1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 
  41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  42 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  43 // fast versions of NegF/NegD and AbsF/AbsD.
  44 
  45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  47   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  48   // of 128-bits operands for SSE instructions.
  49   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  50   // Store the value to a 128-bits operand.
  51   operand[0] = lo;
  52   operand[1] = hi;
  53   return operand;
  54 }
  55 
  56 // Buffer for 128-bits masks used by SSE instructions.
  57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  58 
  59 // Static initialization during VM startup.
  60 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  62 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  64 
  65 
  66 
  67 NEEDS_CLEANUP // remove this definitions ?
  68 const Register IC_Klass    = rax;   // where the IC klass is cached
  69 const Register SYNC_header = rax;   // synchronization header
  70 const Register SHIFT_count = rcx;   // where count for shift operations must be
  71 
  72 #define __ _masm->
  73 
  74 
  75 static void select_different_registers(Register preserve,
  76                                        Register extra,
  77                                        Register &tmp1,
  78                                        Register &tmp2) {
  79   if (tmp1 == preserve) {
  80     assert_different_registers(tmp1, tmp2, extra);
  81     tmp1 = extra;
  82   } else if (tmp2 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp2 = extra;
  85   }
  86   assert_different_registers(preserve, tmp1, tmp2);
  87 }
  88 
  89 
  90 
  91 static void select_different_registers(Register preserve,
  92                                        Register extra,
  93                                        Register &tmp1,
  94                                        Register &tmp2,
  95                                        Register &tmp3) {
  96   if (tmp1 == preserve) {
  97     assert_different_registers(tmp1, tmp2, tmp3, extra);
  98     tmp1 = extra;
  99   } else if (tmp2 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp2 = extra;
 102   } else if (tmp3 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp3 = extra;
 105   }
 106   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 107 }
 108 
 109 
 110 
 111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 112   if (opr->is_constant()) {
 113     LIR_Const* constant = opr->as_constant_ptr();
 114     switch (constant->type()) {
 115       case T_INT: {
 116         return true;
 117       }
 118 
 119       default:
 120         return false;
 121     }
 122   }
 123   return false;
 124 }
 125 
 126 
 127 LIR_Opr LIR_Assembler::receiverOpr() {
 128   return FrameMap::receiver_opr;
 129 }
 130 
 131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 132   return receiverOpr();
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (2 * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346 
 347   if (!VerifyOops) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 350       __ nop();
 351     }
 352   }
 353   int offset = __ offset();
 354   __ inline_cache_check(receiver, IC_Klass);
 355   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
 356   if (VerifyOops) {
 357     // force alignment after the cache check.
 358     // It's been verified to be aligned if !VerifyOops
 359     __ align(CodeEntryAlignment);
 360   }
 361   return offset;
 362 }
 363 
 364 
 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 366   jobject o = NULL;
 367   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 368   __ movoop(reg, o);
 369   patching_epilog(patch, lir_patch_normal, reg, info);
 370 }
 371 
 372 
 373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 374   if (exception->is_valid()) {
 375     // preserve exception
 376     // note: the monitor_exit runtime call is a leaf routine
 377     //       and cannot block => no GC can happen
 378     // The slow case (MonitorAccessStub) uses the first two stack slots
 379     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 380     __ movptr (Address(rsp, 2*wordSize), exception);
 381   }
 382 
 383   Register obj_reg  = obj_opr->as_register();
 384   Register lock_reg = lock_opr->as_register();
 385 
 386   // setup registers (lock_reg must be rax, for lock_object)
 387   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 388   Register hdr = lock_reg;
 389   assert(new_hdr == SYNC_header, "wrong register");
 390   lock_reg = new_hdr;
 391   // compute pointer to BasicLock
 392   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 393   __ lea(lock_reg, lock_addr);
 394   // unlock object
 395   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 396   // _slow_case_stubs->append(slow_case);
 397   // temporary fix: must be created after exceptionhandler, therefore as call stub
 398   _slow_case_stubs->append(slow_case);
 399   if (UseFastLocking) {
 400     // try inlined fast unlocking first, revert to slow locking if it fails
 401     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 402     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 403     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 404   } else {
 405     // always do slow unlocking
 406     // note: the slow unlocking code could be inlined here, however if we use
 407     //       slow unlocking, speed doesn't matter anyway and this solution is
 408     //       simpler and requires less duplicated code - additionally, the
 409     //       slow unlocking code is the same in either case which simplifies
 410     //       debugging
 411     __ jmp(*slow_case->entry());
 412   }
 413   // done
 414   __ bind(*slow_case->continuation());
 415 
 416   if (exception->is_valid()) {
 417     // restore exception
 418     __ movptr (exception, Address(rsp, 2 * wordSize));
 419   }
 420 }
 421 
 422 // This specifies the rsp decrement needed to build the frame
 423 int LIR_Assembler::initial_frame_size_in_bytes() {
 424   // if rounding, must let FrameMap know!
 425 
 426   // The frame_map records size in slots (32bit word)
 427 
 428   // subtract two words to account for return address and link
 429   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 430 }
 431 
 432 
 433 int LIR_Assembler::emit_exception_handler() {
 434   // if the last instruction is a call (typically to do a throw which
 435   // is coming at the end after block reordering) the return address
 436   // must still point into the code area in order to avoid assertion
 437   // failures when searching for the corresponding bci => add a nop
 438   // (was bug 5/14/1999 - gri)
 439   __ nop();
 440 
 441   // generate code for exception handler
 442   address handler_base = __ start_a_stub(exception_handler_size);
 443   if (handler_base == NULL) {
 444     // not enough space left for the handler
 445     bailout("exception handler overflow");
 446     return -1;
 447   }
 448 
 449   int offset = code_offset();
 450 
 451   // the exception oop and pc are in rax, and rdx
 452   // no other registers need to be preserved, so invalidate them
 453   __ invalidate_registers(false, true, true, false, true, true);
 454 
 455   // check that there is really an exception
 456   __ verify_not_null_oop(rax);
 457 
 458   // search an exception handler (rax: exception oop, rdx: throwing pc)
 459   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 460 
 461   __ stop("should not reach here");
 462 
 463   assert(code_offset() - offset <= exception_handler_size, "overflow");
 464   __ end_a_stub();
 465 
 466   return offset;
 467 }
 468 
 469 
 470 // Emit the code to remove the frame from the stack in the exception
 471 // unwind path.
 472 int LIR_Assembler::emit_unwind_handler() {
 473 #ifndef PRODUCT
 474   if (CommentedAssembly) {
 475     _masm->block_comment("Unwind handler");
 476   }
 477 #endif
 478 
 479   int offset = code_offset();
 480 
 481   // Fetch the exception from TLS and clear out exception related thread state
 482   __ get_thread(rsi);
 483   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 484   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 485   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 486 
 487   __ bind(_unwind_handler_entry);
 488   __ verify_not_null_oop(rax);
 489   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 490     __ mov(rsi, rax);  // Preserve the exception
 491   }
 492 
 493   // Preform needed unlocking
 494   MonitorExitStub* stub = NULL;
 495   if (method()->is_synchronized()) {
 496     monitor_address(0, FrameMap::rax_opr);
 497     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 498     __ unlock_object(rdi, rbx, rax, *stub->entry());
 499     __ bind(*stub->continuation());
 500   }
 501 
 502   if (compilation()->env()->dtrace_method_probes()) {
 503     __ get_thread(rax);
 504     __ movptr(Address(rsp, 0), rax);
 505     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 506     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 507   }
 508 
 509   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 510     __ mov(rax, rsi);  // Restore the exception
 511   }
 512 
 513   // remove the activation and dispatch to the unwind handler
 514   __ remove_frame(initial_frame_size_in_bytes());
 515   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 516 
 517   // Emit the slow path assembly
 518   if (stub != NULL) {
 519     stub->emit_code(this);
 520   }
 521 
 522   return offset;
 523 }
 524 
 525 
 526 int LIR_Assembler::emit_deopt_handler() {
 527   // if the last instruction is a call (typically to do a throw which
 528   // is coming at the end after block reordering) the return address
 529   // must still point into the code area in order to avoid assertion
 530   // failures when searching for the corresponding bci => add a nop
 531   // (was bug 5/14/1999 - gri)
 532   __ nop();
 533 
 534   // generate code for exception handler
 535   address handler_base = __ start_a_stub(deopt_handler_size);
 536   if (handler_base == NULL) {
 537     // not enough space left for the handler
 538     bailout("deopt handler overflow");
 539     return -1;
 540   }
 541 
 542   int offset = code_offset();
 543   InternalAddress here(__ pc());
 544 
 545   __ pushptr(here.addr());
 546   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 547 
 548   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 549   __ end_a_stub();
 550 
 551   return offset;
 552 }
 553 
 554 
 555 // This is the fast version of java.lang.String.compare; it has not
 556 // OSR-entry and therefore, we generate a slow version for OSR's
 557 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 558   __ movptr (rbx, rcx); // receiver is in rcx
 559   __ movptr (rax, arg1->as_register());
 560 
 561   // Get addresses of first characters from both Strings
 562   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 563   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 564   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 565 
 566 
 567   // rbx, may be NULL
 568   add_debug_info_for_null_check_here(info);
 569   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 570   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 571   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 572 
 573   // compute minimum length (in rax) and difference of lengths (on top of stack)
 574   if (VM_Version::supports_cmov()) {
 575     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 576     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 577     __ mov      (rcx, rbx);
 578     __ subptr   (rbx, rax); // subtract lengths
 579     __ push     (rbx);      // result
 580     __ cmov     (Assembler::lessEqual, rax, rcx);
 581   } else {
 582     Label L;
 583     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 584     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 585     __ mov      (rax, rbx);
 586     __ subptr   (rbx, rcx);
 587     __ push     (rbx);
 588     __ jcc      (Assembler::lessEqual, L);
 589     __ mov      (rax, rcx);
 590     __ bind (L);
 591   }
 592   // is minimum length 0?
