1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_interp_masm_sparc.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #ifndef FAST_DISPATCH
  30 #define FAST_DISPATCH 1
  31 #endif
  32 #undef FAST_DISPATCH
  33 
  34 // Implementation of InterpreterMacroAssembler
  35 
  36 // This file specializes the assember with interpreter-specific macros
  37 
  38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  40 
  41 #else // CC_INTERP
  42 #ifndef STATE
  43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  44 #endif // STATE
  45 
  46 #endif // CC_INTERP
  47 
  48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  49   // Note: this algorithm is also used by C1's OSR entry sequence.
  50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  51   assert_different_registers(args_size, locals_size);
  52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  53   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  54   // Use br/mov combination because it works on both V8 and V9 and is
  55   // faster.
  56   Label skip_move;
  57   br(Assembler::negative, true, Assembler::pt, skip_move);
  58   delayed()->mov(G0, delta);
  59   bind(skip_move);
  60   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  61   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  62 }
  63 
  64 #ifndef CC_INTERP
  65 
  66 // Dispatch code executed in the prolog of a bytecode which does not do it's
  67 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  68 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  69   assert_not_delayed();
  70 #ifdef FAST_DISPATCH
  71   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  72   // they both use I2.
  73   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  74   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  75   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  76                                                         // add offset to correct dispatch table
  77   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  78   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  79 #else
  80   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  81   // dispatch table to use
  82   AddressLiteral tbl(Interpreter::dispatch_table(state));
  83   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  84   set(tbl, G3_scratch);                                 // compute addr of table
  85   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  86 #endif
  87 }
  88 
  89 
  90 // Dispatch code executed in the epilog of a bytecode which does not do it's
  91 // own dispatch. The dispatch address in IdispatchAddress is used for the
  92 // dispatch.
  93 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  94   assert_not_delayed();
  95   verify_FPU(1, state);
  96   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  97   jmp( IdispatchAddress, 0 );
  98   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  99   else                delayed()->nop();
 100 }
 101 
 102 
 103 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 104   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 105   assert_not_delayed();
 106   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 107   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 108 }
 109 
 110 
 111 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 112   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 113   assert_not_delayed();
 114   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 115   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 116 }
 117 
 118 
 119 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 120   // load current bytecode
 121   assert_not_delayed();
 122   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 123   dispatch_base(state, table);
 124 }
 125 
 126 
 127 void InterpreterMacroAssembler::call_VM_leaf_base(
 128   Register java_thread,
 129   address  entry_point,
 130   int      number_of_arguments
 131 ) {
 132   if (!java_thread->is_valid())
 133     java_thread = L7_thread_cache;
 134   // super call
 135   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 136 }
 137 
 138 
 139 void InterpreterMacroAssembler::call_VM_base(
 140   Register        oop_result,
 141   Register        java_thread,
 142   Register        last_java_sp,
 143   address         entry_point,
 144   int             number_of_arguments,
 145   bool            check_exception
 146 ) {
 147   if (!java_thread->is_valid())
 148     java_thread = L7_thread_cache;
 149   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 150   // takes responsibility for setting its own thread-state on call-out.
 151   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 152 
 153   //save_bcp();                                  // save bcp
 154   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 155   //restore_bcp();                               // restore bcp
 156   //restore_locals();                            // restore locals pointer
 157 }
 158 
 159 
 160 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 161   if (JvmtiExport::can_pop_frame()) {
 162     Label L;
 163 
 164     // Check the "pending popframe condition" flag in the current thread
 165     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 166 
 167     // Initiate popframe handling only if it is not already being processed.  If the flag
 168     // has the popframe_processing bit set, it means that this code is called *during* popframe
 169     // handling - we don't want to reenter.
 170     btst(JavaThread::popframe_pending_bit, scratch_reg);
 171     br(zero, false, pt, L);
 172     delayed()->nop();
 173     btst(JavaThread::popframe_processing_bit, scratch_reg);
 174     br(notZero, false, pt, L);
 175     delayed()->nop();
 176 
 177     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 178     // address of the same-named entrypoint in the generated interpreter code.
 179     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 180 
 181     // Jump to Interpreter::_remove_activation_preserving_args_entry
 182     jmpl(O0, G0, G0);
 183     delayed()->nop();
 184     bind(L);
 185   }
 186 }
 187 
 188 
 189 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 190   Register thr_state = G4_scratch;
 191   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 192   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 193   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 194   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 195   switch (state) {
 196   case ltos: ld_long(val_addr, Otos_l);                   break;
 197   case atos: ld_ptr(oop_addr, Otos_l);
 198              st_ptr(G0, oop_addr);                        break;
 199   case btos:                                           // fall through
 200   case ctos:                                           // fall through
 201   case stos:                                           // fall through
 202   case itos: ld(val_addr, Otos_l1);                       break;
 203   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 204   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 205   case vtos: /* nothing to do */                          break;
 206   default  : ShouldNotReachHere();
 207   }
 208   // Clean up tos value in the jvmti thread state
 209   or3(G0, ilgl, G3_scratch);
 210   stw(G3_scratch, tos_addr);
 211   st_long(G0, val_addr);
 212   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 217   if (JvmtiExport::can_force_early_return()) {
 218     Label L;
 219     Register thr_state = G3_scratch;
 220     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 221     tst(thr_state);
 222     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 223     delayed()->nop();
 224 
 225     // Initiate earlyret handling only if it is not already being processed.
 226     // If the flag has the earlyret_processing bit set, it means that this code
 227     // is called *during* earlyret handling - we don't want to reenter.
 228     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 229     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
 230     br(Assembler::notEqual, false, pt, L);
 231     delayed()->nop();
 232 
 233     // Call Interpreter::remove_activation_early_entry() to get the address of the
 234     // same-named entrypoint in the generated interpreter code
 235     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 236     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 237 
 238     // Jump to Interpreter::_remove_activation_early_entry
 239     jmpl(O0, G0, G0);
 240     delayed()->nop();
 241     bind(L);
 242   }
 243 }
 244 
 245 
 246 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 247   mov(arg_1, O0);
 248   mov(arg_2, O1);
 249   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 250 }
 251 #endif /* CC_INTERP */
 252 
 253 
 254 #ifndef CC_INTERP
 255 
 256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 257   assert_not_delayed();
 258   dispatch_Lbyte_code(state, table);
 259 }
 260 
 261 
 262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 263   dispatch_base(state, Interpreter::normal_table(state));
 264 }
 265 
 266 
 267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 268   dispatch_base(state, Interpreter::dispatch_table(state));
 269 }
 270 
 271 
 272 // common code to dispatch and dispatch_only
 273 // dispatch value in Lbyte_code and increment Lbcp
 274 
 275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 276   verify_FPU(1, state);
 277   // %%%%% maybe implement +VerifyActivationFrameSize here
 278   //verify_thread(); //too slow; we will just verify on method entry & exit
 279   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 280 #ifdef FAST_DISPATCH
 281   if (table == Interpreter::dispatch_table(state)) {
 282     // use IdispatchTables
 283     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 284                                                         // add offset to correct dispatch table
 285     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 286     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 287   } else {
 288 #endif
 289     // dispatch table to use
 290     AddressLiteral tbl(table);
 291     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 292     set(tbl, G3_scratch);                               // compute addr of table
 293     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 294 #ifdef FAST_DISPATCH
 295   }
 296 #endif
 297   jmp( G3_scratch, 0 );
 298   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 299   else                delayed()->nop();
 300 }
 301 
 302 
 303 // Helpers for expression stack
 304 
 305 // Longs and doubles are Category 2 computational types in the
 306 // JVM specification (section 3.11.1) and take 2 expression stack or
 307 // local slots.
 308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 309 // for the dup* bytecodes depends on what types are already on the stack.
 310 // If the types are split into the two stack/local slots, that is much easier
 311 // (and we can use 0 for non-reference tags).
