1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateTable_sparc.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #define __ _masm->
  30 
  31 // Misc helpers
  32 
  33 // Do an oop store like *(base + index + offset) = val
  34 // index can be noreg,
  35 static void do_oop_store(InterpreterMacroAssembler* _masm,
  36                          Register base,
  37                          Register index,
  38                          int offset,
  39                          Register val,
  40                          Register tmp,
  41                          BarrierSet::Name barrier,
  42                          bool precise) {
  43   assert(tmp != val && tmp != base && tmp != index, "register collision");
  44   assert(index == noreg || offset == 0, "only one offset");
  45   switch (barrier) {
  46 #ifndef SERIALGC
  47     case BarrierSet::G1SATBCT:
  48     case BarrierSet::G1SATBCTLogging:
  49       {
  50         __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
  51         if (index == noreg ) {
  52           assert(Assembler::is_simm13(offset), "fix this code");
  53           __ store_heap_oop(val, base, offset);
  54         } else {
  55           __ store_heap_oop(val, base, index);
  56         }
  57 
  58         // No need for post barrier if storing NULL
  59         if (val != G0) {
  60           if (precise) {
  61             if (index == noreg) {
  62               __ add(base, offset, base);
  63             } else {
  64               __ add(base, index, base);
  65             }
  66           }
  67           __ g1_write_barrier_post(base, val, tmp);
  68         }
  69       }
  70       break;
  71 #endif // SERIALGC
  72     case BarrierSet::CardTableModRef:
  73     case BarrierSet::CardTableExtension:
  74       {
  75         if (index == noreg ) {
  76           assert(Assembler::is_simm13(offset), "fix this code");
  77           __ store_heap_oop(val, base, offset);
  78         } else {
  79           __ store_heap_oop(val, base, index);
  80         }
  81         // No need for post barrier if storing NULL
  82         if (val != G0) {
  83           if (precise) {
  84             if (index == noreg) {
  85               __ add(base, offset, base);
  86             } else {
  87               __ add(base, index, base);
  88             }
  89           }
  90           __ card_write_barrier_post(base, val, tmp);
  91         }
  92       }
  93       break;
  94     case BarrierSet::ModRef:
  95     case BarrierSet::Other:
  96       ShouldNotReachHere();
  97       break;
  98     default      :
  99       ShouldNotReachHere();
 100 
 101   }
 102 }
 103 
 104 
 105 //----------------------------------------------------------------------------------------------------
 106 // Platform-dependent initialization
 107 
 108 void TemplateTable::pd_initialize() {
 109   // (none)
 110 }
 111 
 112 
 113 //----------------------------------------------------------------------------------------------------
 114 // Condition conversion
 115 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 116   switch (cc) {
 117     case TemplateTable::equal        : return Assembler::notEqual;
 118     case TemplateTable::not_equal    : return Assembler::equal;
 119     case TemplateTable::less         : return Assembler::greaterEqual;
 120     case TemplateTable::less_equal   : return Assembler::greater;
 121     case TemplateTable::greater      : return Assembler::lessEqual;
 122     case TemplateTable::greater_equal: return Assembler::less;
 123   }
 124   ShouldNotReachHere();
 125   return Assembler::zero;
 126 }
 127 
 128 //----------------------------------------------------------------------------------------------------
 129 // Miscelaneous helper routines
 130 
 131 
 132 Address TemplateTable::at_bcp(int offset) {
 133   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 134   return Address(Lbcp, offset);
 135 }
 136 
 137 
 138 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
 139                                    Register Rscratch,
 140                                    bool load_bc_into_scratch /*=true*/) {
 141   // With sharing on, may need to test methodOop flag.
 142   if (!RewriteBytecodes) return;
 143   if (load_bc_into_scratch) __ set(bc, Rbyte_code);
 144   Label patch_done;
 145   if (JvmtiExport::can_post_breakpoint()) {
 146     Label fast_patch;
 147     __ ldub(at_bcp(0), Rscratch);
 148     __ cmp(Rscratch, Bytecodes::_breakpoint);
 149     __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
 150     __ delayed()->nop();  // don't bother to hoist the stb here
 151     // perform the quickening, slowly, in the bowels of the breakpoint table
 152     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
 153     __ ba(false, patch_done);
 154     __ delayed()->nop();
 155     __ bind(fast_patch);
 156   }
 157 #ifdef ASSERT
 158   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 159   Label okay;
 160   __ ldub(at_bcp(0), Rscratch);
 161   __ cmp(Rscratch, orig_bytecode);
 162   __ br(Assembler::equal, false, Assembler::pt, okay);
 163   __ delayed() ->cmp(Rscratch, Rbyte_code);
 164   __ br(Assembler::equal, false, Assembler::pt, okay);
 165   __ delayed()->nop();
 166   __ stop("Rewriting wrong bytecode location");
 167   __ bind(okay);
 168 #endif
 169   __ stb(Rbyte_code, at_bcp(0));
 170   __ bind(patch_done);
 171 }
 172 
 173 //----------------------------------------------------------------------------------------------------
 174 // Individual instructions
 175 
 176 void TemplateTable::nop() {
 177   transition(vtos, vtos);
 178   // nothing to do
 179 }
 180 
 181 void TemplateTable::shouldnotreachhere() {
 182   transition(vtos, vtos);
 183   __ stop("shouldnotreachhere bytecode");
 184 }
 185 
 186 void TemplateTable::aconst_null() {
 187   transition(vtos, atos);
 188   __ clr(Otos_i);
 189 }
 190 
 191 
 192 void TemplateTable::iconst(int value) {
 193   transition(vtos, itos);
 194   __ set(value, Otos_i);
 195 }
 196 
 197 
 198 void TemplateTable::lconst(int value) {
 199   transition(vtos, ltos);
 200   assert(value >= 0, "check this code");
 201 #ifdef _LP64
 202   __ set(value, Otos_l);
 203 #else
 204   __ set(value, Otos_l2);
 205   __ clr( Otos_l1);
 206 #endif
 207 }
 208 
 209 
 210 void TemplateTable::fconst(int value) {
 211   transition(vtos, ftos);
 212   static float zero = 0.0, one = 1.0, two = 2.0;
 213   float* p;
 214   switch( value ) {
 215    default: ShouldNotReachHere();
 216    case 0:  p = &zero;  break;
 217    case 1:  p = &one;   break;
 218    case 2:  p = &two;   break;
 219   }
 220   AddressLiteral a(p);
 221   __ sethi(a, G3_scratch);
 222   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 223 }
 224 
 225 
 226 void TemplateTable::dconst(int value) {
 227   transition(vtos, dtos);
 228   static double zero = 0.0, one = 1.0;
 229   double* p;
 230   switch( value ) {
 231    default: ShouldNotReachHere();
 232    case 0:  p = &zero;  break;
 233    case 1:  p = &one;   break;
 234   }
 235   AddressLiteral a(p);
 236   __ sethi(a, G3_scratch);
 237   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 238 }
 239 
 240 
 241 // %%%%% Should factore most snippet templates across platforms
 242 
 243 void TemplateTable::bipush() {
 244   transition(vtos, itos);
 245   __ ldsb( at_bcp(1), Otos_i );
 246 }
 247 
 248 void TemplateTable::sipush() {
 249   transition(vtos, itos);
 250   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 251 }
 252 
 253 void TemplateTable::ldc(bool wide) {
 254   transition(vtos, vtos);
 255   Label call_ldc, notInt, notString, notClass, exit;
 256 
 257   if (wide) {
 258     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 259   } else {
 260     __ ldub(Lbcp, 1, O1);
 261   }
 262   __ get_cpool_and_tags(O0, O2);
 263 
 264   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 265   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 266 
 267   // get type from tags
 268   __ add(O2, tags_offset, O2);
 269   __ ldub(O2, O1, O2);
 270   __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
 271   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
 272   __ delayed()->nop();
 273 
 274   __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
 275   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
 276   __ delayed()->nop();
 277 
 278   __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
 279   __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
 280   __ delayed()->nop();
 281 
 282   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 283   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 284   __ delayed()->add(O0, base_offset, O0);
 285 
 286   __ bind(call_ldc);
 287   __ set(wide, O1);
 288   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 289   __ push(atos);
 290   __ ba(false, exit);
 291   __ delayed()->nop();
 292 
 293   __ bind(notClass);
 294  // __ add(O0, base_offset, O0);
 295   __ sll(O1, LogBytesPerWord, O1);
 296   __ cmp(O2, JVM_CONSTANT_Integer);
 297   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 298   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 299   __ ld(O0, O1, Otos_i);
 300   __ push(itos);
 301   __ ba(false, exit);
 302   __ delayed()->nop();
 303 
 304   __ bind(notInt);
 305  // __ cmp(O2, JVM_CONSTANT_String);
 306   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 307   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 308   __ ld_ptr(O0, O1, Otos_i);
 309   __ verify_oop(Otos_i);
 310   __ push(atos);
 311   __ ba(false, exit);
 312   __ delayed()->nop();
 313 
 314   __ bind(notString);
 315  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 316   __ push(ftos);
 317 
 318   __ bind(exit);
 319 }
 320 
 321 // Fast path for caching oop constants.
 322 // %%% We should use this to handle Class and String constants also.
 323 // %%% It will simplify the ldc/primitive path considerably.
 324 void TemplateTable::fast_aldc(bool wide) {
 325   transition(vtos, atos);
 326 
 327   if (!EnableMethodHandles) {
 328     // We should not encounter this bytecode if !EnableMethodHandles.
 329     // The verifier will stop it.  However, if we get past the verifier,
 330     // this will stop the thread in a reasonable way, without crashing the JVM.
 331     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 332                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 333     // the call_VM checks for exception, so we should never return here.
 334     __ should_not_reach_here();
 335     return;
 336   }
 337 
 338   Register Rcache = G3_scratch;
 339   Register Rscratch = G4_scratch;
 340 
 341   resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
 342 
 343   __ verify_oop(Otos_i);
 344 }
 345 
 346 void TemplateTable::ldc2_w() {
 347   transition(vtos, vtos);
 348   Label retry, resolved, Long, exit;
 349 
 350   __ bind(retry);
 351   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 352   __ get_cpool_and_tags(O0, O2);
 353 
 354   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 355   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 356   // get type from tags
 357   __ add(O2, tags_offset, O2);
 358   __ ldub(O2, O1, O2);
 359 
 360   __ sll(O1, LogBytesPerWord, O1);
 361   __ add(O0, O1, G3_scratch);
 362 
 363   __ cmp(O2, JVM_CONSTANT_Double);
 364   __ brx(Assembler::notEqual, false, Assembler::pt, Long);
 365   __ delayed()->nop();
 366   // A double can be placed at word-aligned locations in the constant pool.
 367   // Check out Conversions.java for an example.
 368   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
 369   // to double-align double on the constant pool.  SG, 11/7/97
 370 #ifdef _LP64
 371   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 372 #else
 373   FloatRegister f = Ftos_d;
 374   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 375   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 376          f->successor());
 377 #endif
 378   __ push(dtos);
 379   __ ba(false, exit);
 380   __ delayed()->nop();
 381 
 382   __ bind(Long);
 383 #ifdef _LP64
 384   __ ldx(G3_scratch, base_offset, Otos_l);
 385 #else
 386   __ ld(G3_scratch, base_offset, Otos_l);
 387   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 388 #endif
 389   __ push(ltos);
 390 
 391   __ bind(exit);
 392 }
 393 
 394 
 395 void TemplateTable::locals_index(Register reg, int offset) {
 396   __ ldub( at_bcp(offset), reg );
 397 }
 398 
 399 
 400 void TemplateTable::locals_index_wide(Register reg) {
 401   // offset is 2, not 1, because Lbcp points to wide prefix code
 402   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 403 }
 404 
 405 void TemplateTable::iload() {
 406   transition(vtos, itos);
 407   // Rewrite iload,iload  pair into fast_iload2
 408   //         iload,caload pair into fast_icaload
 409   if (RewriteFrequentPairs) {
 410     Label rewrite, done;
 411 
 412     // get next byte
 413     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 414 
 415     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 416     // last two iloads in a pair.  Comparing against fast_iload means that
 417     // the next bytecode is neither an iload or a caload, and therefore
 418     // an iload pair.