 593   Label noLoop, haveResult;
 594   __ testptr (rax, rax);
 595   __ jcc (Assembler::zero, noLoop);
 596 
 597   // compare first characters
 598   __ load_unsigned_short(rcx, Address(rdi, 0));
 599   __ load_unsigned_short(rbx, Address(rsi, 0));
 600   __ subl(rcx, rbx);
 601   __ jcc(Assembler::notZero, haveResult);
 602   // starting loop
 603   __ decrement(rax); // we already tested index: skip one
 604   __ jcc(Assembler::zero, noLoop);
 605 
 606   // set rsi.edi to the end of the arrays (arrays have same length)
 607   // negate the index
 608 
 609   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 610   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 611   __ negptr(rax);
 612 
 613   // compare the strings in a loop
 614 
 615   Label loop;
 616   __ align(wordSize);
 617   __ bind(loop);
 618   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 619   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 620   __ subl(rcx, rbx);
 621   __ jcc(Assembler::notZero, haveResult);
 622   __ increment(rax);
 623   __ jcc(Assembler::notZero, loop);
 624 
 625   // strings are equal up to min length
 626 
 627   __ bind(noLoop);
 628   __ pop(rax);
 629   return_op(LIR_OprFact::illegalOpr);
 630 
 631   __ bind(haveResult);
 632   // leave instruction is going to discard the TOS value
 633   __ mov (rax, rcx); // result of call is in rax,
 634 }
 635 
 636 
 637 void LIR_Assembler::return_op(LIR_Opr result) {
 638   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 639   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 640     assert(result->fpu() == 0, "result must already be on TOS");
 641   }
 642 
 643   // Pop the stack before the safepoint code
 644   __ remove_frame(initial_frame_size_in_bytes());
 645 
 646   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 647 
 648   // Note: we do not need to round double result; float result has the right precision
 649   // the poll sets the condition code, but no data registers
 650   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 651                               relocInfo::poll_return_type);
 652 
 653   // NOTE: the requires that the polling page be reachable else the reloc
 654   // goes to the movq that loads the address and not the faulting instruction
 655   // which breaks the signal handler code
 656 
 657   __ test32(rax, polling_page);
 658 
 659   __ ret(0);
 660 }
 661 
 662 
 663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 664   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 665                               relocInfo::poll_type);
 666 
 667   if (info != NULL) {
 668     add_debug_info_for_branch(info);
 669   } else {
 670     ShouldNotReachHere();
 671   }
 672 
 673   int offset = __ offset();
 674 
 675   // NOTE: the requires that the polling page be reachable else the reloc
 676   // goes to the movq that loads the address and not the faulting instruction
 677   // which breaks the signal handler code
 678 
 679   __ test32(rax, polling_page);
 680   return offset;
 681 }
 682 
 683 
 684 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 685   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 686 }
 687 
 688 void LIR_Assembler::swap_reg(Register a, Register b) {
 689   __ xchgptr(a, b);
 690 }
 691 
 692 
 693 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 694   assert(src->is_constant(), "should not call otherwise");
 695   assert(dest->is_register(), "should not call otherwise");
 696   LIR_Const* c = src->as_constant_ptr();
 697 
 698   switch (c->type()) {
 699     case T_INT:
 700     case T_ADDRESS: {
 701       assert(patch_code == lir_patch_none, "no patching handled here");
 702       __ movl(dest->as_register(), c->as_jint());
 703       break;
 704     }
 705 
 706     case T_LONG: {
 707       assert(patch_code == lir_patch_none, "no patching handled here");
 708 #ifdef _LP64
 709       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 710 #else
 711       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 712       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 713 #endif // _LP64
 714       break;
 715     }
 716 
 717     case T_OBJECT: {
 718       if (patch_code != lir_patch_none) {
 719         jobject2reg_with_patching(dest->as_register(), info);
 720       } else {
 721         __ movoop(dest->as_register(), c->as_jobject());
 722       }
 723       break;
 724     }
 725 
 726     case T_FLOAT: {
 727       if (dest->is_single_xmm()) {
 728         if (c->is_zero_float()) {
 729           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 730         } else {
 731           __ movflt(dest->as_xmm_float_reg(),
 732                    InternalAddress(float_constant(c->as_jfloat())));
 733         }
 734       } else {
 735         assert(dest->is_single_fpu(), "must be");
 736         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 737         if (c->is_zero_float()) {
 738           __ fldz();
 739         } else if (c->is_one_float()) {
 740           __ fld1();
 741         } else {
 742           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 743         }
 744       }
 745       break;
 746     }
 747 
 748     case T_DOUBLE: {
 749       if (dest->is_double_xmm()) {
 750         if (c->is_zero_double()) {
 751           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 752         } else {
 753           __ movdbl(dest->as_xmm_double_reg(),
 754                     InternalAddress(double_constant(c->as_jdouble())));
 755         }
 756       } else {
 757         assert(dest->is_double_fpu(), "must be");
 758         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 759         if (c->is_zero_double()) {
 760           __ fldz();
 761         } else if (c->is_one_double()) {
 762           __ fld1();
 763         } else {
 764           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 765         }
 766       }
 767       break;
 768     }
 769 
 770     default:
 771       ShouldNotReachHere();
 772   }
 773 }
 774 
 775 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 776   assert(src->is_constant(), "should not call otherwise");
 777   assert(dest->is_stack(), "should not call otherwise");
 778   LIR_Const* c = src->as_constant_ptr();
 779 
 780   switch (c->type()) {
 781     case T_INT:  // fall through
 782     case T_FLOAT:
 783     case T_ADDRESS:
 784       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 785       break;
 786 
 787     case T_OBJECT:
 788       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 789       break;
 790 
 791     case T_LONG:  // fall through
 792     case T_DOUBLE:
 793 #ifdef _LP64
 794       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 795                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 796 #else
 797       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 798                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 799       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 800                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 801 #endif // _LP64
 802       break;
 803 
 804     default:
 805       ShouldNotReachHere();
 806   }
 807 }
 808 
 809 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
 810   assert(src->is_constant(), "should not call otherwise");
 811   assert(dest->is_address(), "should not call otherwise");
 812   LIR_Const* c = src->as_constant_ptr();
 813   LIR_Address* addr = dest->as_address_ptr();
 814 
 815   int null_check_here = code_offset();
 816   switch (type) {
 817     case T_INT:    // fall through
 818     case T_FLOAT:
 819     case T_ADDRESS:
 820       __ movl(as_Address(addr), c->as_jint_bits());
 821       break;
 822 
 823     case T_OBJECT:  // fall through
 824     case T_ARRAY:
 825       if (c->as_jobject() == NULL) {
 826         __ movptr(as_Address(addr), NULL_WORD);
 827       } else {
 828         if (is_literal_address(addr)) {
 829           ShouldNotReachHere();
 830           __ movoop(as_Address(addr, noreg), c->as_jobject());
 831         } else {
 832 #ifdef _LP64
 833           __ movoop(rscratch1, c->as_jobject());
 834           null_check_here = code_offset();
 835           __ movptr(as_Address_lo(addr), rscratch1);
 836 #else
 837           __ movoop(as_Address(addr), c->as_jobject());
 838 #endif
 839         }
 840       }
 841       break;
 842 
 843     case T_LONG:    // fall through
 844     case T_DOUBLE:
 845 #ifdef _LP64
 846       if (is_literal_address(addr)) {
 847         ShouldNotReachHere();
 848         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 849       } else {
 850         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 851         null_check_here = code_offset();
 852         __ movptr(as_Address_lo(addr), r10);
 853       }
 854 #else
 855       // Always reachable in 32bit so this doesn't produce useless move literal
 856       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 857       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 858 #endif // _LP64
 859       break;
 860 
 861     case T_BOOLEAN: // fall through
 862     case T_BYTE:
 863       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 864       break;
 865 
 866     case T_CHAR:    // fall through
 867     case T_SHORT:
 868       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 869       break;
 870 
 871     default:
 872       ShouldNotReachHere();
 873   };
 874 
 875   if (info != NULL) {
 876     add_debug_info_for_null_check(null_check_here, info);
 877   }
 878 }
 879 
 880 
 881 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 882   assert(src->is_register(), "should not call otherwise");
 883   assert(dest->is_register(), "should not call otherwise");
 884 
 885   // move between cpu-registers
 886   if (dest->is_single_cpu()) {
 887 #ifdef _LP64
 888     if (src->type() == T_LONG) {
 889       // Can do LONG -> OBJECT
 890       move_regs(src->as_register_lo(), dest->as_register());
 891       return;
 892     }
 893 #endif
 894     assert(src->is_single_cpu(), "must match");
 895     if (src->type() == T_OBJECT) {
 896       __ verify_oop(src->as_register());
 897     }
 898     move_regs(src->as_register(), dest->as_register());
 899 
 900   } else if (dest->is_double_cpu()) {
 901 #ifdef _LP64
 902     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 903       // Surprising to me but we can see move of a long to t_object
 904       __ verify_oop(src->as_register());
 905       move_regs(src->as_register(), dest->as_register_lo());
 906       return;
 907     }
 908 #endif
 909     assert(src->is_double_cpu(), "must match");
 910     Register f_lo = src->as_register_lo();
 911     Register f_hi = src->as_register_hi();
 912     Register t_lo = dest->as_register_lo();
 913     Register t_hi = dest->as_register_hi();
 914 #ifdef _LP64
 915     assert(f_hi == f_lo, "must be same");
 916     assert(t_hi == t_lo, "must be same");
 917     move_regs(f_lo, t_lo);
 918 #else
 919     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 920 
 921 
 922     if (f_lo == t_hi && f_hi == t_lo) {
