculation?
5132   bool src_spec = false;
5133   // Is the type for dest from speculation?
5134   bool dest_spec = false;
5135 
5136   if ((!has_src || !has_dest) && can_emit_guards) {
5137     // We don't have sufficient type information, let's see if
5138     // speculative types can help. We need to have types for both src
5139     // and dest so that it pays off.
5140 
5141     // Do we already have or could we have type information for src
5142     bool could_have_src = has_src;
5143     // Do we already have or could we have type information for dest
5144     bool could_have_dest = has_dest;
5145 
5146     ciKlass* src_k = NULL;
5147     if (!has_src) {
5148       src_k = src_type->speculative_type_not_null();
5149       if (src_k != NULL && src_k->is_array_klass()) {
5150         could_have_src = true;
5151       }
5152     }
5153 
5154     ciKlass* dest_k = NULL;
5155     if (!has_dest) {
5156       dest_k = dest_type->speculative_type_not_null();
5157       if (dest_k != NULL && dest_k->is_array_klass()) {
5158         could_have_dest = true;
5159       }
5160     }
5161 
5162     if (could_have_src && could_have_dest) {
5163       // This is going to pay off so emit the required guards
5164       if (!has_src) {
5165         src = maybe_cast_profiled_obj(src, src_k, true);
5166         src_type  = _gvn.type(src);
5167         top_src  = src_type->isa_aryptr();
5168         has_src = (top_src != NULL && top_src->klass() != NULL);
5169         src_spec = true;
5170       }
5171       if (!has_dest) {
5172         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5173         dest_type  = _gvn.type(dest);
5174         top_dest  = dest_type->isa_aryptr();
5175         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5176         dest_spec = true;
5177       }
5178     }
5179   }
5180 
5181   if (has_src && has_dest && can_emit_guards) {
5182     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5183     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5184     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5185     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5186 
5187     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5188       // If both arrays are object arrays then having the exact types
5189       // for both will remove the need for a subtype check at runtime
5190       // before the call and may make it possible to pick a faster copy
5191       // routine (without a subtype check on every element)
5192       // Do we have the exact type of src?
5193       bool could_have_src = src_spec;
5194       // Do we have the exact type of dest?
5195       bool could_have_dest = dest_spec;
5196       ciKlass* src_k = top_src->klass();
5197       ciKlass* dest_k = top_dest->klass();
5198       if (!src_spec) {
5199         src_k = src_type->speculative_type_not_null();
5200         if (src_k != NULL && src_k->is_array_klass()) {
5201           could_have_src = true;
5202         }
5203       }
5204       if (!dest_spec) {
5205         dest_k = dest_type->speculative_type_not_null();
5206         if (dest_k != NULL && dest_k->is_array_klass()) {
5207           could_have_dest = true;
5208         }
5209       }
5210       if (could_have_src && could_have_dest) {
5211         // If we can have both exact types, emit the missing guards
5212         if (could_have_src && !src_spec) {
5213           src = maybe_cast_profiled_obj(src, src_k, true);
5214         }
5215         if (could_have_dest && !dest_spec) {
5216           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5217         }
5218       }
5219     }
5220   }
5221 
5222   ciMethod* trap_method = method();
5223   int trap_bci = bci();
5224   if (saved_jvms != NULL) {
5225     trap_method = alloc->jvms()->method();
5226     trap_bci = alloc->jvms()->bci();
5227   }
5228 
5229   bool negative_length_guard_generated = false;
5230 
5231   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5232       can_emit_guards &&
5233       !src->is_top() && !dest->is_top()) {
5234     // validate arguments: enables transformation the ArrayCopyNode
5235     validated = true;
5236 
5237     RegionNode* slow_region = new RegionNode(1);
5238     record_for_igvn(slow_region);
5239 
5240     // (1) src and dest are arrays.
5241     generate_non_array_guard(load_object_klass(src), slow_region);
5242     generate_non_array_guard(load_object_klass(dest), slow_region);
5243 
5244     // (2) src and dest arrays must have elements of the same BasicType
5245     // done at macro expansion or at Ideal transformation time
5246 
5247     // (4) src_offset must not be negative.
5248     generate_negative_guard(src_offset, slow_region);
5249 
5250     // (5) dest_offset must not be negative.
5251     generate_negative_guard(dest_offset, slow_region);
5252 
5253     // (7) src_offset + length must not exceed length of src.
5254     generate_limit_guard(src_offset, length,
5255                          load_array_length(src),
5256                          slow_region);
5257 
5258     // (8) dest_offset + length must not exceed length of dest.
5259     generate_limit_guard(dest_offset, length,
5260                          load_array_length(dest),
5261                          slow_region);
5262 
5263     // (6) length must not be negative.
5264     // This is also checked in generate_arraycopy() during macro expansion, but
5265     // we also have to check it here for the case where the ArrayCopyNode will
5266     // be eliminated by Escape Analysis.
5267     if (EliminateAllocations) {
5268       generate_negative_guard(length, slow_region);
5269       negative_length_guard_generated = true;
5270     }
5271 
5272     // (9) each element of an oop array must be assignable
5273     Node* src_klass  = load_object_klass(src);
5274     Node* dest_klass = load_object_klass(dest);
5275     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5276 
5277     if (not_subtype_ctrl != top()) {
5278       PreserveJVMState pjvms(this);
5279       set_control(not_subtype_ctrl);
5280       uncommon_trap(Deoptimization::Reason_intrinsic,
5281                     Deoptimization::Action_make_not_entrant);
5282       assert(stopped(), "Should be stopped");
5283     }
5284     {
5285       PreserveJVMState pjvms(this);
5286       set_control(_gvn.transform(slow_region));
5287       uncommon_trap(Deoptimization::Reason_intrinsic,
5288                     Deoptimization::Action_make_not_entrant);
5289       assert(stopped(), "Should be stopped");
5290     }
5291 
5292     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5293     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
5294     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5295   }
5296 
5297   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5298 
5299   if (stopped()) {
5300     return true;
5301   }
5302 
5303   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5304                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5305                                           // so the compiler has a chance to eliminate them: during macro expansion,
5306                                           // we have to set their control (CastPP nodes are eliminated).
5307                                           load_object_klass(src), load_object_klass(dest),
5308                                           load_array_length(src), load_array_length(dest));
5309 
5310   ac->set_arraycopy(validated);
5311 
5312   Node* n = _gvn.transform(ac);
5313   if (n == ac) {
5314     ac->connect_outputs(this);
5315   } else {
5316     assert(validated, "shouldn't transform if all arguments not validated");
5317     set_all_memory(n);
5318   }
5319   clear_upper_avx();
5320 
5321 
5322   return true;
5323 }
5324 
5325 
5326 // Helper function which determines if an arraycopy immediately follows
5327 // an allocation, with no intervening tests or other escapes for the object.
5328 AllocateArrayNode*
5329 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5330                                            RegionNode* slow_region) {
5331   if (stopped())             return NULL;  // no fast path
5332   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5333 
5334   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5335   if (alloc == NULL)  return NULL;
5336 
5337   Node* rawmem = memory(Compile::AliasIdxRaw);
5338   // Is the allocation's memory state untouched?
5339   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5340     // Bail out if there have been raw-memory effects since the allocation.
5341     // (Example:  There might have been a call or safepoint.)
5342     return NULL;
5343   }
5344   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5345   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5346     return NULL;
5347   }
5348 
5349   // There must be no unexpected observers of this allocation.
5350   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5351     Node* obs = ptr->fast_out(i);
5352     if (obs != this->map()) {
5353       return NULL;
5354     }
5355   }
5356 
5357   // This arraycopy must unconditionally follow the allocation of the ptr.