 312 
 313 // Known good alignment in _LP64 but unknown otherwise
 314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 315   assert_not_delayed();
 316 
 317 #ifdef _LP64
 318   ldf(FloatRegisterImpl::D, r1, offset, d);
 319 #else
 320   ldf(FloatRegisterImpl::S, r1, offset, d);
 321   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
 322 #endif
 323 }
 324 
 325 // Known good alignment in _LP64 but unknown otherwise
 326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 327   assert_not_delayed();
 328 
 329 #ifdef _LP64
 330   stf(FloatRegisterImpl::D, d, r1, offset);
 331   // store something more useful here
 332   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 333 #else
 334   stf(FloatRegisterImpl::S, d, r1, offset);
 335   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
 336 #endif
 337 }
 338 
 339 
 340 // Known good alignment in _LP64 but unknown otherwise
 341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 342   assert_not_delayed();
 343 #ifdef _LP64
 344   ldx(r1, offset, rd);
 345 #else
 346   ld(r1, offset, rd);
 347   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
 348 #endif
 349 }
 350 
 351 // Known good alignment in _LP64 but unknown otherwise
 352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 353   assert_not_delayed();
 354 
 355 #ifdef _LP64
 356   stx(l, r1, offset);
 357   // store something more useful here
 358   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 359 #else
 360   st(l, r1, offset);
 361   st(l->successor(), r1, offset + Interpreter::stackElementSize);
 362 #endif
 363 }
 364 
 365 void InterpreterMacroAssembler::pop_i(Register r) {
 366   assert_not_delayed();
 367   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 368   inc(Lesp, Interpreter::stackElementSize);
 369   debug_only(verify_esp(Lesp));
 370 }
 371 
 372 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 373   assert_not_delayed();
 374   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 375   inc(Lesp, Interpreter::stackElementSize);
 376   debug_only(verify_esp(Lesp));
 377 }
 378 
 379 void InterpreterMacroAssembler::pop_l(Register r) {
 380   assert_not_delayed();
 381   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 382   inc(Lesp, 2*Interpreter::stackElementSize);
 383   debug_only(verify_esp(Lesp));
 384 }
 385 
 386 
 387 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 388   assert_not_delayed();
 389   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 390   inc(Lesp, Interpreter::stackElementSize);
 391   debug_only(verify_esp(Lesp));
 392 }
 393 
 394 
 395 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 396   assert_not_delayed();
 397   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 398   inc(Lesp, 2*Interpreter::stackElementSize);
 399   debug_only(verify_esp(Lesp));
 400 }
 401 
 402 
 403 void InterpreterMacroAssembler::push_i(Register r) {
 404   assert_not_delayed();
 405   debug_only(verify_esp(Lesp));
 406   st(r, Lesp, 0);
 407   dec(Lesp, Interpreter::stackElementSize);
 408 }
 409 
 410 void InterpreterMacroAssembler::push_ptr(Register r) {
 411   assert_not_delayed();
 412   st_ptr(r, Lesp, 0);
 413   dec(Lesp, Interpreter::stackElementSize);
 414 }
 415 
 416 // remember: our convention for longs in SPARC is:
 417 // O0 (Otos_l1) has high-order part in first word,
 418 // O1 (Otos_l2) has low-order part in second word
 419 
 420 void InterpreterMacroAssembler::push_l(Register r) {
 421   assert_not_delayed();
 422   debug_only(verify_esp(Lesp));
 423   // Longs are stored in memory-correct order, even if unaligned.
 424   int offset = -Interpreter::stackElementSize;
 425   store_unaligned_long(r, Lesp, offset);
 426   dec(Lesp, 2 * Interpreter::stackElementSize);
 427 }
 428 
 429 
 430 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 431   assert_not_delayed();
 432   debug_only(verify_esp(Lesp));
 433   stf(FloatRegisterImpl::S, f, Lesp, 0);
 434   dec(Lesp, Interpreter::stackElementSize);
 435 }
 436 
 437 
 438 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 439   assert_not_delayed();
 440   debug_only(verify_esp(Lesp));
 441   // Longs are stored in memory-correct order, even if unaligned.
 442   int offset = -Interpreter::stackElementSize;
 443   store_unaligned_double(d, Lesp, offset);
 444   dec(Lesp, 2 * Interpreter::stackElementSize);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::push(TosState state) {
 449   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 450   switch (state) {
 451     case atos: push_ptr();            break;
 452     case btos: push_i();              break;
 453     case ctos:
 454     case stos: push_i();              break;
 455     case itos: push_i();              break;
 456     case ltos: push_l();              break;
 457     case ftos: push_f();              break;
 458     case dtos: push_d();              break;
 459     case vtos: /* nothing to do */    break;
 460     default  : ShouldNotReachHere();
 461   }
 462 }
 463 
 464 
 465 void InterpreterMacroAssembler::pop(TosState state) {
 466   switch (state) {
 467     case atos: pop_ptr();            break;
 468     case btos: pop_i();              break;
 469     case ctos:
 470     case stos: pop_i();              break;
 471     case itos: pop_i();              break;
 472     case ltos: pop_l();              break;
 473     case ftos: pop_f();              break;
 474     case dtos: pop_d();              break;
 475     case vtos: /* nothing to do */   break;
 476     default  : ShouldNotReachHere();
 477   }
 478   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 479 }
 480 
 481 
 482 // Helpers for swap and dup
 483 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 484   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 485 }
 486 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 487   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 488 }
 489 
 490 
 491 void InterpreterMacroAssembler::load_receiver(Register param_count,
 492                                               Register recv) {
 493   sll(param_count, Interpreter::logStackElementSize, param_count);
 494   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
 495 }
 496 
 497 void InterpreterMacroAssembler::empty_expression_stack() {
 498   // Reset Lesp.
 499   sub( Lmonitors, wordSize, Lesp );
 500 
 501   // Reset SP by subtracting more space from Lesp.
 502   Label done;
 503   verify_oop(Lmethod);
 504   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 505 
 506   // A native does not need to do this, since its callee does not change SP.
 507   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
 508   btst(JVM_ACC_NATIVE, Gframe_size);
 509   br(Assembler::notZero, false, Assembler::pt, done);
 510   delayed()->nop();
 511 
 512   // Compute max expression stack+register save area
 513   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
 514   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 515 
 516   //
 517   // now set up a stack frame with the size computed above
 518   //
 519   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 520   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 521   sub( Lesp, Gframe_size, Gframe_size );
 522   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 523   debug_only(verify_sp(Gframe_size, G4_scratch));
 524 #ifdef _LP64
 525   sub(Gframe_size, STACK_BIAS, Gframe_size );
 526 #endif
 527   mov(Gframe_size, SP);
 528 
 529   bind(done);
 530 }
 531 
 532 
 533 #ifdef ASSERT
 534 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 535   Label Bad, OK;
 536 
 537   // Saved SP must be aligned.
 538 #ifdef _LP64
 539   btst(2*BytesPerWord-1, Rsp);
 540 #else
 541   btst(LongAlignmentMask, Rsp);
 542 #endif
 543   br(Assembler::notZero, false, Assembler::pn, Bad);
 544   delayed()->nop();
 545 
 546   // Saved SP, plus register window size, must not be above FP.
 547   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 548 #ifdef _LP64
 549   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 550 #endif
 551   cmp(Rtemp, FP);
 552   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
 553   delayed()->nop();
 554 
 555   // Saved SP must not be ridiculously below current SP.
 556   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 557   set(maxstack, Rtemp);
 558   sub(SP, Rtemp, Rtemp);
 559 #ifdef _LP64
 560   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 561 #endif
 562   cmp(Rsp, Rtemp);
 563   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
 564   delayed()->nop();
 565 
 566   br(Assembler::always, false, Assembler::pn, OK);
 567   delayed()->nop();
 568 
 569   bind(Bad);
 570   stop("on return to interpreted call, restored SP is corrupted");
 571 
 572   bind(OK);
 573 }
 574 
 575 
 576 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 577   // about to read or write Resp[0]
 578   // make sure it is not in the monitors or the register save area
 579   Label OK1, OK2;
 580 
 581   cmp(Resp, Lmonitors);
 582   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 583   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 584   stop("too many pops:  Lesp points into monitor area");
 585   bind(OK1);
 586 #ifdef _LP64
 587   sub(Resp, STACK_BIAS, Resp);
 588 #endif
 589   cmp(Resp, SP);
 590   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 591   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 592   stop("too many pushes:  Lesp points into register window");
 593   bind(OK2);
 594 }
 595 #endif // ASSERT
 596 
 597 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 598 // do the call. Centralized so that all interpreter calls will do the same actions.
 599 // If jvmti single stepping is on for a thread we must not call compiled code.
 600 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 601 
 602   // Assume we want to go compiled if available
 603 
 604   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
 605 
 606   if (JvmtiExport::can_post_interpreter_events()) {
 607     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 608     // compiled code in threads for which the event is enabled.  Check here for
 609     // interp_only_mode if these events CAN be enabled.
