1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodDataOop.hpp"
  32 #include "oops/methodOop.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 
  46 #ifndef CC_INTERP
  47 #ifndef FAST_DISPATCH
  48 #define FAST_DISPATCH 1
  49 #endif
  50 #undef FAST_DISPATCH
  51 
  52 // Implementation of InterpreterMacroAssembler
  53 
  54 // This file specializes the assember with interpreter-specific macros
  55 
  56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  58 
  59 #else // CC_INTERP
  60 #ifndef STATE
  61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  62 #endif // STATE
  63 
  64 #endif // CC_INTERP
  65 
  66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  67   // Note: this algorithm is also used by C1's OSR entry sequence.
  68   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  69   assert_different_registers(args_size, locals_size);
  70   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  71   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  72   // Use br/mov combination because it works on both V8 and V9 and is
  73   // faster.
  74   Label skip_move;
  75   br(Assembler::negative, true, Assembler::pt, skip_move);
  76   delayed()->mov(G0, delta);
  77   bind(skip_move);
  78   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  79   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  80 }
  81 
  82 #ifndef CC_INTERP
  83 
  84 // Dispatch code executed in the prolog of a bytecode which does not do it's
  85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  87   assert_not_delayed();
  88 #ifdef FAST_DISPATCH
  89   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  90   // they both use I2.
  91   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  92   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  93   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  94                                                         // add offset to correct dispatch table
  95   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  96   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  97 #else
  98   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  99   // dispatch table to use
 100   AddressLiteral tbl(Interpreter::dispatch_table(state));
 101   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
 102   set(tbl, G3_scratch);                                 // compute addr of table
 103   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
 104 #endif
 105 }
 106 
 107 
 108 // Dispatch code executed in the epilog of a bytecode which does not do it's
 109 // own dispatch. The dispatch address in IdispatchAddress is used for the
 110 // dispatch.
 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
 112   assert_not_delayed();
 113   verify_FPU(1, state);
 114   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 115   jmp( IdispatchAddress, 0 );
 116   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 117   else                delayed()->nop();
 118 }
 119 
 120 
 121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 122   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 123   assert_not_delayed();
 124   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 125   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 126 }
 127 
 128 
 129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 130   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 131   assert_not_delayed();
 132   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 133   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 134 }
 135 
 136 
 137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 138   // load current bytecode
 139   assert_not_delayed();
 140   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 141   dispatch_base(state, table);
 142 }
 143 
 144 
 145 void InterpreterMacroAssembler::call_VM_leaf_base(
 146   Register java_thread,
 147   address  entry_point,
 148   int      number_of_arguments
 149 ) {
 150   if (!java_thread->is_valid())
 151     java_thread = L7_thread_cache;
 152   // super call
 153   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 154 }
 155 
 156 
 157 void InterpreterMacroAssembler::call_VM_base(
 158   Register        oop_result,
 159   Register        java_thread,
 160   Register        last_java_sp,
 161   address         entry_point,
 162   int             number_of_arguments,
 163   bool            check_exception
 164 ) {
 165   if (!java_thread->is_valid())
 166     java_thread = L7_thread_cache;
 167   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 168   // takes responsibility for setting its own thread-state on call-out.
 169   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 170 
 171   //save_bcp();                                  // save bcp
 172   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 173   //restore_bcp();                               // restore bcp
 174   //restore_locals();                            // restore locals pointer
 175 }
 176 
 177 
 178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 179   if (JvmtiExport::can_pop_frame()) {
 180     Label L;
 181 
 182     // Check the "pending popframe condition" flag in the current thread
 183     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 184 
 185     // Initiate popframe handling only if it is not already being processed.  If the flag
 186     // has the popframe_processing bit set, it means that this code is called *during* popframe
 187     // handling - we don't want to reenter.
 188     btst(JavaThread::popframe_pending_bit, scratch_reg);
 189     br(zero, false, pt, L);
 190     delayed()->nop();
 191     btst(JavaThread::popframe_processing_bit, scratch_reg);
 192     br(notZero, false, pt, L);
 193     delayed()->nop();
 194 
 195     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 196     // address of the same-named entrypoint in the generated interpreter code.
 197     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 198 
 199     // Jump to Interpreter::_remove_activation_preserving_args_entry
 200     jmpl(O0, G0, G0);
 201     delayed()->nop();
 202     bind(L);
 203   }
 204 }
 205 
 206 
 207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 208   Register thr_state = G4_scratch;
 209   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 210   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 211   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 212   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 213   switch (state) {
 214   case ltos: ld_long(val_addr, Otos_l);                   break;
 215   case atos: ld_ptr(oop_addr, Otos_l);
 216              st_ptr(G0, oop_addr);                        break;
 217   case btos:                                           // fall through
 218   case ctos:                                           // fall through
 219   case stos:                                           // fall through
 220   case itos: ld(val_addr, Otos_l1);                       break;
 221   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 222   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 223   case vtos: /* nothing to do */                          break;
 224   default  : ShouldNotReachHere();
 225   }
 226   // Clean up tos value in the jvmti thread state
 227   or3(G0, ilgl, G3_scratch);
 228   stw(G3_scratch, tos_addr);
 229   st_long(G0, val_addr);
 230   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 231 }
 232 
 233 
 234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 235   if (JvmtiExport::can_force_early_return()) {
 236     Label L;
 237     Register thr_state = G3_scratch;
 238     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 239     tst(thr_state);
 240     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 241     delayed()->nop();
 242 
 243     // Initiate earlyret handling only if it is not already being processed.
 244     // If the flag has the earlyret_processing bit set, it means that this code
 245     // is called *during* earlyret handling - we don't want to reenter.
 246     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 247     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
 248     br(Assembler::notEqual, false, pt, L);
 249     delayed()->nop();
 250 
 251     // Call Interpreter::remove_activation_early_entry() to get the address of the
 252     // same-named entrypoint in the generated interpreter code
 253     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 254     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 255 
 256     // Jump to Interpreter::_remove_activation_early_entry
 257     jmpl(O0, G0, G0);
 258     delayed()->nop();
 259     bind(L);
 260   }
 261 }
 262 
 263 
 264 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 265   mov(arg_1, O0);
 266   mov(arg_2, O1);
 267   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 268 }
 269 #endif /* CC_INTERP */
 270 
 271 
 272 #ifndef CC_INTERP
 273 
 274 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 275   assert_not_delayed();
 276   dispatch_Lbyte_code(state, table);
 277 }
 278 
 279 
 280 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 281   dispatch_base(state, Interpreter::normal_table(state));
 282 }
 283 
 284 
 285 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 286   dispatch_base(state, Interpreter::dispatch_table(state));
 287 }
 288 
 289 
 290 // common code to dispatch and dispatch_only
 291 // dispatch value in Lbyte_code and increment Lbcp
 292 
 293 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 294   verify_FPU(1, state);
 295   // %%%%% maybe implement +VerifyActivationFrameSize here
 296   //verify_thread(); //too slow; we will just verify on method entry & exit
 297   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 298 #ifdef FAST_DISPATCH
 299   if (table == Interpreter::dispatch_table(state)) {
 300     // use IdispatchTables
 301     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 302                                                         // add offset to correct dispatch table
 303     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 304     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 305   } else {
 306 #endif
 307     // dispatch table to use
 308     AddressLiteral tbl(table);
 309     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 310     set(tbl, G3_scratch);                               // compute addr of table
 311     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 312 #ifdef FAST_DISPATCH
 313   }
 314 #endif
 315   jmp( G3_scratch, 0 );
 316   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 317   else                delayed()->nop();
 318 }
 319 
 320 
 321 // Helpers for expression stack
 322 
 323 // Longs and doubles are Category 2 computational types in the
 324 // JVM specification (section 3.11.1) and take 2 expression stack or
 325 // local slots.
 326 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 327 // for the dup* bytecodes depends on what types are already on the stack.
 328 // If the types are split into the two stack/local slots, that is much easier
 329 // (and we can use 0 for non-reference tags).