5358   Node* alloc_ctl = ptr->in(0);
5359   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5360 
5361   Node* ctl = control();
5362   while (ctl != alloc_ctl) {
5363     // There may be guards which feed into the slow_region.
5364     // Any other control flow means that we might not get a chance
5365     // to finish initializing the allocated object.
5366     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5367       IfNode* iff = ctl->in(0)->as_If();
5368       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
5369       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5370       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5371         ctl = iff->in(0);       // This test feeds the known slow_region.
5372         continue;
5373       }
5374       // One more try:  Various low-level checks bottom out in
5375       // uncommon traps.  If the debug-info of the trap omits
5376       // any reference to the allocation, as we've already
5377       // observed, then there can be no objection to the trap.
5378       bool found_trap = false;
5379       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5380         Node* obs = not_ctl->fast_out(j);
5381         if (obs->in(0) == not_ctl && obs->is_Call() &&
5382             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5383           found_trap = true; break;
5384         }
5385       }
5386       if (found_trap) {
5387         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5388         continue;
5389       }
5390     }
5391     return NULL;
5392   }
5393 
5394   // If we get this far, we have an allocation which immediately
5395   // precedes the arraycopy, and we can take over zeroing the new object.
5396   // The arraycopy will finish the initialization, and provide
5397   // a new control state to which we will anchor the destination pointer.
5398 
5399   return alloc;
5400 }
5401 
5402 //-------------inline_encodeISOArray-----------------------------------
5403 // encode char[] to byte[] in ISO_8859_1
5404 bool LibraryCallKit::inline_encodeISOArray() {
5405   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5406   // no receiver since it is static method
5407   Node *src         = argument(0);
5408   Node *src_offset  = argument(1);
5409   Node *dst         = argument(2);
5410   Node *dst_offset  = argument(3);
5411   Node *length      = argument(4);
5412 
5413   const Type* src_type = src->Value(&_gvn);
5414   const Type* dst_type = dst->Value(&_gvn);
5415   const TypeAryPtr* top_src = src_type->isa_aryptr();
5416   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5417   if (top_src  == NULL || top_src->klass()  == NULL ||
5418       top_dest == NULL || top_dest->klass() == NULL) {
5419     // failed array check
5420     return false;
5421   }
5422 
5423   // Figure out the size and type of the elements we will be copying.
5424   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5425   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5426   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5427     return false;
5428   }
5429 
5430   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5431   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5432   // 'src_start' points to src array + scaled offset
5433   // 'dst_start' points to dst array + scaled offset
5434 
5435   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5436   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5437   enc = _gvn.transform(enc);
5438   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5439   set_memory(res_mem, mtype);
5440   set_result(enc);
5441   clear_upper_avx();
5442 
5443   return true;
5444 }
5445 
5446 //-------------inline_multiplyToLen-----------------------------------
5447 bool LibraryCallKit::inline_multiplyToLen() {
5448   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5449 
5450   address stubAddr = StubRoutines::multiplyToLen();
5451   if (stubAddr == NULL) {
5452     return false; // Intrinsic's stub is not implemented on this platform
5453   }
5454   const char* stubName = "multiplyToLen";
5455 
5456   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5457 
5458   // no receiver because it is a static method
5459   Node* x    = argument(0);
5460   Node* xlen = argument(1);
5461   Node* y    = argument(2);
5462   Node* ylen = argument(3);
5463   Node* z    = argument(4);
5464 
5465   const Type* x_type = x->Value(&_gvn);
5466   const Type* y_type = y->Value(&_gvn);
5467   const TypeAryPtr* top_x = x_type->isa_aryptr();
5468   const TypeAryPtr* top_y = y_type->isa_aryptr();
5469   if (top_x  == NULL || top_x->klass()  == NULL ||
5470       top_y == NULL || top_y->klass() == NULL) {
5471     // failed array check
5472     return false;
5473   }
5474 
5475   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5476   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5477   if (x_elem != T_INT || y_elem != T_INT) {
5478     return false;
5479   }
5480 
5481   // Set the original stack and the reexecute bit for the interpreter to reexecute
5482   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5483   // on the return from z array allocation in runtime.
5484   { PreserveReexecuteState preexecs(this);
5485     jvms()->set_should_reexecute(true);
5486 
5487     Node* x_start = array_element_address(x, intcon(0), x_elem);
5488     Node* y_start = array_element_address(y, intcon(0), y_elem);
5489     // 'x_start' points to x array + scaled xlen
5490     // 'y_start' points to y array + scaled ylen
5491 
5492     // Allocate the result array
5493     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5494     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5495     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5496 
5497     IdealKit ideal(this);
5498 
5499 #define __ ideal.
5500      Node* one = __ ConI(1);
5501      Node* zero = __ ConI(0);
5502      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5503      __ set(need_alloc, zero);
5504      __ set(z_alloc, z);
5505      __ if_then(z, BoolTest::eq, null()); {
5506        __ increment (need_alloc, one);
5507      } __ else_(); {
5508        // Update graphKit memory and control from IdealKit.
5509        sync_kit(ideal);
5510        Node* zlen_arg = load_array_length(z);
5511        // Update IdealKit memory and control from graphKit.
5512        __ sync_kit(this);
5513        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5514          __ increment (need_alloc, one);
5515        } __ end_if();
5516      } __ end_if();
5517 
5518      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5519        // Update graphKit memory and control from IdealKit.
5520        sync_kit(ideal);
5521        Node * narr = new_array(klass_node, zlen, 1);
5522        // Update IdealKit memory and control from graphKit.
5523        __ sync_kit(this);
5524        __ set(z_alloc, narr);
5525      } __ end_if();
5526 
5527      sync_kit(ideal);
5528      z = __ value(z_alloc);
5529      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5530      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5531      // Final sync IdealKit and GraphKit.