 610     verify_thread();
 611     Label skip_compiled_code;
 612 
 613     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 614     ld(interp_only, scratch);
 615     tst(scratch);
 616     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
 617     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
 618     bind(skip_compiled_code);
 619   }
 620 
 621   // the i2c_adapters need methodOop in G5_method (right? %%%)
 622   // do the call
 623 #ifdef ASSERT
 624   {
 625     Label ok;
 626     br_notnull(target, false, Assembler::pt, ok);
 627     delayed()->nop();
 628     stop("null entry point");
 629     bind(ok);
 630   }
 631 #endif // ASSERT
 632 
 633   // Adjust Rret first so Llast_SP can be same as Rret
 634   add(Rret, -frame::pc_return_offset, O7);
 635   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 636   // Record SP so we can remove any stack space allocated by adapter transition
 637   jmp(target, 0);
 638   delayed()->mov(SP, Llast_SP);
 639 }
 640 
 641 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 642   assert_not_delayed();
 643 
 644   Label not_taken;
 645   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 646   else             br (cc, false, Assembler::pn, not_taken);
 647   delayed()->nop();
 648 
 649   TemplateTable::branch(false,false);
 650 
 651   bind(not_taken);
 652 
 653   profile_not_taken_branch(G3_scratch);
 654 }
 655 
 656 
 657 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 658                                   int         bcp_offset,
 659                                   Register    Rtmp,
 660                                   Register    Rdst,
 661                                   signedOrNot is_signed,
 662                                   setCCOrNot  should_set_CC ) {
 663   assert(Rtmp != Rdst, "need separate temp register");
 664   assert_not_delayed();
 665   switch (is_signed) {
 666    default: ShouldNotReachHere();
 667 
 668    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 669    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 670   }
 671   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 672   sll( Rdst, BitsPerByte, Rdst);
 673   switch (should_set_CC ) {
 674    default: ShouldNotReachHere();
 675 
 676    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 677    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 678   }
 679 }
 680 
 681 
 682 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 683                                   int        bcp_offset,
 684                                   Register   Rtmp,
 685                                   Register   Rdst,
 686                                   setCCOrNot should_set_CC ) {
 687   assert(Rtmp != Rdst, "need separate temp register");
 688   assert_not_delayed();
 689   add( Lbcp, bcp_offset, Rtmp);
 690   andcc( Rtmp, 3, G0);
 691   Label aligned;
 692   switch (should_set_CC ) {
 693    default: ShouldNotReachHere();
 694 
 695    case      set_CC: break;
 696    case dont_set_CC: break;
 697   }
 698 
 699   br(Assembler::zero, true, Assembler::pn, aligned);
 700 #ifdef _LP64
 701   delayed()->ldsw(Rtmp, 0, Rdst);
 702 #else
 703   delayed()->ld(Rtmp, 0, Rdst);
 704 #endif
 705 
 706   ldub(Lbcp, bcp_offset + 3, Rdst);
 707   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 708   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 709 #ifdef _LP64
 710   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 711 #else
 712   // Unsigned load is faster than signed on some implementations
 713   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 714 #endif
 715   or3(Rtmp, Rdst, Rdst );
 716 
 717   bind(aligned);
 718   if (should_set_CC == set_CC) tst(Rdst);
 719 }
 720 
 721 
 722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
 723                                                        int bcp_offset, size_t index_size) {
 724   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 725   if (index_size == sizeof(u2)) {
 726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 727   } else if (index_size == sizeof(u4)) {
 728     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
 729     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
 730     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 731     xor3(tmp, -1, tmp);  // convert to plain index
 732   } else if (index_size == sizeof(u1)) {
 733     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
 734     ldub(Lbcp, bcp_offset, tmp);
 735   } else {
 736     ShouldNotReachHere();
 737   }
 738 }
 739 
 740 
 741 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 742                                                            int bcp_offset, size_t index_size) {
 743   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 744   assert_different_registers(cache, tmp);
 745   assert_not_delayed();
 746   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 747   // convert from field index to ConstantPoolCacheEntry index and from
 748   // word index to byte offset
 749   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 750   add(LcpoolCache, tmp, cache);
 751 }
 752 
 753 
 754 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 755                                                                int bcp_offset, size_t index_size) {
 756   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 757   assert_different_registers(cache, tmp);
 758   assert_not_delayed();
 759   if (index_size == sizeof(u2)) {
 760     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 761   } else {
 762     ShouldNotReachHere();  // other sizes not supported here
 763   }
 764               // convert from field index to ConstantPoolCacheEntry index
 765               // and from word index to byte offset
 766   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 767               // skip past the header
 768   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
 769               // construct pointer to cache entry
 770   add(LcpoolCache, tmp, cache);
 771 }
 772 
 773 
 774 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 775 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 776 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 777                                                   Register Rsuper_klass,
 778                                                   Register Rtmp1,
 779                                                   Register Rtmp2,
 780                                                   Register Rtmp3,
 781                                                   Label &ok_is_subtype ) {
 782   Label not_subtype;
 783 
 784   // Profile the not-null value's klass.
 785   profile_typecheck(Rsub_klass, Rtmp1);
 786 
 787   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 788                                 Rtmp1, Rtmp2,
 789                                 &ok_is_subtype, &not_subtype, NULL);
 790 
 791   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 792                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 793                                 &ok_is_subtype, NULL);
 794 
 795   bind(not_subtype);
 796   profile_typecheck_failed(Rtmp1);
 797 }
 798 
 799 // Separate these two to allow for delay slot in middle
 800 // These are used to do a test and full jump to exception-throwing code.
 801 
 802 // %%%%% Could possibly reoptimize this by testing to see if could use
 803 // a single conditional branch (i.e. if span is small enough.
 804 // If you go that route, than get rid of the split and give up
 805 // on the delay-slot hack.
 806 
 807 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 808                                                     Label&    ok ) {
 809   assert_not_delayed();
 810   br(ok_condition, true, pt, ok);
 811   // DELAY SLOT
 812 }
 813 
 814 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 815                                                     Label&    ok ) {
 816   assert_not_delayed();
 817   bp( ok_condition, true, Assembler::xcc, pt, ok);
 818   // DELAY SLOT
 819 }
 820 
 821 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 822                                                   Label&    ok ) {
 823   assert_not_delayed();
 824   brx(ok_condition, true, pt, ok);
 825   // DELAY SLOT
 826 }
 827 
 828 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 829                                                 Register Rscratch,
 830                                                 Label&   ok ) {
 831   assert(throw_entry_point != NULL, "entry point must be generated by now");
 832   AddressLiteral dest(throw_entry_point);
 833   jump_to(dest, Rscratch);
 834   delayed()->nop();
 835   bind(ok);
 836 }
 837 
 838 
 839 // And if you cannot use the delay slot, here is a shorthand:
 840 
 841 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 842                                                   address   throw_entry_point,
 843                                                   Register  Rscratch ) {
 844   Label ok;
 845   if (ok_condition != never) {
 846     throw_if_not_1_icc( ok_condition, ok);
 847     delayed()->nop();
 848   }
 849   throw_if_not_2( throw_entry_point, Rscratch, ok);
 850 }
 851 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 852                                                   address   throw_entry_point,
 853                                                   Register  Rscratch ) {
 854   Label ok;
 855   if (ok_condition != never) {
 856     throw_if_not_1_xcc( ok_condition, ok);
 857     delayed()->nop();
 858   }
 859   throw_if_not_2( throw_entry_point, Rscratch, ok);
 860 }
 861 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 862                                                 address   throw_entry_point,
 863                                                 Register  Rscratch ) {
 864   Label ok;
 865   if (ok_condition != never) {
 866     throw_if_not_1_x( ok_condition, ok);
 867     delayed()->nop();
 868   }
 869   throw_if_not_2( throw_entry_point, Rscratch, ok);
 870 }
 871 
 872 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 873 // Note: res is still shy of address by array offset into object.
 874 
 875 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 876   assert_not_delayed();
 877 
 878   verify_oop(array);
 879 #ifdef _LP64
 880   // sign extend since tos (index) can be a 32bit value
 881   sra(index, G0, index);
 882 #endif // _LP64
 883 
 884   // check array
 885   Label ptr_ok;
 886   tst(array);
 887   throw_if_not_1_x( notZero, ptr_ok );
 888   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 889   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 890 
 891   Label index_ok;
 892   cmp(index, tmp);
 893   throw_if_not_1_icc( lessUnsigned, index_ok );
 894   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 895   else                  delayed()->add(array, index, res); // addr - const offset in index
 896   // convention: move aberrant index into G3_scratch for exception message
 897   mov(index, G3_scratch);
 898   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 899 
 900   // add offset if didn't do it in delay slot
 901   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 902 }
 903 
 904 
 905 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 906   assert_not_delayed();
 907 
 908   // pop array
 909   pop_ptr(array);
 910 
 911   // check array
 912   index_check_without_pop(array, index, index_shift, tmp, res);
 913 }
 914 
 915 
 916 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 917   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
 918 }
 919 
 920 
 921 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 922   get_constant_pool(Rdst);
 923   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
 924 }
 925 
 926 
 927 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 928   get_constant_pool(Rcpool);
 929   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
 930 }
 931 
 932 
 933 // unlock if synchronized method
 934 //
 935 // Unlock the receiver if this is a synchronized method.
 936 // Unlock any Java monitors from syncronized blocks.
 937 //
 938 // If there are locked Java monitors
 939 //    If throw_monitor_exception
 940 //       throws IllegalMonitorStateException
 941 //    Else if install_monitor_exception
 942 //       installs IllegalMonitorStateException
 943 //    Else
 944 //       no error processing
 945 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 946                                                               bool throw_monitor_exception,
 947                                                               bool install_monitor_exception) {
 948   Label unlocked, unlock, no_unlock;
 949 
 950   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 951   const Address do_not_unlock_if_synchronized(G2_thread,
 952     JavaThread::do_not_unlock_if_synchronized_offset());
 953   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 954   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 955 
 956   // check if synchronized method
 957   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
 958   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 959   push(state); // save tos
 960   ld(access_flags, G3_scratch); // Load access flags.