 330 
 331 // Known good alignment in _LP64 but unknown otherwise
 332 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 333   assert_not_delayed();
 334 
 335 #ifdef _LP64
 336   ldf(FloatRegisterImpl::D, r1, offset, d);
 337 #else
 338   ldf(FloatRegisterImpl::S, r1, offset, d);
 339   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
 340 #endif
 341 }
 342 
 343 // Known good alignment in _LP64 but unknown otherwise
 344 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 345   assert_not_delayed();
 346 
 347 #ifdef _LP64
 348   stf(FloatRegisterImpl::D, d, r1, offset);
 349   // store something more useful here
 350   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 351 #else
 352   stf(FloatRegisterImpl::S, d, r1, offset);
 353   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
 354 #endif
 355 }
 356 
 357 
 358 // Known good alignment in _LP64 but unknown otherwise
 359 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 360   assert_not_delayed();
 361 #ifdef _LP64
 362   ldx(r1, offset, rd);
 363 #else
 364   ld(r1, offset, rd);
 365   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
 366 #endif
 367 }
 368 
 369 // Known good alignment in _LP64 but unknown otherwise
 370 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 371   assert_not_delayed();
 372 
 373 #ifdef _LP64
 374   stx(l, r1, offset);
 375   // store something more useful here
 376   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 377 #else
 378   st(l, r1, offset);
 379   st(l->successor(), r1, offset + Interpreter::stackElementSize);
 380 #endif
 381 }
 382 
 383 void InterpreterMacroAssembler::pop_i(Register r) {
 384   assert_not_delayed();
 385   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 386   inc(Lesp, Interpreter::stackElementSize);
 387   debug_only(verify_esp(Lesp));
 388 }
 389 
 390 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 391   assert_not_delayed();
 392   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 393   inc(Lesp, Interpreter::stackElementSize);
 394   debug_only(verify_esp(Lesp));
 395 }
 396 
 397 void InterpreterMacroAssembler::pop_l(Register r) {
 398   assert_not_delayed();
 399   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 400   inc(Lesp, 2*Interpreter::stackElementSize);
 401   debug_only(verify_esp(Lesp));
 402 }
 403 
 404 
 405 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 406   assert_not_delayed();
 407   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 408   inc(Lesp, Interpreter::stackElementSize);
 409   debug_only(verify_esp(Lesp));
 410 }
 411 
 412 
 413 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 414   assert_not_delayed();
 415   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 416   inc(Lesp, 2*Interpreter::stackElementSize);
 417   debug_only(verify_esp(Lesp));
 418 }
 419 
 420 
 421 void InterpreterMacroAssembler::push_i(Register r) {
 422   assert_not_delayed();
 423   debug_only(verify_esp(Lesp));
 424   st(r, Lesp, 0);
 425   dec(Lesp, Interpreter::stackElementSize);
 426 }
 427 
 428 void InterpreterMacroAssembler::push_ptr(Register r) {
 429   assert_not_delayed();
 430   st_ptr(r, Lesp, 0);
 431   dec(Lesp, Interpreter::stackElementSize);
 432 }
 433 
 434 // remember: our convention for longs in SPARC is:
 435 // O0 (Otos_l1) has high-order part in first word,
 436 // O1 (Otos_l2) has low-order part in second word
 437 
 438 void InterpreterMacroAssembler::push_l(Register r) {
 439   assert_not_delayed();
 440   debug_only(verify_esp(Lesp));
 441   // Longs are stored in memory-correct order, even if unaligned.
 442   int offset = -Interpreter::stackElementSize;
 443   store_unaligned_long(r, Lesp, offset);
 444   dec(Lesp, 2 * Interpreter::stackElementSize);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 449   assert_not_delayed();
 450   debug_only(verify_esp(Lesp));
 451   stf(FloatRegisterImpl::S, f, Lesp, 0);
 452   dec(Lesp, Interpreter::stackElementSize);
 453 }
 454 
 455 
 456 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 457   assert_not_delayed();
 458   debug_only(verify_esp(Lesp));
 459   // Longs are stored in memory-correct order, even if unaligned.
 460   int offset = -Interpreter::stackElementSize;
 461   store_unaligned_double(d, Lesp, offset);
 462   dec(Lesp, 2 * Interpreter::stackElementSize);
 463 }
 464 
 465 
 466 void InterpreterMacroAssembler::push(TosState state) {
 467   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 468   switch (state) {
 469     case atos: push_ptr();            break;
 470     case btos: push_i();              break;
 471     case ctos:
 472     case stos: push_i();              break;
 473     case itos: push_i();              break;
 474     case ltos: push_l();              break;
 475     case ftos: push_f();              break;
 476     case dtos: push_d();              break;
 477     case vtos: /* nothing to do */    break;
 478     default  : ShouldNotReachHere();
 479   }
 480 }
 481 
 482 
 483 void InterpreterMacroAssembler::pop(TosState state) {
 484   switch (state) {
 485     case atos: pop_ptr();            break;
 486     case btos: pop_i();              break;
 487     case ctos:
 488     case stos: pop_i();              break;
 489     case itos: pop_i();              break;
 490     case ltos: pop_l();              break;
 491     case ftos: pop_f();              break;
 492     case dtos: pop_d();              break;
 493     case vtos: /* nothing to do */   break;
 494     default  : ShouldNotReachHere();
 495   }
 496   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 497 }
 498 
 499 
 500 // Helpers for swap and dup
 501 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 502   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 503 }
 504 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 505   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 506 }
 507 
 508 
 509 void InterpreterMacroAssembler::load_receiver(Register param_count,
 510                                               Register recv) {
 511   sll(param_count, Interpreter::logStackElementSize, param_count);
 512   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
 513 }
 514 
 515 void InterpreterMacroAssembler::empty_expression_stack() {
 516   // Reset Lesp.
 517   sub( Lmonitors, wordSize, Lesp );
 518 
 519   // Reset SP by subtracting more space from Lesp.
 520   Label done;
 521   verify_oop(Lmethod);
 522   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 523 
 524   // A native does not need to do this, since its callee does not change SP.
 525   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
 526   btst(JVM_ACC_NATIVE, Gframe_size);
 527   br(Assembler::notZero, false, Assembler::pt, done);
 528   delayed()->nop();
 529 
 530   // Compute max expression stack+register save area
 531   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
 532   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 533 
 534   //
 535   // now set up a stack frame with the size computed above
 536   //
 537   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 538   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 539   sub( Lesp, Gframe_size, Gframe_size );
 540   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 541   debug_only(verify_sp(Gframe_size, G4_scratch));
 542 #ifdef _LP64
 543   sub(Gframe_size, STACK_BIAS, Gframe_size );
 544 #endif
 545   mov(Gframe_size, SP);
 546 
 547   bind(done);
 548 }
 549 
 550 
 551 #ifdef ASSERT
 552 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 553   Label Bad, OK;
 554 
 555   // Saved SP must be aligned.
 556 #ifdef _LP64
 557   btst(2*BytesPerWord-1, Rsp);
 558 #else
 559   btst(LongAlignmentMask, Rsp);
 560 #endif
 561   br(Assembler::notZero, false, Assembler::pn, Bad);
 562   delayed()->nop();
 563 
 564   // Saved SP, plus register window size, must not be above FP.
 565   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 566 #ifdef _LP64
 567   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 568 #endif
 569   cmp(Rtemp, FP);
 570   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
 571   delayed()->nop();
 572 
 573   // Saved SP must not be ridiculously below current SP.
 574   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 575   set(maxstack, Rtemp);
 576   sub(SP, Rtemp, Rtemp);
 577 #ifdef _LP64
 578   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 579 #endif
 580   cmp(Rsp, Rtemp);
 581   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
 582   delayed()->nop();
 583 
 584   br(Assembler::always, false, Assembler::pn, OK);
 585   delayed()->nop();
 586 
 587   bind(Bad);
 588   stop("on return to interpreted call, restored SP is corrupted");
 589 
 590   bind(OK);
 591 }
 592 
 593 
 594 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 595   // about to read or write Resp[0]
 596   // make sure it is not in the monitors or the register save area
 597   Label OK1, OK2;
 598 
 599   cmp(Resp, Lmonitors);
 600   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 601   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 602   stop("too many pops:  Lesp points into monitor area");
 603   bind(OK1);
 604 #ifdef _LP64
 605   sub(Resp, STACK_BIAS, Resp);
 606 #endif
 607   cmp(Resp, SP);
 608   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 609   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 610   stop("too many pushes:  Lesp points into register window");
 611   bind(OK2);
 612 }
 613 #endif // ASSERT
 614 
 615 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 616 // do the call. Centralized so that all interpreter calls will do the same actions.
 617 // If jvmti single stepping is on for a thread we must not call compiled code.
 618 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 619 
 620   // Assume we want to go compiled if available
 621 
 622   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
 623 
 624   if (JvmtiExport::can_post_interpreter_events()) {
 625     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 626     // compiled code in threads for which the event is enabled.  Check here for
 627     // interp_only_mode if these events CAN be enabled.