5532      final_sync(ideal);
5533 #undef __
5534 
5535     Node* z_start = array_element_address(z, intcon(0), T_INT);
5536 
5537     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5538                                    OptoRuntime::multiplyToLen_Type(),
5539                                    stubAddr, stubName, TypePtr::BOTTOM,
5540                                    x_start, xlen, y_start, ylen, z_start, zlen);
5541   } // original reexecute is set back here
5542 
5543   C->set_has_split_ifs(true); // Has chance for split-if optimization
5544   set_result(z);
5545   return true;
5546 }
5547 
5548 //-------------inline_squareToLen------------------------------------
5549 bool LibraryCallKit::inline_squareToLen() {
5550   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5551 
5552   address stubAddr = StubRoutines::squareToLen();
5553   if (stubAddr == NULL) {
5554     return false; // Intrinsic's stub is not implemented on this platform
5555   }
5556   const char* stubName = "squareToLen";
5557 
5558   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5559 
5560   Node* x    = argument(0);
5561   Node* len  = argument(1);
5562   Node* z    = argument(2);
5563   Node* zlen = argument(3);
5564 
5565   const Type* x_type = x->Value(&_gvn);
5566   const Type* z_type = z->Value(&_gvn);
5567   const TypeAryPtr* top_x = x_type->isa_aryptr();
5568   const TypeAryPtr* top_z = z_type->isa_aryptr();
5569   if (top_x  == NULL || top_x->klass()  == NULL ||
5570       top_z  == NULL || top_z->klass()  == NULL) {
5571     // failed array check
5572     return false;
5573   }
5574 
5575   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5576   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5577   if (x_elem != T_INT || z_elem != T_INT) {
5578     return false;
5579   }
5580 
5581 
5582   Node* x_start = array_element_address(x, intcon(0), x_elem);
5583   Node* z_start = array_element_address(z, intcon(0), z_elem);
5584 
5585   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5586                                   OptoRuntime::squareToLen_Type(),
5587                                   stubAddr, stubName, TypePtr::BOTTOM,
5588                                   x_start, len, z_start, zlen);
5589 
5590   set_result(z);
5591   return true;
5592 }
5593 
5594 //-------------inline_mulAdd------------------------------------------
5595 bool LibraryCallKit::inline_mulAdd() {
5596   assert(UseMulAddIntrinsic, "not implemented on this platform");
5597 
5598   address stubAddr = StubRoutines::mulAdd();
5599   if (stubAddr == NULL) {
5600     return false; // Intrinsic's stub is not implemented on this platform
5601   }
5602   const char* stubName = "mulAdd";
5603 
5604   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5605 
5606   Node* out      = argument(0);
5607   Node* in       = argument(1);
5608   Node* offset   = argument(2);
5609   Node* len      = argument(3);
5610   Node* k        = argument(4);
5611 
5612   const Type* out_type = out->Value(&_gvn);
5613   const Type* in_type = in->Value(&_gvn);
5614   const TypeAryPtr* top_out = out_type->isa_aryptr();
5615   const TypeAryPtr* top_in = in_type->isa_aryptr();
5616   if (top_out  == NULL || top_out->klass()  == NULL ||
5617       top_in == NULL || top_in->klass() == NULL) {
5618     // failed array check
5619     return false;
5620   }
5621 
5622   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5623   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5624   if (out_elem != T_INT || in_elem != T_INT) {
5625     return false;
5626   }
5627 
5628   Node* outlen = load_array_length(out);
5629   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5630   Node* out_start = array_element_address(out, intcon(0), out_elem);
5631   Node* in_start = array_element_address(in, intcon(0), in_elem);
5632 
5633   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5634                                   OptoRuntime::mulAdd_Type(),
5635                                   stubAddr, stubName, TypePtr::BOTTOM,
5636                                   out_start,in_start, new_offset, len, k);
5637   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5638   set_result(result);
5639   return true;
5640 }
5641 
5642 //-------------inline_montgomeryMultiply-----------------------------------
5643 bool LibraryCallKit::inline_montgomeryMultiply() {
5644   address stubAddr = StubRoutines::montgomeryMultiply();
5645   if (stubAddr == NULL) {
5646     return false; // Intrinsic's stub is not implemented on this platform
5647   }
5648 
5649   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5650   const char* stubName = "montgomery_multiply";
5651 
5652   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5653 
5654   Node* a    = argument(0);
5655   Node* b    = argument(1);
5656   Node* n    = argument(2);
5657   Node* len  = argument(3);
5658   Node* inv  = argument(4);
5659   Node* m    = argument(6);
5660 
5661   const Type* a_type = a->Value(&_gvn);
5662   const TypeAryPtr* top_a = a_type->isa_aryptr();
5663   const Type* b_type = b->Value(&_gvn);
5664   const TypeAryPtr* top_b = b_type->isa_aryptr();
5665   const Type* n_type = a->Value(&_gvn);
5666   const TypeAryPtr* top_n = n_type->isa_aryptr();
5667   const Type* m_type = a->Value(&_gvn);
5668   const TypeAryPtr* top_m = m_type->isa_aryptr();
5669   if (top_a  == NULL || top_a->klass()  == NULL ||
5670       top_b == NULL || top_b->klass()  == NULL ||
5671       top_n == NULL || top_n->klass()  == NULL ||
5672       top_m == NULL || top_m->klass()  == NULL) {
5673     // failed array check
5674     return false;
5675   }
5676 
5677   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5678   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5679   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5680   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5681   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5682     return false;
5683   }
5684 
5685   // Make the call
5686   {
5687     Node* a_start = array_element_address(a, intcon(0), a_elem);
5688     Node* b_start = array_element_address(b, intcon(0), b_elem);
5689     Node* n_start = array_element_address(n, intcon(0), n_elem);
5690     Node* m_start = array_element_address(m, intcon(0), m_elem);
5691 
5692     Node* call = make_runtime_call(RC_LEAF,
5693                                    OptoRuntime::montgomeryMultiply_Type(),
5694                                    stubAddr, stubName, TypePtr::BOTTOM,
5695                                    a_start, b_start, n_start, len, inv, top(),
5696                                    m_start);
5697     set_result(m);
5698   }
5699 
5700   return true;
5701 }
5702 
5703 bool LibraryCallKit::inline_montgomerySquare() {
5704   address stubAddr = StubRoutines::montgomerySquare();
5705   if (stubAddr == NULL) {
5706     return false; // Intrinsic's stub is not implemented on this platform
5707   }
5708 
5709   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5710   const char* stubName = "montgomery_square";
5711 
5712   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5713 
5714   Node* a    = argument(0);
5715   Node* n    = argument(1);
5716   Node* len  = argument(2);
5717   Node* inv  = argument(3);
5718   Node* m    = argument(5);
5719 
5720   const Type* a_type = a->Value(&_gvn);
5721   const TypeAryPtr* top_a = a_type->isa_aryptr();
5722   const Type* n_type = a->Value(&_gvn);
5723   const TypeAryPtr* top_n = n_type->isa_aryptr();
5724   const Type* m_type = a->Value(&_gvn);
5725   const TypeAryPtr* top_m = m_type->isa_aryptr();
5726   if (top_a  == NULL || top_a->klass()  == NULL ||
5727       top_n == NULL || top_n->klass()  == NULL ||
5728       top_m == NULL || top_m->klass()  == NULL) {
5729     // failed array check
5730     return false;
5731   }
5732 
5733   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5734   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5735   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5736   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5737     return false;
5738   }
5739 
5740   // Make the call
5741   {
5742     Node* a_start = array_element_address(a, intcon(0), a_elem);
5743     Node* n_start = array_element_address(n, intcon(0), n_elem);
5744     Node* m_start = array_element_address(m, intcon(0), m_elem);
5745 
5746     Node* call = make_runtime_call(RC_LEAF,
5747                                    OptoRuntime::montgomerySquare_Type(),
5748                                    stubAddr, stubName, TypePtr::BOTTOM,
5749                                    a_start, n_start, len, inv, top(),
5750                                    m_start);
5751     set_result(m);
5752   }
5753 
5754   return true;
5755 }
5756 
5757 //-------------inline_vectorizedMismatch------------------------------
5758 bool LibraryCallKit::inline_vectorizedMismatch() {
5759   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5760 
5761   address stubAddr = StubRoutines::vectorizedMismatch();
5762   if (stubAddr == NULL) {
5763     return false; // Intrinsic's stub is not implemented on this platform
5764   }
5765   const char* stubName = "vectorizedMismatch";
5766   int size_l = callee()->signature()->size();
5767   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5768 
5769   Node* obja = argument(0);
5770   Node* aoffset = argument(1);
5771   Node* objb = argument(3);
5772   Node* boffset = argument(4);
5773   Node* length = argument(6);
5774   Node* scale = argument(7);
5775 
5776   const Type* a_type = obja->Value(&_gvn);
5777   const Type* b_type = objb->Value(&_gvn);
5778   const TypeAryPtr* top_a = a_type->isa_aryptr();
5779   const TypeAryPtr* top_b = b_type->isa_aryptr();
5780   if (top_a == NULL || top_a->klass() == NULL ||
5781     top_b == NULL || top_b->klass() == NULL) {
5782     // failed array check
5783     return false;
5784   }
5785 
5786   Node* call;
5787   jvms()->set_should_reexecute(true);
5788 
5789   Node* obja_adr = make_unsafe_address(obja, aoffset);
5790   Node* objb_adr = make_unsafe_address(objb, boffset);
5791 
5792   call = make_runtime_call(RC_LEAF,
5793     OptoRuntime::vectorizedMismatch_Type(),
5794     stubAddr, stubName, TypePtr::BOTTOM,
5795     obja_adr, objb_adr, length, scale);
5796 
5797   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5798   set_result(result);
5799   return true;
5800 }
5801 
5802 /**
5803  * Calculate CRC32 for byte.