 961   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 962   br(zero, false, pt, unlocked);
 963   delayed()->nop();
 964 
 965   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 966   // is set.
 967   tstbool(G1_scratch);
 968   br(Assembler::notZero, false, pn, no_unlock);
 969   delayed()->nop();
 970 
 971   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 972   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 973 
 974   //Intel: if (throw_monitor_exception) ... else ...
 975   // Entry already unlocked, need to throw exception
 976   //...
 977 
 978   // pass top-most monitor elem
 979   add( top_most_monitor(), O1 );
 980 
 981   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
 982   br_notnull(G3_scratch, false, pt, unlock);
 983   delayed()->nop();
 984 
 985   if (throw_monitor_exception) {
 986     // Entry already unlocked need to throw an exception
 987     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 988     should_not_reach_here();
 989   } else {
 990     // Monitor already unlocked during a stack unroll.
 991     // If requested, install an illegal_monitor_state_exception.
 992     // Continue with stack unrolling.
 993     if (install_monitor_exception) {
 994       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 995     }
 996     ba(false, unlocked);
 997     delayed()->nop();
 998   }
 999 
1000   bind(unlock);
1001 
1002   unlock_object(O1);
1003 
1004   bind(unlocked);
1005 
1006   // I0, I1: Might contain return value
1007 
1008   // Check that all monitors are unlocked
1009   { Label loop, exception, entry, restart;
1010 
1011     Register Rmptr   = O0;
1012     Register Rtemp   = O1;
1013     Register Rlimit  = Lmonitors;
1014     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1015     assert( (delta & LongAlignmentMask) == 0,
1016             "sizeof BasicObjectLock must be even number of doublewords");
1017 
1018     #ifdef ASSERT
1019     add(top_most_monitor(), Rmptr, delta);
1020     { Label L;
1021       // ensure that Rmptr starts out above (or at) Rlimit
1022       cmp(Rmptr, Rlimit);
1023       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1024       delayed()->nop();
1025       stop("monitor stack has negative size");
1026       bind(L);
1027     }
1028     #endif
1029     bind(restart);
1030     ba(false, entry);
1031     delayed()->
1032     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1033 
1034     // Entry is still locked, need to throw exception
1035     bind(exception);
1036     if (throw_monitor_exception) {
1037       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1038       should_not_reach_here();
1039     } else {
1040       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1041       // Unlock does not block, so don't have to worry about the frame
1042       unlock_object(Rmptr);
1043       if (install_monitor_exception) {
1044         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1045       }
1046       ba(false, restart);
1047       delayed()->nop();
1048     }
1049 
1050     bind(loop);
1051     cmp(Rtemp, G0);                             // check if current entry is used
1052     brx(Assembler::notEqual, false, pn, exception);
1053     delayed()->
1054     dec(Rmptr, delta);                          // otherwise advance to next entry
1055     #ifdef ASSERT
1056     { Label L;
1057       // ensure that Rmptr has not somehow stepped below Rlimit
1058       cmp(Rmptr, Rlimit);
1059       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1060       delayed()->nop();
1061       stop("ran off the end of the monitor stack");
1062       bind(L);
1063     }
1064     #endif
1065     bind(entry);
1066     cmp(Rmptr, Rlimit);                         // check if bottom reached
1067     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1068     delayed()->
1069     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1070   }
1071 
1072   bind(no_unlock);
1073   pop(state);
1074   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1075 }
1076 
1077 
1078 // remove activation
1079 //
1080 // Unlock the receiver if this is a synchronized method.
1081 // Unlock any Java monitors from syncronized blocks.
1082 // Remove the activation from the stack.
1083 //
1084 // If there are locked Java monitors
1085 //    If throw_monitor_exception
1086 //       throws IllegalMonitorStateException
1087 //    Else if install_monitor_exception
1088 //       installs IllegalMonitorStateException
1089 //    Else
1090 //       no error processing
1091 void InterpreterMacroAssembler::remove_activation(TosState state,
1092                                                   bool throw_monitor_exception,
1093                                                   bool install_monitor_exception) {
1094 
1095   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1096 
1097   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1098   notify_method_exit(false, state, NotifyJVMTI);
1099 
1100   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1101   verify_oop(Lmethod);
1102   verify_thread();
1103 
1104   // return tos
1105   assert(Otos_l1 == Otos_i, "adjust code below");
1106   switch (state) {
1107 #ifdef _LP64
1108   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1109 #else
1110   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1111 #endif
1112   case btos:                                      // fall through
1113   case ctos:
1114   case stos:                                      // fall through
1115   case atos:                                      // fall through
1116   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1117   case ftos:                                      // fall through
1118   case dtos:                                      // fall through
1119   case vtos: /* nothing to do */                     break;
1120   default  : ShouldNotReachHere();
1121   }
1122 
1123 #if defined(COMPILER2) && !defined(_LP64)
1124   if (state == ltos) {
1125     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1126     // or compiled so just be safe use G1 and O0/O1
1127 
1128     // Shift bits into high (msb) of G1
1129     sllx(Otos_l1->after_save(), 32, G1);
1130     // Zero extend low bits
1131     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1132     or3 (Otos_l2->after_save(), G1, G1);
1133   }
1134 #endif /* COMPILER2 */
1135 
1136 }
1137 #endif /* CC_INTERP */
1138 
1139 
1140 // Lock object
1141 //
1142 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1143 //            it must be initialized with the object to lock
1144 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1145   if (UseHeavyMonitors) {
1146     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1147   }
1148   else {
1149     Register obj_reg = Object;
1150     Register mark_reg = G4_scratch;
1151     Register temp_reg = G1_scratch;
1152     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1153     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1154     Label    done;
1155 
1156     Label slow_case;
1157 
1158     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1159 
1160     // load markOop from object into mark_reg
1161     ld_ptr(mark_addr, mark_reg);
1162 
1163     if (UseBiasedLocking) {
1164       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1165     }
1166 
1167     // get the address of basicLock on stack that will be stored in the object
1168     // we need a temporary register here as we do not want to clobber lock_reg
1169     // (cas clobbers the destination register)
1170     mov(lock_reg, temp_reg);
1171     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1172     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1173     // initialize the box  (Must happen before we update the object mark!)
1174     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1175     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1176     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1177     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1178       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1179 
1180     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1181     cmp(mark_reg, temp_reg);
1182     brx(Assembler::equal, true, Assembler::pt, done);
1183     delayed()->nop();
1184 
1185     // We did not see an unlocked object so try the fast recursive case
1186 
1187     // Check if owner is self by comparing the value in the markOop of object
1188     // with the stack pointer
1189     sub(temp_reg, SP, temp_reg);
1190 #ifdef _LP64
1191     sub(temp_reg, STACK_BIAS, temp_reg);
1192 #endif
1193     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1194 
1195     // Composite "andcc" test:
1196     // (a) %sp -vs- markword proximity check, and,
1197     // (b) verify mark word LSBs == 0 (Stack-locked).
1198     //
1199     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1200     // Note that the page size used for %sp proximity testing is arbitrary and is
1201     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1202     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1203     // field of the andcc instruction.
1204     andcc (temp_reg, 0xFFFFF003, G0) ;
1205 
1206     // if condition is true we are done and hence we can store 0 in the displaced
1207     // header indicating it is a recursive lock and be done
1208     brx(Assembler::zero, true, Assembler::pt, done);
1209     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1210 
1211     // none of the above fast optimizations worked so we have to get into the
1212     // slow case of monitor enter
1213     bind(slow_case);
1214     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1215 
1216     bind(done);
1217   }
1218 }
1219 
1220 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1221 //
1222 // Argument - lock_reg points to the BasicObjectLock for lock
1223 // Throw IllegalMonitorException if object is not locked by current thread
1224 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1225   if (UseHeavyMonitors) {
1226     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1227   } else {
1228     Register obj_reg = G3_scratch;
1229     Register mark_reg = G4_scratch;
1230     Register displaced_header_reg = G1_scratch;
1231     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1232     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1233     Label    done;
1234 
1235     if (UseBiasedLocking) {
1236       // load the object out of the BasicObjectLock
1237       ld_ptr(lockobj_addr, obj_reg);
1238       biased_locking_exit(mark_addr, mark_reg, done, true);
1239       st_ptr(G0, lockobj_addr);  // free entry
1240     }
1241 
1242     // Test first if we are in the fast recursive case
1243     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1244     ld_ptr(lock_addr, displaced_header_reg);
1245     br_null(displaced_header_reg, true, Assembler::pn, done);
1246     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1247 
1248     // See if it is still a light weight lock, if so we just unlock
1249     // the object and we are done
1250 
1251     if (!UseBiasedLocking) {
1252       // load the object out of the BasicObjectLock
1253       ld_ptr(lockobj_addr, obj_reg);
1254     }
1255 
1256     // we have the displaced header in displaced_header_reg
1257     // we expect to see the stack address of the basicLock in case the
1258     // lock is still a light weight lock (lock_reg)
1259     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1260     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1261       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1262     cmp(lock_reg, displaced_header_reg);
1263     brx(Assembler::equal, true, Assembler::pn, done);
1264     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1265 
1266     // The lock has been converted into a heavy lock and hence
1267     // we need to get into the slow case
1268 
1269     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1270 
1271     bind(done);
1272   }
1273 }
1274 
1275 #ifndef CC_INTERP
1276 
1277 // Get the method data pointer from the methodOop and set the
1278 // specified register to its value.