 628     verify_thread();
 629     Label skip_compiled_code;
 630 
 631     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 632     ld(interp_only, scratch);
 633     tst(scratch);
 634     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
 635     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
 636     bind(skip_compiled_code);
 637   }
 638 
 639   // the i2c_adapters need methodOop in G5_method (right? %%%)
 640   // do the call
 641 #ifdef ASSERT
 642   {
 643     Label ok;
 644     br_notnull(target, false, Assembler::pt, ok);
 645     delayed()->nop();
 646     stop("null entry point");
 647     bind(ok);
 648   }
 649 #endif // ASSERT
 650 
 651   // Adjust Rret first so Llast_SP can be same as Rret
 652   add(Rret, -frame::pc_return_offset, O7);
 653   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 654   // Record SP so we can remove any stack space allocated by adapter transition
 655   jmp(target, 0);
 656   delayed()->mov(SP, Llast_SP);
 657 }
 658 
 659 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 660   assert_not_delayed();
 661 
 662   Label not_taken;
 663   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 664   else             br (cc, false, Assembler::pn, not_taken);
 665   delayed()->nop();
 666 
 667   TemplateTable::branch(false,false);
 668 
 669   bind(not_taken);
 670 
 671   profile_not_taken_branch(G3_scratch);
 672 }
 673 
 674 
 675 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 676                                   int         bcp_offset,
 677                                   Register    Rtmp,
 678                                   Register    Rdst,
 679                                   signedOrNot is_signed,
 680                                   setCCOrNot  should_set_CC ) {
 681   assert(Rtmp != Rdst, "need separate temp register");
 682   assert_not_delayed();
 683   switch (is_signed) {
 684    default: ShouldNotReachHere();
 685 
 686    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 687    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 688   }
 689   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 690   sll( Rdst, BitsPerByte, Rdst);
 691   switch (should_set_CC ) {
 692    default: ShouldNotReachHere();
 693 
 694    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 695    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 696   }
 697 }
 698 
 699 
 700 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 701                                   int        bcp_offset,
 702                                   Register   Rtmp,
 703                                   Register   Rdst,
 704                                   setCCOrNot should_set_CC ) {
 705   assert(Rtmp != Rdst, "need separate temp register");
 706   assert_not_delayed();
 707   add( Lbcp, bcp_offset, Rtmp);
 708   andcc( Rtmp, 3, G0);
 709   Label aligned;
 710   switch (should_set_CC ) {
 711    default: ShouldNotReachHere();
 712 
 713    case      set_CC: break;
 714    case dont_set_CC: break;
 715   }
 716 
 717   br(Assembler::zero, true, Assembler::pn, aligned);
 718 #ifdef _LP64
 719   delayed()->ldsw(Rtmp, 0, Rdst);
 720 #else
 721   delayed()->ld(Rtmp, 0, Rdst);
 722 #endif
 723 
 724   ldub(Lbcp, bcp_offset + 3, Rdst);
 725   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 726   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 727 #ifdef _LP64
 728   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 729 #else
 730   // Unsigned load is faster than signed on some implementations
 731   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 732 #endif
 733   or3(Rtmp, Rdst, Rdst );
 734 
 735   bind(aligned);
 736   if (should_set_CC == set_CC) tst(Rdst);
 737 }
 738 
 739 
 740 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
 741                                                        int bcp_offset, size_t index_size) {
 742   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 743   if (index_size == sizeof(u2)) {
 744     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 745   } else if (index_size == sizeof(u4)) {
 746     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
 747     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
 748     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 749     xor3(tmp, -1, tmp);  // convert to plain index
 750   } else if (index_size == sizeof(u1)) {
 751     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
 752     ldub(Lbcp, bcp_offset, tmp);
 753   } else {
 754     ShouldNotReachHere();
 755   }
 756 }
 757 
 758 
 759 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 760                                                            int bcp_offset, size_t index_size) {
 761   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 762   assert_different_registers(cache, tmp);
 763   assert_not_delayed();
 764   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 765   // convert from field index to ConstantPoolCacheEntry index and from
 766   // word index to byte offset
 767   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 768   add(LcpoolCache, tmp, cache);
 769 }
 770 
 771 
 772 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 773                                                                int bcp_offset, size_t index_size) {
 774   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 775   assert_different_registers(cache, tmp);
 776   assert_not_delayed();
 777   if (index_size == sizeof(u2)) {
 778     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 779   } else {
 780     ShouldNotReachHere();  // other sizes not supported here
 781   }
 782               // convert from field index to ConstantPoolCacheEntry index
 783               // and from word index to byte offset
 784   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 785               // skip past the header
 786   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
 787               // construct pointer to cache entry
 788   add(LcpoolCache, tmp, cache);
 789 }
 790 
 791 
 792 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 793 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 794 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 795                                                   Register Rsuper_klass,
 796                                                   Register Rtmp1,
 797                                                   Register Rtmp2,
 798                                                   Register Rtmp3,
 799                                                   Label &ok_is_subtype ) {
 800   Label not_subtype;
 801 
 802   // Profile the not-null value's klass.
 803   profile_typecheck(Rsub_klass, Rtmp1);
 804 
 805   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 806                                 Rtmp1, Rtmp2,
 807                                 &ok_is_subtype, &not_subtype, NULL);
 808 
 809   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 810                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 811                                 &ok_is_subtype, NULL);
 812 
 813   bind(not_subtype);
 814   profile_typecheck_failed(Rtmp1);
 815 }
 816 
 817 // Separate these two to allow for delay slot in middle
 818 // These are used to do a test and full jump to exception-throwing code.
 819 
 820 // %%%%% Could possibly reoptimize this by testing to see if could use
 821 // a single conditional branch (i.e. if span is small enough.
 822 // If you go that route, than get rid of the split and give up
 823 // on the delay-slot hack.
 824 
 825 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 826                                                     Label&    ok ) {
 827   assert_not_delayed();
 828   br(ok_condition, true, pt, ok);
 829   // DELAY SLOT
 830 }
 831 
 832 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 833                                                     Label&    ok ) {
 834   assert_not_delayed();
 835   bp( ok_condition, true, Assembler::xcc, pt, ok);
 836   // DELAY SLOT
 837 }
 838 
 839 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 840                                                   Label&    ok ) {
 841   assert_not_delayed();
 842   brx(ok_condition, true, pt, ok);
 843   // DELAY SLOT
 844 }
 845 
 846 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 847                                                 Register Rscratch,
 848                                                 Label&   ok ) {
 849   assert(throw_entry_point != NULL, "entry point must be generated by now");
 850   AddressLiteral dest(throw_entry_point);
 851   jump_to(dest, Rscratch);
 852   delayed()->nop();
 853   bind(ok);
 854 }
 855 
 856 
 857 // And if you cannot use the delay slot, here is a shorthand:
 858 
 859 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 860                                                   address   throw_entry_point,
 861                                                   Register  Rscratch ) {
 862   Label ok;
 863   if (ok_condition != never) {
 864     throw_if_not_1_icc( ok_condition, ok);
 865     delayed()->nop();
 866   }
 867   throw_if_not_2( throw_entry_point, Rscratch, ok);
 868 }
 869 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 870                                                   address   throw_entry_point,
 871                                                   Register  Rscratch ) {
 872   Label ok;
 873   if (ok_condition != never) {
 874     throw_if_not_1_xcc( ok_condition, ok);
 875     delayed()->nop();
 876   }
 877   throw_if_not_2( throw_entry_point, Rscratch, ok);
 878 }
 879 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 880                                                 address   throw_entry_point,
 881                                                 Register  Rscratch ) {
 882   Label ok;
 883   if (ok_condition != never) {
 884     throw_if_not_1_x( ok_condition, ok);
 885     delayed()->nop();
 886   }
 887   throw_if_not_2( throw_entry_point, Rscratch, ok);
 888 }
 889 
 890 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 891 // Note: res is still shy of address by array offset into object.
 892 
 893 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 894   assert_not_delayed();
 895 
 896   verify_oop(array);
 897 #ifdef _LP64
 898   // sign extend since tos (index) can be a 32bit value
 899   sra(index, G0, index);
 900 #endif // _LP64
 901 
 902   // check array
 903   Label ptr_ok;
 904   tst(array);
 905   throw_if_not_1_x( notZero, ptr_ok );
 906   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 907   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 908 
 909   Label index_ok;
 910   cmp(index, tmp);
 911   throw_if_not_1_icc( lessUnsigned, index_ok );
 912   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 913   else                  delayed()->add(array, index, res); // addr - const offset in index
 914   // convention: move aberrant index into G3_scratch for exception message
 915   mov(index, G3_scratch);
 916   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 917 
 918   // add offset if didn't do it in delay slot
 919   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 920 }
 921 
 922 
 923 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 924   assert_not_delayed();
 925 
 926   // pop array
 927   pop_ptr(array);
 928 
 929   // check array
 930   index_check_without_pop(array, index, index_shift, tmp, res);
 931 }
 932 
 933 
 934 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 935   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
 936 }
 937 
 938 
 939 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 940   get_constant_pool(Rdst);
 941   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
 942 }
 943 
 944 
 945 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 946   get_constant_pool(Rcpool);
 947   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
 948 }
 949 
 950 
 951 // unlock if synchronized method
 952 //
 953 // Unlock the receiver if this is a synchronized method.
 954 // Unlock any Java monitors from syncronized blocks.
 955 //
 956 // If there are locked Java monitors
 957 //    If throw_monitor_exception
 958 //       throws IllegalMonitorStateException
 959 //    Else if install_monitor_exception
 960 //       installs IllegalMonitorStateException
 961 //    Else
 962 //       no error processing
 963 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 964                                                               bool throw_monitor_exception,
 965                                                               bool install_monitor_exception) {
 966   Label unlocked, unlock, no_unlock;
 967 
 968   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 969   const Address do_not_unlock_if_synchronized(G2_thread,
 970     JavaThread::do_not_unlock_if_synchronized_offset());
 971   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 972   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 973 
 974   // check if synchronized method
 975   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
 976   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 977   push(state); // save tos
 978   ld(access_flags, G3_scratch); // Load access flags.