5804  * int java.util.zip.CRC32.update(int crc, int b)
5805  */
5806 bool LibraryCallKit::inline_updateCRC32() {
5807   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5808   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5809   // no receiver since it is static method
5810   Node* crc  = argument(0); // type: int
5811   Node* b    = argument(1); // type: int
5812 
5813   /*
5814    *    int c = ~ crc;
5815    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5816    *    b = b ^ (c >>> 8);
5817    *    crc = ~b;
5818    */
5819 
5820   Node* M1 = intcon(-1);
5821   crc = _gvn.transform(new XorINode(crc, M1));
5822   Node* result = _gvn.transform(new XorINode(crc, b));
5823   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5824 
5825   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5826   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5827   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5828   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5829 
5830   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5831   result = _gvn.transform(new XorINode(crc, result));
5832   result = _gvn.transform(new XorINode(result, M1));
5833   set_result(result);
5834   return true;
5835 }
5836 
5837 /**
5838  * Calculate CRC32 for byte[] array.
5839  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5840  */
5841 bool LibraryCallKit::inline_updateBytesCRC32() {
5842   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5843   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5844   // no receiver since it is static method
5845   Node* crc     = argument(0); // type: int
5846   Node* src     = argument(1); // type: oop
5847   Node* offset  = argument(2); // type: int
5848   Node* length  = argument(3); // type: int
5849 
5850   const Type* src_type = src->Value(&_gvn);
5851   const TypeAryPtr* top_src = src_type->isa_aryptr();
5852   if (top_src  == NULL || top_src->klass()  == NULL) {
5853     // failed array check
5854     return false;
5855   }
5856 
5857   // Figure out the size and type of the elements we will be copying.
5858   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5859   if (src_elem != T_BYTE) {
5860     return false;
5861   }
5862 
5863   // 'src_start' points to src array + scaled offset
5864   Node* src_start = array_element_address(src, offset, src_elem);
5865 
5866   // We assume that range check is done by caller.
5867   // TODO: generate range check (offset+length < src.length) in debug VM.
5868 
5869   // Call the stub.
5870   address stubAddr = StubRoutines::updateBytesCRC32();
5871   const char *stubName = "updateBytesCRC32";
5872 
5873   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5874                                  stubAddr, stubName, TypePtr::BOTTOM,
5875                                  crc, src_start, length);
5876   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5877   set_result(result);
5878   return true;
5879 }
5880 
5881 /**
5882  * Calculate CRC32 for ByteBuffer.
5883  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5884  */
5885 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5886   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5887   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5888   // no receiver since it is static method
5889   Node* crc     = argument(0); // type: int
5890   Node* src     = argument(1); // type: long
5891   Node* offset  = argument(3); // type: int
5892   Node* length  = argument(4); // type: int
5893 
5894   src = ConvL2X(src);  // adjust Java long to machine word
5895   Node* base = _gvn.transform(new CastX2PNode(src));
5896   offset = ConvI2X(offset);
5897 
5898   // 'src_start' points to src array + scaled offset
5899   Node* src_start = basic_plus_adr(top(), base, offset);
5900 
5901   // Call the stub.
5902   address stubAddr = StubRoutines::updateBytesCRC32();
5903   const char *stubName = "updateBytesCRC32";
5904 
5905   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5906                                  stubAddr, stubName, TypePtr::BOTTOM,
5907                                  crc, src_start, length);
5908   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5909   set_result(result);
5910   return true;
5911 }
5912 
5913 //------------------------------get_table_from_crc32c_class-----------------------
5914 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5915   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5916   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5917 
5918   return table;
5919 }
5920 
5921 //------------------------------inline_updateBytesCRC32C-----------------------
5922 //
5923 // Calculate CRC32C for byte[] array.
5924 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5925 //
5926 bool LibraryCallKit::inline_updateBytesCRC32C() {
5927   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5928   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5929   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5930   // no receiver since it is a static method
5931   Node* crc     = argument(0); // type: int
5932   Node* src     = argument(1); // type: oop
5933   Node* offset  = argument(2); // type: int
5934   Node* end     = argument(3); // type: int
5935 
5936   Node* length = _gvn.transform(new SubINode(end, offset));
5937 
5938   const Type* src_type = src->Value(&_gvn);
5939   const TypeAryPtr* top_src = src_type->isa_aryptr();
5940   if (top_src  == NULL || top_src->klass()  == NULL) {
5941     // failed array check
5942     return false;
5943   }
5944 
5945   // Figure out the size and type of the elements we will be copying.
5946   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5947   if (src_elem != T_BYTE) {
5948     return false;
5949   }
5950 
5951   // 'src_start' points to src array + scaled offset
5952   Node* src_start = array_element_address(src, offset, src_elem);
5953 
5954   // static final int[] byteTable in class CRC32C
5955   Node* table = get_table_from_crc32c_class(callee()->holder());
5956   Node* table_start = array_element_address(table, intcon(0), T_INT);
5957 
5958   // We assume that range check is done by caller.
5959   // TODO: generate range check (offset+length < src.length) in debug VM.
5960 
5961   // Call the stub.
5962   address stubAddr = StubRoutines::updateBytesCRC32C();
5963   const char *stubName = "updateBytesCRC32C";
5964 
5965   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5966                                  stubAddr, stubName, TypePtr::BOTTOM,
5967                                  crc, src_start, length, table_start);
5968   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5969   set_result(result);
5970   return true;
5971 }
5972 
5973 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5974 //
5975 // Calculate CRC32C for DirectByteBuffer.
5976 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5977 //
5978 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5979   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5980   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5981   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5982   // no receiver since it is a static method
5983   Node* crc     = argument(0); // type: int
5984   Node* src     = argument(1); // type: long
5985   Node* offset  = argument(3); // type: int
5986   Node* end     = argument(4); // type: int
5987 
5988   Node* length = _gvn.transform(new SubINode(end, offset));
5989 
5990   src = ConvL2X(src);  // adjust Java long to machine word
5991   Node* base = _gvn.transform(new CastX2PNode(src));
5992   offset = ConvI2X(offset);
5993 
5994   // 'src_start' points to src array + scaled offset
5995   Node* src_start = basic_plus_adr(top(), base, offset);
5996 
5997   // static final int[] byteTable in class CRC32C
5998   Node* table = get_table_from_crc32c_class(callee()->holder());
5999   Node* table_start = array_element_address(table, intcon(0), T_INT);
6000 
6001   // Call the stub.
6002   address stubAddr = StubRoutines::updateBytesCRC32C();
6003   const char *stubName = "updateBytesCRC32C";
6004 
6005   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6006                                  stubAddr, stubName, TypePtr::BOTTOM,
6007                                  crc, src_start, length, table_start);
6008   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6009   set_result(result);
6010   return true;
6011 }
6012 
6013 //------------------------------inline_updateBytesAdler32----------------------
6014 //
6015 // Calculate Adler32 checksum for byte[] array.
6016 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6017 //
6018 bool LibraryCallKit::inline_updateBytesAdler32() {
6019   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6020   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6021   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6022   // no receiver since it is static method
6023   Node* crc     = argument(0); // type: int
6024   Node* src     = argument(1); // type: oop
6025   Node* offset  = argument(2); // type: int
6026   Node* length  = argument(3); // type: int
6027 
6028   const Type* src_type = src->Value(&_gvn);
6029   const TypeAryPtr* top_src = src_type->isa_aryptr();
6030   if (top_src  == NULL || top_src->klass()  == NULL) {
6031     // failed array check
6032     return false;
6033   }
6034 
6035   // Figure out the size and type of the elements we will be copying.