1279 
1280 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1281   assert(ProfileInterpreter, "must be profiling interpreter");
1282   Label get_continue;
1283 
1284   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1285   test_method_data_pointer(get_continue);
1286   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1287   if (Roff != noreg)
1288     // Roff contains a method data index ("mdi").  It defaults to zero.
1289     add(ImethodDataPtr, Roff, ImethodDataPtr);
1290   bind(get_continue);
1291 }
1292 
1293 // Set the method data pointer for the current bcp.
1294 
1295 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1296   assert(ProfileInterpreter, "must be profiling interpreter");
1297   Label zero_continue;
1298 
1299   // Test MDO to avoid the call if it is NULL.
1300   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1301   test_method_data_pointer(zero_continue);
1302   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1303   set_method_data_pointer_offset(O0);
1304   bind(zero_continue);
1305 }
1306 
1307 // Test ImethodDataPtr.  If it is null, continue at the specified label
1308 
1309 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1310   assert(ProfileInterpreter, "must be profiling interpreter");
1311 #ifdef _LP64
1312   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1313 #else
1314   tst(ImethodDataPtr);
1315   br(Assembler::zero, false, Assembler::pn, zero_continue);
1316 #endif
1317   delayed()->nop();
1318 }
1319 
1320 void InterpreterMacroAssembler::verify_method_data_pointer() {
1321   assert(ProfileInterpreter, "must be profiling interpreter");
1322 #ifdef ASSERT
1323   Label verify_continue;
1324   test_method_data_pointer(verify_continue);
1325 
1326   // If the mdp is valid, it will point to a DataLayout header which is
1327   // consistent with the bcp.  The converse is highly probable also.
1328   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1329   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1330   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1331   add(G3_scratch, O5, G3_scratch);
1332   cmp(Lbcp, G3_scratch);
1333   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1334 
1335   Register temp_reg = O5;
1336   delayed()->mov(ImethodDataPtr, temp_reg);
1337   // %%% should use call_VM_leaf here?
1338   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1339   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1340   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1341   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1342   mov(temp_reg->after_save(), O2);
1343   save_thread(L7_thread_cache);
1344   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1345   delayed()->nop();
1346   restore_thread(L7_thread_cache);
1347   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1348   restore();
1349   bind(verify_continue);
1350 #endif // ASSERT
1351 }
1352 
1353 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1354                                                                 Register cur_bcp,
1355                                                                 Register Rtmp,
1356                                                                 Label &profile_continue) {
1357   assert(ProfileInterpreter, "must be profiling interpreter");
1358   // Control will flow to "profile_continue" if the counter is less than the
1359   // limit or if we call profile_method()
1360 
1361   Label done;
1362 
1363   // if no method data exists, and the counter is high enough, make one
1364 #ifdef _LP64
1365   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1366 #else
1367   tst(ImethodDataPtr);
1368   br(Assembler::notZero, false, Assembler::pn, done);
1369 #endif
1370 
1371   // Test to see if we should create a method data oop
1372   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1373 #ifdef _LP64
1374   delayed()->nop();
1375   sethi(profile_limit, Rtmp);
1376 #else
1377   delayed()->sethi(profile_limit, Rtmp);
1378 #endif
1379   ld(Rtmp, profile_limit.low10(), Rtmp);
1380   cmp(invocation_count, Rtmp);
1381   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1382   delayed()->nop();
1383 
1384   // Build it now.
1385   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1386   set_method_data_pointer_offset(O0);
1387   ba(false, profile_continue);
1388   delayed()->nop();
1389   bind(done);
1390 }
1391 
1392 // Store a value at some constant offset from the method data pointer.
1393 
1394 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1395   assert(ProfileInterpreter, "must be profiling interpreter");
1396   st_ptr(value, ImethodDataPtr, constant);
1397 }
1398 
1399 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1400                                                       Register bumped_count,
1401                                                       bool decrement) {
1402   assert(ProfileInterpreter, "must be profiling interpreter");
1403 
1404   // Load the counter.
1405   ld_ptr(counter, bumped_count);
1406 
1407   if (decrement) {
1408     // Decrement the register.  Set condition codes.
1409     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1410 
1411     // If the decrement causes the counter to overflow, stay negative
1412     Label L;
1413     brx(Assembler::negative, true, Assembler::pn, L);
1414 
1415     // Store the decremented counter, if it is still negative.
1416     delayed()->st_ptr(bumped_count, counter);
1417     bind(L);
1418   } else {
1419     // Increment the register.  Set carry flag.
1420     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1421 
1422     // If the increment causes the counter to overflow, pull back by 1.
1423     assert(DataLayout::counter_increment == 1, "subc works");
1424     subc(bumped_count, G0, bumped_count);
1425 
1426     // Store the incremented counter.
1427     st_ptr(bumped_count, counter);
1428   }
1429 }
1430 
1431 // Increment the value at some constant offset from the method data pointer.
1432 
1433 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1434                                                       Register bumped_count,
1435                                                       bool decrement) {
1436   // Locate the counter at a fixed offset from the mdp:
1437   Address counter(ImethodDataPtr, constant);
1438   increment_mdp_data_at(counter, bumped_count, decrement);
1439 }
1440 
1441 // Increment the value at some non-fixed (reg + constant) offset from
1442 // the method data pointer.
1443 
1444 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1445                                                       int constant,
1446                                                       Register bumped_count,
1447                                                       Register scratch2,
1448                                                       bool decrement) {
1449   // Add the constant to reg to get the offset.
1450   add(ImethodDataPtr, reg, scratch2);
1451   Address counter(scratch2, constant);
1452   increment_mdp_data_at(counter, bumped_count, decrement);
1453 }
1454 
1455 // Set a flag value at the current method data pointer position.
1456 // Updates a single byte of the header, to avoid races with other header bits.
1457 
1458 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1459                                                 Register scratch) {
1460   assert(ProfileInterpreter, "must be profiling interpreter");
1461   // Load the data header
1462   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1463 
1464   // Set the flag
1465   or3(scratch, flag_constant, scratch);
1466 
1467   // Store the modified header.
1468   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1469 }
1470 
1471 // Test the location at some offset from the method data pointer.
1472 // If it is not equal to value, branch to the not_equal_continue Label.
1473 // Set condition codes to match the nullness of the loaded value.
1474 
1475 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1476                                                  Register value,
1477                                                  Label& not_equal_continue,
1478                                                  Register scratch) {
1479   assert(ProfileInterpreter, "must be profiling interpreter");
1480   ld_ptr(ImethodDataPtr, offset, scratch);
1481   cmp(value, scratch);
1482   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1483   delayed()->tst(scratch);
1484 }
1485 
1486 // Update the method data pointer by the displacement located at some fixed
1487 // offset from the method data pointer.
1488 
1489 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1490                                                      Register scratch) {
1491   assert(ProfileInterpreter, "must be profiling interpreter");
1492   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1493   add(ImethodDataPtr, scratch, ImethodDataPtr);
1494 }
1495 
1496 // Update the method data pointer by the displacement located at the
1497 // offset (reg + offset_of_disp).
1498 
1499 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1500                                                      int offset_of_disp,
1501                                                      Register scratch) {
1502   assert(ProfileInterpreter, "must be profiling interpreter");
1503   add(reg, offset_of_disp, scratch);
1504   ld_ptr(ImethodDataPtr, scratch, scratch);
1505   add(ImethodDataPtr, scratch, ImethodDataPtr);
1506 }
1507 
1508 // Update the method data pointer by a simple constant displacement.
1509 
1510 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1511   assert(ProfileInterpreter, "must be profiling interpreter");
1512   add(ImethodDataPtr, constant, ImethodDataPtr);
1513 }
1514 
1515 // Update the method data pointer for a _ret bytecode whose target
1516 // was not among our cached targets.
1517 
1518 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1519                                                    Register return_bci) {
1520   assert(ProfileInterpreter, "must be profiling interpreter");
1521   push(state);
1522   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1523   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1524   ld_ptr(l_tmp, return_bci);
1525   pop(state);
1526 }
1527 
1528 // Count a taken branch in the bytecodes.