 979   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 980   br(zero, false, pt, unlocked);
 981   delayed()->nop();
 982 
 983   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 984   // is set.
 985   tstbool(G1_scratch);
 986   br(Assembler::notZero, false, pn, no_unlock);
 987   delayed()->nop();
 988 
 989   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 990   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 991 
 992   //Intel: if (throw_monitor_exception) ... else ...
 993   // Entry already unlocked, need to throw exception
 994   //...
 995 
 996   // pass top-most monitor elem
 997   add( top_most_monitor(), O1 );
 998 
 999   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1000   br_notnull(G3_scratch, false, pt, unlock);
1001   delayed()->nop();
1002 
1003   if (throw_monitor_exception) {
1004     // Entry already unlocked need to throw an exception
1005     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1006     should_not_reach_here();
1007   } else {
1008     // Monitor already unlocked during a stack unroll.
1009     // If requested, install an illegal_monitor_state_exception.
1010     // Continue with stack unrolling.
1011     if (install_monitor_exception) {
1012       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1013     }
1014     ba(false, unlocked);
1015     delayed()->nop();
1016   }
1017 
1018   bind(unlock);
1019 
1020   unlock_object(O1);
1021 
1022   bind(unlocked);
1023 
1024   // I0, I1: Might contain return value
1025 
1026   // Check that all monitors are unlocked
1027   { Label loop, exception, entry, restart;
1028 
1029     Register Rmptr   = O0;
1030     Register Rtemp   = O1;
1031     Register Rlimit  = Lmonitors;
1032     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1033     assert( (delta & LongAlignmentMask) == 0,
1034             "sizeof BasicObjectLock must be even number of doublewords");
1035 
1036     #ifdef ASSERT
1037     add(top_most_monitor(), Rmptr, delta);
1038     { Label L;
1039       // ensure that Rmptr starts out above (or at) Rlimit
1040       cmp(Rmptr, Rlimit);
1041       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1042       delayed()->nop();
1043       stop("monitor stack has negative size");
1044       bind(L);
1045     }
1046     #endif
1047     bind(restart);
1048     ba(false, entry);
1049     delayed()->
1050     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1051 
1052     // Entry is still locked, need to throw exception
1053     bind(exception);
1054     if (throw_monitor_exception) {
1055       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1056       should_not_reach_here();
1057     } else {
1058       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1059       // Unlock does not block, so don't have to worry about the frame
1060       unlock_object(Rmptr);
1061       if (install_monitor_exception) {
1062         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1063       }
1064       ba(false, restart);
1065       delayed()->nop();
1066     }
1067 
1068     bind(loop);
1069     cmp(Rtemp, G0);                             // check if current entry is used
1070     brx(Assembler::notEqual, false, pn, exception);
1071     delayed()->
1072     dec(Rmptr, delta);                          // otherwise advance to next entry
1073     #ifdef ASSERT
1074     { Label L;
1075       // ensure that Rmptr has not somehow stepped below Rlimit
1076       cmp(Rmptr, Rlimit);
1077       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1078       delayed()->nop();
1079       stop("ran off the end of the monitor stack");
1080       bind(L);
1081     }
1082     #endif
1083     bind(entry);
1084     cmp(Rmptr, Rlimit);                         // check if bottom reached
1085     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1086     delayed()->
1087     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1088   }
1089 
1090   bind(no_unlock);
1091   pop(state);
1092   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1093 }
1094 
1095 
1096 // remove activation
1097 //
1098 // Unlock the receiver if this is a synchronized method.
1099 // Unlock any Java monitors from syncronized blocks.
1100 // Remove the activation from the stack.
1101 //
1102 // If there are locked Java monitors
1103 //    If throw_monitor_exception
1104 //       throws IllegalMonitorStateException
1105 //    Else if install_monitor_exception
1106 //       installs IllegalMonitorStateException
1107 //    Else
1108 //       no error processing
1109 void InterpreterMacroAssembler::remove_activation(TosState state,
1110                                                   bool throw_monitor_exception,
1111                                                   bool install_monitor_exception) {
1112 
1113   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1114 
1115   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1116   notify_method_exit(false, state, NotifyJVMTI);
1117 
1118   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1119   verify_oop(Lmethod);
1120   verify_thread();
1121 
1122   // return tos
1123   assert(Otos_l1 == Otos_i, "adjust code below");
1124   switch (state) {
1125 #ifdef _LP64
1126   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1127 #else
1128   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1129 #endif
1130   case btos:                                      // fall through
1131   case ctos:
1132   case stos:                                      // fall through
1133   case atos:                                      // fall through
1134   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1135   case ftos:                                      // fall through
1136   case dtos:                                      // fall through
1137   case vtos: /* nothing to do */                     break;
1138   default  : ShouldNotReachHere();
1139   }
1140 
1141 #if defined(COMPILER2) && !defined(_LP64)
1142   if (state == ltos) {
1143     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1144     // or compiled so just be safe use G1 and O0/O1
1145 
1146     // Shift bits into high (msb) of G1
1147     sllx(Otos_l1->after_save(), 32, G1);
1148     // Zero extend low bits
1149     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1150     or3 (Otos_l2->after_save(), G1, G1);
1151   }
1152 #endif /* COMPILER2 */
1153 
1154 }
1155 #endif /* CC_INTERP */
1156 
1157 
1158 // Lock object
1159 //
1160 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1161 //            it must be initialized with the object to lock
1162 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1163   if (UseHeavyMonitors) {
1164     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1165   }
1166   else {
1167     Register obj_reg = Object;
1168     Register mark_reg = G4_scratch;
1169     Register temp_reg = G1_scratch;
1170     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1171     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1172     Label    done;
1173 
1174     Label slow_case;
1175 
1176     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1177 
1178     // load markOop from object into mark_reg
1179     ld_ptr(mark_addr, mark_reg);
1180 
1181     if (UseBiasedLocking) {
1182       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1183     }
1184 
1185     // get the address of basicLock on stack that will be stored in the object
1186     // we need a temporary register here as we do not want to clobber lock_reg
1187     // (cas clobbers the destination register)
1188     mov(lock_reg, temp_reg);
1189     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1190     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1191     // initialize the box  (Must happen before we update the object mark!)
1192     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1193     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1194     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1195     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1196       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1197 
1198     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1199     cmp(mark_reg, temp_reg);
1200     brx(Assembler::equal, true, Assembler::pt, done);
1201     delayed()->nop();
1202 
1203     // We did not see an unlocked object so try the fast recursive case
1204 
1205     // Check if owner is self by comparing the value in the markOop of object
1206     // with the stack pointer
1207     sub(temp_reg, SP, temp_reg);
1208 #ifdef _LP64
1209     sub(temp_reg, STACK_BIAS, temp_reg);
1210 #endif
1211     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1212 
1213     // Composite "andcc" test:
1214     // (a) %sp -vs- markword proximity check, and,
1215     // (b) verify mark word LSBs == 0 (Stack-locked).
1216     //
1217     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1218     // Note that the page size used for %sp proximity testing is arbitrary and is
1219     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1220     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1221     // field of the andcc instruction.
1222     andcc (temp_reg, 0xFFFFF003, G0) ;
1223 
1224     // if condition is true we are done and hence we can store 0 in the displaced
1225     // header indicating it is a recursive lock and be done
1226     brx(Assembler::zero, true, Assembler::pt, done);
1227     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1228 
1229     // none of the above fast optimizations worked so we have to get into the
1230     // slow case of monitor enter
1231     bind(slow_case);
1232     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1233 
1234     bind(done);
1235   }
1236 }
1237 
1238 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1239 //
1240 // Argument - lock_reg points to the BasicObjectLock for lock
1241 // Throw IllegalMonitorException if object is not locked by current thread
1242 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1243   if (UseHeavyMonitors) {
1244     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1245   } else {
1246     Register obj_reg = G3_scratch;
1247     Register mark_reg = G4_scratch;
1248     Register displaced_header_reg = G1_scratch;
1249     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1250     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1251     Label    done;
1252 
1253     if (UseBiasedLocking) {
1254       // load the object out of the BasicObjectLock
1255       ld_ptr(lockobj_addr, obj_reg);
1256       biased_locking_exit(mark_addr, mark_reg, done, true);
1257       st_ptr(G0, lockobj_addr);  // free entry
1258     }
1259 
1260     // Test first if we are in the fast recursive case
1261     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1262     ld_ptr(lock_addr, displaced_header_reg);
1263     br_null(displaced_header_reg, true, Assembler::pn, done);
1264     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1265 
1266     // See if it is still a light weight lock, if so we just unlock
1267     // the object and we are done
1268 
1269     if (!UseBiasedLocking) {
1270       // load the object out of the BasicObjectLock
1271       ld_ptr(lockobj_addr, obj_reg);
1272     }
1273 
1274     // we have the displaced header in displaced_header_reg
1275     // we expect to see the stack address of the basicLock in case the
1276     // lock is still a light weight lock (lock_reg)
1277     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1278     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1279       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1280     cmp(lock_reg, displaced_header_reg);
1281     brx(Assembler::equal, true, Assembler::pn, done);
1282     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1283 
1284     // The lock has been converted into a heavy lock and hence
1285     // we need to get into the slow case
1286 
1287     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1288 
1289     bind(done);
1290   }
1291 }
1292 
1293 #ifndef CC_INTERP
1294 
1295 // Get the method data pointer from the methodOop and set the
1296 // specified register to its value.