6036   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6037   if (src_elem != T_BYTE) {
6038     return false;
6039   }
6040 
6041   // 'src_start' points to src array + scaled offset
6042   Node* src_start = array_element_address(src, offset, src_elem);
6043 
6044   // We assume that range check is done by caller.
6045   // TODO: generate range check (offset+length < src.length) in debug VM.
6046 
6047   // Call the stub.
6048   address stubAddr = StubRoutines::updateBytesAdler32();
6049   const char *stubName = "updateBytesAdler32";
6050 
6051   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6052                                  stubAddr, stubName, TypePtr::BOTTOM,
6053                                  crc, src_start, length);
6054   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6055   set_result(result);
6056   return true;
6057 }
6058 
6059 //------------------------------inline_updateByteBufferAdler32---------------
6060 //
6061 // Calculate Adler32 checksum for DirectByteBuffer.
6062 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6063 //
6064 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6065   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6066   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6067   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6068   // no receiver since it is static method
6069   Node* crc     = argument(0); // type: int
6070   Node* src     = argument(1); // type: long
6071   Node* offset  = argument(3); // type: int
6072   Node* length  = argument(4); // type: int
6073 
6074   src = ConvL2X(src);  // adjust Java long to machine word
6075   Node* base = _gvn.transform(new CastX2PNode(src));
6076   offset = ConvI2X(offset);
6077 
6078   // 'src_start' points to src array + scaled offset
6079   Node* src_start = basic_plus_adr(top(), base, offset);
6080 
6081   // Call the stub.
6082   address stubAddr = StubRoutines::updateBytesAdler32();
6083   const char *stubName = "updateBytesAdler32";
6084 
6085   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6086                                  stubAddr, stubName, TypePtr::BOTTOM,
6087                                  crc, src_start, length);
6088 
6089   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6090   set_result(result);
6091   return true;
6092 }
6093 
6094 //----------------------------inline_reference_get----------------------------
6095 // public T java.lang.ref.Reference.get();
6096 bool LibraryCallKit::inline_reference_get() {
6097   const int referent_offset = java_lang_ref_Reference::referent_offset;
6098   guarantee(referent_offset > 0, "should have already been set");
6099 
6100   // Get the argument:
6101   Node* reference_obj = null_check_receiver();
6102   if (stopped()) return true;
6103 
6104   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6105 
6106   ciInstanceKlass* klass = env()->Object_klass();
6107   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6108 
6109   Node* no_ctrl = NULL;
6110   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6111 
6112   // Use the pre-barrier to record the value in the referent field
6113   pre_barrier(false /* do_load */,
6114               control(),
6115               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6116               result /* pre_val */,
6117               T_OBJECT);
6118 
6119   // Add memory barrier to prevent commoning reads from this field
6120   // across safepoint since GC can change its value.
6121   insert_mem_bar(Op_MemBarCPUOrder);
6122 
6123   set_result(result);
6124   return true;
6125 }
6126 
6127 
6128 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6129                                               bool is_exact=true, bool is_static=false,
6130                                               ciInstanceKlass * fromKls=NULL) {
6131   if (fromKls == NULL) {
6132     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6133     assert(tinst != NULL, "obj is null");
6134     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6135     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6136     fromKls = tinst->klass()->as_instance_klass();
6137   } else {
6138     assert(is_static, "only for static field access");
6139   }
6140   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6141                                               ciSymbol::make(fieldTypeString),
6142                                               is_static);
6143 
6144   assert (field != NULL, "undefined field");
6145   if (field == NULL) return (Node *) NULL;
6146 
6147   if (is_static) {
6148     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6149     fromObj = makecon(tip);
6150   }
6151 
6152   // Next code  copied from Parse::do_get_xxx():
6153 
6154   // Compute address and memory type.
6155   int offset  = field->offset_in_bytes();
6156   bool is_vol = field->is_volatile();
6157   ciType* field_klass = field->type();
6158   assert(field_klass->is_loaded(), "should be loaded");
6159   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6160   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6161   BasicType bt = field->layout_type();
6162 
6163   // Build the resultant type of the load
6164   const Type *type;
6165   if (bt == T_OBJECT) {
6166     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6167   } else {
6168     type = Type::get_const_basic_type(bt);
6169   }
6170 
6171   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6172     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6173   }
6174   // Build the load.
6175   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6176   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6177   // If reference is volatile, prevent following memory ops from
6178   // floating up past the volatile read.  Also prevents commoning
6179   // another volatile read.
6180   if (is_vol) {
6181     // Memory barrier includes bogus read of value to force load BEFORE membar
6182     insert_mem_bar(Op_MemBarAcquire, loadedField);
6183   }
6184   return loadedField;
6185 }
6186 
6187 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6188                                                  bool is_exact = true, bool is_static = false,
6189                                                  ciInstanceKlass * fromKls = NULL) {
6190   if (fromKls == NULL) {
6191     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6192     assert(tinst != NULL, "obj is null");
6193     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6194     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6195     fromKls = tinst->klass()->as_instance_klass();
6196   }
6197   else {
6198     assert(is_static, "only for static field access");
6199   }
6200   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6201     ciSymbol::make(fieldTypeString),
6202     is_static);
6203 
6204   assert(field != NULL, "undefined field");
6205   assert(!field->is_volatile(), "not defined for volatile fields");
6206 
6207   if (is_static) {
6208     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6209     fromObj = makecon(tip);
6210   }
6211 
6212   // Next code  copied from Parse::do_get_xxx():
6213 
6214   // Compute address and memory type.
6215   int offset = field->offset_in_bytes();
6216   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6217 
6218   return adr;
6219 }
6220 
6221 //------------------------------inline_aescrypt_Block-----------------------
6222 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6223   address stubAddr = NULL;
6224   const char *stubName;
6225   assert(UseAES, "need AES instruction support");
6226 
6227   switch(id) {
6228   case vmIntrinsics::_aescrypt_encryptBlock:
6229     stubAddr = StubRoutines::aescrypt_encryptBlock();
6230     stubName = "aescrypt_encryptBlock";
6231     break;
6232   case vmIntrinsics::_aescrypt_decryptBlock:
6233     stubAddr = StubRoutines::aescrypt_decryptBlock();
6234     stubName = "aescrypt_decryptBlock";
6235     break;
6236   default:
6237     break;
6238   }
6239   if (stubAddr == NULL) return false;
6240 
6241   Node* aescrypt_object = argument(0);
6242   Node* src             = argument(1);
6243   Node* src_offset      = argument(2);
6244   Node* dest            = argument(3);
6245   Node* dest_offset     = argument(4);
6246 
6247   // (1) src and dest are arrays.
6248   const Type* src_type = src->Value(&_gvn);
6249   const Type* dest_type = dest->Value(&_gvn);
6250   const TypeAryPtr* top_src = src_type->isa_aryptr();
6251   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6252   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6253 
6254   // for the quick and dirty code we will skip all the checks.
6255   // we are just trying to get the call to be generated.
6256   Node* src_start  = src;
6257   Node* dest_start = dest;
6258   if (src_offset != NULL || dest_offset != NULL) {
6259     assert(src_offset != NULL && dest_offset != NULL, "");
6260     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6261     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6262   }
6263 
6264   // now need to get the start of its expanded key array
6265   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6266   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6267   if (k_start == NULL) return false;
6268 
6269   if (Matcher::pass_original_key_for_aes()) {
6270     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6271     // compatibility issues between Java key expansion and SPARC crypto instructions
6272     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6273     if (original_k_start == NULL) return false;
6274 
6275     // Call the stub.