 419     __ cmp(G3_scratch, (int)Bytecodes::_iload);
 420     __ br(Assembler::equal, false, Assembler::pn, done);
 421     __ delayed()->nop();
 422 
 423     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 424     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 425     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 426 
 427     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 428     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 429     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 430 
 431     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 432     // rewrite
 433     // G4_scratch: fast bytecode
 434     __ bind(rewrite);
 435     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 436     __ bind(done);
 437   }
 438 
 439   // Get the local value into tos
 440   locals_index(G3_scratch);
 441   __ access_local_int( G3_scratch, Otos_i );
 442 }
 443 
 444 void TemplateTable::fast_iload2() {
 445   transition(vtos, itos);
 446   locals_index(G3_scratch);
 447   __ access_local_int( G3_scratch, Otos_i );
 448   __ push_i();
 449   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 450   __ access_local_int( G3_scratch, Otos_i );
 451 }
 452 
 453 void TemplateTable::fast_iload() {
 454   transition(vtos, itos);
 455   locals_index(G3_scratch);
 456   __ access_local_int( G3_scratch, Otos_i );
 457 }
 458 
 459 void TemplateTable::lload() {
 460   transition(vtos, ltos);
 461   locals_index(G3_scratch);
 462   __ access_local_long( G3_scratch, Otos_l );
 463 }
 464 
 465 
 466 void TemplateTable::fload() {
 467   transition(vtos, ftos);
 468   locals_index(G3_scratch);
 469   __ access_local_float( G3_scratch, Ftos_f );
 470 }
 471 
 472 
 473 void TemplateTable::dload() {
 474   transition(vtos, dtos);
 475   locals_index(G3_scratch);
 476   __ access_local_double( G3_scratch, Ftos_d );
 477 }
 478 
 479 
 480 void TemplateTable::aload() {
 481   transition(vtos, atos);
 482   locals_index(G3_scratch);
 483   __ access_local_ptr( G3_scratch, Otos_i);
 484 }
 485 
 486 
 487 void TemplateTable::wide_iload() {
 488   transition(vtos, itos);
 489   locals_index_wide(G3_scratch);
 490   __ access_local_int( G3_scratch, Otos_i );
 491 }
 492 
 493 
 494 void TemplateTable::wide_lload() {
 495   transition(vtos, ltos);
 496   locals_index_wide(G3_scratch);
 497   __ access_local_long( G3_scratch, Otos_l );
 498 }
 499 
 500 
 501 void TemplateTable::wide_fload() {
 502   transition(vtos, ftos);
 503   locals_index_wide(G3_scratch);
 504   __ access_local_float( G3_scratch, Ftos_f );
 505 }
 506 
 507 
 508 void TemplateTable::wide_dload() {
 509   transition(vtos, dtos);
 510   locals_index_wide(G3_scratch);
 511   __ access_local_double( G3_scratch, Ftos_d );
 512 }
 513 
 514 
 515 void TemplateTable::wide_aload() {
 516   transition(vtos, atos);
 517   locals_index_wide(G3_scratch);
 518   __ access_local_ptr( G3_scratch, Otos_i );
 519   __ verify_oop(Otos_i);
 520 }
 521 
 522 
 523 void TemplateTable::iaload() {
 524   transition(itos, itos);
 525   // Otos_i: index
 526   // tos: array
 527   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 528   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 529 }
 530 
 531 
 532 void TemplateTable::laload() {
 533   transition(itos, ltos);
 534   // Otos_i: index
 535   // O2: array
 536   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 537   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 538 }
 539 
 540 
 541 void TemplateTable::faload() {
 542   transition(itos, ftos);
 543   // Otos_i: index
 544   // O2: array
 545   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 546   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 547 }
 548 
 549 
 550 void TemplateTable::daload() {
 551   transition(itos, dtos);
 552   // Otos_i: index
 553   // O2: array
 554   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 555   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 556 }
 557 
 558 
 559 void TemplateTable::aaload() {
 560   transition(itos, atos);
 561   // Otos_i: index
 562   // tos: array
 563   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 564   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 565   __ verify_oop(Otos_i);
 566 }
 567 
 568 
 569 void TemplateTable::baload() {
 570   transition(itos, itos);
 571   // Otos_i: index
 572   // tos: array
 573   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 574   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 575 }
 576 
 577 
 578 void TemplateTable::caload() {
 579   transition(itos, itos);
 580   // Otos_i: index
 581   // tos: array
 582   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 583   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 584 }
 585 
 586 void TemplateTable::fast_icaload() {
 587   transition(vtos, itos);
 588   // Otos_i: index
 589   // tos: array
 590   locals_index(G3_scratch);
 591   __ access_local_int( G3_scratch, Otos_i );
 592   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 593   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 594 }
 595 
 596 
 597 void TemplateTable::saload() {
 598   transition(itos, itos);
 599   // Otos_i: index
 600   // tos: array
 601   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 602   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 603 }
 604 
 605 
 606 void TemplateTable::iload(int n) {
 607   transition(vtos, itos);
 608   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 609 }
 610 
 611 
 612 void TemplateTable::lload(int n) {
 613   transition(vtos, ltos);
 614   assert(n+1 < Argument::n_register_parameters, "would need more code");
 615   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 616 }
 617 
 618 
 619 void TemplateTable::fload(int n) {
 620   transition(vtos, ftos);
 621   assert(n < Argument::n_register_parameters, "would need more code");
 622   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 623 }
 624 
 625 
 626 void TemplateTable::dload(int n) {
 627   transition(vtos, dtos);
 628   FloatRegister dst = Ftos_d;
 629   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 630 }
 631 
 632 
 633 void TemplateTable::aload(int n) {
 634   transition(vtos, atos);
 635   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 636 }
 637 
 638 
 639 void TemplateTable::aload_0() {
 640   transition(vtos, atos);
 641 
 642   // According to bytecode histograms, the pairs:
 643   //
 644   // _aload_0, _fast_igetfield (itos)
 645   // _aload_0, _fast_agetfield (atos)
 646   // _aload_0, _fast_fgetfield (ftos)
 647   //
 648   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 649   // bytecode checks the next bytecode and then rewrites the current
 650   // bytecode into a pair bytecode; otherwise it rewrites the current
 651   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 652   //
 653   if (RewriteFrequentPairs) {
 654     Label rewrite, done;
 655 
 656     // get next byte
 657     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 658 
 659     // do actual aload_0
 660     aload(0);
 661 
 662     // if _getfield then wait with rewrite
 663     __ cmp(G3_scratch, (int)Bytecodes::_getfield);
 664     __ br(Assembler::equal, false, Assembler::pn, done);
 665     __ delayed()->nop();
 666 
 667     // if _igetfield then rewrite to _fast_iaccess_0
 668     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 669     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 670     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 671     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 672 
 673     // if _agetfield then rewrite to _fast_aaccess_0
 674     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 675     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 676     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 677     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 678 
 679     // if _fgetfield then rewrite to _fast_faccess_0
 680     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 681     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 682     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 683     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 684 
 685     // else rewrite to _fast_aload0
 686     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 687     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 688 
 689     // rewrite
 690     // G4_scratch: fast bytecode
 691     __ bind(rewrite);
 692     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 693     __ bind(done);
 694   } else {
 695     aload(0);
 696   }
 697 }
 698 
 699 
 700 void TemplateTable::istore() {
 701   transition(itos, vtos);
 702   locals_index(G3_scratch);
 703   __ store_local_int( G3_scratch, Otos_i );
 704 }
 705 
 706 
 707 void TemplateTable::lstore() {
 708   transition(ltos, vtos);
 709   locals_index(G3_scratch);
 710   __ store_local_long( G3_scratch, Otos_l );
 711 }
 712 
 713 
 714 void TemplateTable::fstore() {
 715   transition(ftos, vtos);
 716   locals_index(G3_scratch);
 717   __ store_local_float( G3_scratch, Ftos_f );
 718 }
 719 
 720 
 721 void TemplateTable::dstore() {
 722   transition(dtos, vtos);
 723   locals_index(G3_scratch);
 724   __ store_local_double( G3_scratch, Ftos_d );
 725 }
 726 
 727 
 728 void TemplateTable::astore() {
 729   transition(vtos, vtos);
 730   __ load_ptr(0, Otos_i);
 731   __ inc(Lesp, Interpreter::stackElementSize);
 732   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 733   locals_index(G3_scratch);
 734   __ store_local_ptr(G3_scratch, Otos_i);
 735 }
 736 
 737 
 738 void TemplateTable::wide_istore() {
 739   transition(vtos, vtos);
 740   __ pop_i();
 741   locals_index_wide(G3_scratch);
 742   __ store_local_int( G3_scratch, Otos_i );
 743 }
 744 
 745 
 746 void TemplateTable::wide_lstore() {
 747   transition(vtos, vtos);
 748   __ pop_l();
 749   locals_index_wide(G3_scratch);
 750   __ store_local_long( G3_scratch, Otos_l );
 751 }
 752 
 753 
 754 void TemplateTable::wide_fstore() {
 755   transition(vtos, vtos);
 756   __ pop_f();
 757   locals_index_wide(G3_scratch);
 758   __ store_local_float( G3_scratch, Ftos_f );
 759 }
 760 
 761 
 762 void TemplateTable::wide_dstore() {
 763   transition(vtos, vtos);
 764   __ pop_d();
 765   locals_index_wide(G3_scratch);
 766   __ store_local_double( G3_scratch, Ftos_d );
 767 }
 768 
 769 
 770 void TemplateTable::wide_astore() {
 771   transition(vtos, vtos);
 772   __ load_ptr(0, Otos_i);
 773   __ inc(Lesp, Interpreter::stackElementSize);
 774   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 775   locals_index_wide(G3_scratch);
 776   __ store_local_ptr(G3_scratch, Otos_i);
 777 }
 778 
 779 
 780 void TemplateTable::iastore() {
 781   transition(itos, vtos);
 782   __ pop_i(O2); // index
 783   // Otos_i: val
 784   // O3: array
 785   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 786   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 787 }
 788 
 789 
 790 void TemplateTable::lastore() {
 791   transition(ltos, vtos);
 792   __ pop_i(O2); // index
 793   // Otos_l: val
 794   // O3: array
 795   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 796   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 797 }
 798 
 799 
 800 void TemplateTable::fastore() {
 801   transition(ftos, vtos);
 802   __ pop_i(O2); // index
 803   // Ftos_f: val
 804   // O3: array
 805   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 806   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 807 }
 808 
 809 
 810 void TemplateTable::dastore() {
 811   transition(dtos, vtos);
 812   __ pop_i(O2); // index
 813   // Fos_d: val
 814   // O3: array
 815   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 816   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 817 }
 818 
 819 
 820 void TemplateTable::aastore() {
 821   Label store_ok, is_null, done;
 822   transition(vtos, vtos);
 823   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 824   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 825   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 826   // Otos_i: val
 827   // O2: index
 828   // O3: array
 829   __ verify_oop(Otos_i);
 830   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 831 
 832   // do array store check - check for NULL value first
 833   __ br_null( Otos_i, false, Assembler::pn, is_null );
 834   __ delayed()->nop();
 835 
 836   __ load_klass(O3, O4); // get array klass
 837   __ load_klass(Otos_i, O5); // get value klass
 838 
 839   // do fast instanceof cache test
 840 
 841   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
 842 
 843   assert(Otos_i == O0, "just checking");
 844 
 845   // Otos_i:    value
 846   // O1:        addr - offset
 847   // O2:        index
 848   // O3:        array
 849   // O4:        array element klass
 850   // O5:        value klass
 851 
 852   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 853 
 854   // Generate a fast subtype check.  Branch to store_ok if no
 855   // failure.  Throw if failure.
 856   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 857 
 858   // Not a subtype; so must throw exception
 859   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 860 
 861   // Store is OK.
 862   __ bind(store_ok);
 863   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 864 
 865   __ ba(false,done);
 866   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 867 
 868   __ bind(is_null);
 869   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 870 
 871   __ profile_null_seen(G3_scratch);
 872   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 873   __ bind(done);
 874 }
 875 
 876 
 877 void TemplateTable::bastore() {
 878   transition(itos, vtos);
 879   __ pop_i(O2); // index
 880   // Otos_i: val
 881   // O3: array
 882   __ index_check(O3, O2, 0, G3_scratch, O2);
 883   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 884 }
 885 
 886 
 887 void TemplateTable::castore() {
 888   transition(itos, vtos);
 889   __ pop_i(O2); // index
 890   // Otos_i: val
 891   // O3: array
 892   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 893   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 894 }
 895 
 896 
 897 void TemplateTable::sastore() {
 898   // %%%%% Factor across platform
 899   castore();
 900 }
 901 
 902 
 903 void TemplateTable::istore(int n) {
 904   transition(itos, vtos);
 905   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 906 }
 907 
 908 
 909 void TemplateTable::lstore(int n) {
 910   transition(ltos, vtos);
 911   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 912   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 913 
 914 }
 915 
 916 
 917 void TemplateTable::fstore(int n) {
 918   transition(ftos, vtos);
 919   assert(n < Argument::n_register_parameters, "only handle register cases");
 920   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 921 }
 922 
 923 
 924 void TemplateTable::dstore(int n) {
 925   transition(dtos, vtos);
 926   FloatRegister src = Ftos_d;
 927   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 928 }
 929 
 930 
 931 void TemplateTable::astore(int n) {
 932   transition(vtos, vtos);
 933   __ load_ptr(0, Otos_i);
 934   __ inc(Lesp, Interpreter::stackElementSize);
 935   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 936   __ store_local_ptr(n, Otos_i);
 937 }
 938 
 939 
 940 void TemplateTable::pop() {
 941   transition(vtos, vtos);
 942   __ inc(Lesp, Interpreter::stackElementSize);
 943 }
 944 
 945 
 946 void TemplateTable::pop2() {
 947   transition(vtos, vtos);
 948   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 949 }
 950 
 951 
 952 void TemplateTable::dup() {
 953   transition(vtos, vtos);
 954   // stack: ..., a
 955   // load a and tag
 956   __ load_ptr(0, Otos_i);
 957   __ push_ptr(Otos_i);
 958   // stack: ..., a, a
 959 }
 960 
 961 
 962 void TemplateTable::dup_x1() {
 963   transition(vtos, vtos);
 964   // stack: ..., a, b
 965   __ load_ptr( 1, G3_scratch);  // get a
 966   __ load_ptr( 0, Otos_l1);     // get b
 967   __ store_ptr(1, Otos_l1);     // put b
 968   __ store_ptr(0, G3_scratch);  // put a - like swap
 969   __ push_ptr(Otos_l1);         // push b
 970   // stack: ..., b, a, b
 971 }
 972 
 973 
 974 void TemplateTable::dup_x2() {
 975   transition(vtos, vtos);
 976   // stack: ..., a, b, c
 977   // get c and push on stack, reuse registers
 978   __ load_ptr( 0, G3_scratch);  // get c
 979   __ push_ptr(G3_scratch);      // push c with tag
 980   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
 981   // (stack offsets n+1 now)
 982   __ load_ptr( 3, Otos_l1);     // get a
 983   __ store_ptr(3, G3_scratch);  // put c at 3
 984   // stack: ..., c, b, c, c  (a in reg)
 985   __ load_ptr( 2, G3_scratch);  // get b
 986   __ store_ptr(2, Otos_l1);     // put a at 2
 987   // stack: ..., c, a, c, c  (b in reg)
 988   __ store_ptr(1, G3_scratch);  // put b at 1
 989   // stack: ..., c, a, b, c
 990 }
 991 
 992 
 993 void TemplateTable::dup2() {
 994   transition(vtos, vtos);
 995   __ load_ptr(1, G3_scratch);  // get a
 996   __ load_ptr(0, Otos_l1);     // get b
 997   __ push_ptr(G3_scratch);     // push a
 998   __ push_ptr(Otos_l1);        // push b
 999   // stack: ..., a, b, a, b
1000 }
1001 
1002 
1003 void TemplateTable::dup2_x1() {
1004   transition(vtos, vtos);
1005   // stack: ..., a, b, c
1006   __ load_ptr( 1, Lscratch);    // get b
1007   __ load_ptr( 2, Otos_l1);     // get a
1008   __ store_ptr(2, Lscratch);    // put b at a
1009   // stack: ..., b, b, c
1010   __ load_ptr( 0, G3_scratch);  // get c
1011   __ store_ptr(1, G3_scratch);  // put c at b
1012   // stack: ..., b, c, c
1013   __ store_ptr(0, Otos_l1);     // put a at c
1014   // stack: ..., b, c, a
1015   __ push_ptr(Lscratch);        // push b
1016   __ push_ptr(G3_scratch);      // push c
1017   // stack: ..., b, c, a, b, c
1018 }
1019 
1020 
1021 // The spec says that these types can be a mixture of category 1 (1 word)
1022 // types and/or category 2 types (long and doubles)
1023 void TemplateTable::dup2_x2() {
1024   transition(vtos, vtos);
1025   // stack: ..., a, b, c, d
1026   __ load_ptr( 1, Lscratch);    // get c
1027   __ load_ptr( 3, Otos_l1);     // get a
1028   __ store_ptr(3, Lscratch);    // put c at 3
1029   __ store_ptr(1, Otos_l1);     // put a at 1
1030   // stack: ..., c, b, a, d
1031   __ load_ptr( 2, G3_scratch);  // get b
1032   __ load_ptr( 0, Otos_l1);     // get d
1033   __ store_ptr(0, G3_scratch);  // put b at 0
1034   __ store_ptr(2, Otos_l1);     // put d at 2
1035   // stack: ..., c, d, a, b
1036   __ push_ptr(Lscratch);        // push c
1037   __ push_ptr(Otos_l1);         // push d
1038   // stack: ..., c, d, a, b, c, d
1039 }
1040 
1041 
1042 void TemplateTable::swap() {
1043   transition(vtos, vtos);
1044   // stack: ..., a, b
1045   __ load_ptr( 1, G3_scratch);  // get a
1046   __ load_ptr( 0, Otos_l1);     // get b
1047   __ store_ptr(0, G3_scratch);  // put b
1048   __ store_ptr(1, Otos_l1);     // put a
1049   // stack: ..., b, a
1050 }
1051 
1052 
1053 void TemplateTable::iop2(Operation op) {
1054   transition(itos, itos);
1055   __ pop_i(O1);
1056   switch (op) {
1057    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1058    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1059      // %%%%% Mul may not exist: better to call .mul?