1297 
1298 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1299   assert(ProfileInterpreter, "must be profiling interpreter");
1300   Label get_continue;
1301 
1302   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1303   test_method_data_pointer(get_continue);
1304   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1305   if (Roff != noreg)
1306     // Roff contains a method data index ("mdi").  It defaults to zero.
1307     add(ImethodDataPtr, Roff, ImethodDataPtr);
1308   bind(get_continue);
1309 }
1310 
1311 // Set the method data pointer for the current bcp.
1312 
1313 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1314   assert(ProfileInterpreter, "must be profiling interpreter");
1315   Label zero_continue;
1316 
1317   // Test MDO to avoid the call if it is NULL.
1318   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1319   test_method_data_pointer(zero_continue);
1320   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1321   set_method_data_pointer_offset(O0);
1322   bind(zero_continue);
1323 }
1324 
1325 // Test ImethodDataPtr.  If it is null, continue at the specified label
1326 
1327 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1328   assert(ProfileInterpreter, "must be profiling interpreter");
1329 #ifdef _LP64
1330   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1331 #else
1332   tst(ImethodDataPtr);
1333   br(Assembler::zero, false, Assembler::pn, zero_continue);
1334 #endif
1335   delayed()->nop();
1336 }
1337 
1338 void InterpreterMacroAssembler::verify_method_data_pointer() {
1339   assert(ProfileInterpreter, "must be profiling interpreter");
1340 #ifdef ASSERT
1341   Label verify_continue;
1342   test_method_data_pointer(verify_continue);
1343 
1344   // If the mdp is valid, it will point to a DataLayout header which is
1345   // consistent with the bcp.  The converse is highly probable also.
1346   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1347   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1348   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1349   add(G3_scratch, O5, G3_scratch);
1350   cmp(Lbcp, G3_scratch);
1351   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1352 
1353   Register temp_reg = O5;
1354   delayed()->mov(ImethodDataPtr, temp_reg);
1355   // %%% should use call_VM_leaf here?
1356   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1357   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1358   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1359   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1360   mov(temp_reg->after_save(), O2);
1361   save_thread(L7_thread_cache);
1362   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1363   delayed()->nop();
1364   restore_thread(L7_thread_cache);
1365   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1366   restore();
1367   bind(verify_continue);
1368 #endif // ASSERT
1369 }
1370 
1371 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1372                                                                 Register cur_bcp,
1373                                                                 Register Rtmp,
1374                                                                 Label &profile_continue) {
1375   assert(ProfileInterpreter, "must be profiling interpreter");
1376   // Control will flow to "profile_continue" if the counter is less than the
1377   // limit or if we call profile_method()
1378 
1379   Label done;
1380 
1381   // if no method data exists, and the counter is high enough, make one
1382 #ifdef _LP64
1383   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1384 #else
1385   tst(ImethodDataPtr);
1386   br(Assembler::notZero, false, Assembler::pn, done);
1387 #endif
1388 
1389   // Test to see if we should create a method data oop
1390   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1391 #ifdef _LP64
1392   delayed()->nop();
1393   sethi(profile_limit, Rtmp);
1394 #else
1395   delayed()->sethi(profile_limit, Rtmp);
1396 #endif
1397   ld(Rtmp, profile_limit.low10(), Rtmp);
1398   cmp(invocation_count, Rtmp);
1399   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1400   delayed()->nop();
1401 
1402   // Build it now.
1403   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1404   set_method_data_pointer_offset(O0);
1405   ba(false, profile_continue);
1406   delayed()->nop();
1407   bind(done);
1408 }
1409 
1410 // Store a value at some constant offset from the method data pointer.
1411 
1412 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1413   assert(ProfileInterpreter, "must be profiling interpreter");
1414   st_ptr(value, ImethodDataPtr, constant);
1415 }
1416 
1417 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1418                                                       Register bumped_count,
1419                                                       bool decrement) {
1420   assert(ProfileInterpreter, "must be profiling interpreter");
1421 
1422   // Load the counter.
1423   ld_ptr(counter, bumped_count);
1424 
1425   if (decrement) {
1426     // Decrement the register.  Set condition codes.
1427     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1428 
1429     // If the decrement causes the counter to overflow, stay negative
1430     Label L;
1431     brx(Assembler::negative, true, Assembler::pn, L);
1432 
1433     // Store the decremented counter, if it is still negative.
1434     delayed()->st_ptr(bumped_count, counter);
1435     bind(L);
1436   } else {
1437     // Increment the register.  Set carry flag.
1438     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1439 
1440     // If the increment causes the counter to overflow, pull back by 1.
1441     assert(DataLayout::counter_increment == 1, "subc works");
1442     subc(bumped_count, G0, bumped_count);
1443 
1444     // Store the incremented counter.
1445     st_ptr(bumped_count, counter);
1446   }
1447 }
1448 
1449 // Increment the value at some constant offset from the method data pointer.
1450 
1451 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1452                                                       Register bumped_count,
1453                                                       bool decrement) {
1454   // Locate the counter at a fixed offset from the mdp:
1455   Address counter(ImethodDataPtr, constant);
1456   increment_mdp_data_at(counter, bumped_count, decrement);
1457 }
1458 
1459 // Increment the value at some non-fixed (reg + constant) offset from
1460 // the method data pointer.
1461 
1462 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1463                                                       int constant,
1464                                                       Register bumped_count,
1465                                                       Register scratch2,
1466                                                       bool decrement) {
1467   // Add the constant to reg to get the offset.
1468   add(ImethodDataPtr, reg, scratch2);
1469   Address counter(scratch2, constant);
1470   increment_mdp_data_at(counter, bumped_count, decrement);
1471 }
1472 
1473 // Set a flag value at the current method data pointer position.
1474 // Updates a single byte of the header, to avoid races with other header bits.
1475 
1476 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1477                                                 Register scratch) {
1478   assert(ProfileInterpreter, "must be profiling interpreter");
1479   // Load the data header
1480   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1481 
1482   // Set the flag
1483   or3(scratch, flag_constant, scratch);
1484 
1485   // Store the modified header.
1486   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1487 }
1488 
1489 // Test the location at some offset from the method data pointer.
1490 // If it is not equal to value, branch to the not_equal_continue Label.
1491 // Set condition codes to match the nullness of the loaded value.
1492 
1493 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1494                                                  Register value,
1495                                                  Label& not_equal_continue,
1496                                                  Register scratch) {
1497   assert(ProfileInterpreter, "must be profiling interpreter");
1498   ld_ptr(ImethodDataPtr, offset, scratch);
1499   cmp(value, scratch);
1500   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1501   delayed()->tst(scratch);
1502 }
1503 
1504 // Update the method data pointer by the displacement located at some fixed
1505 // offset from the method data pointer.
1506 
1507 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1508                                                      Register scratch) {
1509   assert(ProfileInterpreter, "must be profiling interpreter");
1510   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1511   add(ImethodDataPtr, scratch, ImethodDataPtr);
1512 }
1513 
1514 // Update the method data pointer by the displacement located at the
1515 // offset (reg + offset_of_disp).
1516 
1517 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1518                                                      int offset_of_disp,
1519                                                      Register scratch) {
1520   assert(ProfileInterpreter, "must be profiling interpreter");
1521   add(reg, offset_of_disp, scratch);
1522   ld_ptr(ImethodDataPtr, scratch, scratch);
1523   add(ImethodDataPtr, scratch, ImethodDataPtr);
1524 }
1525 
1526 // Update the method data pointer by a simple constant displacement.
1527 
1528 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1529   assert(ProfileInterpreter, "must be profiling interpreter");
1530   add(ImethodDataPtr, constant, ImethodDataPtr);
1531 }
1532 
1533 // Update the method data pointer for a _ret bytecode whose target
1534 // was not among our cached targets.
1535 
1536 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1537                                                    Register return_bci) {
1538   assert(ProfileInterpreter, "must be profiling interpreter");
1539   push(state);
1540   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1541   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1542   ld_ptr(l_tmp, return_bci);
1543   pop(state);
1544 }
1545 
1546 // Count a taken branch in the bytecodes.