 923       swap_reg(f_lo, f_hi);
 924     } else if (f_hi == t_lo) {
 925       assert(f_lo != t_hi, "overwriting register");
 926       move_regs(f_hi, t_hi);
 927       move_regs(f_lo, t_lo);
 928     } else {
 929       assert(f_hi != t_lo, "overwriting register");
 930       move_regs(f_lo, t_lo);
 931       move_regs(f_hi, t_hi);
 932     }
 933 #endif // LP64
 934 
 935     // special moves from fpu-register to xmm-register
 936     // necessary for method results
 937   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 938     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 939     __ fld_s(Address(rsp, 0));
 940   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 941     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 942     __ fld_d(Address(rsp, 0));
 943   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 944     __ fstp_s(Address(rsp, 0));
 945     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 946   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 947     __ fstp_d(Address(rsp, 0));
 948     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 949 
 950     // move between xmm-registers
 951   } else if (dest->is_single_xmm()) {
 952     assert(src->is_single_xmm(), "must match");
 953     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 954   } else if (dest->is_double_xmm()) {
 955     assert(src->is_double_xmm(), "must match");
 956     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 957 
 958     // move between fpu-registers (no instruction necessary because of fpu-stack)
 959   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 960     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 961     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 962   } else {
 963     ShouldNotReachHere();
 964   }
 965 }
 966 
 967 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 968   assert(src->is_register(), "should not call otherwise");
 969   assert(dest->is_stack(), "should not call otherwise");
 970 
 971   if (src->is_single_cpu()) {
 972     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 973     if (type == T_OBJECT || type == T_ARRAY) {
 974       __ verify_oop(src->as_register());
 975       __ movptr (dst, src->as_register());
 976     } else {
 977       __ movl (dst, src->as_register());
 978     }
 979 
 980   } else if (src->is_double_cpu()) {
 981     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 982     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 983     __ movptr (dstLO, src->as_register_lo());
 984     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 985 
 986   } else if (src->is_single_xmm()) {
 987     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 988     __ movflt(dst_addr, src->as_xmm_float_reg());
 989 
 990   } else if (src->is_double_xmm()) {
 991     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 992     __ movdbl(dst_addr, src->as_xmm_double_reg());
 993 
 994   } else if (src->is_single_fpu()) {
 995     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 996     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 997     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 998     else                   __ fst_s  (dst_addr);
 999 
1000   } else if (src->is_double_fpu()) {
1001     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1002     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1003     if (pop_fpu_stack)     __ fstp_d (dst_addr);
1004     else                   __ fst_d  (dst_addr);
1005 
1006   } else {
1007     ShouldNotReachHere();
1008   }
1009 }
1010 
1011 
1012 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
1013   LIR_Address* to_addr = dest->as_address_ptr();
1014   PatchingStub* patch = NULL;
1015 
1016   if (type == T_ARRAY || type == T_OBJECT) {
1017     __ verify_oop(src->as_register());
1018   }
1019   if (patch_code != lir_patch_none) {
1020     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1021     Address toa = as_Address(to_addr);
1022     assert(toa.disp() != 0, "must have");
1023   }
1024   if (info != NULL) {
1025     add_debug_info_for_null_check_here(info);
1026   }
1027 
1028   switch (type) {
1029     case T_FLOAT: {
1030       if (src->is_single_xmm()) {
1031         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1032       } else {
1033         assert(src->is_single_fpu(), "must be");
1034         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1035         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1036         else                    __ fst_s (as_Address(to_addr));
1037       }
1038       break;
1039     }
1040 
1041     case T_DOUBLE: {
1042       if (src->is_double_xmm()) {
1043         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1044       } else {
1045         assert(src->is_double_fpu(), "must be");
1046         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1047         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1048         else                    __ fst_d (as_Address(to_addr));
1049       }
1050       break;
1051     }
1052 
1053     case T_ADDRESS: // fall through
1054     case T_ARRAY:   // fall through
1055     case T_OBJECT:  // fall through
1056 #ifdef _LP64
1057       __ movptr(as_Address(to_addr), src->as_register());
1058       break;
1059 #endif // _LP64
1060     case T_INT:
1061       __ movl(as_Address(to_addr), src->as_register());
1062       break;
1063 
1064     case T_LONG: {
1065       Register from_lo = src->as_register_lo();
1066       Register from_hi = src->as_register_hi();
1067 #ifdef _LP64
1068       __ movptr(as_Address_lo(to_addr), from_lo);
1069 #else
1070       Register base = to_addr->base()->as_register();
1071       Register index = noreg;
1072       if (to_addr->index()->is_register()) {
1073         index = to_addr->index()->as_register();
1074       }
1075       if (base == from_lo || index == from_lo) {
1076         assert(base != from_hi, "can't be");
1077         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1078         __ movl(as_Address_hi(to_addr), from_hi);
1079         if (patch != NULL) {
1080           patching_epilog(patch, lir_patch_high, base, info);
1081           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1082           patch_code = lir_patch_low;
1083         }
1084         __ movl(as_Address_lo(to_addr), from_lo);
1085       } else {
1086         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1087         __ movl(as_Address_lo(to_addr), from_lo);
1088         if (patch != NULL) {
1089           patching_epilog(patch, lir_patch_low, base, info);
1090           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1091           patch_code = lir_patch_high;
1092         }
1093         __ movl(as_Address_hi(to_addr), from_hi);
1094       }
1095 #endif // _LP64
1096       break;
1097     }
1098 
1099     case T_BYTE:    // fall through
1100     case T_BOOLEAN: {
1101       Register src_reg = src->as_register();
1102       Address dst_addr = as_Address(to_addr);
1103       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1104       __ movb(dst_addr, src_reg);
1105       break;
1106     }
1107 
1108     case T_CHAR:    // fall through
1109     case T_SHORT:
1110       __ movw(as_Address(to_addr), src->as_register());
1111       break;
1112 
1113     default:
1114       ShouldNotReachHere();
1115   }
1116 
1117   if (patch_code != lir_patch_none) {
1118     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1119   }
1120 }
1121 
1122 
1123 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1124   assert(src->is_stack(), "should not call otherwise");
1125   assert(dest->is_register(), "should not call otherwise");
1126 
1127   if (dest->is_single_cpu()) {
1128     if (type == T_ARRAY || type == T_OBJECT) {
1129       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1130       __ verify_oop(dest->as_register());
1131     } else {
1132       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1133     }
1134 
1135   } else if (dest->is_double_cpu()) {
1136     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1137     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1138     __ movptr(dest->as_register_lo(), src_addr_LO);
1139     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1140 
1141   } else if (dest->is_single_xmm()) {
1142     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1143     __ movflt(dest->as_xmm_float_reg(), src_addr);
1144 
1145   } else if (dest->is_double_xmm()) {
1146     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1147     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1148 
1149   } else if (dest->is_single_fpu()) {
1150     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1151     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1152     __ fld_s(src_addr);
1153 
1154   } else if (dest->is_double_fpu()) {
1155     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1156     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1157     __ fld_d(src_addr);
1158 
1159   } else {
1160     ShouldNotReachHere();
1161   }
1162 }
1163 
1164 
1165 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1166   if (src->is_single_stack()) {
1167     if (type == T_OBJECT || type == T_ARRAY) {
1168       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1169       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1170     } else {
1171 #ifndef _LP64
1172       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1173       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1174 #else
1175       //no pushl on 64bits
1176       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1177       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1178 #endif
1179     }
1180 
1181   } else if (src->is_double_stack()) {
1182 #ifdef _LP64
1183     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1184     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1185 #else
1186     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1187     // push and pop the part at src + wordSize, adding wordSize for the previous push
1188     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1189     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1190     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1191 #endif // _LP64
1192 
1193   } else {
1194     ShouldNotReachHere();
1195   }
1196 }
1197 
1198 
1199 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1200   assert(src->is_address(), "should not call otherwise");
1201   assert(dest->is_register(), "should not call otherwise");
1202 
1203   LIR_Address* addr = src->as_address_ptr();
1204   Address from_addr = as_Address(addr);
1205 
1206   switch (type) {
1207     case T_BOOLEAN: // fall through
1208     case T_BYTE:    // fall through
1209     case T_CHAR:    // fall through
1210     case T_SHORT:
1211       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1212         // on pre P6 processors we may get partial register stalls
1213         // so blow away the value of to_rinfo before loading a
1214         // partial word into it.  Do it here so that it precedes
1215         // the potential patch point below.