1060    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1061    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1062    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1063    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1064    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1065    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1066    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1067    default: ShouldNotReachHere();
1068   }
1069 }
1070 
1071 
1072 void TemplateTable::lop2(Operation op) {
1073   transition(ltos, ltos);
1074   __ pop_l(O2);
1075   switch (op) {
1076 #ifdef _LP64
1077    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1078    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1079    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1080    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1081    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1082 #else
1083    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1084    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1085    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1086    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1087    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1088 #endif
1089    default: ShouldNotReachHere();
1090   }
1091 }
1092 
1093 
1094 void TemplateTable::idiv() {
1095   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1096   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1097 
1098   transition(itos, itos);
1099   __ pop_i(O1); // get 1st op
1100 
1101   // Y contains upper 32 bits of result, set it to 0 or all ones
1102   __ wry(G0);
1103   __ mov(~0, G3_scratch);
1104 
1105   __ tst(O1);
1106      Label neg;
1107   __ br(Assembler::negative, true, Assembler::pn, neg);
1108   __ delayed()->wry(G3_scratch);
1109   __ bind(neg);
1110 
1111      Label ok;
1112   __ tst(Otos_i);
1113   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1114 
1115   const int min_int = 0x80000000;
1116   Label regular;
1117   __ cmp(Otos_i, -1);
1118   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1119 #ifdef _LP64
1120   // Don't put set in delay slot
1121   // Set will turn into multiple instructions in 64 bit mode
1122   __ delayed()->nop();
1123   __ set(min_int, G4_scratch);
1124 #else
1125   __ delayed()->set(min_int, G4_scratch);
1126 #endif
1127   Label done;
1128   __ cmp(O1, G4_scratch);
1129   __ br(Assembler::equal, true, Assembler::pt, done);
1130   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1131 
1132   __ bind(regular);
1133   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1134   __ bind(done);
1135 }
1136 
1137 
1138 void TemplateTable::irem() {
1139   transition(itos, itos);
1140   __ mov(Otos_i, O2); // save divisor
1141   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1142   __ smul(Otos_i, O2, Otos_i);
1143   __ sub(O1, Otos_i, Otos_i);
1144 }
1145 
1146 
1147 void TemplateTable::lmul() {
1148   transition(ltos, ltos);
1149   __ pop_l(O2);
1150 #ifdef _LP64
1151   __ mulx(Otos_l, O2, Otos_l);
1152 #else
1153   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1154 #endif
1155 
1156 }
1157 
1158 
1159 void TemplateTable::ldiv() {
1160   transition(ltos, ltos);
1161 
1162   // check for zero
1163   __ pop_l(O2);
1164 #ifdef _LP64
1165   __ tst(Otos_l);
1166   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1167   __ sdivx(O2, Otos_l, Otos_l);
1168 #else
1169   __ orcc(Otos_l1, Otos_l2, G0);
1170   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1171   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1172 #endif
1173 }
1174 
1175 
1176 void TemplateTable::lrem() {
1177   transition(ltos, ltos);
1178 
1179   // check for zero
1180   __ pop_l(O2);
1181 #ifdef _LP64
1182   __ tst(Otos_l);
1183   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1184   __ sdivx(O2, Otos_l, Otos_l2);
1185   __ mulx (Otos_l2, Otos_l, Otos_l2);
1186   __ sub  (O2, Otos_l2, Otos_l);
1187 #else
1188   __ orcc(Otos_l1, Otos_l2, G0);
1189   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1190   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1191 #endif
1192 }
1193 
1194 
1195 void TemplateTable::lshl() {
1196   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1197 
1198   __ pop_l(O2);                          // shift value in O2, O3
1199 #ifdef _LP64
1200   __ sllx(O2, Otos_i, Otos_l);
1201 #else
1202   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1203 #endif
1204 }
1205 
1206 
1207 void TemplateTable::lshr() {
1208   transition(itos, ltos); // %%%% see lshl comment
1209 
1210   __ pop_l(O2);                          // shift value in O2, O3
1211 #ifdef _LP64
1212   __ srax(O2, Otos_i, Otos_l);
1213 #else
1214   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1215 #endif
1216 }
1217 
1218 
1219 
1220 void TemplateTable::lushr() {
1221   transition(itos, ltos); // %%%% see lshl comment
1222 
1223   __ pop_l(O2);                          // shift value in O2, O3
1224 #ifdef _LP64
1225   __ srlx(O2, Otos_i, Otos_l);
1226 #else
1227   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1228 #endif
1229 }
1230 
1231 
1232 void TemplateTable::fop2(Operation op) {
1233   transition(ftos, ftos);
1234   switch (op) {
1235    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1236    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1237    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1238    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1239    case  rem:
1240      assert(Ftos_f == F0, "just checking");
1241 #ifdef _LP64
1242      // LP64 calling conventions use F1, F3 for passing 2 floats
1243      __ pop_f(F1);
1244      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1245 #else
1246      __ pop_i(O0);
1247      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1248      __ ld( __ d_tmp, O1 );
1249 #endif
1250      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1251      assert( Ftos_f == F0, "fix this code" );
1252      break;
1253 
1254    default: ShouldNotReachHere();
1255   }
1256 }
1257 
1258 
1259 void TemplateTable::dop2(Operation op) {
1260   transition(dtos, dtos);
1261   switch (op) {
1262    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1263    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1264    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1265    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1266    case  rem:
1267 #ifdef _LP64
1268      // Pass arguments in D0, D2
1269      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1270      __ pop_d( F0 );
1271 #else
1272      // Pass arguments in O0O1, O2O3
1273      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1274      __ ldd( __ d_tmp, O2 );
1275      __ pop_d(Ftos_f);
1276      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1277      __ ldd( __ d_tmp, O0 );
1278 #endif
1279      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1280      assert( Ftos_d == F0, "fix this code" );
1281      break;
1282 
1283    default: ShouldNotReachHere();
1284   }
1285 }
1286 
1287 
1288 void TemplateTable::ineg() {
1289   transition(itos, itos);
1290   __ neg(Otos_i);
1291 }
1292 
1293 
1294 void TemplateTable::lneg() {
1295   transition(ltos, ltos);
1296 #ifdef _LP64
1297   __ sub(G0, Otos_l, Otos_l);
1298 #else
1299   __ lneg(Otos_l1, Otos_l2);
1300 #endif
1301 }
1302 
1303 
1304 void TemplateTable::fneg() {
1305   transition(ftos, ftos);
1306   __ fneg(FloatRegisterImpl::S, Ftos_f);
1307 }
1308 
1309 
1310 void TemplateTable::dneg() {
1311   transition(dtos, dtos);
1312   // v8 has fnegd if source and dest are the same
1313   __ fneg(FloatRegisterImpl::D, Ftos_f);
1314 }
1315 
1316 
1317 void TemplateTable::iinc() {
1318   transition(vtos, vtos);
1319   locals_index(G3_scratch);
1320   __ ldsb(Lbcp, 2, O2);  // load constant
1321   __ access_local_int(G3_scratch, Otos_i);
1322   __ add(Otos_i, O2, Otos_i);
1323   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1324 }
1325 
1326 
1327 void TemplateTable::wide_iinc() {
1328   transition(vtos, vtos);
1329   locals_index_wide(G3_scratch);
1330   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1331   __ access_local_int(G3_scratch, Otos_i);
1332   __ add(Otos_i, O3, Otos_i);
1333   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1334 }
1335 
1336 
1337 void TemplateTable::convert() {
1338 // %%%%% Factor this first part accross platforms
1339   #ifdef ASSERT
1340     TosState tos_in  = ilgl;
1341     TosState tos_out = ilgl;
1342     switch (bytecode()) {
1343       case Bytecodes::_i2l: // fall through
1344       case Bytecodes::_i2f: // fall through
1345       case Bytecodes::_i2d: // fall through
1346       case Bytecodes::_i2b: // fall through
1347       case Bytecodes::_i2c: // fall through
1348       case Bytecodes::_i2s: tos_in = itos; break;
1349       case Bytecodes::_l2i: // fall through
1350       case Bytecodes::_l2f: // fall through
1351       case Bytecodes::_l2d: tos_in = ltos; break;
1352       case Bytecodes::_f2i: // fall through
1353       case Bytecodes::_f2l: // fall through
1354       case Bytecodes::_f2d: tos_in = ftos; break;
1355       case Bytecodes::_d2i: // fall through
1356       case Bytecodes::_d2l: // fall through
1357       case Bytecodes::_d2f: tos_in = dtos; break;
1358       default             : ShouldNotReachHere();
1359     }
1360     switch (bytecode()) {
1361       case Bytecodes::_l2i: // fall through
1362       case Bytecodes::_f2i: // fall through
1363       case Bytecodes::_d2i: // fall through
1364       case Bytecodes::_i2b: // fall through
1365       case Bytecodes::_i2c: // fall through
1366       case Bytecodes::_i2s: tos_out = itos; break;
1367       case Bytecodes::_i2l: // fall through
1368       case Bytecodes::_f2l: // fall through
1369       case Bytecodes::_d2l: tos_out = ltos; break;
1370       case Bytecodes::_i2f: // fall through
1371       case Bytecodes::_l2f: // fall through
1372       case Bytecodes::_d2f: tos_out = ftos; break;
1373       case Bytecodes::_i2d: // fall through
1374       case Bytecodes::_l2d: // fall through
1375       case Bytecodes::_f2d: tos_out = dtos; break;
1376       default             : ShouldNotReachHere();
1377     }
1378     transition(tos_in, tos_out);
1379   #endif
1380 
1381 
1382   // Conversion
1383   Label done;
1384   switch (bytecode()) {
1385    case Bytecodes::_i2l:
1386 #ifdef _LP64
1387     // Sign extend the 32 bits
1388     __ sra ( Otos_i, 0, Otos_l );
1389 #else
1390     __ addcc(Otos_i, 0, Otos_l2);
1391     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1392     __ delayed()->clr(Otos_l1);
1393     __ set(~0, Otos_l1);
1394 #endif
1395     break;
1396 
1397    case Bytecodes::_i2f:
1398     __ st(Otos_i, __ d_tmp );
1399     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1400     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1401     break;
1402 
1403    case Bytecodes::_i2d:
1404     __ st(Otos_i, __ d_tmp);
1405     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1406     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1407     break;
1408 
1409    case Bytecodes::_i2b:
1410     __ sll(Otos_i, 24, Otos_i);
1411     __ sra(Otos_i, 24, Otos_i);
1412     break;
1413 
1414    case Bytecodes::_i2c:
1415     __ sll(Otos_i, 16, Otos_i);
1416     __ srl(Otos_i, 16, Otos_i);
1417     break;
1418 
1419    case Bytecodes::_i2s:
1420     __ sll(Otos_i, 16, Otos_i);
1421     __ sra(Otos_i, 16, Otos_i);
1422     break;
1423 
1424    case Bytecodes::_l2i:
1425 #ifndef _LP64
1426     __ mov(Otos_l2, Otos_i);
1427 #else
1428     // Sign-extend into the high 32 bits
1429     __ sra(Otos_l, 0, Otos_i);
1430 #endif
1431     break;
1432 
1433    case Bytecodes::_l2f:
1434    case Bytecodes::_l2d:
1435     __ st_long(Otos_l, __ d_tmp);
1436     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1437 
1438     if (VM_Version::v9_instructions_work()) {
1439       if (bytecode() == Bytecodes::_l2f) {
1440         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1441       } else {
1442         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1443       }
1444     } else {
1445       __ call_VM_leaf(
1446         Lscratch,
1447         bytecode() == Bytecodes::_l2f
1448           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
1449           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
1450       );
1451     }
1452     break;
1453 
1454   case Bytecodes::_f2i:  {
1455       Label isNaN;
1456       // result must be 0 if value is NaN; test by comparing value to itself
1457       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1458       // According to the v8 manual, you have to have a non-fp instruction
1459       // between fcmp and fb.