1547 
1548 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1549   if (ProfileInterpreter) {
1550     Label profile_continue;
1551 
1552     // If no method data exists, go to profile_continue.
1553     test_method_data_pointer(profile_continue);
1554 
1555     // We are taking a branch.  Increment the taken count.
1556     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1557 
1558     // The method data pointer needs to be updated to reflect the new target.
1559     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1560     bind (profile_continue);
1561   }
1562 }
1563 
1564 
1565 // Count a not-taken branch in the bytecodes.
1566 
1567 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1568   if (ProfileInterpreter) {
1569     Label profile_continue;
1570 
1571     // If no method data exists, go to profile_continue.
1572     test_method_data_pointer(profile_continue);
1573 
1574     // We are taking a branch.  Increment the not taken count.
1575     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1576 
1577     // The method data pointer needs to be updated to correspond to the
1578     // next bytecode.
1579     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1580     bind (profile_continue);
1581   }
1582 }
1583 
1584 
1585 // Count a non-virtual call in the bytecodes.
1586 
1587 void InterpreterMacroAssembler::profile_call(Register scratch) {
1588   if (ProfileInterpreter) {
1589     Label profile_continue;
1590 
1591     // If no method data exists, go to profile_continue.
1592     test_method_data_pointer(profile_continue);
1593 
1594     // We are making a call.  Increment the count.
1595     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1596 
1597     // The method data pointer needs to be updated to reflect the new target.
1598     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1599     bind (profile_continue);
1600   }
1601 }
1602 
1603 
1604 // Count a final call in the bytecodes.
1605 
1606 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1607   if (ProfileInterpreter) {
1608     Label profile_continue;
1609 
1610     // If no method data exists, go to profile_continue.
1611     test_method_data_pointer(profile_continue);
1612 
1613     // We are making a call.  Increment the count.
1614     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1615 
1616     // The method data pointer needs to be updated to reflect the new target.
1617     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1618     bind (profile_continue);
1619   }
1620 }
1621 
1622 
1623 // Count a virtual call in the bytecodes.
1624 
1625 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1626                                                      Register scratch,
1627                                                      bool receiver_can_be_null) {
1628   if (ProfileInterpreter) {
1629     Label profile_continue;
1630 
1631     // If no method data exists, go to profile_continue.
1632     test_method_data_pointer(profile_continue);
1633 
1634 
1635     Label skip_receiver_profile;
1636     if (receiver_can_be_null) {
1637       Label not_null;
1638       tst(receiver);
1639       brx(Assembler::notZero, false, Assembler::pt, not_null);
1640       delayed()->nop();
1641       // We are making a call.  Increment the count for null receiver.
1642       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1643       ba(false, skip_receiver_profile);
1644       delayed()->nop();
1645       bind(not_null);
1646     }
1647 
1648     // Record the receiver type.
1649     record_klass_in_profile(receiver, scratch, true);
1650     bind(skip_receiver_profile);
1651 
1652     // The method data pointer needs to be updated to reflect the new target.
1653     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1654     bind (profile_continue);
1655   }
1656 }
1657 
1658 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1659                                         Register receiver, Register scratch,
1660                                         int start_row, Label& done, bool is_virtual_call) {
1661   if (TypeProfileWidth == 0) {
1662     if (is_virtual_call) {
1663       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1664     }
1665     return;
1666   }
1667 
1668   int last_row = VirtualCallData::row_limit() - 1;
1669   assert(start_row <= last_row, "must be work left to do");
1670   // Test this row for both the receiver and for null.
1671   // Take any of three different outcomes:
1672   //   1. found receiver => increment count and goto done
1673   //   2. found null => keep looking for case 1, maybe allocate this cell
1674   //   3. found something else => keep looking for cases 1 and 2
1675   // Case 3 is handled by a recursive call.
1676   for (int row = start_row; row <= last_row; row++) {
1677     Label next_test;
1678     bool test_for_null_also = (row == start_row);
1679 
1680     // See if the receiver is receiver[n].
1681     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1682     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1683     // delayed()->tst(scratch);
1684 
1685     // The receiver is receiver[n].  Increment count[n].
1686     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1687     increment_mdp_data_at(count_offset, scratch);
1688     ba(false, done);
1689     delayed()->nop();
1690     bind(next_test);
1691 
1692     if (test_for_null_also) {
1693       Label found_null;
1694       // Failed the equality check on receiver[n]...  Test for null.
1695       if (start_row == last_row) {
1696         // The only thing left to do is handle the null case.
1697         if (is_virtual_call) {
1698           brx(Assembler::zero, false, Assembler::pn, found_null);
1699           delayed()->nop();
1700           // Receiver did not match any saved receiver and there is no empty row for it.
1701           // Increment total counter to indicate polymorphic case.
1702           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1703           ba(false, done);
1704           delayed()->nop();
1705           bind(found_null);
1706         } else {
1707           brx(Assembler::notZero, false, Assembler::pt, done);
1708           delayed()->nop();
1709         }
1710         break;
1711       }
1712       // Since null is rare, make it be the branch-taken case.
1713       brx(Assembler::zero, false, Assembler::pn, found_null);
1714       delayed()->nop();
1715 
1716       // Put all the "Case 3" tests here.
1717       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1718 
1719       // Found a null.  Keep searching for a matching receiver,
1720       // but remember that this is an empty (unused) slot.
1721       bind(found_null);
1722     }
1723   }
1724 
1725   // In the fall-through case, we found no matching receiver, but we
1726   // observed the receiver[start_row] is NULL.
1727 
1728   // Fill in the receiver field and increment the count.
1729   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1730   set_mdp_data_at(recvr_offset, receiver);
1731   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1732   mov(DataLayout::counter_increment, scratch);
1733   set_mdp_data_at(count_offset, scratch);
1734   if (start_row > 0) {
1735     ba(false, done);
1736     delayed()->nop();
1737   }
1738 }
1739 
1740 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1741                                                         Register scratch, bool is_virtual_call) {
1742   assert(ProfileInterpreter, "must be profiling");
1743   Label done;
1744 
1745   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1746 
1747   bind (done);
1748 }
1749 
1750 
1751 // Count a ret in the bytecodes.
1752 
1753 void InterpreterMacroAssembler::profile_ret(TosState state,
1754                                             Register return_bci,
1755                                             Register scratch) {
1756   if (ProfileInterpreter) {
1757     Label profile_continue;
1758     uint row;
1759 
1760     // If no method data exists, go to profile_continue.
1761     test_method_data_pointer(profile_continue);
1762 
1763     // Update the total ret count.
1764     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1765 
1766     for (row = 0; row < RetData::row_limit(); row++) {
1767       Label next_test;
1768 
1769       // See if return_bci is equal to bci[n]:
1770       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1771                        return_bci, next_test, scratch);
1772 
1773       // return_bci is equal to bci[n].  Increment the count.
1774       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1775 
1776       // The method data pointer needs to be updated to reflect the new target.
1777       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1778       ba(false, profile_continue);
1779       delayed()->nop();
1780       bind(next_test);
1781     }
1782 
1783     update_mdp_for_ret(state, return_bci);
1784 
1785     bind (profile_continue);
1786   }
1787 }
1788 
1789 // Profile an unexpected null in the bytecodes.
1790 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1791   if (ProfileInterpreter) {
1792     Label profile_continue;
1793 
1794     // If no method data exists, go to profile_continue.
1795     test_method_data_pointer(profile_continue);
1796 
1797     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1798 
1799     // The method data pointer needs to be updated.
1800     int mdp_delta = in_bytes(BitData::bit_data_size());
1801     if (TypeProfileCasts) {
1802       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1803     }
1804     update_mdp_by_constant(mdp_delta);
1805 
1806     bind (profile_continue);
1807   }
1808 }
1809 
1810 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1811                                                   Register scratch) {
1812   if (ProfileInterpreter) {
1813     Label profile_continue;
1814 
1815     // If no method data exists, go to profile_continue.
1816     test_method_data_pointer(profile_continue);
1817 
1818     int mdp_delta = in_bytes(BitData::bit_data_size());
1819     if (TypeProfileCasts) {
1820       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1821 
1822       // Record the object type.
1823       record_klass_in_profile(klass, scratch, false);
1824     }
1825 
1826     // The method data pointer needs to be updated.
1827     update_mdp_by_constant(mdp_delta);
1828 
1829     bind (profile_continue);
1830   }
1831 }
1832 
1833 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1834   if (ProfileInterpreter && TypeProfileCasts) {
1835     Label profile_continue;
1836 
1837     // If no method data exists, go to profile_continue.
1838     test_method_data_pointer(profile_continue);
1839 
1840     int count_offset = in_bytes(CounterData::count_offset());
1841     // Back up the address, since we have already bumped the mdp.
1842     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1843 
1844     // *Decrement* the counter.  We expect to see zero or small negatives.