1529 
1530 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1531   if (ProfileInterpreter) {
1532     Label profile_continue;
1533 
1534     // If no method data exists, go to profile_continue.
1535     test_method_data_pointer(profile_continue);
1536 
1537     // We are taking a branch.  Increment the taken count.
1538     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1539 
1540     // The method data pointer needs to be updated to reflect the new target.
1541     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1542     bind (profile_continue);
1543   }
1544 }
1545 
1546 
1547 // Count a not-taken branch in the bytecodes.
1548 
1549 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1550   if (ProfileInterpreter) {
1551     Label profile_continue;
1552 
1553     // If no method data exists, go to profile_continue.
1554     test_method_data_pointer(profile_continue);
1555 
1556     // We are taking a branch.  Increment the not taken count.
1557     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1558 
1559     // The method data pointer needs to be updated to correspond to the
1560     // next bytecode.
1561     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1562     bind (profile_continue);
1563   }
1564 }
1565 
1566 
1567 // Count a non-virtual call in the bytecodes.
1568 
1569 void InterpreterMacroAssembler::profile_call(Register scratch) {
1570   if (ProfileInterpreter) {
1571     Label profile_continue;
1572 
1573     // If no method data exists, go to profile_continue.
1574     test_method_data_pointer(profile_continue);
1575 
1576     // We are making a call.  Increment the count.
1577     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1578 
1579     // The method data pointer needs to be updated to reflect the new target.
1580     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1581     bind (profile_continue);
1582   }
1583 }
1584 
1585 
1586 // Count a final call in the bytecodes.
1587 
1588 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1589   if (ProfileInterpreter) {
1590     Label profile_continue;
1591 
1592     // If no method data exists, go to profile_continue.
1593     test_method_data_pointer(profile_continue);
1594 
1595     // We are making a call.  Increment the count.
1596     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1597 
1598     // The method data pointer needs to be updated to reflect the new target.
1599     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1600     bind (profile_continue);
1601   }
1602 }
1603 
1604 
1605 // Count a virtual call in the bytecodes.
1606 
1607 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1608                                                      Register scratch,
1609                                                      bool receiver_can_be_null) {
1610   if (ProfileInterpreter) {
1611     Label profile_continue;
1612 
1613     // If no method data exists, go to profile_continue.
1614     test_method_data_pointer(profile_continue);
1615 
1616 
1617     Label skip_receiver_profile;
1618     if (receiver_can_be_null) {
1619       Label not_null;
1620       tst(receiver);
1621       brx(Assembler::notZero, false, Assembler::pt, not_null);
1622       delayed()->nop();
1623       // We are making a call.  Increment the count for null receiver.
1624       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1625       ba(false, skip_receiver_profile);
1626       delayed()->nop();
1627       bind(not_null);
1628     }
1629 
1630     // Record the receiver type.
1631     record_klass_in_profile(receiver, scratch, true);
1632     bind(skip_receiver_profile);
1633 
1634     // The method data pointer needs to be updated to reflect the new target.
1635     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1636     bind (profile_continue);
1637   }
1638 }
1639 
1640 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1641                                         Register receiver, Register scratch,
1642                                         int start_row, Label& done, bool is_virtual_call) {
1643   if (TypeProfileWidth == 0) {
1644     if (is_virtual_call) {
1645       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1646     }
1647     return;
1648   }
1649 
1650   int last_row = VirtualCallData::row_limit() - 1;
1651   assert(start_row <= last_row, "must be work left to do");
1652   // Test this row for both the receiver and for null.
1653   // Take any of three different outcomes:
1654   //   1. found receiver => increment count and goto done
1655   //   2. found null => keep looking for case 1, maybe allocate this cell
1656   //   3. found something else => keep looking for cases 1 and 2
1657   // Case 3 is handled by a recursive call.
1658   for (int row = start_row; row <= last_row; row++) {
1659     Label next_test;
1660     bool test_for_null_also = (row == start_row);
1661 
1662     // See if the receiver is receiver[n].
1663     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1664     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1665     // delayed()->tst(scratch);
1666 
1667     // The receiver is receiver[n].  Increment count[n].
1668     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1669     increment_mdp_data_at(count_offset, scratch);
1670     ba(false, done);
1671     delayed()->nop();
1672     bind(next_test);
1673 
1674     if (test_for_null_also) {
1675       Label found_null;
1676       // Failed the equality check on receiver[n]...  Test for null.
1677       if (start_row == last_row) {
1678         // The only thing left to do is handle the null case.
1679         if (is_virtual_call) {
1680           brx(Assembler::zero, false, Assembler::pn, found_null);
1681           delayed()->nop();
1682           // Receiver did not match any saved receiver and there is no empty row for it.
1683           // Increment total counter to indicate polymorphic case.
1684           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1685           ba(false, done);
1686           delayed()->nop();
1687           bind(found_null);
1688         } else {
1689           brx(Assembler::notZero, false, Assembler::pt, done);
1690           delayed()->nop();
1691         }
1692         break;
1693       }
1694       // Since null is rare, make it be the branch-taken case.
1695       brx(Assembler::zero, false, Assembler::pn, found_null);
1696       delayed()->nop();
1697 
1698       // Put all the "Case 3" tests here.
1699       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1700 
1701       // Found a null.  Keep searching for a matching receiver,
1702       // but remember that this is an empty (unused) slot.
1703       bind(found_null);
1704     }
1705   }
1706 
1707   // In the fall-through case, we found no matching receiver, but we
1708   // observed the receiver[start_row] is NULL.
1709 
1710   // Fill in the receiver field and increment the count.
1711   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1712   set_mdp_data_at(recvr_offset, receiver);
1713   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1714   mov(DataLayout::counter_increment, scratch);
1715   set_mdp_data_at(count_offset, scratch);
1716   if (start_row > 0) {
1717     ba(false, done);
1718     delayed()->nop();
1719   }
1720 }
1721 
1722 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1723                                                         Register scratch, bool is_virtual_call) {
1724   assert(ProfileInterpreter, "must be profiling");
1725   Label done;
1726 
1727   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1728 
1729   bind (done);
1730 }
1731 
1732 
1733 // Count a ret in the bytecodes.
1734 
1735 void InterpreterMacroAssembler::profile_ret(TosState state,
1736                                             Register return_bci,
1737                                             Register scratch) {
1738   if (ProfileInterpreter) {
1739     Label profile_continue;
1740     uint row;
1741 
1742     // If no method data exists, go to profile_continue.
1743     test_method_data_pointer(profile_continue);
1744 
1745     // Update the total ret count.
1746     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1747 
1748     for (row = 0; row < RetData::row_limit(); row++) {
1749       Label next_test;
1750 
1751       // See if return_bci is equal to bci[n]:
1752       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1753                        return_bci, next_test, scratch);
1754 
1755       // return_bci is equal to bci[n].  Increment the count.
1756       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1757 
1758       // The method data pointer needs to be updated to reflect the new target.
1759       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1760       ba(false, profile_continue);
1761       delayed()->nop();
1762       bind(next_test);
1763     }
1764 
1765     update_mdp_for_ret(state, return_bci);
1766 
1767     bind (profile_continue);
1768   }
1769 }
1770 
1771 // Profile an unexpected null in the bytecodes.
1772 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1773   if (ProfileInterpreter) {
1774     Label profile_continue;
1775 
1776     // If no method data exists, go to profile_continue.
1777     test_method_data_pointer(profile_continue);
1778 
1779     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1780 
1781     // The method data pointer needs to be updated.
1782     int mdp_delta = in_bytes(BitData::bit_data_size());
1783     if (TypeProfileCasts) {
1784       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1785     }
1786     update_mdp_by_constant(mdp_delta);
1787 
1788     bind (profile_continue);
1789   }
1790 }
1791 
1792 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1793                                                   Register scratch) {
1794   if (ProfileInterpreter) {
1795     Label profile_continue;
1796 
1797     // If no method data exists, go to profile_continue.
1798     test_method_data_pointer(profile_continue);
1799 
1800     int mdp_delta = in_bytes(BitData::bit_data_size());
1801     if (TypeProfileCasts) {
1802       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1803 
1804       // Record the object type.
1805       record_klass_in_profile(klass, scratch, false);
1806     }
1807 
1808     // The method data pointer needs to be updated.
1809     update_mdp_by_constant(mdp_delta);
1810 
1811     bind (profile_continue);
1812   }
1813 }
1814 
1815 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1816   if (ProfileInterpreter && TypeProfileCasts) {
1817     Label profile_continue;
1818 
1819     // If no method data exists, go to profile_continue.
1820     test_method_data_pointer(profile_continue);
1821 
1822     int count_offset = in_bytes(CounterData::count_offset());
1823     // Back up the address, since we have already bumped the mdp.
1824     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1825 
1826     // *Decrement* the counter.  We expect to see zero or small negatives.
1827     increment_mdp_data_at(count_offset, scratch, true);
1828 
1829     bind (profile_continue);
1830   }
1831 }
1832 
1833 // Count the default case of a switch construct.