1460       if (!VM_Version::v9_instructions_work()) {
1461         __ nop();
1462       }
1463       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1464       __ delayed()->clr(Otos_i);                                     // NaN
1465       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1466       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1467       __ ld(__ d_tmp, Otos_i);
1468       __ bind(isNaN);
1469     }
1470     break;
1471 
1472    case Bytecodes::_f2l:
1473     // must uncache tos
1474     __ push_f();
1475 #ifdef _LP64
1476     __ pop_f(F1);
1477 #else
1478     __ pop_i(O0);
1479 #endif
1480     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1481     break;
1482 
1483    case Bytecodes::_f2d:
1484     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1485     break;
1486 
1487    case Bytecodes::_d2i:
1488    case Bytecodes::_d2l:
1489     // must uncache tos
1490     __ push_d();
1491 #ifdef _LP64
1492     // LP64 calling conventions pass first double arg in D0
1493     __ pop_d( Ftos_d );
1494 #else
1495     __ pop_i( O0 );
1496     __ pop_i( O1 );
1497 #endif
1498     __ call_VM_leaf(Lscratch,
1499         bytecode() == Bytecodes::_d2i
1500           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1501           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1502     break;
1503 
1504     case Bytecodes::_d2f:
1505     if (VM_Version::v9_instructions_work()) {
1506       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1507     }
1508     else {
1509       // must uncache tos
1510       __ push_d();
1511       __ pop_i(O0);
1512       __ pop_i(O1);
1513       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
1514     }
1515     break;
1516 
1517     default: ShouldNotReachHere();
1518   }
1519   __ bind(done);
1520 }
1521 
1522 
1523 void TemplateTable::lcmp() {
1524   transition(ltos, itos);
1525 
1526 #ifdef _LP64
1527   __ pop_l(O1); // pop off value 1, value 2 is in O0
1528   __ lcmp( O1, Otos_l, Otos_i );
1529 #else
1530   __ pop_l(O2); // cmp O2,3 to O0,1
1531   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1532 #endif
1533 }
1534 
1535 
1536 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1537 
1538   if (is_float) __ pop_f(F2);
1539   else          __ pop_d(F2);
1540 
1541   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1542 
1543   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1544 }
1545 
1546 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1547   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1548   __ verify_oop(Lmethod);
1549   __ verify_thread();
1550 
1551   const Register O2_bumped_count = O2;
1552   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1553 
1554   // get (wide) offset to O1_disp
1555   const Register O1_disp = O1;
1556   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1557   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1558 
1559   // Handle all the JSR stuff here, then exit.
1560   // It's much shorter and cleaner than intermingling with the
1561   // non-JSR normal-branch stuff occurring below.
1562   if( is_jsr ) {
1563     // compute return address as bci in Otos_i
1564     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1565     __ sub(Lbcp, G3_scratch, G3_scratch);
1566     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1567 
1568     // Bump Lbcp to target of JSR
1569     __ add(Lbcp, O1_disp, Lbcp);
1570     // Push returnAddress for "ret" on stack
1571     __ push_ptr(Otos_i);
1572     // And away we go!
1573     __ dispatch_next(vtos);
1574     return;
1575   }
1576 
1577   // Normal (non-jsr) branch handling
1578 
1579   // Save the current Lbcp
1580   const Register O0_cur_bcp = O0;
1581   __ mov( Lbcp, O0_cur_bcp );
1582 
1583 
1584   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1585   if ( increment_invocation_counter_for_backward_branches ) {
1586     Label Lforward;
1587     // check branch direction
1588     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1589     // Bump bytecode pointer by displacement (take the branch)
1590     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1591 
1592     if (TieredCompilation) {
1593       Label Lno_mdo, Loverflow;
1594       int increment = InvocationCounter::count_increment;
1595       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1596       if (ProfileInterpreter) {
1597         // If no method data exists, go to profile_continue.
1598         __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
1599         __ br_null(G4_scratch, false, Assembler::pn, Lno_mdo);
1600         __ delayed()->nop();
1601 
1602         // Increment backedge counter in the MDO
1603         Address mdo_backedge_counter(G4_scratch, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1604                                                  in_bytes(InvocationCounter::counter_offset()));
1605         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
1606                                    Assembler::notZero, &Lforward);
1607         __ ba(false, Loverflow);
1608         __ delayed()->nop();
1609       }
1610 
1611       // If there's no MDO, increment counter in methodOop
1612       __ bind(Lno_mdo);
1613       Address backedge_counter(Lmethod, in_bytes(methodOopDesc::backedge_counter_offset()) +
1614                                         in_bytes(InvocationCounter::counter_offset()));
1615       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
1616                                  Assembler::notZero, &Lforward);
1617       __ bind(Loverflow);
1618 
1619       // notify point for loop, pass branch bytecode
1620       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
1621 
1622       // Was an OSR adapter generated?
1623       // O0 = osr nmethod
1624       __ br_null(O0, false, Assembler::pn, Lforward);
1625       __ delayed()->nop();
1626 
1627       // Has the nmethod been invalidated already?
1628       __ ld(O0, nmethod::entry_bci_offset(), O2);
1629       __ cmp(O2, InvalidOSREntryBci);
1630       __ br(Assembler::equal, false, Assembler::pn, Lforward);
1631       __ delayed()->nop();
1632 
1633       // migrate the interpreter frame off of the stack
1634 
1635       __ mov(G2_thread, L7);
1636       // save nmethod
1637       __ mov(O0, L6);
1638       __ set_last_Java_frame(SP, noreg);
1639       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1640       __ reset_last_Java_frame();
1641       __ mov(L7, G2_thread);
1642 
1643       // move OSR nmethod to I1
1644       __ mov(L6, I1);
1645 
1646       // OSR buffer to I0
1647       __ mov(O0, I0);
1648 
1649       // remove the interpreter frame
1650       __ restore(I5_savedSP, 0, SP);
1651 
1652       // Jump to the osr code.
1653       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1654       __ jmp(O2, G0);
1655       __ delayed()->nop();
1656 
1657     } else {
1658       // Update Backedge branch separately from invocations
1659       const Register G4_invoke_ctr = G4;
1660       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
1661       if (ProfileInterpreter) {
1662         __ test_invocation_counter_for_mdp(G4_invoke_ctr, Lbcp, G3_scratch, Lforward);
1663         if (UseOnStackReplacement) {
1664           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
1665         }
1666       } else {
1667         if (UseOnStackReplacement) {
1668           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
1669         }
1670       }
1671     }
1672 
1673     __ bind(Lforward);
1674   } else
1675     // Bump bytecode pointer by displacement (take the branch)
1676     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1677 
1678   // continue with bytecode @ target
1679   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1680   // %%%%% and changing dispatch_next to dispatch_only
1681   __ dispatch_next(vtos);
1682 }
1683 
1684 
1685 // Note Condition in argument is TemplateTable::Condition
1686 // arg scope is within class scope
1687 
1688 void TemplateTable::if_0cmp(Condition cc) {
1689   // no pointers, integer only!
1690   transition(itos, vtos);
1691   // assume branch is more often taken than not (loops use backward branches)
1692   __ cmp( Otos_i, 0);
1693   __ if_cmp(ccNot(cc), false);
1694 }
1695 
1696 
1697 void TemplateTable::if_icmp(Condition cc) {
1698   transition(itos, vtos);
1699   __ pop_i(O1);
1700   __ cmp(O1, Otos_i);
1701   __ if_cmp(ccNot(cc), false);
1702 }
1703 
1704 
1705 void TemplateTable::if_nullcmp(Condition cc) {
1706   transition(atos, vtos);
1707   __ tst(Otos_i);
1708   __ if_cmp(ccNot(cc), true);
1709 }
1710 
1711 
1712 void TemplateTable::if_acmp(Condition cc) {
1713   transition(atos, vtos);
1714   __ pop_ptr(O1);
1715   __ verify_oop(O1);
1716   __ verify_oop(Otos_i);
1717   __ cmp(O1, Otos_i);
1718   __ if_cmp(ccNot(cc), true);
1719 }
1720 
1721 
1722 
1723 void TemplateTable::ret() {
1724   transition(vtos, vtos);
1725   locals_index(G3_scratch);
1726   __ access_local_returnAddress(G3_scratch, Otos_i);
1727   // Otos_i contains the bci, compute the bcp from that
1728 
1729 #ifdef _LP64
1730 #ifdef ASSERT
1731   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1732   // the result.  The return address (really a BCI) was stored with an
1733   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1734   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1735   // loaded value.
1736   { Label zzz ;
1737      __ set (65536, G3_scratch) ;
1738      __ cmp (Otos_i, G3_scratch) ;
1739      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1740      __ delayed()->nop();
1741      __ stop("BCI is in the wrong register half?");
1742      __ bind (zzz) ;
1743   }
1744 #endif
1745 #endif
1746 
1747   __ profile_ret(vtos, Otos_i, G4_scratch);
1748 
1749   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1750   __ add(G3_scratch, Otos_i, G3_scratch);
1751   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1752   __ dispatch_next(vtos);
1753 }
1754 
1755 
1756 void TemplateTable::wide_ret() {
1757   transition(vtos, vtos);
1758   locals_index_wide(G3_scratch);
1759   __ access_local_returnAddress(G3_scratch, Otos_i);
1760   // Otos_i contains the bci, compute the bcp from that
1761 
1762   __ profile_ret(vtos, Otos_i, G4_scratch);
1763 
1764   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1765   __ add(G3_scratch, Otos_i, G3_scratch);
1766   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1767   __ dispatch_next(vtos);
1768 }
1769 
1770 
1771 void TemplateTable::tableswitch() {
1772   transition(itos, vtos);
1773   Label default_case, continue_execution;
1774 
1775   // align bcp
1776   __ add(Lbcp, BytesPerInt, O1);
1777   __ and3(O1, -BytesPerInt, O1);
1778   // load lo, hi
1779   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1780   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1781 #ifdef _LP64
1782   // Sign extend the 32 bits
1783   __ sra ( Otos_i, 0, Otos_i );
1784 #endif /* _LP64 */
1785 
1786   // check against lo & hi
1787   __ cmp( Otos_i, O2);
1788   __ br( Assembler::less, false, Assembler::pn, default_case);
1789   __ delayed()->cmp( Otos_i, O3 );
1790   __ br( Assembler::greater, false, Assembler::pn, default_case);
1791   // lookup dispatch offset
1792   __ delayed()->sub(Otos_i, O2, O2);
1793   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1794   __ sll(O2, LogBytesPerInt, O2);
1795   __ add(O2, 3 * BytesPerInt, O2);
1796   __ ba(false, continue_execution);
1797   __ delayed()->ld(O1, O2, O2);
1798   // handle default
1799   __ bind(default_case);
1800   __ profile_switch_default(O3);
1801   __ ld(O1, 0, O2); // get default offset
1802   // continue execution
1803   __ bind(continue_execution);
1804   __ add(Lbcp, O2, Lbcp);
1805   __ dispatch_next(vtos);
1806 }
1807 
1808 
1809 void TemplateTable::lookupswitch() {
1810   transition(itos, itos);
1811   __ stop("lookupswitch bytecode should have been rewritten");
1812 }
1813 
1814 void TemplateTable::fast_linearswitch() {
1815   transition(itos, vtos);
1816     Label loop_entry, loop, found, continue_execution;
1817   // align bcp
1818   __ add(Lbcp, BytesPerInt, O1);
1819   __ and3(O1, -BytesPerInt, O1);
1820  // set counter
1821   __ ld(O1, BytesPerInt, O2);
1822   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1823   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1824   __ ba(false, loop_entry);
1825   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1826 
1827   // table search
1828   __ bind(loop);
1829   __ cmp(O4, Otos_i);
1830   __ br(Assembler::equal, true, Assembler::pn, found);
1831   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1832   __ inc(O3, 2 * BytesPerInt);
1833 
1834   __ bind(loop_entry);
1835   __ cmp(O2, O3);
1836   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1837   __ delayed()->ld(O3, 0, O4);
1838 
1839   // default case
1840   __ ld(O1, 0, O4); // get default offset
1841   if (ProfileInterpreter) {
1842     __ profile_switch_default(O3);
1843     __ ba(false, continue_execution);
1844     __ delayed()->nop();
1845   }
1846 
1847   // entry found -> get offset
1848   __ bind(found);
1849   if (ProfileInterpreter) {
1850     __ sub(O3, O1, O3);
1851     __ sub(O3, 2*BytesPerInt, O3);
1852     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1853     __ profile_switch_case(O3, O1, O2, G3_scratch);
1854 
1855     __ bind(continue_execution);
1856   }
1857   __ add(Lbcp, O4, Lbcp);
1858   __ dispatch_next(vtos);
1859 }
1860 
1861 
1862 void TemplateTable::fast_binaryswitch() {
1863   transition(itos, vtos);
1864   // Implementation using the following core algorithm: (copied from Intel)
1865   //
1866   // int binary_search(int key, LookupswitchPair* array, int n) {
1867   //   // Binary search according to "Methodik des Programmierens" by
1868   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1869   //   int i = 0;
1870   //   int j = n;
1871   //   while (i+1 < j) {
1872   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1873   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1874   //     // where a stands for the array and assuming that the (inexisting)
1875   //     // element a[n] is infinitely big.
1876   //     int h = (i + j) >> 1;
1877   //     // i < h < j
1878   //     if (key < array[h].fast_match()) {
1879   //       j = h;
1880   //     } else {
1881   //       i = h;
1882   //     }
1883   //   }
1884   //   // R: a[i] <= key < a[i+1] or Q
1885   //   // (i.e., if key is within array, i is the correct index)
1886   //   return i;
1887   // }
1888 
1889   // register allocation
1890   assert(Otos_i == O0, "alias checking");
1891   const Register Rkey     = Otos_i;                    // already set (tosca)
1892   const Register Rarray   = O1;
1893   const Register Ri       = O2;
1894   const Register Rj       = O3;
1895   const Register Rh       = O4;
1896   const Register Rscratch = O5;
1897 
1898   const int log_entry_size = 3;
1899   const int entry_size = 1 << log_entry_size;
1900 
1901   Label found;
1902   // Find Array start
1903   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1904   __ and3(Rarray, -BytesPerInt, Rarray);
1905   // initialize i & j (in delay slot)
1906   __ clr( Ri );
1907 
1908   // and start
1909   Label entry;
1910   __ ba(false, entry);
1911   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1912   // (Rj is already in the native byte-ordering.)
1913 
1914   // binary search loop
1915   { Label loop;
1916     __ bind( loop );
1917     // int h = (i + j) >> 1;
1918     __ sra( Rh, 1, Rh );
1919     // if (key < array[h].fast_match()) {
1920     //   j = h;
1921     // } else {
1922     //   i = h;
1923     // }
1924     __ sll( Rh, log_entry_size, Rscratch );
1925     __ ld( Rarray, Rscratch, Rscratch );
1926     // (Rscratch is already in the native byte-ordering.)
