/* * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_C1_C1_VALUESTACK_HPP #define SHARE_VM_C1_C1_VALUESTACK_HPP #include "c1/c1_Instruction.hpp" class ValueStack: public CompilationResourceObj { public: enum Kind { Parsing, // During abstract interpretation in GraphBuilder CallerState, // Caller state when inlining StateBefore, // Before before execution of instruction StateAfter, // After execution of instruction ExceptionState, // Exception handling of instruction EmptyExceptionState, // Exception handling of instructions not covered by an xhandler BlockBeginState // State of BlockBegin instruction with phi functions of this block }; private: IRScope* _scope; // the enclosing scope ValueStack* _caller_state; int _bci; Kind _kind; Values _locals; // the locals Values _stack; // the expression stack Values _locks; // the monitor stack (holding the locked values) Value check(ValueTag tag, Value t) { assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond"); return t; } Value check(ValueTag tag, Value t, Value h) { assert(h == NULL, "hi-word of doubleword value must be NULL"); return check(tag, t); } // helper routine static void apply(Values list, ValueVisitor* f); // for simplified copying ValueStack(ValueStack* copy_from, Kind kind, int bci); public: // creation ValueStack(IRScope* scope, ValueStack* caller_state); ValueStack* copy() { return new ValueStack(this, _kind, _bci); } ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci); } ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99); } void set_caller_state(ValueStack* s) { assert(kind() == EmptyExceptionState || (Compilation::current()->env()->jvmti_can_access_local_variables() && kind() == ExceptionState), "only EmptyExceptionStates can be modified"); _caller_state = s; } bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals) // accessors IRScope* scope() const { return _scope; } ValueStack* caller_state() const { return _caller_state; } int bci() const { return _bci; } Kind kind() const { return _kind; } int locals_size() const { return _locals.length(); } int stack_size() const { return _stack.length(); } int locks_size() const { return _locks.length(); } bool stack_is_empty() const { return _stack.is_empty(); } bool no_active_locks() const { return _locks.is_empty(); } int total_locks_size() const; // locals access void clear_locals(); // sets all locals to NULL; void invalidate_local(int i) { assert(_locals.at(i)->type()->is_single_word() || _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); _locals.at_put(i, NULL); } Value local_at(int i) const { Value x = _locals.at(i); assert(x == NULL || x->type()->is_single_word() || _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); return x; } void store_local(int i, Value x) { // When overwriting local i, check if i - 1 was the start of a // double word local and kill it. if (i > 0) { Value prev = _locals.at(i - 1); if (prev != NULL && prev->type()->is_double_word()) { _locals.at_put(i - 1, NULL); } } _locals.at_put(i, x); if (x->type()->is_double_word()) { // hi-word of doubleword value is always NULL _locals.at_put(i + 1, NULL); } } // stack access Value stack_at(int i) const { Value x = _stack.at(i); assert(x->type()->is_single_word() || _stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); return x; } Value stack_at_inc(int& i) const { Value x = stack_at(i); i += x->type()->size(); return x; } // pinning support void pin_stack_for_linear_scan(); // iteration void values_do(ValueVisitor* f); // untyped manipulation (for dup_x1, etc.) void truncate_stack(int size) { _stack.trunc_to(size); } void raw_push(Value t) { _stack.push(t); } Value raw_pop() { return _stack.pop(); } // typed manipulation void ipush(Value t) { _stack.push(check(intTag , t)); } void fpush(Value t) { _stack.push(check(floatTag , t)); } void apush(Value t) { _stack.push(check(objectTag , t)); } void rpush(Value t) { _stack.push(check(addressTag, t)); } void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); } void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); } void push(ValueType* type, Value t) { switch (type->tag()) { case intTag : ipush(t); return; case longTag : lpush(t); return; case floatTag : fpush(t); return; case doubleTag : dpush(t); return; case objectTag : apush(t); return; case addressTag: rpush(t); return; } ShouldNotReachHere(); } Value ipop() { return check(intTag , _stack.pop()); } Value