6276     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6277                       stubAddr, stubName, TypePtr::BOTTOM,
6278                       src_start, dest_start, k_start, original_k_start);
6279   } else {
6280     // Call the stub.
6281     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6282                       stubAddr, stubName, TypePtr::BOTTOM,
6283                       src_start, dest_start, k_start);
6284   }
6285 
6286   return true;
6287 }
6288 
6289 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6290 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6291   address stubAddr = NULL;
6292   const char *stubName = NULL;
6293 
6294   assert(UseAES, "need AES instruction support");
6295 
6296   switch(id) {
6297   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6298     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6299     stubName = "cipherBlockChaining_encryptAESCrypt";
6300     break;
6301   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6302     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6303     stubName = "cipherBlockChaining_decryptAESCrypt";
6304     break;
6305   default:
6306     break;
6307   }
6308   if (stubAddr == NULL) return false;
6309 
6310   Node* cipherBlockChaining_object = argument(0);
6311   Node* src                        = argument(1);
6312   Node* src_offset                 = argument(2);
6313   Node* len                        = argument(3);
6314   Node* dest                       = argument(4);
6315   Node* dest_offset                = argument(5);
6316 
6317   // (1) src and dest are arrays.
6318   const Type* src_type = src->Value(&_gvn);
6319   const Type* dest_type = dest->Value(&_gvn);
6320   const TypeAryPtr* top_src = src_type->isa_aryptr();
6321   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6322   assert (top_src  != NULL && top_src->klass()  != NULL
6323           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6324 
6325   // checks are the responsibility of the caller
6326   Node* src_start  = src;
6327   Node* dest_start = dest;
6328   if (src_offset != NULL || dest_offset != NULL) {
6329     assert(src_offset != NULL && dest_offset != NULL, "");
6330     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6331     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6332   }
6333 
6334   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6335   // (because of the predicated logic executed earlier).
6336   // so we cast it here safely.
6337   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6338 
6339   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6340   if (embeddedCipherObj == NULL) return false;
6341 
6342   // cast it to what we know it will be at runtime
6343   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6344   assert(tinst != NULL, "CBC obj is null");
6345   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6346   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6347   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6348 
6349   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6350   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6351   const TypeOopPtr* xtype = aklass->as_instance_type();
6352   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6353   aescrypt_object = _gvn.transform(aescrypt_object);
6354 
6355   // we need to get the start of the aescrypt_object's expanded key array
6356   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6357   if (k_start == NULL) return false;
6358 
6359   // similarly, get the start address of the r vector
6360   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6361   if (objRvec == NULL) return false;
6362   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6363 
6364   Node* cbcCrypt;
6365   if (Matcher::pass_original_key_for_aes()) {
6366     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6367     // compatibility issues between Java key expansion and SPARC crypto instructions
6368     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6369     if (original_k_start == NULL) return false;
6370 
6371     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6372     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6373                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6374                                  stubAddr, stubName, TypePtr::BOTTOM,
6375                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6376   } else {
6377     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6378     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6379                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6380                                  stubAddr, stubName, TypePtr::BOTTOM,
6381                                  src_start, dest_start, k_start, r_start, len);
6382   }
6383 
6384   // return cipher length (int)
6385   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6386   set_result(retvalue);
6387   return true;
6388 }
6389 
6390 //------------------------------inline_counterMode_AESCrypt-----------------------
6391 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6392   assert(UseAES, "need AES instruction support");
6393   if (!UseAESCTRIntrinsics) return false;
6394 
6395   address stubAddr = NULL;
6396   const char *stubName = NULL;
6397   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6398     stubAddr = StubRoutines::counterMode_AESCrypt();
6399     stubName = "counterMode_AESCrypt";
6400   }
6401   if (stubAddr == NULL) return false;
6402 
6403   Node* counterMode_object = argument(0);
6404   Node* src = argument(1);
6405   Node* src_offset = argument(2);
6406   Node* len = argument(3);
6407   Node* dest = argument(4);
6408   Node* dest_offset = argument(5);
6409 
6410   // (1) src and dest are arrays.
6411   const Type* src_type = src->Value(&_gvn);
6412   const Type* dest_type = dest->Value(&_gvn);
6413   const TypeAryPtr* top_src = src_type->isa_aryptr();
6414   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6415   assert(top_src != NULL && top_src->klass() != NULL &&
6416          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6417 
6418   // checks are the responsibility of the caller
6419   Node* src_start = src;
6420   Node* dest_start = dest;
6421   if (src_offset != NULL || dest_offset != NULL) {
6422     assert(src_offset != NULL && dest_offset != NULL, "");
6423     src_start = array_element_address(src, src_offset, T_BYTE);
6424     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6425   }
6426 
6427   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6428   // (because of the predicated logic executed earlier).
6429   // so we cast it here safely.
6430   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6431   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6432   if (embeddedCipherObj == NULL) return false;
6433   // cast it to what we know it will be at runtime
6434   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6435   assert(tinst != NULL, "CTR obj is null");
6436   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6437   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6438   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6439   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6440   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6441   const TypeOopPtr* xtype = aklass->as_instance_type();
6442   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6443   aescrypt_object = _gvn.transform(aescrypt_object);
6444   // we need to get the start of the aescrypt_object's expanded key array
6445   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6446   if (k_start == NULL) return false;
6447   // similarly, get the start address of the r vector
6448   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6449   if (obj_counter == NULL) return false;
6450   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6451 
6452   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6453   if (saved_encCounter == NULL) return false;
6454   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6455   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6456 
6457   Node* ctrCrypt;
6458   if (Matcher::pass_original_key_for_aes()) {
6459     // no SPARC version for AES/CTR intrinsics now.
6460     return false;
6461   }
6462   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6463   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6464                                OptoRuntime::counterMode_aescrypt_Type(),
6465                                stubAddr, stubName, TypePtr::BOTTOM,
6466                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6467 
6468   // return cipher length (int)
6469   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6470   set_result(retvalue);
6471   return true;
6472 }
6473 
6474 //------------------------------get_key_start_from_aescrypt_object-----------------------
6475 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6476 #if defined(PPC64) || defined(S390)
6477   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6478   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6479   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6480   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6481   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6482   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6483   if (objSessionK == NULL) {
6484     return (Node *) NULL;
6485   }
6486   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6487 #else
6488   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6489 #endif // PPC64
6490   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6491   if (objAESCryptKey == NULL) return (Node *) NULL;
6492 
6493   // now have the array, need to get the start address of the K array
6494   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6495   return k_start;
6496 }
6497 
6498 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6499 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6500   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6501   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6502   if (objAESCryptKey == NULL) return (Node *) NULL;
6503 
6504   // now have the array, need to get the start address of the lastKey array
6505   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6506   return original_k_start;
6507 }
6508 
6509 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6510 // Return node representing slow path of predicate check.
6511 // the pseudo code we want to emulate with this predicate is:
6512 // for encryption:
6513 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6514 // for decryption:
6515 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6516 //    note cipher==plain is more conservative than the original java code but that's OK
6517 //
6518 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6519   // The receiver was checked for NULL already.
6520   Node* objCBC = argument(0);
6521 
6522   // Load embeddedCipher field of CipherBlockChaining object.