1845     increment_mdp_data_at(count_offset, scratch, true);
1846 
1847     bind (profile_continue);
1848   }
1849 }
1850 
1851 // Count the default case of a switch construct.
1852 
1853 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1854   if (ProfileInterpreter) {
1855     Label profile_continue;
1856 
1857     // If no method data exists, go to profile_continue.
1858     test_method_data_pointer(profile_continue);
1859 
1860     // Update the default case count
1861     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1862                           scratch);
1863 
1864     // The method data pointer needs to be updated.
1865     update_mdp_by_offset(
1866                     in_bytes(MultiBranchData::default_displacement_offset()),
1867                     scratch);
1868 
1869     bind (profile_continue);
1870   }
1871 }
1872 
1873 // Count the index'th case of a switch construct.
1874 
1875 void InterpreterMacroAssembler::profile_switch_case(Register index,
1876                                                     Register scratch,
1877                                                     Register scratch2,
1878                                                     Register scratch3) {
1879   if (ProfileInterpreter) {
1880     Label profile_continue;
1881 
1882     // If no method data exists, go to profile_continue.
1883     test_method_data_pointer(profile_continue);
1884 
1885     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1886     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1887     smul(index, scratch, scratch);
1888     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1889 
1890     // Update the case count
1891     increment_mdp_data_at(scratch,
1892                           in_bytes(MultiBranchData::relative_count_offset()),
1893                           scratch2,
1894                           scratch3);
1895 
1896     // The method data pointer needs to be updated.
1897     update_mdp_by_offset(scratch,
1898                      in_bytes(MultiBranchData::relative_displacement_offset()),
1899                      scratch2);
1900 
1901     bind (profile_continue);
1902   }
1903 }
1904 
1905 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1906 
1907 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1908                                                       Register Rtemp,
1909                                                       Register Rtemp2 ) {
1910 
1911   Register Rlimit = Lmonitors;
1912   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1913   assert( (delta & LongAlignmentMask) == 0,
1914           "sizeof BasicObjectLock must be even number of doublewords");
1915 
1916   sub( SP,        delta, SP);
1917   sub( Lesp,      delta, Lesp);
1918   sub( Lmonitors, delta, Lmonitors);
1919 
1920   if (!stack_is_empty) {
1921 
1922     // must copy stack contents down
1923 
1924     Label start_copying, next;
1925 
1926     // untested("monitor stack expansion");
1927     compute_stack_base(Rtemp);
1928     ba( false, start_copying );
1929     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1930 
1931     // note: must copy from low memory upwards
1932     // On entry to loop,
1933     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1934     // Loop mutates Rtemp
1935 
1936     bind( next);
1937 
1938     st_ptr(Rtemp2, Rtemp, 0);
1939     inc(Rtemp, wordSize);
1940     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1941 
1942     bind( start_copying );
1943 
1944     brx( notEqual, true, pn, next );
1945     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1946 
1947     // done copying stack
1948   }
1949 }
1950 
1951 // Locals
1952 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1953   assert_not_delayed();
1954   sll(index, Interpreter::logStackElementSize, index);
1955   sub(Llocals, index, index);
1956   ld_ptr(index, 0, dst);
1957   // Note:  index must hold the effective address--the iinc template uses it
1958 }
1959 
1960 // Just like access_local_ptr but the tag is a returnAddress
1961 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1962                                                            Register dst ) {
1963   assert_not_delayed();
1964   sll(index, Interpreter::logStackElementSize, index);
1965   sub(Llocals, index, index);
1966   ld_ptr(index, 0, dst);
1967 }
1968 
1969 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1970   assert_not_delayed();
1971   sll(index, Interpreter::logStackElementSize, index);
1972   sub(Llocals, index, index);
1973   ld(index, 0, dst);
1974   // Note:  index must hold the effective address--the iinc template uses it
1975 }
1976 
1977 
1978 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1979   assert_not_delayed();
1980   sll(index, Interpreter::logStackElementSize, index);
1981   sub(Llocals, index, index);
1982   // First half stored at index n+1 (which grows down from Llocals[n])
1983   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1984 }
1985 
1986 
1987 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1988   assert_not_delayed();
1989   sll(index, Interpreter::logStackElementSize, index);
1990   sub(Llocals, index, index);
1991   ldf(FloatRegisterImpl::S, index, 0, dst);
1992 }
1993 
1994 
1995 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1996   assert_not_delayed();
1997   sll(index, Interpreter::logStackElementSize, index);
1998   sub(Llocals, index, index);
1999   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2000 }
2001 
2002 
2003 #ifdef ASSERT
2004 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2005   Label L;
2006 
2007   assert(Rindex != Rscratch, "Registers cannot be same");
2008   assert(Rindex != Rscratch1, "Registers cannot be same");
2009   assert(Rlimit != Rscratch, "Registers cannot be same");
2010   assert(Rlimit != Rscratch1, "Registers cannot be same");
2011   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2012 
2013   // untested("reg area corruption");
2014   add(Rindex, offset, Rscratch);
2015   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2016   cmp(Rscratch, Rscratch1);
2017   brx(Assembler::greaterEqualUnsigned, false, pn, L);
2018   delayed()->nop();
2019   stop("regsave area is being clobbered");
2020   bind(L);
2021 }
2022 #endif // ASSERT
2023 
2024 
2025 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2026   assert_not_delayed();
2027   sll(index, Interpreter::logStackElementSize, index);
2028   sub(Llocals, index, index);
2029   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2030   st(src, index, 0);
2031 }
2032 
2033 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2034   assert_not_delayed();
2035   sll(index, Interpreter::logStackElementSize, index);
2036   sub(Llocals, index, index);
2037 #ifdef ASSERT
2038   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2039 #endif
2040   st_ptr(src, index, 0);
2041 }
2042 
2043 
2044 
2045 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2046   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2047 }
2048 
2049 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2050   assert_not_delayed();
2051   sll(index, Interpreter::logStackElementSize, index);
2052   sub(Llocals, index, index);
2053 #ifdef ASSERT
2054   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2055 #endif
2056   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2057 }
2058 
2059 
2060 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2061   assert_not_delayed();
2062   sll(index, Interpreter::logStackElementSize, index);
2063   sub(Llocals, index, index);
2064 #ifdef ASSERT
2065   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2066 #endif
2067   stf(FloatRegisterImpl::S, src, index, 0);
2068 }
2069 
2070 
2071 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2072   assert_not_delayed();
2073   sll(index, Interpreter::logStackElementSize, index);
2074   sub(Llocals, index, index);
2075 #ifdef ASSERT
2076   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2077 #endif
2078   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2079 }
2080 
2081 
2082 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2083   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2084   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2085   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2086 }
2087 
2088 
2089 Address InterpreterMacroAssembler::top_most_monitor() {
2090   return Address(FP, top_most_monitor_byte_offset());
2091 }
2092 
2093 
2094 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2095   add( Lesp,      wordSize,                                    Rdest );
2096 }
2097 
2098 #endif /* CC_INTERP */
2099 
2100 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2101   assert(UseCompiler, "incrementing must be useful");
2102 #ifdef CC_INTERP
2103   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2104                                  InvocationCounter::counter_offset());
2105   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2106                                  InvocationCounter::counter_offset());
2107 #else
2108   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2109                                InvocationCounter::counter_offset());
2110   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2111                                InvocationCounter::counter_offset());
2112 #endif /* CC_INTERP */
2113   int delta = InvocationCounter::count_increment;
2114 
2115   // Load each counter in a register
2116   ld( inv_counter, Rtmp );
2117   ld( be_counter, Rtmp2 );
2118 
2119   assert( is_simm13( delta ), " delta too large.");
2120 
2121   // Add the delta to the invocation counter and store the result
2122   add( Rtmp, delta, Rtmp );
2123 
2124   // Mask the backedge counter
2125   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2126 
2127   // Store value
2128   st( Rtmp, inv_counter);
2129 
2130   // Add invocation counter + backedge counter
2131   add( Rtmp, Rtmp2, Rtmp);
2132 
2133   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2134 }
2135 
2136 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2137   assert(UseCompiler, "incrementing must be useful");
2138 #ifdef CC_INTERP
2139   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2140                                  InvocationCounter::counter_offset());
2141   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2142                                  InvocationCounter::counter_offset());
2143 #else
2144   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2145                                InvocationCounter::counter_offset());
2146   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2147                                InvocationCounter::counter_offset());
2148 #endif /* CC_INTERP */
2149   int delta = InvocationCounter::count_increment;
2150   // Load each counter in a register
2151   ld( be_counter, Rtmp );
2152   ld( inv_counter, Rtmp2 );
2153 
2154   // Add the delta to the backedge counter
2155   add( Rtmp, delta, Rtmp );
2156 
2157   // Mask the invocation counter, add to backedge counter
2158   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2159 
2160   // and store the result to memory
2161   st( Rtmp, be_counter );
2162 
2163   // Add backedge + invocation counter
2164   add( Rtmp, Rtmp2, Rtmp );
2165 
2166   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2167 }
2168 
2169 #ifndef CC_INTERP
2170 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2171                                                              Register branch_bcp,
2172                                                              Register Rtmp ) {
2173   Label did_not_overflow;
2174   Label overflow_with_error;
2175   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2176   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2177 
2178   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2179   load_contents(limit, Rtmp);
2180   cmp(backedge_count, Rtmp);
2181   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2182   delayed()->nop();
2183 
2184   // When ProfileInterpreter is on, the backedge_count comes from the
2185   // methodDataOop, which value does not get reset on the call to
2186   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2187   // routine while the method is being compiled, add a second test to make sure
2188   // the overflow function is called only once every overflow_frequency.