1927     __ cmp( Rkey, Rscratch );
1928     if ( VM_Version::v9_instructions_work() ) {
1929       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1930       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1931     }
1932     else {
1933       Label end_of_if;
1934       __ br( Assembler::less, true, Assembler::pt, end_of_if );
1935       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
1936       __ mov( Rh, Ri );            // else i = h
1937       __ bind(end_of_if);          // }
1938     }
1939 
1940     // while (i+1 < j)
1941     __ bind( entry );
1942     __ add( Ri, 1, Rscratch );
1943     __ cmp(Rscratch, Rj);
1944     __ br( Assembler::less, true, Assembler::pt, loop );
1945     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1946   }
1947 
1948   // end of binary search, result index is i (must check again!)
1949   Label default_case;
1950   Label continue_execution;
1951   if (ProfileInterpreter) {
1952     __ mov( Ri, Rh );              // Save index in i for profiling
1953   }
1954   __ sll( Ri, log_entry_size, Ri );
1955   __ ld( Rarray, Ri, Rscratch );
1956   // (Rscratch is already in the native byte-ordering.)
1957   __ cmp( Rkey, Rscratch );
1958   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1959   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1960 
1961   // entry found -> j = offset
1962   __ inc( Ri, BytesPerInt );
1963   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1964   __ ld( Rarray, Ri, Rj );
1965   // (Rj is already in the native byte-ordering.)
1966 
1967   if (ProfileInterpreter) {
1968     __ ba(false, continue_execution);
1969     __ delayed()->nop();
1970   }
1971 
1972   __ bind(default_case); // fall through (if not profiling)
1973   __ profile_switch_default(Ri);
1974 
1975   __ bind(continue_execution);
1976   __ add( Lbcp, Rj, Lbcp );
1977   __ dispatch_next( vtos );
1978 }
1979 
1980 
1981 void TemplateTable::_return(TosState state) {
1982   transition(state, state);
1983   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1984 
1985   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1986     assert(state == vtos, "only valid state");
1987     __ mov(G0, G3_scratch);
1988     __ access_local_ptr(G3_scratch, Otos_i);
1989     __ load_klass(Otos_i, O2);
1990     __ set(JVM_ACC_HAS_FINALIZER, G3);
1991     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
1992     __ andcc(G3, O2, G0);
1993     Label skip_register_finalizer;
1994     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1995     __ delayed()->nop();
1996 
1997     // Call out to do finalizer registration
1998     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1999 
2000     __ bind(skip_register_finalizer);
2001   }
2002 
2003   __ remove_activation(state, /* throw_monitor_exception */ true);
2004 
2005   // The caller's SP was adjusted upon method entry to accomodate
2006   // the callee's non-argument locals. Undo that adjustment.
2007   __ ret();                             // return to caller
2008   __ delayed()->restore(I5_savedSP, G0, SP);
2009 }
2010 
2011 
2012 // ----------------------------------------------------------------------------
2013 // Volatile variables demand their effects be made known to all CPU's in
2014 // order.  Store buffers on most chips allow reads & writes to reorder; the
2015 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2016 // memory barrier (i.e., it's not sufficient that the interpreter does not
2017 // reorder volatile references, the hardware also must not reorder them).
2018 //
2019 // According to the new Java Memory Model (JMM):
2020 // (1) All volatiles are serialized wrt to each other.
2021 // ALSO reads & writes act as aquire & release, so:
2022 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2023 // the read float up to before the read.  It's OK for non-volatile memory refs
2024 // that happen before the volatile read to float down below it.
2025 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2026 // that happen BEFORE the write float down to after the write.  It's OK for
2027 // non-volatile memory refs that happen after the volatile write to float up
2028 // before it.
2029 //
2030 // We only put in barriers around volatile refs (they are expensive), not
2031 // _between_ memory refs (that would require us to track the flavor of the
2032 // previous memory refs).  Requirements (2) and (3) require some barriers
2033 // before volatile stores and after volatile loads.  These nearly cover
2034 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2035 // case is placed after volatile-stores although it could just as well go
2036 // before volatile-loads.
2037 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2038   // Helper function to insert a is-volatile test and memory barrier
2039   // All current sparc implementations run in TSO, needing only StoreLoad
2040   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2041   __ membar( order_constraint );
2042 }
2043 
2044 // ----------------------------------------------------------------------------
2045 void TemplateTable::resolve_cache_and_index(int byte_no,
2046                                             Register result,
2047                                             Register Rcache,
2048                                             Register index,
2049                                             size_t index_size) {
2050   // Depends on cpCacheOop layout!
2051   Label resolved;
2052 
2053   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2054   if (byte_no == f1_oop) {
2055     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2056     // This kind of CP cache entry does not need to match the flags byte, because
2057     // there is a 1-1 relation between bytecode type and CP entry type.
2058     assert_different_registers(result, Rcache);
2059     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2060               ConstantPoolCacheEntry::f1_offset(), result);
2061     __ tst(result);
2062     __ br(Assembler::notEqual, false, Assembler::pt, resolved);
2063     __ delayed()->set((int)bytecode(), O1);
2064   } else {
2065     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2066     assert(result == noreg, "");  //else change code for setting result
2067     const int shift_count = (1 + byte_no)*BitsPerByte;
2068 
2069     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2070               ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
2071 
2072     __ srl(  Lbyte_code, shift_count, Lbyte_code );
2073     __ and3( Lbyte_code,        0xFF, Lbyte_code );
2074     __ cmp(  Lbyte_code, (int)bytecode());
2075     __ br(   Assembler::equal, false, Assembler::pt, resolved);
2076     __ delayed()->set((int)bytecode(), O1);
2077   }
2078 
2079   address entry;
2080   switch (bytecode()) {
2081     case Bytecodes::_getstatic      : // fall through
2082     case Bytecodes::_putstatic      : // fall through
2083     case Bytecodes::_getfield       : // fall through
2084     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2085     case Bytecodes::_invokevirtual  : // fall through
2086     case Bytecodes::_invokespecial  : // fall through
2087     case Bytecodes::_invokestatic   : // fall through
2088     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2089     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2090     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2091     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2092     default                         : ShouldNotReachHere();                                 break;
2093   }
2094   // first time invocation - must resolve first
2095   __ call_VM(noreg, entry, O1);
2096   // Update registers with resolved info
2097   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2098   if (result != noreg)
2099     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2100               ConstantPoolCacheEntry::f1_offset(), result);
2101   __ bind(resolved);
2102 }
2103 
2104 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2105                                                Register Rmethod,
2106                                                Register Ritable_index,
2107                                                Register Rflags,
2108                                                bool is_invokevirtual,
2109                                                bool is_invokevfinal,
2110                                                bool is_invokedynamic) {
2111   // Uses both G3_scratch and G4_scratch
2112   Register Rcache = G3_scratch;
2113   Register Rscratch = G4_scratch;
2114   assert_different_registers(Rcache, Rmethod, Ritable_index);
2115 
2116   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2117 
2118   // determine constant pool cache field offsets
2119   const int method_offset = in_bytes(
2120     cp_base_offset +
2121       (is_invokevirtual
2122        ? ConstantPoolCacheEntry::f2_offset()
2123        : ConstantPoolCacheEntry::f1_offset()
2124       )
2125     );
2126   const int flags_offset = in_bytes(cp_base_offset +
2127                                     ConstantPoolCacheEntry::flags_offset());
2128   // access constant pool cache fields
2129   const int index_offset = in_bytes(cp_base_offset +
2130                                     ConstantPoolCacheEntry::f2_offset());
2131 
2132   if (is_invokevfinal) {
2133     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
2134     __ ld_ptr(Rcache, method_offset, Rmethod);
2135   } else if (byte_no == f1_oop) {
2136     // Resolved f1_oop goes directly into 'method' register.
2137     resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
2138   } else {
2139     resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
2140     __ ld_ptr(Rcache, method_offset, Rmethod);
2141   }
2142 
2143   if (Ritable_index != noreg) {
2144     __ ld_ptr(Rcache, index_offset, Ritable_index);
2145   }
2146   __ ld_ptr(Rcache, flags_offset, Rflags);
2147 }
2148 
2149 // The Rcache register must be set before call
2150 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2151                                               Register Rcache,
2152                                               Register index,
2153                                               Register Roffset,
2154                                               Register Rflags,
2155                                               bool is_static) {
2156   assert_different_registers(Rcache, Rflags, Roffset);
2157 
2158   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2159 
2160   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2161   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2162   if (is_static) {
2163     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2164   }
2165 }
2166 
2167 // The registers Rcache and index expected to be set before call.
2168 // Correct values of the Rcache and index registers are preserved.
2169 void TemplateTable::jvmti_post_field_access(Register Rcache,
2170                                             Register index,
2171                                             bool is_static,
2172                                             bool has_tos) {
2173   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2174 
2175   if (JvmtiExport::can_post_field_access()) {
2176     // Check to see if a field access watch has been set before we take
2177     // the time to call into the VM.
2178     Label Label1;
2179     assert_different_registers(Rcache, index, G1_scratch);
2180     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2181     __ load_contents(get_field_access_count_addr, G1_scratch);
2182     __ tst(G1_scratch);
2183     __ br(Assembler::zero, false, Assembler::pt, Label1);
2184     __ delayed()->nop();
2185 
2186     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2187 
2188     if (is_static) {
2189       __ clr(Otos_i);
2190     } else {
2191       if (has_tos) {
2192       // save object pointer before call_VM() clobbers it
2193         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2194       } else {
2195         // Load top of stack (do not pop the value off the stack);
2196         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2197       }
2198       __ verify_oop(Otos_i);
2199     }
2200     // Otos_i: object pointer or NULL if static
2201     // Rcache: cache entry pointer
2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2203                Otos_i, Rcache);
2204     if (!is_static && has_tos) {
2205       __ pop_ptr(Otos_i);  // restore object pointer
2206       __ verify_oop(Otos_i);
2207     }
2208     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2209     __ bind(Label1);
2210   }
2211 }
2212 
2213 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2214   transition(vtos, vtos);
2215 
2216   Register Rcache = G3_scratch;
2217   Register index  = G4_scratch;
2218   Register Rclass = Rcache;
2219   Register Roffset= G4_scratch;
2220   Register Rflags = G1_scratch;
2221   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2222 
2223   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
2224   jvmti_post_field_access(Rcache, index, is_static, false);
2225   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2226 
2227   if (!is_static) {
2228     pop_and_check_object(Rclass);
2229   } else {
2230     __ verify_oop(Rclass);
2231   }
2232 
2233   Label exit;
2234 
2235   Assembler::Membar_mask_bits membar_bits =
2236     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2237 
2238   if (__ membar_has_effect(membar_bits)) {
2239     // Get volatile flag
2240     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2241     __ and3(Rflags, Lscratch, Lscratch);
2242   }
2243 
2244   Label checkVolatile;
2245 
2246   // compute field type
2247   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2248   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2249   // Make sure we don't need to mask Rflags for tosBits after the above shift
2250   ConstantPoolCacheEntry::verify_tosBits();
2251 
2252   // Check atos before itos for getstatic, more likely (in Queens at least)
2253   __ cmp(Rflags, atos);
2254   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2255   __ delayed() ->cmp(Rflags, itos);
2256 
2257   // atos
2258   __ load_heap_oop(Rclass, Roffset, Otos_i);
2259   __ verify_oop(Otos_i);
2260   __ push(atos);
2261   if (!is_static) {
2262     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2263   }
2264   __ ba(false, checkVolatile);
2265   __ delayed()->tst(Lscratch);
2266 
2267   __ bind(notObj);
2268 
2269   // cmp(Rflags, itos);
2270   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2271   __ delayed() ->cmp(Rflags, ltos);
2272 
2273   // itos
2274   __ ld(Rclass, Roffset, Otos_i);
2275   __ push(itos);
2276   if (!is_static) {
2277     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2278   }
2279   __ ba(false, checkVolatile);
2280   __ delayed()->tst(Lscratch);
2281 
2282   __ bind(notInt);
2283 
2284   // cmp(Rflags, ltos);
2285   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2286   __ delayed() ->cmp(Rflags, btos);
2287 
2288   // ltos
2289   // load must be atomic
2290   __ ld_long(Rclass, Roffset, Otos_l);
2291   __ push(ltos);
2292   if (!is_static) {
2293     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2294   }
2295   __ ba(false, checkVolatile);
2296   __ delayed()->tst(Lscratch);
2297 
2298   __ bind(notLong);
2299 
2300   // cmp(Rflags, btos);
2301   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2302   __ delayed() ->cmp(Rflags, ctos);
2303 
2304   // btos
2305   __ ldsb(Rclass, Roffset, Otos_i);
2306   __ push(itos);
2307   if (!is_static) {
2308     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2309   }
2310   __ ba(false, checkVolatile);
2311   __ delayed()->tst(Lscratch);
2312 
2313   __ bind(notByte);
2314 
2315   // cmp(Rflags, ctos);
2316   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2317   __ delayed() ->cmp(Rflags, stos);
2318 
2319   // ctos
2320   __ lduh(Rclass, Roffset, Otos_i);
2321   __ push(itos);
2322   if (!is_static) {
2323     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2324   }
2325   __ ba(false, checkVolatile);
2326   __ delayed()->tst(Lscratch);
2327 
2328   __ bind(notChar);
2329 
2330   // cmp(Rflags, stos);
2331   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2332   __ delayed() ->cmp(Rflags, ftos);
2333 
2334   // stos
2335   __ ldsh(Rclass, Roffset, Otos_i);
2336   __ push(itos);
2337   if (!is_static) {
2338     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2339   }
2340   __ ba(false, checkVolatile);
2341   __ delayed()->tst(Lscratch);
2342 
2343   __ bind(notShort);
2344 
2345 
2346   // cmp(Rflags, ftos);
2347   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2348   __ delayed() ->tst(Lscratch);
2349 
2350   // ftos
2351   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2352   __ push(ftos);
2353   if (!is_static) {
2354     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2355   }
2356   __ ba(false, checkVolatile);
2357   __ delayed()->tst(Lscratch);
2358 
2359   __ bind(notFloat);
2360 
2361 
2362   // dtos
2363   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2364   __ push(dtos);
2365   if (!is_static) {
2366     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2367   }
2368 
2369   __ bind(checkVolatile);
2370   if (__ membar_has_effect(membar_bits)) {
2371     // __ tst(Lscratch); executed in delay slot
2372     __ br(Assembler::zero, false, Assembler::pt, exit);
2373     __ delayed()->nop();
2374     volatile_barrier(membar_bits);
2375   }
2376 
2377   __ bind(exit);
2378 }
2379 
2380 
2381 void TemplateTable::getfield(int byte_no) {
2382   getfield_or_static(byte_no, false);
2383 }
2384 
2385 void TemplateTable::getstatic(int byte_no) {
2386   getfield_or_static(byte_no, true);
2387 }
2388 
2389 
2390 void TemplateTable::fast_accessfield(TosState state) {
2391   transition(atos, state);
2392   Register Rcache  = G3_scratch;
2393   Register index   = G4_scratch;
2394   Register Roffset = G4_scratch;
2395   Register Rflags  = Rcache;
2396   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2397 
2398   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2399   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2400 
2401   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2402 
2403   __ null_check(Otos_i);
2404   __ verify_oop(Otos_i);
2405 
2406   Label exit;
2407 
2408   Assembler::Membar_mask_bits membar_bits =
2409     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2410   if (__ membar_has_effect(membar_bits)) {
2411     // Get volatile flag
2412     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2413     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2414   }
2415 
2416   switch (bytecode()) {
2417     case Bytecodes::_fast_bgetfield:
2418       __ ldsb(Otos_i, Roffset, Otos_i);
2419       break;
2420     case Bytecodes::_fast_cgetfield:
2421       __ lduh(Otos_i, Roffset, Otos_i);
2422       break;
2423     case Bytecodes::_fast_sgetfield:
2424       __ ldsh(Otos_i, Roffset, Otos_i);
2425       break;
2426     case Bytecodes::_fast_igetfield:
2427       __ ld(Otos_i, Roffset, Otos_i);
2428       break;
2429     case Bytecodes::_fast_lgetfield:
2430       __ ld_long(Otos_i, Roffset, Otos_l);
2431       break;
2432     case Bytecodes::_fast_fgetfield:
2433       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2434       break;
2435     case Bytecodes::_fast_dgetfield:
2436       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2437       break;
2438     case Bytecodes::_fast_agetfield:
2439       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2440       break;
2441     default:
2442       ShouldNotReachHere();
2443   }
2444 
2445   if (__ membar_has_effect(membar_bits)) {
2446     __ btst(Lscratch, Rflags);
2447     __ br(Assembler::zero, false, Assembler::pt, exit);
2448     __ delayed()->nop();
2449     volatile_barrier(membar_bits);
2450     __ bind(exit);
2451   }
2452 
2453   if (state == atos) {
2454     __ verify_oop(Otos_i);    // does not blow flags!
