1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_interpreter_sparc.cpp.incl"
  27 
  28 
  29 
  30 // Generation of Interpreter
  31 //
  32 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  33 
  34 
  35 #define __ _masm->
  36 
  37 
  38 //----------------------------------------------------------------------------------------------------
  39 
  40 
  41 
  42 
  43 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  44   int i = 0;
  45   switch (type) {
  46     case T_BOOLEAN: i = 0; break;
  47     case T_CHAR   : i = 1; break;
  48     case T_BYTE   : i = 2; break;
  49     case T_SHORT  : i = 3; break;
  50     case T_INT    : i = 4; break;
  51     case T_LONG   : i = 5; break;
  52     case T_VOID   : i = 6; break;
  53     case T_FLOAT  : i = 7; break;
  54     case T_DOUBLE : i = 8; break;
  55     case T_OBJECT : i = 9; break;
  56     case T_ARRAY  : i = 9; break;
  57     default       : ShouldNotReachHere();
  58   }
  59   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  60   return i;
  61 }
  62 
  63 
  64 #ifndef _LP64
  65 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  66   address entry = __ pc();
  67   Argument argv(0, true);
  68 
  69   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  70   // outer interpreter frame
  71   //
  72   __ set_last_Java_frame(FP, noreg);
  73   // make sure the interpreter frame we've pushed has a valid return pc
  74   __ mov(O7, I7);
  75   __ mov(Lmethod, G3_scratch);
  76   __ mov(Llocals, G4_scratch);
  77   __ save_frame(0);
  78   __ mov(G2_thread, L7_thread_cache);
  79   __ add(argv.address_in_frame(), O3);
  80   __ mov(G2_thread, O0);
  81   __ mov(G3_scratch, O1);
  82   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
  83   __ delayed()->mov(G4_scratch, O2);
  84   __ mov(L7_thread_cache, G2_thread);
  85   __ reset_last_Java_frame();
  86 
  87   // load the register arguments (the C code packed them as varargs)
  88   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
  89       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
  90   }
  91   __ ret();
  92   __ delayed()->
  93      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
  94   return entry;
  95 }
  96 
  97 
  98 #else
  99 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
 100 // O0, O1, O2 etc..
 101 // Doubles are passed in D0, D2, D4
 102 // We store the signature of the first 16 arguments in the first argument
 103 // slot because it will be overwritten prior to calling the native
 104 // function, with the pointer to the JNIEnv.
 105 // If LP64 there can be up to 16 floating point arguments in registers
 106 // or 6 integer registers.
 107 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
 108 
 109   enum {
 110     non_float  = 0,
 111     float_sig  = 1,
 112     double_sig = 2,
 113     sig_mask   = 3
 114   };
 115 
 116   address entry = __ pc();
 117   Argument argv(0, true);
 118 
 119   // We are in the jni transition frame. Save the last_java_frame corresponding to the
 120   // outer interpreter frame
 121   //
 122   __ set_last_Java_frame(FP, noreg);
 123   // make sure the interpreter frame we've pushed has a valid return pc
 124   __ mov(O7, I7);
 125   __ mov(Lmethod, G3_scratch);
 126   __ mov(Llocals, G4_scratch);
 127   __ save_frame(0);
 128   __ mov(G2_thread, L7_thread_cache);
 129   __ add(argv.address_in_frame(), O3);
 130   __ mov(G2_thread, O0);
 131   __ mov(G3_scratch, O1);
 132   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 133   __ delayed()->mov(G4_scratch, O2);
 134   __ mov(L7_thread_cache, G2_thread);
 135   __ reset_last_Java_frame();
 136 
 137 
 138   // load the register arguments (the C code packed them as varargs)
 139   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 140   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 141   __ mov( G3_scratch, G4_scratch);
 142   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 143   Label done;
 144   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 145     Label NonFloatArg;
 146     Label LoadFloatArg;
 147     Label LoadDoubleArg;
 148     Label NextArg;
 149     Address a = ldarg.address_in_frame();
 150     __ andcc(G4_scratch, sig_mask, G3_scratch);
 151     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 152     __ delayed()->nop();
 153 
 154     __ cmp(G3_scratch, float_sig );
 155     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 156     __ delayed()->nop();
 157 
 158     __ cmp(G3_scratch, double_sig );
 159     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 160     __ delayed()->nop();
 161 
 162     __ bind(NonFloatArg);
 163     // There are only 6 integer register arguments!