2189   if (ProfileInterpreter) {
2190     const int overflow_frequency = 1024;
2191     andcc(backedge_count, overflow_frequency-1, Rtmp);
2192     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2193     delayed()->nop();
2194   }
2195 
2196   // overflow in loop, pass branch bytecode
2197   set(6,Rtmp);
2198   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2199 
2200   // Was an OSR adapter generated?
2201   // O0 = osr nmethod
2202   tst(O0);
2203   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2204   delayed()->nop();
2205 
2206   // Has the nmethod been invalidated already?
2207   ld(O0, nmethod::entry_bci_offset(), O2);
2208   cmp(O2, InvalidOSREntryBci);
2209   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2210   delayed()->nop();
2211 
2212   // migrate the interpreter frame off of the stack
2213 
2214   mov(G2_thread, L7);
2215   // save nmethod
2216   mov(O0, L6);
2217   set_last_Java_frame(SP, noreg);
2218   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2219   reset_last_Java_frame();
2220   mov(L7, G2_thread);
2221 
2222   // move OSR nmethod to I1
2223   mov(L6, I1);
2224 
2225   // OSR buffer to I0
2226   mov(O0, I0);
2227 
2228   // remove the interpreter frame
2229   restore(I5_savedSP, 0, SP);
2230 
2231   // Jump to the osr code.
2232   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2233   jmp(O2, G0);
2234   delayed()->nop();
2235 
2236   bind(overflow_with_error);
2237 
2238   bind(did_not_overflow);
2239 }
2240 
2241 
2242 
2243 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2244   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2245 }
2246 
2247 
2248 // local helper function for the verify_oop_or_return_address macro
2249 static bool verify_return_address(methodOopDesc* m, int bci) {
2250 #ifndef PRODUCT
2251   address pc = (address)(m->constMethod())
2252              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2253   // assume it is a valid return address if it is inside m and is preceded by a jsr
2254   if (!m->contains(pc))                                          return false;
2255   address jsr_pc;
2256   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2257   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2258   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2259   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2260 #endif // PRODUCT
2261   return false;
2262 }
2263 
2264 
2265 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2266   if (!VerifyOops)  return;
2267   // the VM documentation for the astore[_wide] bytecode allows
2268   // the TOS to be not only an oop but also a return address
2269   Label test;
2270   Label skip;
2271   // See if it is an address (in the current method):
2272 
2273   mov(reg, Rtmp);
2274   const int log2_bytecode_size_limit = 16;
2275   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2276   br_notnull( Rtmp, false, pt, test );
2277   delayed()->nop();
2278 
2279   // %%% should use call_VM_leaf here?
2280   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2281   save_thread(L7_thread_cache);
2282   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2283   delayed()->nop();
2284   restore_thread(L7_thread_cache);
2285   br_notnull( O0, false, pt, skip );
2286   delayed()->restore();
2287 
2288   // Perform a more elaborate out-of-line call
2289   // Not an address; verify it:
2290   bind(test);
2291   verify_oop(reg);
2292   bind(skip);
2293 }
2294 
2295 
2296 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2297   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2298 }
2299 #endif /* CC_INTERP */
2300 
2301 // Inline assembly for:
2302 //
2303 // if (thread is in interp_only_mode) {
2304 //   InterpreterRuntime::post_method_entry();
2305 // }
2306 // if (DTraceMethodProbes) {
2307 //   SharedRuntime::dtrace_method_entry(method, receiver);
2308 // }
2309 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2310 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2311 // }
2312 
2313 void InterpreterMacroAssembler::notify_method_entry() {
2314 
2315   // C++ interpreter only uses this for native methods.
2316 
2317   // Whenever JVMTI puts a thread in interp_only_mode, method
2318   // entry/exit events are sent for that thread to track stack
2319   // depth.  If it is possible to enter interp_only_mode we add
2320   // the code to check if the event should be sent.
2321   if (JvmtiExport::can_post_interpreter_events()) {
2322     Label L;
2323     Register temp_reg = O5;
2324     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2325     ld(interp_only, temp_reg);
2326     tst(temp_reg);
2327     br(zero, false, pt, L);
2328     delayed()->nop();
2329     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2330     bind(L);
2331   }
2332 
2333   {
2334     Register temp_reg = O5;
2335     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2336     call_VM_leaf(noreg,
2337       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2338       G2_thread, Lmethod);
2339   }
2340 
2341   // RedefineClasses() tracing support for obsolete method entry
2342   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2343     call_VM_leaf(noreg,
2344       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2345       G2_thread, Lmethod);
2346   }
2347 }
2348 
2349 
2350 // Inline assembly for:
2351 //
2352 // if (thread is in interp_only_mode) {
2353 //   // save result
2354 //   InterpreterRuntime::post_method_exit();
2355 //   // restore result
2356 // }
2357 // if (DTraceMethodProbes) {
2358 //   SharedRuntime::dtrace_method_exit(thread, method);
2359 // }
2360 //
2361 // Native methods have their result stored in d_tmp and l_tmp
2362 // Java methods have their result stored in the expression stack
2363 
2364 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2365                                                    TosState state,
2366                                                    NotifyMethodExitMode mode) {
2367   // C++ interpreter only uses this for native methods.
2368 
2369   // Whenever JVMTI puts a thread in interp_only_mode, method
2370   // entry/exit events are sent for that thread to track stack
2371   // depth.  If it is possible to enter interp_only_mode we add
2372   // the code to check if the event should be sent.
2373   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2374     Label L;
2375     Register temp_reg = O5;
2376     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2377     ld(interp_only, temp_reg);
2378     tst(temp_reg);
2379     br(zero, false, pt, L);
2380     delayed()->nop();
2381 
2382     // Note: frame::interpreter_frame_result has a dependency on how the
2383     // method result is saved across the call to post_method_exit. For
2384     // native methods it assumes the result registers are saved to
2385     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2386     // implementation will need to be updated too.
2387 
2388     save_return_value(state, is_native_method);
2389     call_VM(noreg,
2390             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2391     restore_return_value(state, is_native_method);
2392     bind(L);
2393   }
2394 
2395   {
2396     Register temp_reg = O5;
2397     // Dtrace notification
2398     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2399     save_return_value(state, is_native_method);
2400     call_VM_leaf(
2401       noreg,
2402       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2403       G2_thread, Lmethod);
2404     restore_return_value(state, is_native_method);
2405   }
2406 }
2407 
2408 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2409 #ifdef CC_INTERP
2410   // result potentially in O0/O1: save it across calls
2411   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2412 #ifdef _LP64
2413   stx(O0, STATE(_native_lresult));
2414 #else
2415   std(O0, STATE(_native_lresult));
2416 #endif
2417 #else // CC_INTERP
2418   if (is_native_call) {
2419     stf(FloatRegisterImpl::D, F0, d_tmp);
2420 #ifdef _LP64
2421     stx(O0, l_tmp);
2422 #else
2423     std(O0, l_tmp);
2424 #endif
2425   } else {
2426     push(state);
2427   }
2428 #endif // CC_INTERP
2429 }
2430 
2431 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2432 #ifdef CC_INTERP
2433   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2434 #ifdef _LP64
2435   ldx(STATE(_native_lresult), O0);
2436 #else
2437   ldd(STATE(_native_lresult), O0);
2438 #endif
2439 #else // CC_INTERP
2440   if (is_native_call) {
2441     ldf(FloatRegisterImpl::D, d_tmp, F0);
2442 #ifdef _LP64
2443     ldx(l_tmp, O0);
2444 #else
2445     ldd(l_tmp, O0);
2446 #endif
2447   } else {
2448     pop(state);
2449   }
2450 #endif // CC_INTERP
2451 }
2452 
2453 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2454 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2455                                                         int increment, int mask,
2456                                                         Register scratch1, Register scratch2,
2457                                                         Condition cond, Label *where) {
2458   ld(counter_addr, scratch1);
2459   add(scratch1, increment, scratch1);
2460   if (is_simm13(mask)) {
2461     andcc(scratch1, mask, G0);
2462   } else {
2463     set(mask, scratch2);
2464     andcc(scratch1, scratch2,  G0);
2465   }
2466   br(cond, false, Assembler::pn, *where);
2467   delayed()->st(scratch1, counter_addr);
2468 }