2455   }
2456 }
2457 
2458 void TemplateTable::jvmti_post_fast_field_mod() {
2459   if (JvmtiExport::can_post_field_modification()) {
2460     // Check to see if a field modification watch has been set before we take
2461     // the time to call into the VM.
2462     Label done;
2463     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2464     __ load_contents(get_field_modification_count_addr, G4_scratch);
2465     __ tst(G4_scratch);
2466     __ br(Assembler::zero, false, Assembler::pt, done);
2467     __ delayed()->nop();
2468     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2469     __ verify_oop(G4_scratch);
2470     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2471     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2472     // Save tos values before call_VM() clobbers them. Since we have
2473     // to do it for every data type, we use the saved values as the
2474     // jvalue object.
2475     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2476     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2477     case Bytecodes::_fast_bputfield: // fall through
2478     case Bytecodes::_fast_sputfield: // fall through
2479     case Bytecodes::_fast_cputfield: // fall through
2480     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2481     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2482     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2483     // get words in right order for use as jvalue object
2484     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2485     }
2486     // setup pointer to jvalue object
2487     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2488     // G4_scratch:  object pointer
2489     // G1_scratch: cache entry pointer
2490     // G3_scratch: jvalue object on the stack
2491     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2492     switch (bytecode()) {             // restore tos values
2493     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2494     case Bytecodes::_fast_bputfield: // fall through
2495     case Bytecodes::_fast_sputfield: // fall through
2496     case Bytecodes::_fast_cputfield: // fall through
2497     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2498     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2499     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2500     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2501     }
2502     __ bind(done);
2503   }
2504 }
2505 
2506 // The registers Rcache and index expected to be set before call.
2507 // The function may destroy various registers, just not the Rcache and index registers.
2508 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2509   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2510 
2511   if (JvmtiExport::can_post_field_modification()) {
2512     // Check to see if a field modification watch has been set before we take
2513     // the time to call into the VM.
2514     Label Label1;
2515     assert_different_registers(Rcache, index, G1_scratch);
2516     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2517     __ load_contents(get_field_modification_count_addr, G1_scratch);
2518     __ tst(G1_scratch);
2519     __ br(Assembler::zero, false, Assembler::pt, Label1);
2520     __ delayed()->nop();
2521 
2522     // The Rcache and index registers have been already set.
2523     // This allows to eliminate this call but the Rcache and index
2524     // registers must be correspondingly used after this line.
2525     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2526 
2527     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2528     if (is_static) {
2529       // Life is simple.  Null out the object pointer.
2530       __ clr(G4_scratch);
2531     } else {
2532       Register Rflags = G1_scratch;
2533       // Life is harder. The stack holds the value on top, followed by the
2534       // object.  We don't know the size of the value, though; it could be
2535       // one or two words depending on its type. As a result, we must find
2536       // the type to determine where the object is.
2537 
2538       Label two_word, valsizeknown;
2539       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2540       __ mov(Lesp, G4_scratch);
2541       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2542       // Make sure we don't need to mask Rflags for tosBits after the above shift
2543       ConstantPoolCacheEntry::verify_tosBits();
2544       __ cmp(Rflags, ltos);
2545       __ br(Assembler::equal, false, Assembler::pt, two_word);
2546       __ delayed()->cmp(Rflags, dtos);
2547       __ br(Assembler::equal, false, Assembler::pt, two_word);
2548       __ delayed()->nop();
2549       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2550       __ br(Assembler::always, false, Assembler::pt, valsizeknown);
2551       __ delayed()->nop();
2552       __ bind(two_word);
2553 
2554       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2555 
2556       __ bind(valsizeknown);
2557       // setup object pointer
2558       __ ld_ptr(G4_scratch, 0, G4_scratch);
2559       __ verify_oop(G4_scratch);
2560     }
2561     // setup pointer to jvalue object
2562     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2563     // G4_scratch:  object pointer or NULL if static
2564     // G3_scratch: cache entry pointer
2565     // G1_scratch: jvalue object on the stack
2566     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2567                G4_scratch, G3_scratch, G1_scratch);
2568     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2569     __ bind(Label1);
2570   }
2571 }
2572 
2573 void TemplateTable::pop_and_check_object(Register r) {
2574   __ pop_ptr(r);
2575   __ null_check(r);  // for field access must check obj.
2576   __ verify_oop(r);
2577 }
2578 
2579 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2580   transition(vtos, vtos);
2581   Register Rcache = G3_scratch;
2582   Register index  = G4_scratch;
2583   Register Rclass = Rcache;
2584   Register Roffset= G4_scratch;
2585   Register Rflags = G1_scratch;
2586   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2587 
2588   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
2589   jvmti_post_field_mod(Rcache, index, is_static);
2590   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2591 
2592   Assembler::Membar_mask_bits read_bits =
2593     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2594   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2595 
2596   Label notVolatile, checkVolatile, exit;
2597   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2598     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2599     __ and3(Rflags, Lscratch, Lscratch);
2600 
2601     if (__ membar_has_effect(read_bits)) {
2602       __ tst(Lscratch);
2603       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2604       __ delayed()->nop();
2605       volatile_barrier(read_bits);
2606       __ bind(notVolatile);
2607     }
2608   }
2609 
2610   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2611   // Make sure we don't need to mask Rflags for tosBits after the above shift
2612   ConstantPoolCacheEntry::verify_tosBits();
2613 
2614   // compute field type
2615   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2616 
2617   if (is_static) {
2618     // putstatic with object type most likely, check that first
2619     __ cmp(Rflags, atos );
2620     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2621     __ delayed() ->cmp(Rflags, itos );
2622 
2623     // atos
2624     __ pop_ptr();
2625     __ verify_oop(Otos_i);
2626 
2627     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2628 
2629     __ ba(false, checkVolatile);
2630     __ delayed()->tst(Lscratch);
2631 
2632     __ bind(notObj);
2633 
2634     // cmp(Rflags, itos );
2635     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2636     __ delayed() ->cmp(Rflags, btos );
2637 
2638     // itos
2639     __ pop_i();
2640     __ st(Otos_i, Rclass, Roffset);
2641     __ ba(false, checkVolatile);
2642     __ delayed()->tst(Lscratch);
2643 
2644     __ bind(notInt);
2645 
2646   } else {
2647     // putfield with int type most likely, check that first
2648     __ cmp(Rflags, itos );
2649     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2650     __ delayed() ->cmp(Rflags, atos );
2651 
2652     // itos
2653     __ pop_i();
2654     pop_and_check_object(Rclass);
2655     __ st(Otos_i, Rclass, Roffset);
2656     patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
2657     __ ba(false, checkVolatile);
2658     __ delayed()->tst(Lscratch);
2659 
2660     __ bind(notInt);
2661     // cmp(Rflags, atos );
2662     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2663     __ delayed() ->cmp(Rflags, btos );
2664 
2665     // atos
2666     __ pop_ptr();
2667     pop_and_check_object(Rclass);
2668     __ verify_oop(Otos_i);
2669 
2670     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2671 
2672     patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
2673     __ ba(false, checkVolatile);
2674     __ delayed()->tst(Lscratch);
2675 
2676     __ bind(notObj);
2677   }
2678 
2679   // cmp(Rflags, btos );
2680   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2681   __ delayed() ->cmp(Rflags, ltos );
2682 
2683   // btos
2684   __ pop_i();
2685   if (!is_static) pop_and_check_object(Rclass);
2686   __ stb(Otos_i, Rclass, Roffset);
2687   if (!is_static) {
2688     patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
2689   }
2690   __ ba(false, checkVolatile);
2691   __ delayed()->tst(Lscratch);
2692 
2693   __ bind(notByte);
2694 
2695   // cmp(Rflags, ltos );
2696   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2697   __ delayed() ->cmp(Rflags, ctos );
2698 
2699   // ltos
2700   __ pop_l();
2701   if (!is_static) pop_and_check_object(Rclass);
2702   __ st_long(Otos_l, Rclass, Roffset);
2703   if (!is_static) {
2704     patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
2705   }
2706   __ ba(false, checkVolatile);
2707   __ delayed()->tst(Lscratch);
2708 
2709   __ bind(notLong);
2710 
2711   // cmp(Rflags, ctos );
2712   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2713   __ delayed() ->cmp(Rflags, stos );
2714 
2715   // ctos (char)
2716   __ pop_i();
2717   if (!is_static) pop_and_check_object(Rclass);
2718   __ sth(Otos_i, Rclass, Roffset);
2719   if (!is_static) {
2720     patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
2721   }
2722   __ ba(false, checkVolatile);
2723   __ delayed()->tst(Lscratch);
2724 
2725   __ bind(notChar);
2726   // cmp(Rflags, stos );
2727   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2728   __ delayed() ->cmp(Rflags, ftos );
2729 
2730   // stos (char)
2731   __ pop_i();
2732   if (!is_static) pop_and_check_object(Rclass);
2733   __ sth(Otos_i, Rclass, Roffset);
2734   if (!is_static) {
2735     patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
2736   }
2737   __ ba(false, checkVolatile);
2738   __ delayed()->tst(Lscratch);
2739 
2740   __ bind(notShort);
2741   // cmp(Rflags, ftos );
2742   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2743   __ delayed()->nop();
2744 
2745   // ftos
2746   __ pop_f();
2747   if (!is_static) pop_and_check_object(Rclass);
2748   __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2749   if (!is_static) {
2750     patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
2751   }
2752   __ ba(false, checkVolatile);
2753   __ delayed()->tst(Lscratch);
2754 
2755   __ bind(notFloat);
2756 
2757   // dtos
2758   __ pop_d();
2759   if (!is_static) pop_and_check_object(Rclass);
2760   __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2761   if (!is_static) {
2762     patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
2763   }
2764 
2765   __ bind(checkVolatile);
2766   __ tst(Lscratch);
2767 
2768   if (__ membar_has_effect(write_bits)) {
2769     // __ tst(Lscratch); in delay slot
2770     __ br(Assembler::zero, false, Assembler::pt, exit);
2771     __ delayed()->nop();
2772     volatile_barrier(Assembler::StoreLoad);
2773     __ bind(exit);
2774   }
2775 }
2776 
2777 void TemplateTable::fast_storefield(TosState state) {
2778   transition(state, vtos);
2779   Register Rcache = G3_scratch;
2780   Register Rclass = Rcache;
2781   Register Roffset= G4_scratch;
2782   Register Rflags = G1_scratch;
2783   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2784 
2785   jvmti_post_fast_field_mod();
2786 
2787   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2788 
2789   Assembler::Membar_mask_bits read_bits =
2790     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2791   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2792 
2793   Label notVolatile, checkVolatile, exit;
2794   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2795     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2796     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2797     __ and3(Rflags, Lscratch, Lscratch);
2798     if (__ membar_has_effect(read_bits)) {
2799       __ tst(Lscratch);
2800       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2801       __ delayed()->nop();
2802       volatile_barrier(read_bits);
2803       __ bind(notVolatile);
2804     }
2805   }
2806 
2807   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2808   pop_and_check_object(Rclass);
2809 
2810   switch (bytecode()) {
2811     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2812     case Bytecodes::_fast_cputfield: /* fall through */
2813     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2814     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2815     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2816     case Bytecodes::_fast_fputfield:
2817       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2818       break;
2819     case Bytecodes::_fast_dputfield:
2820       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2821       break;
2822     case Bytecodes::_fast_aputfield:
2823       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2824       break;
2825     default:
2826       ShouldNotReachHere();
2827   }
2828 
2829   if (__ membar_has_effect(write_bits)) {
2830     __ tst(Lscratch);
2831     __ br(Assembler::zero, false, Assembler::pt, exit);
2832     __ delayed()->nop();
2833     volatile_barrier(Assembler::StoreLoad);
2834     __ bind(exit);
2835   }
2836 }
2837 
2838 
2839 void TemplateTable::putfield(int byte_no) {
2840   putfield_or_static(byte_no, false);
2841 }
2842 
2843 void TemplateTable::putstatic(int byte_no) {
2844   putfield_or_static(byte_no, true);
2845 }
2846 
2847 
2848 void TemplateTable::fast_xaccess(TosState state) {
2849   transition(vtos, state);
2850   Register Rcache = G3_scratch;
2851   Register Roffset = G4_scratch;
2852   Register Rflags  = G4_scratch;
2853   Register Rreceiver = Lscratch;
2854 
2855   __ ld_ptr(Llocals, 0, Rreceiver);
2856 
2857   // access constant pool cache  (is resolved)
2858   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2859   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2860   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2861 
2862   __ verify_oop(Rreceiver);
2863   __ null_check(Rreceiver);
2864   if (state == atos) {
2865     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2866   } else if (state == itos) {
2867     __ ld (Rreceiver, Roffset, Otos_i) ;
2868   } else if (state == ftos) {
2869     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2870   } else {
2871     ShouldNotReachHere();
2872   }
2873 
2874   Assembler::Membar_mask_bits membar_bits =
2875     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2876   if (__ membar_has_effect(membar_bits)) {
2877 
2878     // Get is_volatile value in Rflags and check if membar is needed
2879     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2880 
2881     // Test volatile
2882     Label notVolatile;
2883     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2884     __ btst(Rflags, Lscratch);
2885     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2886     __ delayed()->nop();
2887     volatile_barrier(membar_bits);
2888     __ bind(notVolatile);
2889   }
2890 
2891   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2892   __ sub(Lbcp, 1, Lbcp);
2893 }
2894 