 164     if ( ldarg.is_register() )
 165       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 166     else {
 167     // Optimization, see if there are any more args and get out prior to checking
 168     // all 16 float registers.  My guess is that this is rare.
 169     // If is_register is false, then we are done the first six integer args.
 170       __ tst(G4_scratch);
 171       __ brx(Assembler::zero, false, Assembler::pt, done);
 172       __ delayed()->nop();
 173 
 174     }
 175     __ ba(false, NextArg);
 176     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 177 
 178     __ bind(LoadFloatArg);
 179     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 180     __ ba(false, NextArg);
 181     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 182 
 183     __ bind(LoadDoubleArg);
 184     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 185     __ ba(false, NextArg);
 186     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 187 
 188     __ bind(NextArg);
 189 
 190   }
 191 
 192   __ bind(done);
 193   __ ret();
 194   __ delayed()->
 195      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 196   return entry;
 197 }
 198 #endif
 199 
 200 void InterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 201 
 202   // Generate code to initiate compilation on the counter overflow.
 203 
 204   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 205   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 206   // and the second is only used when the first is true.  We pass zero for both.
 207   // The call returns the address of the verified entry point for the method or NULL
 208   // if the compilation did not complete (either went background or bailed out).
 209   __ set((int)false, O2);
 210   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 211   // returns verified_entry_point or NULL
 212   // we ignore it in any case
 213   __ ba(false, Lcontinue);
 214   __ delayed()->nop();
 215 
 216 }
 217 
 218 
 219 // End of helpers
 220 
 221 // Various method entries
 222 
 223 // Abstract method entry
 224 // Attempt to execute abstract method. Throw exception
 225 //
 226 address InterpreterGenerator::generate_abstract_entry(void) {
 227   address entry = __ pc();
 228   // abstract method entry
 229   // throw exception
 230   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 231   // the call_VM checks for exception, so we should never return here.
 232   __ should_not_reach_here();
 233   return entry;
 234 
 235 }
 236 
 237 
 238 // Method handle invoker
 239 // Dispatch a method of the form java.dyn.MethodHandles::invoke(...)
 240 address InterpreterGenerator::generate_method_handle_entry(void) {
 241   if (!EnableMethodHandles) {
 242     return generate_abstract_entry();
 243   }
 244 
 245   return MethodHandles::generate_method_handle_interpreter_entry(_masm);
 246 }
 247 
 248 
 249 //----------------------------------------------------------------------------------------------------
 250 // Entry points & stack frame layout
 251 //
 252 // Here we generate the various kind of entries into the interpreter.
 253 // The two main entry type are generic bytecode methods and native call method.
 254 // These both come in synchronized and non-synchronized versions but the
 255 // frame layout they create is very similar. The other method entry
 256 // types are really just special purpose entries that are really entry
 257 // and interpretation all in one. These are for trivial methods like
 258 // accessor, empty, or special math methods.
 259 //
 260 // When control flow reaches any of the entry types for the interpreter
 261 // the following holds ->
 262 //
 263 // C2 Calling Conventions:
 264 //
 265 // The entry code below assumes that the following registers are set
 266 // when coming in:
 267 //    G5_method: holds the methodOop of the method to call
 268 //    Lesp:    points to the TOS of the callers expression stack
 269 //             after having pushed all the parameters
 270 //
 271 // The entry code does the following to setup an interpreter frame
 272 //   pop parameters from the callers stack by adjusting Lesp
 273 //   set O0 to Lesp
 274 //   compute X = (max_locals - num_parameters)
 275 //   bump SP up by X to accomadate the extra locals
 276 //   compute X = max_expression_stack
 277 //               + vm_local_words
 278 //               + 16 words of register save area
 279 //   save frame doing a save sp, -X, sp growing towards lower addresses
 280 //   set Lbcp, Lmethod, LcpoolCache
 281 //   set Llocals to i0
 282 //   set Lmonitors to FP - rounded_vm_local_words
 283 //   set Lesp to Lmonitors - 4
 284 //
 285 //  The frame has now been setup to do the rest of the entry code
 286 
 287 // Try this optimization:  Most method entries could live in a
 288 // "one size fits all" stack frame without all the dynamic size
 289 // calculations.  It might be profitable to do all this calculation
 290 // statically and approximately for "small enough" methods.