1216         __ xorptr(dest->as_register(), dest->as_register());
1217       }
1218       break;
1219   }
1220 
1221   PatchingStub* patch = NULL;
1222   if (patch_code != lir_patch_none) {
1223     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1224     assert(from_addr.disp() != 0, "must have");
1225   }
1226   if (info != NULL) {
1227     add_debug_info_for_null_check_here(info);
1228   }
1229 
1230   switch (type) {
1231     case T_FLOAT: {
1232       if (dest->is_single_xmm()) {
1233         __ movflt(dest->as_xmm_float_reg(), from_addr);
1234       } else {
1235         assert(dest->is_single_fpu(), "must be");
1236         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1237         __ fld_s(from_addr);
1238       }
1239       break;
1240     }
1241 
1242     case T_DOUBLE: {
1243       if (dest->is_double_xmm()) {
1244         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1245       } else {
1246         assert(dest->is_double_fpu(), "must be");
1247         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1248         __ fld_d(from_addr);
1249       }
1250       break;
1251     }
1252 
1253     case T_ADDRESS: // fall through
1254     case T_OBJECT:  // fall through
1255     case T_ARRAY:   // fall through
1256 #ifdef _LP64
1257       __ movptr(dest->as_register(), from_addr);
1258       break;
1259 #endif // _L64
1260     case T_INT:
1261       __ movl(dest->as_register(), from_addr);
1262       break;
1263 
1264     case T_LONG: {
1265       Register to_lo = dest->as_register_lo();
1266       Register to_hi = dest->as_register_hi();
1267 #ifdef _LP64
1268       __ movptr(to_lo, as_Address_lo(addr));
1269 #else
1270       Register base = addr->base()->as_register();
1271       Register index = noreg;
1272       if (addr->index()->is_register()) {
1273         index = addr->index()->as_register();
1274       }
1275       if ((base == to_lo && index == to_hi) ||
1276           (base == to_hi && index == to_lo)) {
1277         // addresses with 2 registers are only formed as a result of
1278         // array access so this code will never have to deal with
1279         // patches or null checks.
1280         assert(info == NULL && patch == NULL, "must be");
1281         __ lea(to_hi, as_Address(addr));
1282         __ movl(to_lo, Address(to_hi, 0));
1283         __ movl(to_hi, Address(to_hi, BytesPerWord));
1284       } else if (base == to_lo || index == to_lo) {
1285         assert(base != to_hi, "can't be");
1286         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1287         __ movl(to_hi, as_Address_hi(addr));
1288         if (patch != NULL) {
1289           patching_epilog(patch, lir_patch_high, base, info);
1290           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1291           patch_code = lir_patch_low;
1292         }
1293         __ movl(to_lo, as_Address_lo(addr));
1294       } else {
1295         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1296         __ movl(to_lo, as_Address_lo(addr));
1297         if (patch != NULL) {
1298           patching_epilog(patch, lir_patch_low, base, info);
1299           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1300           patch_code = lir_patch_high;
1301         }
1302         __ movl(to_hi, as_Address_hi(addr));
1303       }
1304 #endif // _LP64
1305       break;
1306     }
1307 
1308     case T_BOOLEAN: // fall through
1309     case T_BYTE: {
1310       Register dest_reg = dest->as_register();
1311       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1312       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1313         __ movsbl(dest_reg, from_addr);
1314       } else {
1315         __ movb(dest_reg, from_addr);
1316         __ shll(dest_reg, 24);
1317         __ sarl(dest_reg, 24);
1318       }
1319       break;
1320     }
1321 
1322     case T_CHAR: {
1323       Register dest_reg = dest->as_register();
1324       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movzwl(dest_reg, from_addr);
1327       } else {
1328         __ movw(dest_reg, from_addr);
1329       }
1330       break;
1331     }
1332 
1333     case T_SHORT: {
1334       Register dest_reg = dest->as_register();
1335       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1336         __ movswl(dest_reg, from_addr);
1337       } else {
1338         __ movw(dest_reg, from_addr);
1339         __ shll(dest_reg, 16);
1340         __ sarl(dest_reg, 16);
1341       }
1342       break;
1343     }
1344 
1345     default:
1346       ShouldNotReachHere();
1347   }
1348 
1349   if (patch != NULL) {
1350     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1351   }
1352 
1353   if (type == T_ARRAY || type == T_OBJECT) {
1354     __ verify_oop(dest->as_register());
1355   }
1356 }
1357 
1358 
1359 void LIR_Assembler::prefetchr(LIR_Opr src) {
1360   LIR_Address* addr = src->as_address_ptr();
1361   Address from_addr = as_Address(addr);
1362 
1363   if (VM_Version::supports_sse()) {
1364     switch (ReadPrefetchInstr) {
1365       case 0:
1366         __ prefetchnta(from_addr); break;
1367       case 1:
1368         __ prefetcht0(from_addr); break;
1369       case 2:
1370         __ prefetcht2(from_addr); break;
1371       default:
1372         ShouldNotReachHere(); break;
1373     }
1374   } else if (VM_Version::supports_3dnow()) {
1375     __ prefetchr(from_addr);
1376   }
1377 }
1378 
1379 
1380 void LIR_Assembler::prefetchw(LIR_Opr src) {
1381   LIR_Address* addr = src->as_address_ptr();
1382   Address from_addr = as_Address(addr);
1383 
1384   if (VM_Version::supports_sse()) {
1385     switch (AllocatePrefetchInstr) {
1386       case 0:
1387         __ prefetchnta(from_addr); break;
1388       case 1:
1389         __ prefetcht0(from_addr); break;
1390       case 2:
1391         __ prefetcht2(from_addr); break;
1392       case 3:
1393         __ prefetchw(from_addr); break;
1394       default:
1395         ShouldNotReachHere(); break;
1396     }
1397   } else if (VM_Version::supports_3dnow()) {
1398     __ prefetchw(from_addr);