2895 //----------------------------------------------------------------------------------------------------
2896 // Calls
2897 
2898 void TemplateTable::count_calls(Register method, Register temp) {
2899   // implemented elsewhere
2900   ShouldNotReachHere();
2901 }
2902 
2903 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2904   Register Rtemp = G4_scratch;
2905   Register Rcall = Rindex;
2906   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2907 
2908   // get target methodOop & entry point
2909   const int base = instanceKlass::vtable_start_offset() * wordSize;
2910   if (vtableEntry::size() % 3 == 0) {
2911     // scale the vtable index by 12:
2912     int one_third = vtableEntry::size() / 3;
2913     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
2914     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
2915     __ add(Rindex, Rtemp, Rindex);
2916   } else {
2917     // scale the vtable index by 8:
2918     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
2919   }
2920 
2921   __ add(Rrecv, Rindex, Rrecv);
2922   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
2923 
2924   __ call_from_interpreter(Rcall, Gargs, Rret);
2925 }
2926 
2927 void TemplateTable::invokevirtual(int byte_no) {
2928   transition(vtos, vtos);
2929   assert(byte_no == f2_byte, "use this argument");
2930 
2931   Register Rscratch = G3_scratch;
2932   Register Rtemp = G4_scratch;
2933   Register Rret = Lscratch;
2934   Register Rrecv = G5_method;
2935   Label notFinal;
2936 
2937   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2938   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2939 
2940   // Check for vfinal
2941   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
2942   __ btst(Rret, G4_scratch);
2943   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2944   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2945 
2946   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2947 
2948   invokevfinal_helper(Rscratch, Rret);
2949 
2950   __ bind(notFinal);
2951 
2952   __ mov(G5_method, Rscratch);  // better scratch register
2953   __ load_receiver(G4_scratch, O0);  // gets receiverOop
2954   // receiver is in O0
2955   __ verify_oop(O0);
2956 
2957   // get return address
2958   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2959   __ set(table, Rtemp);
2960   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2961   // Make sure we don't need to mask Rret for tosBits after the above shift
2962   ConstantPoolCacheEntry::verify_tosBits();
2963   __ sll(Rret,  LogBytesPerWord, Rret);
2964   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2965 
2966   // get receiver klass
2967   __ null_check(O0, oopDesc::klass_offset_in_bytes());
2968   __ load_klass(O0, Rrecv);
2969   __ verify_oop(Rrecv);
2970 
2971   __ profile_virtual_call(Rrecv, O4);
2972 
2973   generate_vtable_call(Rrecv, Rscratch, Rret);
2974 }
2975 
2976 void TemplateTable::fast_invokevfinal(int byte_no) {
2977   transition(vtos, vtos);
2978   assert(byte_no == f2_byte, "use this argument");
2979 
2980   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
2981                              /*is_invokevfinal*/true, false);
2982   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2983   invokevfinal_helper(G3_scratch, Lscratch);
2984 }
2985 
2986 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
2987   Register Rtemp = G4_scratch;
2988 
2989   __ verify_oop(G5_method);
2990 
2991   // Load receiver from stack slot
2992   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
2993   __ load_receiver(G4_scratch, O0);
2994 
2995   // receiver NULL check
2996   __ null_check(O0);
2997 
2998   __ profile_final_call(O4);
2999 
3000   // get return address
3001   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3002   __ set(table, Rtemp);
3003   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3004   // Make sure we don't need to mask Rret for tosBits after the above shift
3005   ConstantPoolCacheEntry::verify_tosBits();
3006   __ sll(Rret,  LogBytesPerWord, Rret);
3007   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3008 
3009 
3010   // do the call
3011   __ call_from_interpreter(Rscratch, Gargs, Rret);
3012 }
3013 
3014 void TemplateTable::invokespecial(int byte_no) {
3015   transition(vtos, vtos);
3016   assert(byte_no == f1_byte, "use this argument");
3017 
3018   Register Rscratch = G3_scratch;
3019   Register Rtemp = G4_scratch;
3020   Register Rret = Lscratch;
3021 
3022   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
3023   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3024 
3025   __ verify_oop(G5_method);
3026 
3027   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
3028   __ load_receiver(G4_scratch, O0);
3029 
3030   // receiver NULL check
3031   __ null_check(O0);
3032 
3033   __ profile_call(O4);
3034 
3035   // get return address
3036   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3037   __ set(table, Rtemp);
3038   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3039   // Make sure we don't need to mask Rret for tosBits after the above shift
3040   ConstantPoolCacheEntry::verify_tosBits();
3041   __ sll(Rret,  LogBytesPerWord, Rret);
3042   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3043 
3044   // do the call
3045   __ call_from_interpreter(Rscratch, Gargs, Rret);
3046 }
3047 
3048 void TemplateTable::invokestatic(int byte_no) {
3049   transition(vtos, vtos);
3050   assert(byte_no == f1_byte, "use this argument");
3051 
3052   Register Rscratch = G3_scratch;
3053   Register Rtemp = G4_scratch;
3054   Register Rret = Lscratch;
3055 
3056   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
3057   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3058 
3059   __ verify_oop(G5_method);
3060 
3061   __ profile_call(O4);
3062 
3063   // get return address
3064   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3065   __ set(table, Rtemp);
3066   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3067   // Make sure we don't need to mask Rret for tosBits after the above shift
3068   ConstantPoolCacheEntry::verify_tosBits();
3069   __ sll(Rret,  LogBytesPerWord, Rret);
3070   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3071 
3072   // do the call
3073   __ call_from_interpreter(Rscratch, Gargs, Rret);
3074 }
3075 
3076 
3077 void TemplateTable::invokeinterface_object_method(Register RklassOop,
3078                                                   Register Rcall,
3079                                                   Register Rret,
3080                                                   Register Rflags) {
3081   Register Rscratch = G4_scratch;
3082   Register Rindex = Lscratch;
3083 
3084   assert_different_registers(Rscratch, Rindex, Rret);
3085 
3086   Label notFinal;
3087 
3088   // Check for vfinal
3089   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
3090   __ btst(Rflags, Rscratch);
3091   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3092   __ delayed()->nop();
3093 
3094   __ profile_final_call(O4);
3095 
3096   // do the call - the index (f2) contains the methodOop
3097   assert_different_registers(G5_method, Gargs, Rcall);
3098   __ mov(Rindex, G5_method);
3099   __ call_from_interpreter(Rcall, Gargs, Rret);
3100   __ bind(notFinal);
3101 
3102   __ profile_virtual_call(RklassOop, O4);
3103   generate_vtable_call(RklassOop, Rindex, Rret);
3104 }
3105 
3106 
3107 void TemplateTable::invokeinterface(int byte_no) {
3108   transition(vtos, vtos);
3109   assert(byte_no == f1_byte, "use this argument");
3110 
3111   Register Rscratch = G4_scratch;
3112   Register Rret = G3_scratch;
3113   Register Rindex = Lscratch;
3114   Register Rinterface = G1_scratch;
3115   Register RklassOop = G5_method;
3116   Register Rflags = O1;
3117   assert_different_registers(Rscratch, G5_method);
3118 
3119   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
3120   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3121 
3122   // get receiver
3123   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
3124   __ load_receiver(Rscratch, O0);
3125   __ verify_oop(O0);
3126 
3127   __ mov(Rflags, Rret);
3128 
3129   // get return address
3130   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3131   __ set(table, Rscratch);
3132   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3133   // Make sure we don't need to mask Rret for tosBits after the above shift
3134   ConstantPoolCacheEntry::verify_tosBits();
3135   __ sll(Rret,  LogBytesPerWord, Rret);
3136   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
3137 
3138   // get receiver klass
3139   __ null_check(O0, oopDesc::klass_offset_in_bytes());
3140   __ load_klass(O0, RklassOop);
3141   __ verify_oop(RklassOop);
3142 
3143   // Special case of invokeinterface called for virtual method of
3144   // java.lang.Object.  See cpCacheOop.cpp for details.
3145   // This code isn't produced by javac, but could be produced by
3146   // another compliant java compiler.
3147   Label notMethod;
3148   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
3149   __ btst(Rflags, Rscratch);
3150   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3151   __ delayed()->nop();
3152 
3153   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
3154 
3155   __ bind(notMethod);
3156 
3157   __ profile_virtual_call(RklassOop, O4);
3158 
3159   //
3160   // find entry point to call
3161   //
3162 
3163   // compute start of first itableOffsetEntry (which is at end of vtable)
3164   const int base = instanceKlass::vtable_start_offset() * wordSize;
3165   Label search;
3166   Register Rtemp = Rflags;
3167 
3168   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
3169   if (align_object_offset(1) > 1) {
3170     __ round_to(Rtemp, align_object_offset(1));
3171   }
3172   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3173   if (Assembler::is_simm13(base)) {
3174     __ add(Rtemp, base, Rtemp);
3175   } else {
3176     __ set(base, Rscratch);
3177     __ add(Rscratch, Rtemp, Rtemp);
3178   }
3179   __ add(RklassOop, Rtemp, Rscratch);
3180 
3181   __ bind(search);
3182 
3183   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3184   {
3185     Label ok;
3186 
3187     // Check that entry is non-null.  Null entries are probably a bytecode
3188     // problem.  If the interface isn't implemented by the receiver class,
3189     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3190     // this too but that's only if the entry isn't already resolved, so we
3191     // need to check again.
3192     __ br_notnull( Rtemp, false, Assembler::pt, ok);
3193     __ delayed()->nop();
3194     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3195     __ should_not_reach_here();
3196     __ bind(ok);
3197     __ verify_oop(Rtemp);
3198   }
3199 
3200   __ verify_oop(Rinterface);
3201 
3202   __ cmp(Rinterface, Rtemp);
3203   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3204   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3205 
3206   // entry found and Rscratch points to it
3207   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3208 
3209   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3210   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3211   __ add(Rscratch, Rindex, Rscratch);
3212   __ ld_ptr(RklassOop, Rscratch, G5_method);
3213 
3214   // Check for abstract method error.
3215   {
3216     Label ok;
3217     __ tst(G5_method);
3218     __ brx(Assembler::notZero, false, Assembler::pt, ok);
3219     __ delayed()->nop();
3220     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3221     __ should_not_reach_here();
3222     __ bind(ok);
3223   }
3224 
3225   Register Rcall = Rinterface;
3226   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3227 
3228   __ verify_oop(G5_method);
3229   __ call_from_interpreter(Rcall, Gargs, Rret);
3230 
3231 }
3232 
3233 
3234 void TemplateTable::invokedynamic(int byte_no) {
3235   transition(vtos, vtos);
3236   assert(byte_no == f1_oop, "use this argument");
3237 
3238   if (!EnableInvokeDynamic) {
3239     // We should not encounter this bytecode if !EnableInvokeDynamic.
3240     // The verifier will stop it.  However, if we get past the verifier,
3241     // this will stop the thread in a reasonable way, without crashing the JVM.
3242     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3243                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3244     // the call_VM checks for exception, so we should never return here.
3245     __ should_not_reach_here();
3246     return;
3247   }
3248 
3249   // G5: CallSite object (f1)
3250   // XX: unused (f2)
3251   // XX: flags (unused)
3252 
3253   Register G5_callsite = G5_method;
3254   Register Rscratch    = G3_scratch;
3255   Register Rtemp       = G1_scratch;
3256   Register Rret        = Lscratch;
3257 
3258   load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
3259                              /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
3260   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
3261 
3262   __ verify_oop(G5_callsite);
3263 
3264   // profile this call
3265   __ profile_call(O4);
3266 
3267   // get return address
3268   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3269   __ set(table, Rtemp);
3270   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
3271   // Make sure we don't need to mask Rret for tosBits after the above shift
3272   ConstantPoolCacheEntry::verify_tosBits();
3273   __ sll(Rret, LogBytesPerWord, Rret);
3274   __ ld_ptr(Rtemp, Rret, Rret);  // get return address
3275 
3276   __ load_heap_oop(G5_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
3277   __ null_check(G3_method_handle);
3278 
3279   // Adjust Rret first so Llast_SP can be same as Rret
3280   __ add(Rret, -frame::pc_return_offset, O7);
3281   __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
3282   __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
3283   // Record SP so we can remove any stack space allocated by adapter transition
3284   __ delayed()->mov(SP, Llast_SP);
3285 }
3286 
3287 
3288 //----------------------------------------------------------------------------------------------------
3289 // Allocation
3290 
3291 void TemplateTable::_new() {
3292   transition(vtos, atos);
3293 
3294   Label slow_case;
3295   Label done;
3296   Label initialize_header;
3297   Label initialize_object;  // including clearing the fields
3298 
3299   Register RallocatedObject = Otos_i;
3300   Register RinstanceKlass = O1;
3301   Register Roffset = O3;
3302   Register Rscratch = O4;
3303 
3304   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3305   __ get_cpool_and_tags(Rscratch, G3_scratch);
3306   // make sure the class we're about to instantiate has been resolved
3307   // This is done before loading instanceKlass to be consistent with the order
3308   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3309   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3310   __ ldub(G3_scratch, Roffset, G3_scratch);
3311   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3312   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3313   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3314   // get instanceKlass
3315   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3316   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3317   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3318 
3319   // make sure klass is fully initialized:
3320   __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
3321   __ cmp(G3_scratch, instanceKlass::fully_initialized);
3322   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3323   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3324 
3325   // get instance_size in instanceKlass (already aligned)
3326   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3327 
3328   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3329   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3330   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3331   __ delayed()->nop();
3332 
3333   // allocate the instance
3334   // 1) Try to allocate in the TLAB
3335   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3336   // 3) if the above fails (or is not applicable), go to a slow case
3337   // (creates a new TLAB, etc.)