fpop() { return check(floatTag , _stack.pop()); } Value apop() { return check(objectTag , _stack.pop()); } Value rpop() { return check(addressTag, _stack.pop()); } Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); } Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); } Value pop(ValueType* type) { switch (type->tag()) { case intTag : return ipop(); case longTag : return lpop(); case floatTag : return fpop(); case doubleTag : return dpop(); case objectTag : return apop(); case addressTag: return rpop(); } ShouldNotReachHere(); return NULL; } Values* pop_arguments(int argument_size); // locks access int lock (Value obj); int unlock(); Value lock_at(int i) const { return _locks.at(i); } // SSA form IR support void setup_phi_for_stack(BlockBegin* b, int index); void setup_phi_for_local(BlockBegin* b, int index); // debugging void print() PRODUCT_RETURN; void verify() PRODUCT_RETURN; }; // Macro definitions for simple iteration of stack and local values of a ValueStack // The macros can be used like a for-loop. All variables (state, index and value) // must be defined before the loop. // When states are nested because of inlining, the stack of the innermost state // cumulates also the stack of the nested states. In contrast, the locals of all // states must be iterated each. // Use the following code pattern to iterate all stack values and all nested local values: // // ValueStack* state = ... // state that is iterated // int index; // current loop index (overwritten in loop) // Value value; // value at current loop index (overwritten in loop) // // for_each_stack_value(state, index, value { // do something with value and index // } // // for_each_state(state) { // for_each_local_value(state, index, value) { // do something with value and index // } // } // as an invariant, state is NULL now // construct a unique variable name with the line number where the macro is used #define temp_var3(x) temp__ ## x #define temp_var2(x) temp_var3(x) #define temp_var temp_var2(__LINE__) #define for_each_state(state) \ for (; state != NULL; state = state->caller_state()) #define for_each_local_value(state, index, value) \ int temp_var = state->locals_size(); \ for (index = 0; \ index < temp_var && (value = state->local_at(index), true); \ index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \ if (value != NULL) #define for_each_stack_value(state, index, value) \ int temp_var = state->stack_size(); \ for (index = 0; \ index < temp_var && (value = state->stack_at(index), true); \ index += value->type()->size()) #define for_each_lock_value(state, index, value) \ int temp_var = state->locks_size(); \ for (index = 0; \ index < temp_var && (value = state->lock_at(index), true); \ index++) \ if (value != NULL) // Macro definition for simple iteration of all state values of a ValueStack // Because the code cannot be executed in a single loop, the code must be passed // as a macro parameter. // Use the following code pattern to iterate all stack values and all nested local values: // // ValueStack* state = ... // state that is iterated // for_each_state_value(state, value, // do something with value (note that this is a macro parameter) // ); #define for_each_state_value(v_state, v_value, v_code) \ { \ int cur_index; \ ValueStack* cur_state = v_state; \ Value v_value; \ for_each_state(cur_state) { \ { \ for_each_local_value(cur_state, cur_index, v_value) { \ v_code; \ } \ } \ { \ for_each_stack_value(cur_state, cur_index, v_value) { \ v_code; \ } \ } \ } \ } // Macro definition for simple iteration of all phif functions of a block, i.e all // phi functions of the ValueStack where the block matches. // Use the following code pattern to iterate all phi functions of a block: // // BlockBegin* block = ... // block that is iterated // for_each_phi_function(block, phi, // do something with the phi function phi (note that this is a macro parameter) // ); #define for_each_phi_fun(v_block, v_phi, v_code) \ { \ int cur_index; \ ValueStack* cur_state = v_block->state(); \ Value value; \ { \ for_each_stack_value(cur_state, cur_index, value) { \ Phi* v_phi = value->as_Phi(); \ if (v_phi != NULL && v_phi->block() == v_block) { \ v_code; \ } \ } \ } \ { \ for_each_local_value(cur_state, cur_index, value) { \ Phi* v_phi = value->as_Phi(); \ if (v_phi != NULL && v_phi->block() == v_block) { \ v_code; \ } \ } \ } \ } #endif // SHARE_VM_C1_C1_VALUESTACK_HPP