1399   }
1400 }
1401 
1402 
1403 NEEDS_CLEANUP; // This could be static?
1404 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1405   int elem_size = type2aelembytes(type);
1406   switch (elem_size) {
1407     case 1: return Address::times_1;
1408     case 2: return Address::times_2;
1409     case 4: return Address::times_4;
1410     case 8: return Address::times_8;
1411   }
1412   ShouldNotReachHere();
1413   return Address::no_scale;
1414 }
1415 
1416 
1417 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1418   switch (op->code()) {
1419     case lir_idiv:
1420     case lir_irem:
1421       arithmetic_idiv(op->code(),
1422                       op->in_opr1(),
1423                       op->in_opr2(),
1424                       op->in_opr3(),
1425                       op->result_opr(),
1426                       op->info());
1427       break;
1428     default:      ShouldNotReachHere(); break;
1429   }
1430 }
1431 
1432 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1433 #ifdef ASSERT
1434   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1435   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1436   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1437 #endif
1438 
1439   if (op->cond() == lir_cond_always) {
1440     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1441     __ jmp (*(op->label()));
1442   } else {
1443     Assembler::Condition acond = Assembler::zero;
1444     if (op->code() == lir_cond_float_branch) {
1445       assert(op->ublock() != NULL, "must have unordered successor");
1446       __ jcc(Assembler::parity, *(op->ublock()->label()));
1447       switch(op->cond()) {
1448         case lir_cond_equal:        acond = Assembler::equal;      break;
1449         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1450         case lir_cond_less:         acond = Assembler::below;      break;
1451         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1452         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1453         case lir_cond_greater:      acond = Assembler::above;      break;
1454         default:                         ShouldNotReachHere();
1455       }
1456     } else {
1457       switch (op->cond()) {
1458         case lir_cond_equal:        acond = Assembler::equal;       break;
1459         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1460         case lir_cond_less:         acond = Assembler::less;        break;
1461         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1462         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1463         case lir_cond_greater:      acond = Assembler::greater;     break;
1464         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1465         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1466         default:                         ShouldNotReachHere();
1467       }
1468     }
1469     __ jcc(acond,*(op->label()));
1470   }
1471 }
1472 
1473 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1474   LIR_Opr src  = op->in_opr();
1475   LIR_Opr dest = op->result_opr();
1476 
1477   switch (op->bytecode()) {
1478     case Bytecodes::_i2l:
1479 #ifdef _LP64
1480       __ movl2ptr(dest->as_register_lo(), src->as_register());
1481 #else
1482       move_regs(src->as_register(), dest->as_register_lo());
1483       move_regs(src->as_register(), dest->as_register_hi());
1484       __ sarl(dest->as_register_hi(), 31);
1485 #endif // LP64
1486       break;
1487 
1488     case Bytecodes::_l2i:
1489       move_regs(src->as_register_lo(), dest->as_register());
1490       break;
1491 
1492     case Bytecodes::_i2b:
1493       move_regs(src->as_register(), dest->as_register());
1494       __ sign_extend_byte(dest->as_register());
1495       break;
1496 
1497     case Bytecodes::_i2c:
1498       move_regs(src->as_register(), dest->as_register());
1499       __ andl(dest->as_register(), 0xFFFF);
1500       break;
1501 
1502     case Bytecodes::_i2s:
1503       move_regs(src->as_register(), dest->as_register());
1504       __ sign_extend_short(dest->as_register());
1505       break;
1506 
1507 
1508     case Bytecodes::_f2d:
1509     case Bytecodes::_d2f:
1510       if (dest->is_single_xmm()) {
1511         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1512       } else if (dest->is_double_xmm()) {
1513         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1514       } else {
1515         assert(src->fpu() == dest->fpu(), "register must be equal");
1516         // do nothing (float result is rounded later through spilling)
1517       }
1518       break;
1519 
1520     case Bytecodes::_i2f:
1521     case Bytecodes::_i2d:
1522       if (dest->is_single_xmm()) {
1523         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1524       } else if (dest->is_double_xmm()) {
1525         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1526       } else {
1527         assert(dest->fpu() == 0, "result must be on TOS");
1528         __ movl(Address(rsp, 0), src->as_register());
1529         __ fild_s(Address(rsp, 0));
1530       }
1531       break;
1532 
1533     case Bytecodes::_f2i:
1534     case Bytecodes::_d2i:
1535       if (src->is_single_xmm()) {
1536         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1537       } else if (src->is_double_xmm()) {
1538         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1539       } else {
1540         assert(src->fpu() == 0, "input must be on TOS");
1541         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1542         __ fist_s(Address(rsp, 0));
1543         __ movl(dest->as_register(), Address(rsp, 0));
1544         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1545       }
1546 
1547       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1548       assert(op->stub() != NULL, "stub required");
1549       __ cmpl(dest->as_register(), 0x80000000);
1550       __ jcc(Assembler::equal, *op->stub()->entry());
1551       __ bind(*op->stub()->continuation());
1552       break;
1553 
1554     case Bytecodes::_l2f:
1555     case Bytecodes::_l2d:
1556       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1557       assert(dest->fpu() == 0, "result must be on TOS");
1558 
1559       __ movptr(Address(rsp, 0),            src->as_register_lo());
1560       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1561       __ fild_d(Address(rsp, 0));
1562       // float result is rounded later through spilling
1563       break;
1564 
1565     case Bytecodes::_f2l:
1566     case Bytecodes::_d2l:
1567       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1568       assert(src->fpu() == 0, "input must be on TOS");
1569       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1570 
1571       // instruction sequence too long to inline it here
1572       {
1573         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1574       }
1575       break;
1576 
1577     default: ShouldNotReachHere();
1578   }
1579 }
1580 
1581 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1582   if (op->init_check()) {
1583     __ cmpl(Address(op->klass()->as_register(),
1584                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1585             instanceKlass::fully_initialized);
1586     add_debug_info_for_null_check_here(op->stub()->info());
1587     __ jcc(Assembler::notEqual, *op->stub()->entry());
1588   }
1589   __ allocate_object(op->obj()->as_register(),
1590                      op->tmp1()->as_register(),
1591                      op->tmp2()->as_register(),
1592                      op->header_size(),
1593                      op->object_size(),
1594                      op->klass()->as_register(),
1595                      *op->stub()->entry());
1596   __ bind(*op->stub()->continuation());
1597 }
1598 
1599 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1600   if (UseSlowPath ||
1601       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1602       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1603     __ jmp(*op->stub()->entry());
1604   } else {
1605     Register len =  op->len()->as_register();
1606     Register tmp1 = op->tmp1()->as_register();
1607     Register tmp2 = op->tmp2()->as_register();
1608     Register tmp3 = op->tmp3()->as_register();
1609     if (len == tmp1) {
1610       tmp1 = tmp3;
1611     } else if (len == tmp2) {
1612       tmp2 = tmp3;
1613     } else if (len == tmp3) {
1614       // everything is ok
1615     } else {
1616       __ mov(tmp3, len);
1617     }
1618     __ allocate_array(op->obj()->as_register(),
1619                       len,
1620                       tmp1,
1621                       tmp2,
1622                       arrayOopDesc::header_size(op->type()),
1623                       array_element_size(op->type()),
1624                       op->klass()->as_register(),
1625                       *op->stub()->entry());
1626   }
1627   __ bind(*op->stub()->continuation());
1628 }
1629 
1630 void LIR_Assembler::type_profile_helper(Register mdo,
1631                                         ciMethodData *md, ciProfileData *data,
1632                                         Register recv, Label* update_done) {
1633   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1634     Label next_test;
1635     // See if the receiver is receiver[n].
1636     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1637     __ jccb(Assembler::notEqual, next_test);
1638     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1639     __ addptr(data_addr, DataLayout::counter_increment);
1640     __ jmp(*update_done);
1641     __ bind(next_test);
1642   }
1643 
1644   // Didn't find receiver; find next empty slot and fill it in
1645   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1646     Label next_test;
1647     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1648     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1649     __ jccb(Assembler::notEqual, next_test);
1650     __ movptr(recv_addr, recv);
1651     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1652     __ jmp(*update_done);
1653     __ bind(next_test);
1654   }
1655 }
1656 
1657 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1658   // we always need a stub for the failure case.
1659   CodeStub* stub = op->stub();
1660   Register obj = op->object()->as_register();
1661   Register k_RInfo = op->tmp1()->as_register();
1662   Register klass_RInfo = op->tmp2()->as_register();
1663   Register dst = op->result_opr()->as_register();
1664   ciKlass* k = op->klass();
1665   Register Rtmp1 = noreg;
1666 
1667   // check if it needs to be profiled
1668   ciMethodData* md;
1669   ciProfileData* data;
1670 
1671   if (op->should_profile()) {
1672     ciMethod* method = op->profiled_method();
1673     assert(method != NULL, "Should have method");
1674     int bci = op->profiled_bci();
1675     md = method->method_data();
1676     if (md == NULL) {
1677       bailout("out of memory building methodDataOop");
1678       return;
1679     }
1680     data = md->bci_to_data(bci);
1681     assert(data != NULL,                "need data for type check");
1682     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1683   }
1684   Label profile_cast_success, profile_cast_failure;
1685   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1686   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1687 
1688   if (obj == k_RInfo) {
1689     k_RInfo = dst;
1690   } else if (obj == klass_RInfo) {
1691     klass_RInfo = dst;