3338 
3339   const bool allow_shared_alloc =
3340     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3341 
3342   if(UseTLAB) {
3343     Register RoldTopValue = RallocatedObject;
3344     Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
3345     Register RnewTopValue = G1_scratch;
3346     Register RendValue = Rscratch;
3347     Register RfreeValue = RnewTopValue;
3348 
3349     // check if we can allocate in the TLAB
3350     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3351     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3352     __ add(RoldTopValue, Roffset, RnewTopValue);
3353 
3354     // if there is enough space, we do not CAS and do not clear
3355     __ cmp(RnewTopValue, RendValue);
3356     if(ZeroTLAB) {
3357       // the fields have already been cleared
3358       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3359     } else {
3360       // initialize both the header and fields
3361       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3362     }
3363     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3364 
3365     if (allow_shared_alloc) {
3366     // Check if tlab should be discarded (refill_waste_limit >= free)
3367     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3368     __ sub(RendValue, RoldTopValue, RfreeValue);
3369 #ifdef _LP64
3370     __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3371 #else
3372     __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3373 #endif
3374     __ cmp(RtlabWasteLimitValue, RfreeValue);
3375     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
3376     __ delayed()->nop();
3377 
3378     // increment waste limit to prevent getting stuck on this slow path
3379     __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3380     __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3381     } else {
3382       // No allocation in the shared eden.
3383       __ br(Assembler::always, false, Assembler::pt, slow_case);
3384       __ delayed()->nop();
3385     }
3386   }
3387 
3388   // Allocation in the shared Eden
3389   if (allow_shared_alloc) {
3390     Register RoldTopValue = G1_scratch;
3391     Register RtopAddr = G3_scratch;
3392     Register RnewTopValue = RallocatedObject;
3393     Register RendValue = Rscratch;
3394 
3395     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3396 
3397     Label retry;
3398     __ bind(retry);
3399     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3400     __ ld_ptr(RendValue, 0, RendValue);
3401     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3402     __ add(RoldTopValue, Roffset, RnewTopValue);
3403 
3404     // RnewTopValue contains the top address after the new object
3405     // has been allocated.
3406     __ cmp(RnewTopValue, RendValue);
3407     __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
3408     __ delayed()->nop();
3409 
3410     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
3411       VM_Version::v9_instructions_work() ? NULL :
3412       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3413 
3414     // if someone beat us on the allocation, try again, otherwise continue
3415     __ cmp(RoldTopValue, RnewTopValue);
3416     __ brx(Assembler::notEqual, false, Assembler::pn, retry);
3417     __ delayed()->nop();
3418   }
3419 
3420   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3421     // clear object fields
3422     __ bind(initialize_object);
3423     __ deccc(Roffset, sizeof(oopDesc));
3424     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3425     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3426 
3427     // initialize remaining object fields
3428     { Label loop;
3429       __ subcc(Roffset, wordSize, Roffset);
3430       __ bind(loop);
3431       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3432       __ st_ptr(G0, G3_scratch, Roffset);
3433       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3434       __ delayed()->subcc(Roffset, wordSize, Roffset);
3435     }
3436     __ br(Assembler::always, false, Assembler::pt, initialize_header);
3437     __ delayed()->nop();
3438   }
3439 
3440   // slow case
3441   __ bind(slow_case);
3442   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3443   __ get_constant_pool(O1);
3444 
3445   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3446 
3447   __ ba(false, done);
3448   __ delayed()->nop();
3449 
3450   // Initialize the header: mark, klass
3451   __ bind(initialize_header);
3452 
3453   if (UseBiasedLocking) {
3454     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
3455   } else {
3456     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3457   }
3458   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3459   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3460   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3461 
3462   {
3463     SkipIfEqual skip_if(
3464       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3465     // Trigger dtrace event
3466     __ push(atos);
3467     __ call_VM_leaf(noreg,
3468        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3469     __ pop(atos);
3470   }
3471 
3472   // continue
3473   __ bind(done);
3474 }
3475 
3476 
3477 
3478 void TemplateTable::newarray() {
3479   transition(itos, atos);
3480   __ ldub(Lbcp, 1, O1);
3481      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3482 }
3483 
3484 
3485 void TemplateTable::anewarray() {
3486   transition(itos, atos);
3487   __ get_constant_pool(O1);
3488   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3489      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3490 }
3491 
3492 
3493 void TemplateTable::arraylength() {
3494   transition(atos, itos);
3495   Label ok;
3496   __ verify_oop(Otos_i);
3497   __ tst(Otos_i);
3498   __ throw_if_not_1_x( Assembler::notZero, ok );
3499   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3500   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3501 }
3502 
3503 
3504 void TemplateTable::checkcast() {
3505   transition(atos, atos);
3506   Label done, is_null, quicked, cast_ok, resolved;
3507   Register Roffset = G1_scratch;
3508   Register RobjKlass = O5;
3509   Register RspecifiedKlass = O4;
3510 
3511   // Check for casting a NULL
3512   __ br_null(Otos_i, false, Assembler::pn, is_null);
3513   __ delayed()->nop();
3514 
3515   // Get value klass in RobjKlass
3516   __ load_klass(Otos_i, RobjKlass); // get value klass
3517 
3518   // Get constant pool tag
3519   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3520 
3521   // See if the checkcast has been quickened
3522   __ get_cpool_and_tags(Lscratch, G3_scratch);
3523   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3524   __ ldub(G3_scratch, Roffset, G3_scratch);
3525   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3526   __ br(Assembler::equal, true, Assembler::pt, quicked);
3527   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3528 
3529   __ push_ptr(); // save receiver for result, and for GC
3530   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3531   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3532 
3533   __ br(Assembler::always, false, Assembler::pt, resolved);
3534   __ delayed()->nop();
3535 
3536   // Extract target class from constant pool
3537   __ bind(quicked);
3538   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3539   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3540   __ bind(resolved);
3541   __ load_klass(Otos_i, RobjKlass); // get value klass
3542 
3543   // Generate a fast subtype check.  Branch to cast_ok if no
3544   // failure.  Throw exception if failure.
3545   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3546 
3547   // Not a subtype; so must throw exception
3548   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3549 
3550   __ bind(cast_ok);
3551 
3552   if (ProfileInterpreter) {
3553     __ ba(false, done);
3554     __ delayed()->nop();
3555   }
3556   __ bind(is_null);
3557   __ profile_null_seen(G3_scratch);
3558   __ bind(done);
3559 }
3560 
3561 
3562 void TemplateTable::instanceof() {
3563   Label done, is_null, quicked, resolved;
3564   transition(atos, itos);
3565   Register Roffset = G1_scratch;
3566   Register RobjKlass = O5;
3567   Register RspecifiedKlass = O4;
3568 
3569   // Check for casting a NULL
3570   __ br_null(Otos_i, false, Assembler::pt, is_null);
3571   __ delayed()->nop();
3572 
3573   // Get value klass in RobjKlass
3574   __ load_klass(Otos_i, RobjKlass); // get value klass
3575 
3576   // Get constant pool tag
3577   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3578 
3579   // See if the checkcast has been quickened
3580   __ get_cpool_and_tags(Lscratch, G3_scratch);
3581   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3582   __ ldub(G3_scratch, Roffset, G3_scratch);
3583   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3584   __ br(Assembler::equal, true, Assembler::pt, quicked);
3585   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3586 
3587   __ push_ptr(); // save receiver for result, and for GC
3588   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3589   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3590 
3591   __ br(Assembler::always, false, Assembler::pt, resolved);
3592   __ delayed()->nop();
3593 
3594 
3595   // Extract target class from constant pool
3596   __ bind(quicked);
3597   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3598   __ get_constant_pool(Lscratch);
3599   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3600   __ bind(resolved);
3601   __ load_klass(Otos_i, RobjKlass); // get value klass
3602 
3603   // Generate a fast subtype check.  Branch to cast_ok if no
3604   // failure.  Return 0 if failure.
3605   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3606   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3607   // Not a subtype; return 0;
3608   __ clr( Otos_i );
3609 
3610   if (ProfileInterpreter) {
3611     __ ba(false, done);
3612     __ delayed()->nop();
3613   }
3614   __ bind(is_null);
3615   __ profile_null_seen(G3_scratch);
3616   __ bind(done);
3617 }
3618 
3619 void TemplateTable::_breakpoint() {
3620 
3621    // Note: We get here even if we are single stepping..
3622    // jbug inists on setting breakpoints at every bytecode
3623    // even if we are in single step mode.
3624 
3625    transition(vtos, vtos);
3626    // get the unpatched byte code
3627    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3628    __ mov(O0, Lbyte_code);
3629 
3630    // post the breakpoint event
3631    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3632 
3633    // complete the execution of original bytecode
3634    __ dispatch_normal(vtos);
3635 }
3636 
3637 
3638 //----------------------------------------------------------------------------------------------------
3639 // Exceptions
3640 
3641 void TemplateTable::athrow() {
3642   transition(atos, vtos);
3643 
3644   // This works because exception is cached in Otos_i which is same as O0,
3645   // which is same as what throw_exception_entry_expects
3646   assert(Otos_i == Oexception, "see explanation above");
3647 
3648   __ verify_oop(Otos_i);
3649   __ null_check(Otos_i);
3650   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3651 }
3652 
3653 
3654 //----------------------------------------------------------------------------------------------------
3655 // Synchronization
3656 
3657 
3658 // See frame_sparc.hpp for monitor block layout.
3659 // Monitor elements are dynamically allocated by growing stack as needed.
3660 
3661 void TemplateTable::monitorenter() {
3662   transition(atos, vtos);
3663   __ verify_oop(Otos_i);
3664   // Try to acquire a lock on the object
3665   // Repeat until succeeded (i.e., until
3666   // monitorenter returns true).
3667 
3668   {   Label ok;
3669     __ tst(Otos_i);
3670     __ throw_if_not_1_x( Assembler::notZero,  ok);
3671     __ delayed()->mov(Otos_i, Lscratch); // save obj
3672     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3673   }
3674 
3675   assert(O0 == Otos_i, "Be sure where the object to lock is");
3676 
3677   // find a free slot in the monitor block
3678 
3679 
3680   // initialize entry pointer
3681   __ clr(O1); // points to free slot or NULL
3682 
3683   {
3684     Label entry, loop, exit;
3685     __ add( __ top_most_monitor(), O2 ); // last one to check
3686     __ ba( false, entry );
3687     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3688 
3689 
3690     __ bind( loop );
3691 
3692     __ verify_oop(O4);          // verify each monitor's oop
3693     __ tst(O4); // is this entry unused?
3694     if (VM_Version::v9_instructions_work())
3695       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3696     else {
3697       Label L;
3698       __ br( Assembler::zero, true, Assembler::pn, L );
3699       __ delayed()->mov(O3, O1); // rememeber this one if match
3700       __ bind(L);
3701     }
3702 
3703     __ cmp(O4, O0); // check if current entry is for same object
3704     __ brx( Assembler::equal, false, Assembler::pn, exit );
3705     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3706 
3707     __ bind( entry );
3708 
3709     __ cmp( O3, O2 );
3710     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3711     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3712 
3713     __ bind( exit );
3714   }
3715 
3716   { Label allocated;
3717 
3718     // found free slot?
3719     __ br_notnull(O1, false, Assembler::pn, allocated);
3720     __ delayed()->nop();
3721 
3722     __ add_monitor_to_stack( false, O2, O3 );
3723     __ mov(Lmonitors, O1);
3724 
3725     __ bind(allocated);
3726   }
3727 
3728   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3729   // The object has already been poped from the stack, so the expression stack looks correct.
3730   __ inc(Lbcp);
3731 
3732   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3733   __ lock_object(O1, O0);
3734 
3735   // check if there's enough space on the stack for the monitors after locking
3736   __ generate_stack_overflow_check(0);
3737 
3738   // The bcp has already been incremented. Just need to dispatch to next instruction.
3739   __ dispatch_next(vtos);
3740 }
3741 
3742 
3743 void TemplateTable::monitorexit() {
3744   transition(atos, vtos);
3745   __ verify_oop(Otos_i);
3746   __ tst(Otos_i);
3747   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3748 
3749   assert(O0 == Otos_i, "just checking");
3750 
3751   { Label entry, loop, found;
3752     __ add( __ top_most_monitor(), O2 ); // last one to check
3753     __ ba(false, entry );
3754     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3755     // By using a local it survives the call to the C routine.
3756     __ delayed()->mov( Lmonitors, Lscratch );
3757 
3758     __ bind( loop );
3759 
3760     __ verify_oop(O4);          // verify each monitor's oop
3761     __ cmp(O4, O0); // check if current entry is for desired object
3762     __ brx( Assembler::equal, true, Assembler::pt, found );
3763     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3764 
3765     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3766 
3767     __ bind( entry );
3768 
3769     __ cmp( Lscratch, O2 );
3770     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3771     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3772 
3773     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3774     __ should_not_reach_here();
3775 
3776     __ bind(found);
3777   }
3778   __ unlock_object(O1);
3779 }
3780 
3781 
3782 //----------------------------------------------------------------------------------------------------
3783 // Wide instructions
3784 
3785 void TemplateTable::wide() {
3786   transition(vtos, vtos);
3787   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3788   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3789   AddressLiteral ep(Interpreter::_wentry_point);
3790   __ set(ep, G4_scratch);
3791   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3792   __ jmp(G3_scratch, G0);
3793   __ delayed()->nop();
3794   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3795 }
3796 
3797 
3798 //----------------------------------------------------------------------------------------------------
3799 // Multi arrays
3800 
3801 void TemplateTable::multianewarray() {
3802   transition(vtos, atos);
3803      // put ndims * wordSize into Lscratch
3804   __ ldub( Lbcp,     3,               Lscratch);
3805   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3806      // Lesp points past last_dim, so set to O1 to first_dim address
3807   __ add(  Lesp,     Lscratch,        O1);
3808      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3809   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3810 }
3811 #endif /* !CC_INTERP */