6523   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6524 
6525   // get AESCrypt klass for instanceOf check
6526   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6527   // will have same classloader as CipherBlockChaining object
6528   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6529   assert(tinst != NULL, "CBCobj is null");
6530   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6531 
6532   // we want to do an instanceof comparison against the AESCrypt class
6533   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6534   if (!klass_AESCrypt->is_loaded()) {
6535     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6536     Node* ctrl = control();
6537     set_control(top()); // no regular fast path
6538     return ctrl;
6539   }
6540   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6541 
6542   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6543   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6544   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6545 
6546   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6547 
6548   // for encryption, we are done
6549   if (!decrypting)
6550     return instof_false;  // even if it is NULL
6551 
6552   // for decryption, we need to add a further check to avoid
6553   // taking the intrinsic path when cipher and plain are the same
6554   // see the original java code for why.
6555   RegionNode* region = new RegionNode(3);
6556   region->init_req(1, instof_false);
6557   Node* src = argument(1);
6558   Node* dest = argument(4);
6559   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6560   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6561   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6562   region->init_req(2, src_dest_conjoint);
6563 
6564   record_for_igvn(region);
6565   return _gvn.transform(region);
6566 }
6567 
6568 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6569 // Return node representing slow path of predicate check.
6570 // the pseudo code we want to emulate with this predicate is:
6571 // for encryption:
6572 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6573 // for decryption:
6574 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6575 //    note cipher==plain is more conservative than the original java code but that's OK
6576 //
6577 
6578 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6579   // The receiver was checked for NULL already.
6580   Node* objCTR = argument(0);
6581 
6582   // Load embeddedCipher field of CipherBlockChaining object.
6583   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6584 
6585   // get AESCrypt klass for instanceOf check
6586   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6587   // will have same classloader as CipherBlockChaining object
6588   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6589   assert(tinst != NULL, "CTRobj is null");
6590   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6591 
6592   // we want to do an instanceof comparison against the AESCrypt class
6593   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6594   if (!klass_AESCrypt->is_loaded()) {
6595     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6596     Node* ctrl = control();
6597     set_control(top()); // no regular fast path
6598     return ctrl;
6599   }
6600 
6601   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6602   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6603   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6604   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6605   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6606 
6607   return instof_false; // even if it is NULL
6608 }
6609 
6610 //------------------------------inline_ghash_processBlocks
6611 bool LibraryCallKit::inline_ghash_processBlocks() {
6612   address stubAddr;
6613   const char *stubName;
6614   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6615 
6616   stubAddr = StubRoutines::ghash_processBlocks();
6617   stubName = "ghash_processBlocks";
6618 
6619   Node* data           = argument(0);
6620   Node* offset         = argument(1);
6621   Node* len            = argument(2);
6622   Node* state          = argument(3);
6623   Node* subkeyH        = argument(4);
6624 
6625   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6626   assert(state_start, "state is NULL");
6627   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6628   assert(subkeyH_start, "subkeyH is NULL");
6629   Node* data_start  = array_element_address(data, offset, T_BYTE);
6630   assert(data_start, "data is NULL");
6631 
6632   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6633                                   OptoRuntime::ghash_processBlocks_Type(),
6634                                   stubAddr, stubName, TypePtr::BOTTOM,
6635                                   state_start, subkeyH_start, data_start, len);
6636   return true;
6637 }
6638 
6639 bool LibraryCallKit::inline_base64_encodeBlock() {
6640   address stubAddr;
6641   const char *stubName;
6642   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6643   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6644   stubAddr = StubRoutines::base64_encodeBlock();
6645   stubName = "encodeBlock";
6646 
6647   if (!stubAddr) return false;
6648   Node* base64obj = argument(0);
6649   Node* src = argument(1);
6650   Node* offset = argument(2);
6651   Node* len = argument(3);
6652   Node* dest = argument(4);
6653   Node* dp = argument(5);
6654   Node* isURL = argument(6);
6655 
6656   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6657   assert(src_start, "source array is NULL");
6658   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6659   assert(dest_start, "destination array is NULL");
6660 
6661   Node* base64 = make_runtime_call(RC_LEAF,
6662                                    OptoRuntime::base64_encodeBlock_Type(),
6663                                    stubAddr, stubName, TypePtr::BOTTOM,
6664                                    src_start, offset, len, dest_start, dp, isURL);
6665   return true;
6666 }
6667 
6668 //------------------------------inline_sha_implCompress-----------------------
6669 //
6670 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6671 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6672 //
6673 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6674 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6675 //
6676 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6677 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6678 //
6679 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6680   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6681 
6682   Node* sha_obj = argument(0);
6683   Node* src     = argument(1); // type oop
6684   Node* ofs     = argument(2); // type int
6685 
6686   const Type* src_type = src->Value(&_gvn);
6687   const TypeAryPtr* top_src = src_type->isa_aryptr();
6688   if (top_src  == NULL || top_src->klass()  == NULL) {
6689     // failed array check
6690     return false;
6691   }
6692   // Figure out the size and type of the elements we will be copying.
6693   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6694   if (src_elem != T_BYTE) {
6695     return false;
6696   }
6697   // 'src_start' points to src array + offset
6698   Node* src_start = array_element_address(src, ofs, src_elem);
6699   Node* state = NULL;
6700   address stubAddr;
6701   const char *stubName;
6702 
6703   switch(id) {
6704   case vmIntrinsics::_sha_implCompress:
6705     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6706     state = get_state_from_sha_object(sha_obj);
6707     stubAddr = StubRoutines::sha1_implCompress();
6708     stubName = "sha1_implCompress";
6709     break;
6710   case vmIntrinsics::_sha2_implCompress:
6711     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6712     state = get_state_from_sha_object(sha_obj);
6713     stubAddr = StubRoutines::sha256_implCompress();
6714     stubName = "sha256_implCompress";
6715     break;
6716   case vmIntrinsics::_sha5_implCompress:
6717     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6718     state = get_state_from_sha5_object(sha_obj);
6719     stubAddr = StubRoutines::sha512_implCompress();
6720     stubName = "sha512_implCompress";
6721     break;
6722   default:
6723     fatal_unexpected_iid(id);
6724     return false;
6725   }
6726   if (state == NULL) return false;
6727 
6728   // Call the stub.
6729   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6730                                  stubAddr, stubName, TypePtr::BOTTOM,
6731                                  src_start, state);
6732 
6733   return true;
6734 }
6735 
6736 //------------------------------inline_digestBase_implCompressMB-----------------------
6737 //
6738 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6739 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6740 //
6741 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6742   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6743          "need SHA1/SHA256/SHA512 instruction support");
6744   assert((uint)predicate < 3, "sanity");
6745   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6746 
6747   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6748   Node* src            = argument(1); // byte[] array
6749   Node* ofs            = argument(2); // type int
6750   Node* limit          = argument(3); // type int
6751 
6752   const Type* src_type = src->Value(&_gvn);
6753   const TypeAryPtr* top_src = src_type->isa_aryptr();
6754   if (top_src  == NULL || top_src->klass()  == NULL) {
6755     // failed array check
6756     return false;
6757   }
6758   // Figure out the size and type of the elements we will be copying.