1692   }
1693   if (k->is_loaded()) {
1694     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1695   } else {
1696     Rtmp1 = op->tmp3()->as_register();
1697     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1698   }
1699 
1700   assert_different_registers(obj, k_RInfo, klass_RInfo);
1701   if (!k->is_loaded()) {
1702     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1703   } else {
1704 #ifdef _LP64
1705     __ movoop(k_RInfo, k->constant_encoding());
1706 #endif // _LP64
1707   }
1708   assert(obj != k_RInfo, "must be different");
1709 
1710   __ cmpptr(obj, (int32_t)NULL_WORD);
1711   if (op->should_profile()) {
1712     Label not_null;
1713     __ jccb(Assembler::notEqual, not_null);
1714     // Object is null; update MDO and exit
1715     Register mdo  = klass_RInfo;
1716     __ movoop(mdo, md->constant_encoding());
1717     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1718     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1719     __ orl(data_addr, header_bits);
1720     __ jmp(*obj_is_null);
1721     __ bind(not_null);
1722   } else {
1723     __ jcc(Assembler::equal, *obj_is_null);
1724   }
1725   __ verify_oop(obj);
1726 
1727   if (op->fast_check()) {
1728     // get object class
1729     // not a safepoint as obj null check happens earlier
1730     if (k->is_loaded()) {
1731 #ifdef _LP64
1732       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1733 #else
1734       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1735 #endif // _LP64
1736     } else {
1737       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1738     }
1739     __ jcc(Assembler::notEqual, *failure_target);
1740     // successful cast, fall through to profile or jump
1741   } else {
1742     // get object class
1743     // not a safepoint as obj null check happens earlier
1744     __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1745     if (k->is_loaded()) {
1746       // See if we get an immediate positive hit
1747 #ifdef _LP64
1748       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1749 #else
1750       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1751 #endif // _LP64
1752       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1753         __ jcc(Assembler::notEqual, *failure_target);
1754         // successful cast, fall through to profile or jump
1755       } else {
1756         // See if we get an immediate positive hit
1757         __ jcc(Assembler::equal, *success_target);
1758         // check for self
1759 #ifdef _LP64
1760         __ cmpptr(klass_RInfo, k_RInfo);
1761 #else
1762         __ cmpoop(klass_RInfo, k->constant_encoding());
1763 #endif // _LP64
1764         __ jcc(Assembler::equal, *success_target);
1765 
1766         __ push(klass_RInfo);
1767 #ifdef _LP64
1768         __ push(k_RInfo);
1769 #else
1770         __ pushoop(k->constant_encoding());
1771 #endif // _LP64
1772         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1773         __ pop(klass_RInfo);
1774         __ pop(klass_RInfo);
1775         // result is a boolean
1776         __ cmpl(klass_RInfo, 0);
1777         __ jcc(Assembler::equal, *failure_target);
1778         // successful cast, fall through to profile or jump
1779       }
1780     } else {
1781       // perform the fast part of the checking logic
1782       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1783       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1784       __ push(klass_RInfo);
1785       __ push(k_RInfo);
1786       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1787       __ pop(klass_RInfo);
1788       __ pop(k_RInfo);
1789       // result is a boolean
1790       __ cmpl(k_RInfo, 0);
1791       __ jcc(Assembler::equal, *failure_target);
1792       // successful cast, fall through to profile or jump
1793     }
1794   }
1795   if (op->should_profile()) {
1796     Register mdo  = klass_RInfo, recv = k_RInfo;
1797     __ bind(profile_cast_success);
1798     __ movoop(mdo, md->constant_encoding());
1799     __ movptr(recv, Address(obj, oopDesc::klass_offset_in_bytes()));
1800     Label update_done;
1801     type_profile_helper(mdo, md, data, recv, success);
1802     __ jmp(*success);
1803 
1804     __ bind(profile_cast_failure);
1805     __ movoop(mdo, md->constant_encoding());
1806     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1807     __ subptr(counter_addr, DataLayout::counter_increment);
1808     __ jmp(*failure);
1809   }
1810   __ jmp(*success);
1811 }
1812 
1813 
1814 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1815   LIR_Code code = op->code();
1816   if (code == lir_store_check) {
1817     Register value = op->object()->as_register();
1818     Register array = op->array()->as_register();
1819     Register k_RInfo = op->tmp1()->as_register();
1820     Register klass_RInfo = op->tmp2()->as_register();
1821     Register Rtmp1 = op->tmp3()->as_register();
1822 
1823     CodeStub* stub = op->stub();
1824 
1825     // check if it needs to be profiled
1826     ciMethodData* md;
1827     ciProfileData* data;
1828 
1829     if (op->should_profile()) {
1830       ciMethod* method = op->profiled_method();
1831       assert(method != NULL, "Should have method");
1832       int bci = op->profiled_bci();
1833       md = method->method_data();
1834       if (md == NULL) {
1835         bailout("out of memory building methodDataOop");
1836         return;
1837       }
1838       data = md->bci_to_data(bci);
1839       assert(data != NULL,                "need data for type check");
1840       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1841     }
1842     Label profile_cast_success, profile_cast_failure, done;
1843     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1844     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1845 
1846     __ cmpptr(value, (int32_t)NULL_WORD);
1847     if (op->should_profile()) {
1848       Label not_null;
1849       __ jccb(Assembler::notEqual, not_null);
1850       // Object is null; update MDO and exit
1851       Register mdo  = klass_RInfo;
1852       __ movoop(mdo, md->constant_encoding());
1853       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1854       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1855       __ orl(data_addr, header_bits);
1856       __ jmp(done);
1857       __ bind(not_null);
1858     } else {
1859       __ jcc(Assembler::equal, done);
1860     }
1861 
1862     add_debug_info_for_null_check_here(op->info_for_exception());
1863     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1864     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1865 
1866     // get instance klass
1867     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1868     // perform the fast part of the checking logic
1869     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1870     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1871     __ push(klass_RInfo);
1872     __ push(k_RInfo);
1873     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1874     __ pop(klass_RInfo);
1875     __ pop(k_RInfo);
1876     // result is a boolean
1877     __ cmpl(k_RInfo, 0);
1878     __ jcc(Assembler::equal, *failure_target);
1879     // fall through to the success case
1880 
1881     if (op->should_profile()) {
1882       Register mdo  = klass_RInfo, recv = k_RInfo;
1883       __ bind(profile_cast_success);
1884       __ movoop(mdo, md->constant_encoding());
1885       __ movptr(recv, Address(value, oopDesc::klass_offset_in_bytes()));
1886       Label update_done;
1887       type_profile_helper(mdo, md, data, recv, &done);
1888       __ jmpb(done);
1889 
1890       __ bind(profile_cast_failure);
1891       __ movoop(mdo, md->constant_encoding());
1892       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1893       __ subptr(counter_addr, DataLayout::counter_increment);
1894       __ jmp(*stub->entry());
1895     }
1896 
1897     __ bind(done);
1898   } else
1899     if (code == lir_checkcast) {
1900       Register obj = op->object()->as_register();
1901       Register dst = op->result_opr()->as_register();
1902       Label success;
1903       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1904       __ bind(success);
1905       if (dst != obj) {
1906         __ mov(dst, obj);
1907       }
1908     } else
1909       if (code == lir_instanceof) {
1910         Register obj = op->object()->as_register();
1911         Register dst = op->result_opr()->as_register();
1912         Label success, failure, done;
1913         emit_typecheck_helper(op, &success, &failure, &failure);
1914         __ bind(failure);
1915         __ xorptr(dst, dst);
1916         __ jmpb(done);
1917         __ bind(success);
1918         __ movptr(dst, 1);
1919         __ bind(done);
1920       } else {
1921         ShouldNotReachHere();
1922       }
1923 
1924 }
1925 
1926 
1927 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1928   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1929     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1930     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1931     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1932     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1933     Register addr = op->addr()->as_register();
1934     if (os::is_MP()) {
1935       __ lock();
1936     }
1937     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1938 
1939   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1940     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1941     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1942     Register newval = op->new_value()->as_register();
1943     Register cmpval = op->cmp_value()->as_register();
1944     assert(cmpval == rax, "wrong register");
1945     assert(newval != NULL, "new val must be register");
1946     assert(cmpval != newval, "cmp and new values must be in different registers");
1947     assert(cmpval != addr, "cmp and addr must be in different registers");
1948     assert(newval != addr, "new value and addr must be in different registers");
1949     if (os::is_MP()) {
1950       __ lock();
1951     }
1952     if ( op->code() == lir_cas_obj) {
1953       __ cmpxchgptr(newval, Address(addr, 0));
1954     } else if (op->code() == lir_cas_int) {
1955       __ cmpxchgl(newval, Address(addr, 0));
1956     }
1957 #ifdef _LP64
1958   } else if (op->code() == lir_cas_long) {
1959     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1960     Register newval = op->new_value()->as_register_lo();
1961     Register cmpval = op->cmp_value()->as_register_lo();
1962     assert(cmpval == rax, "wrong register");
1963     assert(newval != NULL, "new val must be register");
1964     assert(cmpval != newval, "cmp and new values must be in different registers");
1965     assert(cmpval != addr, "cmp and addr must be in different registers");
1966     assert(newval != addr, "new value and addr must be in different registers");
1967     if (os::is_MP()) {
1968       __ lock();
1969     }
1970     __ cmpxchgq(newval, Address(addr, 0));
1971 #endif // _LP64
1972   } else {
1973     Unimplemented();
1974   }
1975 }
1976 
1977 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1978   Assembler::Condition acond, ncond;
1979   switch (condition) {