 291 
 292 //-----------------------------------------------------------------------------------------------
 293 
 294 // C1 Calling conventions
 295 //
 296 // Upon method entry, the following registers are setup:
 297 //
 298 // g2 G2_thread: current thread
 299 // g5 G5_method: method to activate
 300 // g4 Gargs  : pointer to last argument
 301 //
 302 //
 303 // Stack:
 304 //
 305 // +---------------+ <--- sp
 306 // |               |
 307 // : reg save area :
 308 // |               |
 309 // +---------------+ <--- sp + 0x40
 310 // |               |
 311 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 312 // |               |
 313 // +---------------+ <--- sp + 0x5c
 314 // |               |
 315 // :     free      :
 316 // |               |
 317 // +---------------+ <--- Gargs
 318 // |               |
 319 // :   arguments   :
 320 // |               |
 321 // +---------------+
 322 // |               |
 323 //
 324 //
 325 //
 326 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 327 //
 328 // +---------------+ <--- sp
 329 // |               |
 330 // : reg save area :
 331 // |               |
 332 // +---------------+ <--- sp + 0x40
 333 // |               |
 334 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 335 // |               |
 336 // +---------------+ <--- sp + 0x5c
 337 // |               |
 338 // :               :
 339 // |               | <--- Lesp
 340 // +---------------+ <--- Lmonitors (fp - 0x18)
 341 // |   VM locals   |
 342 // +---------------+ <--- fp
 343 // |               |
 344 // : reg save area :
 345 // |               |
 346 // +---------------+ <--- fp + 0x40
 347 // |               |
 348 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 349 // |               |
 350 // +---------------+ <--- fp + 0x5c
 351 // |               |
 352 // :     free      :
 353 // |               |
 354 // +---------------+
 355 // |               |
 356 // : nonarg locals :
 357 // |               |
 358 // +---------------+
 359 // |               |
 360 // :   arguments   :
 361 // |               | <--- Llocals
 362 // +---------------+ <--- Gargs
 363 // |               |
 364 
 365 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
 366   // determine code generation flags
 367   bool synchronized = false;
 368   address entry_point = NULL;
 369 
 370   switch (kind) {
 371     case Interpreter::zerolocals             :                                                                             break;
 372     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
 373     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
 374     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
 375     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
 376     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
 377     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
 378     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
 379     case Interpreter::java_lang_math_sin     :                                                                             break;
 380     case Interpreter::java_lang_math_cos     :                                                                             break;
 381     case Interpreter::java_lang_math_tan     :                                                                             break;
 382     case Interpreter::java_lang_math_sqrt    :                                                                             break;
 383     case Interpreter::java_lang_math_abs     :                                                                             break;
 384     case Interpreter::java_lang_math_log     :                                                                             break;
 385     case Interpreter::java_lang_math_log10   :                                                                             break;
 386     default                                  : ShouldNotReachHere();                                                       break;
 387   }
 388 
 389   if (entry_point) return entry_point;
 390 
 391   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
 392 }
 393 
 394 
 395 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
 396   // No special entry points that preclude compilation
 397   return true;
 398 }
 399 
 400 // This method tells the deoptimizer how big an interpreted frame must be:
 401 int AbstractInterpreter::size_activation(methodOop method,
 402                                          int tempcount,
 403                                          int popframe_extra_args,
 404                                          int moncount,
 405                                          int callee_param_count,
 406                                          int callee_locals,
 407                                          bool is_top_frame) {
 408   return layout_activation(method,
 409                            tempcount,
 410                            popframe_extra_args,
 411                            moncount,
 412                            callee_param_count,
 413                            callee_locals,
 414                            (frame*)NULL,
 415                            (frame*)NULL,
 416                            is_top_frame);
 417 }
 418 
 419 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 420 
 421   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 422   // the days we had adapter frames. When we deoptimize a situation where a
 423   // compiled caller calls a compiled caller will have registers it expects
 424   // to survive the call to the callee. If we deoptimize the callee the only
 425   // way we can restore these registers is to have the oldest interpreter
 426   // frame that we create restore these values. That is what this routine
 427   // will accomplish.
 428 
 429   // At the moment we have modified c2 to not have any callee save registers
 430   // so this problem does not exist and this routine is just a place holder.
 431 
 432   assert(f->is_interpreted_frame(), "must be interpreted");
 433 }
 434 
 435 
 436 //----------------------------------------------------------------------------------------------------
 437 // Exceptions