6759   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6760   if (src_elem != T_BYTE) {
6761     return false;
6762   }
6763   // 'src_start' points to src array + offset
6764   Node* src_start = array_element_address(src, ofs, src_elem);
6765 
6766   const char* klass_SHA_name = NULL;
6767   const char* stub_name = NULL;
6768   address     stub_addr = NULL;
6769   bool        long_state = false;
6770 
6771   switch (predicate) {
6772   case 0:
6773     if (UseSHA1Intrinsics) {
6774       klass_SHA_name = "sun/security/provider/SHA";
6775       stub_name = "sha1_implCompressMB";
6776       stub_addr = StubRoutines::sha1_implCompressMB();
6777     }
6778     break;
6779   case 1:
6780     if (UseSHA256Intrinsics) {
6781       klass_SHA_name = "sun/security/provider/SHA2";
6782       stub_name = "sha256_implCompressMB";
6783       stub_addr = StubRoutines::sha256_implCompressMB();
6784     }
6785     break;
6786   case 2:
6787     if (UseSHA512Intrinsics) {
6788       klass_SHA_name = "sun/security/provider/SHA5";
6789       stub_name = "sha512_implCompressMB";
6790       stub_addr = StubRoutines::sha512_implCompressMB();
6791       long_state = true;
6792     }
6793     break;
6794   default:
6795     fatal("unknown SHA intrinsic predicate: %d", predicate);
6796   }
6797   if (klass_SHA_name != NULL) {
6798     // get DigestBase klass to lookup for SHA klass
6799     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6800     assert(tinst != NULL, "digestBase_obj is not instance???");
6801     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6802 
6803     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6804     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6805     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6806     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6807   }
6808   return false;
6809 }
6810 //------------------------------inline_sha_implCompressMB-----------------------
6811 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6812                                                bool long_state, address stubAddr, const char *stubName,
6813                                                Node* src_start, Node* ofs, Node* limit) {
6814   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6815   const TypeOopPtr* xtype = aklass->as_instance_type();
6816   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6817   sha_obj = _gvn.transform(sha_obj);
6818 
6819   Node* state;
6820   if (long_state) {
6821     state = get_state_from_sha5_object(sha_obj);
6822   } else {
6823     state = get_state_from_sha_object(sha_obj);
6824   }
6825   if (state == NULL) return false;
6826 
6827   // Call the stub.
6828   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6829                                  OptoRuntime::digestBase_implCompressMB_Type(),
6830                                  stubAddr, stubName, TypePtr::BOTTOM,
6831                                  src_start, state, ofs, limit);
6832   // return ofs (int)
6833   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6834   set_result(result);
6835 
6836   return true;
6837 }
6838 
6839 //------------------------------get_state_from_sha_object-----------------------
6840 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6841   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6842   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6843   if (sha_state == NULL) return (Node *) NULL;
6844 
6845   // now have the array, need to get the start address of the state array
6846   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6847   return state;
6848 }
6849 
6850 //------------------------------get_state_from_sha5_object-----------------------
6851 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6852   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6853   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6854   if (sha_state == NULL) return (Node *) NULL;
6855 
6856   // now have the array, need to get the start address of the state array
6857   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6858   return state;
6859 }
6860 
6861 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6862 // Return node representing slow path of predicate check.
6863 // the pseudo code we want to emulate with this predicate is:
6864 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6865 //
6866 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6867   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6868          "need SHA1/SHA256/SHA512 instruction support");
6869   assert((uint)predicate < 3, "sanity");
6870 
6871   // The receiver was checked for NULL already.
6872   Node* digestBaseObj = argument(0);
6873 
6874   // get DigestBase klass for instanceOf check
6875   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6876   assert(tinst != NULL, "digestBaseObj is null");
6877   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6878 
6879   const char* klass_SHA_name = NULL;
6880   switch (predicate) {
6881   case 0:
6882     if (UseSHA1Intrinsics) {
6883       // we want to do an instanceof comparison against the SHA class
6884       klass_SHA_name = "sun/security/provider/SHA";
6885     }
6886     break;
6887   case 1:
6888     if (UseSHA256Intrinsics) {
6889       // we want to do an instanceof comparison against the SHA2 class
6890       klass_SHA_name = "sun/security/provider/SHA2";
6891     }
6892     break;
6893   case 2:
6894     if (UseSHA512Intrinsics) {
6895       // we want to do an instanceof comparison against the SHA5 class
6896       klass_SHA_name = "sun/security/provider/SHA5";
6897     }
6898     break;
6899   default:
6900     fatal("unknown SHA intrinsic predicate: %d", predicate);
6901   }
6902 
6903   ciKlass* klass_SHA = NULL;
6904   if (klass_SHA_name != NULL) {
6905     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6906   }
6907   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6908     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6909     Node* ctrl = control();
6910     set_control(top()); // no intrinsic path
6911     return ctrl;
6912   }
6913   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6914 
6915   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6916   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6917   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6918   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6919 
6920   return instof_false;  // even if it is NULL
6921 }
6922 
6923 //-------------inline_fma-----------------------------------
6924 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6925   Node *a = NULL;
6926   Node *b = NULL;
6927   Node *c = NULL;
6928   Node* result = NULL;
6929   switch (id) {
6930   case vmIntrinsics::_fmaD:
6931     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6932     // no receiver since it is static method
6933     a = round_double_node(argument(0));
6934     b = round_double_node(argument(2));
6935     c = round_double_node(argument(4));
6936     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6937     break;
6938   case vmIntrinsics::_fmaF:
6939     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6940     a = argument(0);
6941     b = argument(1);
6942     c = argument(2);
6943     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6944     break;
6945   default:
6946     fatal_unexpected_iid(id);  break;
6947   }
6948   set_result(result);
6949   return true;
6950 }
6951 
6952 bool LibraryCallKit::inline_profileBoolean() {
6953   Node* counts = argument(1);
6954   const TypeAryPtr* ary = NULL;
6955   ciArray* aobj = NULL;
6956   if (counts->is_Con()
6957       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6958       && (aobj = ary->const_oop()->as_array()) != NULL
6959       && (aobj->length() == 2)) {
6960     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6961     jint false_cnt = aobj->element_value(0).as_int();
6962     jint  true_cnt = aobj->element_value(1).as_int();
6963 
6964     if (C->log() != NULL) {
6965       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6966                      false_cnt, true_cnt);
6967     }
6968 
6969     if (false_cnt + true_cnt == 0) {
6970       // According to profile, never executed.
6971       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6972                           Deoptimization::Action_reinterpret);
6973       return true;
6974     }
6975 
6976     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6977     // is a number of each value occurrences.
6978     Node* result = argument(0);
6979     if (false_cnt == 0 || true_cnt == 0) {
6980       // According to profile, one value has been never seen.
6981       int expected_val = (false_cnt == 0) ? 1 : 0;
6982 
6983       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6984       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6985 
6986       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6987       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6988       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6989 
6990       { // Slow path: uncommon trap for never seen value and then reexecute
6991         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6992         // the value has been seen at least once.
6993         PreserveJVMState pjvms(this);
6994         PreserveReexecuteState preexecs(this);
6995         jvms()->set_should_reexecute(true);
6996 
6997         set_control(slow_path);
6998         set_i_o(i_o());
6999 
7000         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
7001                             Deoptimization::Action_reinterpret);
7002       }
7003       // The guard for never seen value enables sharpening of the result and
7004       // returning a constant. It allows to eliminate branches on the same value
7005       // later on.
7006       set_control(fast_path);
7007       result = intcon(expected_val);
7008     }
7009     // Stop profiling.
7010     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
7011     // By replacing method body with profile data (represented as ProfileBooleanNode
7012     // on IR level) we effectively disable profiling.
7013     // It enables full speed execution once optimized code is generated.
7014     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
7015     C->record_for_igvn(profile);
7016     set_result(profile);
7017     return true;
7018   } else {
7019     // Continue profiling.
7020     // Profile data isn't available at the moment. So, execute method's bytecode version.
7021     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
7022     // is compiled and counters aren't available since corresponding MethodHandle
7023     // isn't a compile-time constant.
7024     return false;
7025   }
7026 }
7027 
7028 bool LibraryCallKit::inline_isCompileConstant() {
7029   Node* n = argument(0);
7030   set_result(n->is_Con() ? intcon(1) : intcon(0));
7031   return true;
7032 }