1980     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1981     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1982     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1983     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1984     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1985     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1986     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1987     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1988     default:                    ShouldNotReachHere();
1989   }
1990 
1991   if (opr1->is_cpu_register()) {
1992     reg2reg(opr1, result);
1993   } else if (opr1->is_stack()) {
1994     stack2reg(opr1, result, result->type());
1995   } else if (opr1->is_constant()) {
1996     const2reg(opr1, result, lir_patch_none, NULL);
1997   } else {
1998     ShouldNotReachHere();
1999   }
2000 
2001   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2002     // optimized version that does not require a branch
2003     if (opr2->is_single_cpu()) {
2004       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2005       __ cmov(ncond, result->as_register(), opr2->as_register());
2006     } else if (opr2->is_double_cpu()) {
2007       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2008       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2009       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2010       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2011     } else if (opr2->is_single_stack()) {
2012       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2013     } else if (opr2->is_double_stack()) {
2014       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2015       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2016     } else {
2017       ShouldNotReachHere();
2018     }
2019 
2020   } else {
2021     Label skip;
2022     __ jcc (acond, skip);
2023     if (opr2->is_cpu_register()) {
2024       reg2reg(opr2, result);
2025     } else if (opr2->is_stack()) {
2026       stack2reg(opr2, result, result->type());
2027     } else if (opr2->is_constant()) {
2028       const2reg(opr2, result, lir_patch_none, NULL);
2029     } else {
2030       ShouldNotReachHere();
2031     }
2032     __ bind(skip);
2033   }
2034 }
2035 
2036 
2037 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2038   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2039 
2040   if (left->is_single_cpu()) {
2041     assert(left == dest, "left and dest must be equal");
2042     Register lreg = left->as_register();
2043 
2044     if (right->is_single_cpu()) {
2045       // cpu register - cpu register
2046       Register rreg = right->as_register();
2047       switch (code) {
2048         case lir_add: __ addl (lreg, rreg); break;
2049         case lir_sub: __ subl (lreg, rreg); break;
2050         case lir_mul: __ imull(lreg, rreg); break;
2051         default:      ShouldNotReachHere();
2052       }
2053 
2054     } else if (right->is_stack()) {
2055       // cpu register - stack
2056       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2057       switch (code) {
2058         case lir_add: __ addl(lreg, raddr); break;
2059         case lir_sub: __ subl(lreg, raddr); break;
2060         default:      ShouldNotReachHere();
2061       }
2062 
2063     } else if (right->is_constant()) {
2064       // cpu register - constant
2065       jint c = right->as_constant_ptr()->as_jint();
2066       switch (code) {
2067         case lir_add: {
2068           __ incrementl(lreg, c);
2069           break;
2070         }
2071         case lir_sub: {
2072           __ decrementl(lreg, c);
2073           break;
2074         }
2075         default: ShouldNotReachHere();
2076       }
2077 
2078     } else {
2079       ShouldNotReachHere();
2080     }
2081 
2082   } else if (left->is_double_cpu()) {
2083     assert(left == dest, "left and dest must be equal");
2084     Register lreg_lo = left->as_register_lo();
2085     Register lreg_hi = left->as_register_hi();
2086 
2087     if (right->is_double_cpu()) {
2088       // cpu register - cpu register
2089       Register rreg_lo = right->as_register_lo();
2090       Register rreg_hi = right->as_register_hi();
2091       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2092       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2093       switch (code) {
2094         case lir_add:
2095           __ addptr(lreg_lo, rreg_lo);
2096           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2097           break;
2098         case lir_sub:
2099           __ subptr(lreg_lo, rreg_lo);
2100           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2101           break;
2102         case lir_mul:
2103 #ifdef _LP64
2104           __ imulq(lreg_lo, rreg_lo);
2105 #else
2106           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2107           __ imull(lreg_hi, rreg_lo);
2108           __ imull(rreg_hi, lreg_lo);
2109           __ addl (rreg_hi, lreg_hi);
2110           __ mull (rreg_lo);
2111           __ addl (lreg_hi, rreg_hi);
2112 #endif // _LP64
2113           break;
2114         default:
2115           ShouldNotReachHere();
2116       }
2117 
2118     } else if (right->is_constant()) {
2119       // cpu register - constant
2120 #ifdef _LP64
2121       jlong c = right->as_constant_ptr()->as_jlong_bits();
2122       __ movptr(r10, (intptr_t) c);
2123       switch (code) {
2124         case lir_add:
2125           __ addptr(lreg_lo, r10);
2126           break;
2127         case lir_sub:
2128           __ subptr(lreg_lo, r10);
2129           break;
2130         default:
2131           ShouldNotReachHere();
2132       }
2133 #else
2134       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2135       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2136       switch (code) {
2137         case lir_add:
2138           __ addptr(lreg_lo, c_lo);
2139           __ adcl(lreg_hi, c_hi);
2140           break;
2141         case lir_sub:
2142           __ subptr(lreg_lo, c_lo);
2143           __ sbbl(lreg_hi, c_hi);
2144           break;
2145         default:
2146           ShouldNotReachHere();
2147       }
2148 #endif // _LP64
2149 
2150     } else {
2151       ShouldNotReachHere();
2152     }
2153 
2154   } else if (left->is_single_xmm()) {
2155     assert(left == dest, "left and dest must be equal");
2156     XMMRegister lreg = left->as_xmm_float_reg();
2157 
2158     if (right->is_single_xmm()) {
2159       XMMRegister rreg = right->as_xmm_float_reg();
2160       switch (code) {
2161         case lir_add: __ addss(lreg, rreg);  break;
2162         case lir_sub: __ subss(lreg, rreg);  break;
2163         case lir_mul_strictfp: // fall through
2164         case lir_mul: __ mulss(lreg, rreg);  break;
2165         case lir_div_strictfp: // fall through
2166         case lir_div: __ divss(lreg, rreg);  break;
2167         default: ShouldNotReachHere();
2168       }
2169     } else {
2170       Address raddr;
2171       if (right->is_single_stack()) {
2172         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2173       } else if (right->is_constant()) {
2174         // hack for now
2175         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2176       } else {
2177         ShouldNotReachHere();
2178       }
2179       switch (code) {
2180         case lir_add: __ addss(lreg, raddr);  break;
2181         case lir_sub: __ subss(lreg, raddr);  break;
2182         case lir_mul_strictfp: // fall through
2183         case lir_mul: __ mulss(lreg, raddr);  break;
2184         case lir_div_strictfp: // fall through
2185         case lir_div: __ divss(lreg, raddr);  break;
2186         default: ShouldNotReachHere();
2187       }
2188     }
2189 
2190   } else if (left->is_double_xmm()) {
2191     assert(left == dest, "left and dest must be equal");
2192 
2193     XMMRegister lreg = left->as_xmm_double_reg();
2194     if (right->is_double_xmm()) {
2195       XMMRegister rreg = right->as_xmm_double_reg();
2196       switch (code) {
2197         case lir_add: __ addsd(lreg, rreg);  break;
2198         case lir_sub: __ subsd(lreg, rreg);  break;
2199         case lir_mul_strictfp: // fall through
2200         case lir_mul: __ mulsd(lreg, rreg);  break;
2201         case lir_div_strictfp: // fall through
2202         case lir_div: __ divsd(lreg, rreg);  break;
2203         default: ShouldNotReachHere();
2204       }
2205     } else {
2206       Address raddr;
2207       if (right->is_double_stack()) {
2208         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2209       } else if (right->is_constant()) {
2210         // hack for now
2211         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2212       } else {
2213         ShouldNotReachHere();
2214       }
2215       switch (code) {
2216         case lir_add: __ addsd(lreg, raddr);  break;
2217         case lir_sub: __ subsd(lreg, raddr);  break;
2218         case lir_mul_strictfp: // fall through
2219         case lir_mul: __ mulsd(lreg, raddr);  break;
2220         case lir_div_strictfp: // fall through
2221         case lir_div: __ divsd(lreg, raddr);  break;
2222         default: ShouldNotReachHere();
2223       }
2224     }
2225 
2226   } else if (left->is_single_fpu()) {
2227     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2228 
2229     if (right->is_single_fpu()) {
2230       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2231 
2232     } else {
2233       assert(left->fpu_regnr() == 0, "left must be on TOS");
2234       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2235 
2236       Address raddr;
2237       if (right->is_single_stack()) {
2238         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2239       } else if (right->is_constant()) {
2240         address const_addr = float_constant(right->as_jfloat());
2241         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2242         // hack for now
2243         raddr = __ as_Address(InternalAddress(const_addr));
2244       } else {
2245         ShouldNotReachHere();
2246       }
2247 
2248       switch (code) {
2249         case lir_add: __ fadd_s(raddr); break;
2250         case lir_sub: __ fsub_s(raddr); break;
2251         case lir_mul_strictfp: // fall through
2252         case lir_mul: __ fmul_s(raddr); break;
2253         case lir_div_strictfp: // fall through
2254         case lir_div: __ fdiv_s(raddr); break;
2255         default:      ShouldNotReachHere();
2256       }
2257     }
2258 
2259   } else if (left->is_double_fpu()) {
2260     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2261 
2262     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2263       // Double values require special handling for strictfp mul/div on x86
2264       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2265       __ fmulp(left->fpu_regnrLo() + 1);
2266     }
2267 
2268     if (right->is_double_fpu()) {
2269       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2270 
2271     } else {
2272       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2273       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2274 
2275       Address raddr;
2276       if (right->is_double_stack()) {
2277         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2278       } else if (right->is_constant()) {
2279         // hack for now
2280         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2281       } else {
2282         ShouldNotReachHere();
2283       }
2284 
2285       switch (code) {
2286         case lir_add: __ fadd_d(raddr); break;
2287         case lir_sub: __ fsub_d(raddr); break;
2288         case lir_mul_strictfp: // fall through