1834 
1835 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1836   if (ProfileInterpreter) {
1837     Label profile_continue;
1838 
1839     // If no method data exists, go to profile_continue.
1840     test_method_data_pointer(profile_continue);
1841 
1842     // Update the default case count
1843     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1844                           scratch);
1845 
1846     // The method data pointer needs to be updated.
1847     update_mdp_by_offset(
1848                     in_bytes(MultiBranchData::default_displacement_offset()),
1849                     scratch);
1850 
1851     bind (profile_continue);
1852   }
1853 }
1854 
1855 // Count the index'th case of a switch construct.
1856 
1857 void InterpreterMacroAssembler::profile_switch_case(Register index,
1858                                                     Register scratch,
1859                                                     Register scratch2,
1860                                                     Register scratch3) {
1861   if (ProfileInterpreter) {
1862     Label profile_continue;
1863 
1864     // If no method data exists, go to profile_continue.
1865     test_method_data_pointer(profile_continue);
1866 
1867     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1868     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1869     smul(index, scratch, scratch);
1870     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1871 
1872     // Update the case count
1873     increment_mdp_data_at(scratch,
1874                           in_bytes(MultiBranchData::relative_count_offset()),
1875                           scratch2,
1876                           scratch3);
1877 
1878     // The method data pointer needs to be updated.
1879     update_mdp_by_offset(scratch,
1880                      in_bytes(MultiBranchData::relative_displacement_offset()),
1881                      scratch2);
1882 
1883     bind (profile_continue);
1884   }
1885 }
1886 
1887 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1888 
1889 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1890                                                       Register Rtemp,
1891                                                       Register Rtemp2 ) {
1892 
1893   Register Rlimit = Lmonitors;
1894   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1895   assert( (delta & LongAlignmentMask) == 0,
1896           "sizeof BasicObjectLock must be even number of doublewords");
1897 
1898   sub( SP,        delta, SP);
1899   sub( Lesp,      delta, Lesp);
1900   sub( Lmonitors, delta, Lmonitors);
1901 
1902   if (!stack_is_empty) {
1903 
1904     // must copy stack contents down
1905 
1906     Label start_copying, next;
1907 
1908     // untested("monitor stack expansion");
1909     compute_stack_base(Rtemp);
1910     ba( false, start_copying );
1911     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1912 
1913     // note: must copy from low memory upwards
1914     // On entry to loop,
1915     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1916     // Loop mutates Rtemp
1917 
1918     bind( next);
1919 
1920     st_ptr(Rtemp2, Rtemp, 0);
1921     inc(Rtemp, wordSize);
1922     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1923 
1924     bind( start_copying );
1925 
1926     brx( notEqual, true, pn, next );
1927     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1928 
1929     // done copying stack
1930   }
1931 }
1932 
1933 // Locals
1934 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1935   assert_not_delayed();
1936   sll(index, Interpreter::logStackElementSize, index);
1937   sub(Llocals, index, index);
1938   ld_ptr(index, 0, dst);
1939   // Note:  index must hold the effective address--the iinc template uses it
1940 }
1941 
1942 // Just like access_local_ptr but the tag is a returnAddress
1943 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1944                                                            Register dst ) {
1945   assert_not_delayed();
1946   sll(index, Interpreter::logStackElementSize, index);
1947   sub(Llocals, index, index);
1948   ld_ptr(index, 0, dst);
1949 }
1950 
1951 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1952   assert_not_delayed();
1953   sll(index, Interpreter::logStackElementSize, index);
1954   sub(Llocals, index, index);
1955   ld(index, 0, dst);
1956   // Note:  index must hold the effective address--the iinc template uses it
1957 }
1958 
1959 
1960 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1961   assert_not_delayed();
1962   sll(index, Interpreter::logStackElementSize, index);
1963   sub(Llocals, index, index);
1964   // First half stored at index n+1 (which grows down from Llocals[n])
1965   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1966 }
1967 
1968 
1969 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1970   assert_not_delayed();
1971   sll(index, Interpreter::logStackElementSize, index);
1972   sub(Llocals, index, index);
1973   ldf(FloatRegisterImpl::S, index, 0, dst);
1974 }
1975 
1976 
1977 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1978   assert_not_delayed();
1979   sll(index, Interpreter::logStackElementSize, index);
1980   sub(Llocals, index, index);
1981   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1982 }
1983 
1984 
1985 #ifdef ASSERT
1986 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1987   Label L;
1988 
1989   assert(Rindex != Rscratch, "Registers cannot be same");
1990   assert(Rindex != Rscratch1, "Registers cannot be same");
1991   assert(Rlimit != Rscratch, "Registers cannot be same");
1992   assert(Rlimit != Rscratch1, "Registers cannot be same");
1993   assert(Rscratch1 != Rscratch, "Registers cannot be same");
1994 
1995   // untested("reg area corruption");
1996   add(Rindex, offset, Rscratch);
1997   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
1998   cmp(Rscratch, Rscratch1);
1999   brx(Assembler::greaterEqualUnsigned, false, pn, L);
2000   delayed()->nop();
2001   stop("regsave area is being clobbered");
2002   bind(L);
2003 }
2004 #endif // ASSERT
2005 
2006 
2007 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2008   assert_not_delayed();
2009   sll(index, Interpreter::logStackElementSize, index);
2010   sub(Llocals, index, index);
2011   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2012   st(src, index, 0);
2013 }
2014 
2015 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2016   assert_not_delayed();
2017   sll(index, Interpreter::logStackElementSize, index);
2018   sub(Llocals, index, index);
2019 #ifdef ASSERT
2020   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2021 #endif
2022   st_ptr(src, index, 0);
2023 }
2024 
2025 
2026 
2027 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2028   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2029 }
2030 
2031 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2032   assert_not_delayed();
2033   sll(index, Interpreter::logStackElementSize, index);
2034   sub(Llocals, index, index);
2035 #ifdef ASSERT
2036   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2037 #endif
2038   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2039 }
2040 
2041 
2042 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2043   assert_not_delayed();
2044   sll(index, Interpreter::logStackElementSize, index);
2045   sub(Llocals, index, index);
2046 #ifdef ASSERT
2047   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2048 #endif
2049   stf(FloatRegisterImpl::S, src, index, 0);
2050 }
2051 
2052 
2053 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2054   assert_not_delayed();
2055   sll(index, Interpreter::logStackElementSize, index);
2056   sub(Llocals, index, index);
2057 #ifdef ASSERT
2058   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2059 #endif
2060   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2061 }
2062 
2063 
2064 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2065   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2066   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2067   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2068 }
2069 
2070 
2071 Address InterpreterMacroAssembler::top_most_monitor() {
2072   return Address(FP, top_most_monitor_byte_offset());
2073 }
2074 
2075 
2076 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2077   add( Lesp,      wordSize,                                    Rdest );
2078 }
2079 
2080 #endif /* CC_INTERP */
2081 
2082 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2083   assert(UseCompiler, "incrementing must be useful");
2084 #ifdef CC_INTERP
2085   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2086                                  InvocationCounter::counter_offset());
2087   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2088                                  InvocationCounter::counter_offset());
2089 #else
2090   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2091                                InvocationCounter::counter_offset());
2092   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2093                                InvocationCounter::counter_offset());
2094 #endif /* CC_INTERP */
2095   int delta = InvocationCounter::count_increment;
2096 
2097   // Load each counter in a register
2098   ld( inv_counter, Rtmp );
2099   ld( be_counter, Rtmp2 );
2100 
2101   assert( is_simm13( delta ), " delta too large.");
2102 
2103   // Add the delta to the invocation counter and store the result
2104   add( Rtmp, delta, Rtmp );
2105 
2106   // Mask the backedge counter
2107   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2108 
2109   // Store value
2110   st( Rtmp, inv_counter);
2111 
2112   // Add invocation counter + backedge counter
2113   add( Rtmp, Rtmp2, Rtmp);
2114 
2115   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2116 }
2117 
2118 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2119   assert(UseCompiler, "incrementing must be useful");
2120 #ifdef CC_INTERP
2121   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2122                                  InvocationCounter::counter_offset());
2123   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2124                                  InvocationCounter::counter_offset());
2125 #else
2126   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2127                                InvocationCounter::counter_offset());
2128   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2129                                InvocationCounter::counter_offset());
2130 #endif /* CC_INTERP */
2131   int delta = InvocationCounter::count_increment;
2132   // Load each counter in a register
2133   ld( be_counter, Rtmp );
2134   ld( inv_counter, Rtmp2 );
2135 
2136   // Add the delta to the backedge counter
2137   add( Rtmp, delta, Rtmp );
2138 
2139   // Mask the invocation counter, add to backedge counter
2140   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2141 
2142   // and store the result to memory
2143   st( Rtmp, be_counter );
2144 
2145   // Add backedge + invocation counter
2146   add( Rtmp, Rtmp2, Rtmp );
2147 
2148   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2149 }
2150 
2151 #ifndef CC_INTERP
2152 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2153                                                              Register branch_bcp,
2154                                                              Register Rtmp ) {
2155   Label did_not_overflow;
2156   Label overflow_with_error;
2157   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2158   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2159 
2160   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2161   load_contents(limit, Rtmp);
2162   cmp(backedge_count, Rtmp);
2163   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2164   delayed()->nop();
2165 
2166   // When ProfileInterpreter is on, the backedge_count comes from the
2167   // methodDataOop, which value does not get reset on the call to
2168   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2169   // routine while the method is being compiled, add a second test to make sure
2170   // the overflow function is called only once every overflow_frequency.
2171   if (ProfileInterpreter) {
2172     const int overflow_frequency = 1024;
2173     andcc(backedge_count, overflow_frequency-1, Rtmp);
2174     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2175     delayed()->nop();
2176   }
2177 
2178   // overflow in loop, pass branch bytecode
2179   set(6,Rtmp);
2180   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2181 
2182   // Was an OSR adapter generated?
2183   // O0 = osr nmethod
2184   tst(O0);
2185   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2186   delayed()->nop();
2187 
2188   // Has the nmethod been invalidated already?
2189   ld(O0, nmethod::entry_bci_offset(), O2);
2190   cmp(O2, InvalidOSREntryBci);
2191   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2192   delayed()->nop();
2193 
2194   // migrate the interpreter frame off of the stack
2195 
2196   mov(G2_thread, L7);
2197   // save nmethod
2198   mov(O0, L6);
2199   set_last_Java_frame(SP, noreg);
2200   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2201   reset_last_Java_frame();
2202   mov(L7, G2_thread);
2203 
2204   // move OSR nmethod to I1
2205   mov(L6, I1);
2206 
2207   // OSR buffer to I0
2208   mov(O0, I0);
2209 
2210   // remove the interpreter frame
2211   restore(I5_savedSP, 0, SP);
2212 
2213   // Jump to the osr code.
2214   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2215   jmp(O2, G0);
2216   delayed()->nop();
2217 
2218   bind(overflow_with_error);
2219 
2220   bind(did_not_overflow);
2221 }
2222 
2223 
2224 
2225 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2226   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2227 }
2228 
2229 
2230 // local helper function for the verify_oop_or_return_address macro
2231 static bool verify_return_address(methodOopDesc* m, int bci) {
2232 #ifndef PRODUCT
2233   address pc = (address)(m->constMethod())
2234              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2235   // assume it is a valid return address if it is inside m and is preceded by a jsr
2236   if (!m->contains(pc))                                          return false;
2237   address jsr_pc;
2238   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2239   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2240   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2241   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2242 #endif // PRODUCT
2243   return false;
2244 }
2245 
2246 
2247 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2248   if (!VerifyOops)  return;
2249   // the VM documentation for the astore[_wide] bytecode allows
2250   // the TOS to be not only an oop but also a return address
2251   Label test;
2252   Label skip;
2253   // See if it is an address (in the current method):
2254 
2255   mov(reg, Rtmp);
2256   const int log2_bytecode_size_limit = 16;
2257   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2258   br_notnull( Rtmp, false, pt, test );
2259   delayed()->nop();
2260 
2261   // %%% should use call_VM_leaf here?
2262   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2263   save_thread(L7_thread_cache);
2264   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2265   delayed()->nop();
2266   restore_thread(L7_thread_cache);
2267   br_notnull( O0, false, pt, skip );
2268   delayed()->restore();
2269 
2270   // Perform a more elaborate out-of-line call
2271   // Not an address; verify it:
2272   bind(test);
2273   verify_oop(reg);
2274   bind(skip);
2275 }
2276 
2277 
2278 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2279   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2280 }
2281 #endif /* CC_INTERP */
2282 
2283 // Inline assembly for:
2284 //
2285 // if (thread is in interp_only_mode) {
2286 //   InterpreterRuntime::post_method_entry();
2287 // }
2288 // if (DTraceMethodProbes) {
2289 //   SharedRuntime::dtrace_method_entry(method, receiver);
2290 // }
2291 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2292 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2293 // }
2294 
2295 void InterpreterMacroAssembler::notify_method_entry() {
2296 
2297   // C++ interpreter only uses this for native methods.
2298 
2299   // Whenever JVMTI puts a thread in interp_only_mode, method
2300   // entry/exit events are sent for that thread to track stack
2301   // depth.  If it is possible to enter interp_only_mode we add
2302   // the code to check if the event should be sent.
2303   if (JvmtiExport::can_post_interpreter_events()) {
2304     Label L;
2305     Register temp_reg = O5;
2306     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2307     ld(interp_only, temp_reg);
2308     tst(temp_reg);
2309     br(zero, false, pt, L);
2310     delayed()->nop();
2311     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2312     bind(L);
2313   }
2314 
2315   {
2316     Register temp_reg = O5;
2317     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2318     call_VM_leaf(noreg,
2319       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2320       G2_thread, Lmethod);
2321   }
2322 
2323   // RedefineClasses() tracing support for obsolete method entry
2324   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2325     call_VM_leaf(noreg,
2326       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2327       G2_thread, Lmethod);
2328   }
2329 }
2330 
2331 
2332 // Inline assembly for:
2333 //
2334 // if (thread is in interp_only_mode) {
2335 //   // save result
2336 //   InterpreterRuntime::post_method_exit();
2337 //   // restore result
2338 // }
2339 // if (DTraceMethodProbes) {
2340 //   SharedRuntime::dtrace_method_exit(thread, method);
2341 // }
2342 //
2343 // Native methods have their result stored in d_tmp and l_tmp
2344 // Java methods have their result stored in the expression stack
2345 
2346 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2347                                                    TosState state,
2348                                                    NotifyMethodExitMode mode) {
2349   // C++ interpreter only uses this for native methods.
2350 
2351   // Whenever JVMTI puts a thread in interp_only_mode, method
2352   // entry/exit events are sent for that thread to track stack
2353   // depth.  If it is possible to enter interp_only_mode we add
2354   // the code to check if the event should be sent.
2355   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2356     Label L;
2357     Register temp_reg = O5;
2358     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2359     ld(interp_only, temp_reg);
2360     tst(temp_reg);
2361     br(zero, false, pt, L);
2362     delayed()->nop();
2363 
2364     // Note: frame::interpreter_frame_result has a dependency on how the
2365     // method result is saved across the call to post_method_exit. For
2366     // native methods it assumes the result registers are saved to
2367     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2368     // implementation will need to be updated too.
2369 
2370     save_return_value(state, is_native_method);
2371     call_VM(noreg,
2372             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2373     restore_return_value(state, is_native_method);
2374     bind(L);
2375   }
2376 
2377   {
2378     Register temp_reg = O5;
2379     // Dtrace notification
2380     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2381     save_return_value(state, is_native_method);
2382     call_VM_leaf(
2383       noreg,
2384       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2385       G2_thread, Lmethod);
2386     restore_return_value(state, is_native_method);
2387   }
2388 }
2389 
2390 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2391 #ifdef CC_INTERP
2392   // result potentially in O0/O1: save it across calls
2393   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2394 #ifdef _LP64
2395   stx(O0, STATE(_native_lresult));
2396 #else
2397   std(O0, STATE(_native_lresult));
2398 #endif
2399 #else // CC_INTERP
2400   if (is_native_call) {
2401     stf(FloatRegisterImpl::D, F0, d_tmp);
2402 #ifdef _LP64
2403     stx(O0, l_tmp);
2404 #else
2405     std(O0, l_tmp);
2406 #endif
2407   } else {
2408     push(state);
2409   }
2410 #endif // CC_INTERP
2411 }
2412 
2413 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2414 #ifdef CC_INTERP
2415   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2416 #ifdef _LP64
2417   ldx(STATE(_native_lresult), O0);
2418 #else
2419   ldd(STATE(_native_lresult), O0);
2420 #endif
2421 #else // CC_INTERP
2422   if (is_native_call) {
2423     ldf(FloatRegisterImpl::D, d_tmp, F0);
2424 #ifdef _LP64
2425     ldx(l_tmp, O0);
2426 #else
2427     ldd(l_tmp, O0);
2428 #endif
2429   } else {
2430     pop(state);
2431   }
2432 #endif // CC_INTERP
2433 }
2434 
2435 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2436 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2437                                                         int increment, int mask,
2438                                                         Register scratch1, Register scratch2,
2439                                                         Condition cond, Label *where) {
2440   ld(counter_addr, scratch1);
2441   add(scratch1, increment, scratch1);
2442   if (is_simm13(mask)) {
2443     andcc(scratch1, mask, G0);
2444   } else {
2445     set(mask, scratch2);
2446     andcc(scratch1, scratch2,  G0);
2447   }
2448   br(cond, false, Assembler::pn, *where);
2449   delayed()->st(scratch1, counter_addr);
2450 }