2289         case lir_mul: __ fmul_d(raddr); break;
2290         case lir_div_strictfp: // fall through
2291         case lir_div: __ fdiv_d(raddr); break;
2292         default: ShouldNotReachHere();
2293       }
2294     }
2295 
2296     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2297       // Double values require special handling for strictfp mul/div on x86
2298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2299       __ fmulp(dest->fpu_regnrLo() + 1);
2300     }
2301 
2302   } else if (left->is_single_stack() || left->is_address()) {
2303     assert(left == dest, "left and dest must be equal");
2304 
2305     Address laddr;
2306     if (left->is_single_stack()) {
2307       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2308     } else if (left->is_address()) {
2309       laddr = as_Address(left->as_address_ptr());
2310     } else {
2311       ShouldNotReachHere();
2312     }
2313 
2314     if (right->is_single_cpu()) {
2315       Register rreg = right->as_register();
2316       switch (code) {
2317         case lir_add: __ addl(laddr, rreg); break;
2318         case lir_sub: __ subl(laddr, rreg); break;
2319         default:      ShouldNotReachHere();
2320       }
2321     } else if (right->is_constant()) {
2322       jint c = right->as_constant_ptr()->as_jint();
2323       switch (code) {
2324         case lir_add: {
2325           __ incrementl(laddr, c);
2326           break;
2327         }
2328         case lir_sub: {
2329           __ decrementl(laddr, c);
2330           break;
2331         }
2332         default: ShouldNotReachHere();
2333       }
2334     } else {
2335       ShouldNotReachHere();
2336     }
2337 
2338   } else {
2339     ShouldNotReachHere();
2340   }
2341 }
2342 
2343 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2344   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2345   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2346   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2347 
2348   bool left_is_tos = (left_index == 0);
2349   bool dest_is_tos = (dest_index == 0);
2350   int non_tos_index = (left_is_tos ? right_index : left_index);
2351 
2352   switch (code) {
2353     case lir_add:
2354       if (pop_fpu_stack)       __ faddp(non_tos_index);
2355       else if (dest_is_tos)    __ fadd (non_tos_index);
2356       else                     __ fadda(non_tos_index);
2357       break;
2358 
2359     case lir_sub:
2360       if (left_is_tos) {
2361         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2362         else if (dest_is_tos)  __ fsub  (non_tos_index);
2363         else                   __ fsubra(non_tos_index);
2364       } else {
2365         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2366         else if (dest_is_tos)  __ fsubr (non_tos_index);
2367         else                   __ fsuba (non_tos_index);
2368       }
2369       break;
2370 
2371     case lir_mul_strictfp: // fall through
2372     case lir_mul:
2373       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2374       else if (dest_is_tos)    __ fmul (non_tos_index);
2375       else                     __ fmula(non_tos_index);
2376       break;
2377 
2378     case lir_div_strictfp: // fall through
2379     case lir_div:
2380       if (left_is_tos) {
2381         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2382         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2383         else                   __ fdivra(non_tos_index);
2384       } else {
2385         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2386         else if (dest_is_tos)  __ fdivr (non_tos_index);
2387         else                   __ fdiva (non_tos_index);
2388       }
2389       break;
2390 
2391     case lir_rem:
2392       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2393       __ fremr(noreg);
2394       break;
2395 
2396     default:
2397       ShouldNotReachHere();
2398   }
2399 }
2400 
2401 
2402 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2403   if (value->is_double_xmm()) {
2404     switch(code) {
2405       case lir_abs :
2406         {
2407           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2408             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2409           }
2410           __ andpd(dest->as_xmm_double_reg(),
2411                     ExternalAddress((address)double_signmask_pool));
2412         }
2413         break;
2414 
2415       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2416       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2417       default      : ShouldNotReachHere();
2418     }
2419 
2420   } else if (value->is_double_fpu()) {
2421     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2422     switch(code) {
2423       case lir_log   : __ flog() ; break;
2424       case lir_log10 : __ flog10() ; break;
2425       case lir_abs   : __ fabs() ; break;
2426       case lir_sqrt  : __ fsqrt(); break;
2427       case lir_sin   :
2428         // Should consider not saving rbx, if not necessary
2429         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2430         break;
2431       case lir_cos :
2432         // Should consider not saving rbx, if not necessary
2433         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2434         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2435         break;
2436       case lir_tan :
2437         // Should consider not saving rbx, if not necessary
2438         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2439         break;
2440       default      : ShouldNotReachHere();
2441     }
2442   } else {
2443     Unimplemented();
2444   }
2445 }
2446 
2447 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2448   // assert(left->destroys_register(), "check");
2449   if (left->is_single_cpu()) {
2450     Register reg = left->as_register();
2451     if (right->is_constant()) {
2452       int val = right->as_constant_ptr()->as_jint();
2453       switch (code) {
2454         case lir_logic_and: __ andl (reg, val); break;
2455         case lir_logic_or:  __ orl  (reg, val); break;
2456         case lir_logic_xor: __ xorl (reg, val); break;
2457         default: ShouldNotReachHere();
2458       }
2459     } else if (right->is_stack()) {
2460       // added support for stack operands
2461       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2462       switch (code) {
2463         case lir_logic_and: __ andl (reg, raddr); break;
2464         case lir_logic_or:  __ orl  (reg, raddr); break;
2465         case lir_logic_xor: __ xorl (reg, raddr); break;
2466         default: ShouldNotReachHere();
2467       }
2468     } else {
2469       Register rright = right->as_register();
2470       switch (code) {
2471         case lir_logic_and: __ andptr (reg, rright); break;
2472         case lir_logic_or : __ orptr  (reg, rright); break;
2473         case lir_logic_xor: __ xorptr (reg, rright); break;
2474         default: ShouldNotReachHere();
2475       }
2476     }
2477     move_regs(reg, dst->as_register());
2478   } else {
2479     Register l_lo = left->as_register_lo();
2480     Register l_hi = left->as_register_hi();
2481     if (right->is_constant()) {
2482 #ifdef _LP64
2483       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2484       switch (code) {
2485         case lir_logic_and:
2486           __ andq(l_lo, rscratch1);
2487           break;
2488         case lir_logic_or:
2489           __ orq(l_lo, rscratch1);
2490           break;
2491         case lir_logic_xor:
2492           __ xorq(l_lo, rscratch1);
2493           break;
2494         default: ShouldNotReachHere();
2495       }
2496 #else
2497       int r_lo = right->as_constant_ptr()->as_jint_lo();
2498       int r_hi = right->as_constant_ptr()->as_jint_hi();
2499       switch (code) {
2500         case lir_logic_and:
2501           __ andl(l_lo, r_lo);
2502           __ andl(l_hi, r_hi);
2503           break;
2504         case lir_logic_or:
2505           __ orl(l_lo, r_lo);
2506           __ orl(l_hi, r_hi);
2507           break;
2508         case lir_logic_xor:
2509           __ xorl(l_lo, r_lo);
2510           __ xorl(l_hi, r_hi);
2511           break;
2512         default: ShouldNotReachHere();
2513       }
2514 #endif // _LP64
2515     } else {
2516 #ifdef _LP64
2517       Register r_lo;
2518       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2519         r_lo = right->as_register();
2520       } else {
2521         r_lo = right->as_register_lo();
2522       }
2523 #else
2524       Register r_lo = right->as_register_lo();
2525       Register r_hi = right->as_register_hi();
2526       assert(l_lo != r_hi, "overwriting registers");
2527 #endif
2528       switch (code) {
2529         case lir_logic_and:
2530           __ andptr(l_lo, r_lo);
2531           NOT_LP64(__ andptr(l_hi, r_hi);)
2532           break;
2533         case lir_logic_or:
2534           __ orptr(l_lo, r_lo);
2535           NOT_LP64(__ orptr(l_hi, r_hi);)
2536           break;
2537         case lir_logic_xor:
2538           __ xorptr(l_lo, r_lo);
2539           NOT_LP64(__ xorptr(l_hi, r_hi);)
2540           break;
2541         default: ShouldNotReachHere();
2542       }
2543     }
2544 
2545     Register dst_lo = dst->as_register_lo();
2546     Register dst_hi = dst->as_register_hi();
2547 
2548 #ifdef _LP64
2549     move_regs(l_lo, dst_lo);
2550 #else
2551     if (dst_lo == l_hi) {
2552       assert(dst_hi != l_lo, "overwriting registers");
2553       move_regs(l_hi, dst_hi);
2554       move_regs(l_lo, dst_lo);
2555     } else {
2556       assert(dst_lo != l_hi, "overwriting registers");
2557       move_regs(l_lo, dst_lo);
2558       move_regs(l_hi, dst_hi);
2559     }
2560 #endif // _LP64
2561   }
2562 }
2563 
2564 
2565 // we assume that rax, and rdx can be overwritten
2566 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2567 
2568   assert(left->is_single_cpu(),   "left must be register");
2569   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2570   assert(result->is_single_cpu(), "result must be register");
2571 
2572   //  assert(left->destroys_register(), "check");
2573   //  assert(right->destroys_register(), "check");
2574 
2575   Register lreg = left->as_register();
2576   Register dreg = result->as_register();
2577 
2578   if (right->is_constant()) {
2579     int divisor = right->as_constant_ptr()->as_jint();
2580     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2581     if (code == lir_idiv) {
2582       assert(lreg == rax, "must be rax,");
2583       assert(temp->as_register() == rdx, "tmp register must be rdx");
2584       __ cdql(); // sign extend into rdx:rax
2585       if (divisor == 2) {
2586         __ subl(lreg, rdx);
2587       } else {
2588         __ andl(rdx, divisor - 1);
2589         __ addl(lreg, rdx);
2590       }
2591       __ sarl(lreg, log2_intptr(divisor));
2592       move_regs(lreg, dreg);
2593     } else if (code == lir_irem) {
2594       Label done;
2595       __ mov(dreg, lreg);
2596       __ andl(dreg, 0x80000000 | (divisor - 1));
2597       __ jcc(Assembler::positive, done);
2598       __ decrement(dreg);
2599       __ orl(dreg, ~(divisor - 1));
2600       __ increment(dreg);
2601       __ bind(done);
2602     } else {
2603       ShouldNotReachHere();
2604     }
2605   } else {
2606     Register rreg = right->as_register();
2607     assert(lreg == rax, "left register must be rax,");
2608     assert(rreg != rdx, "right register must not be rdx");
2609     assert(temp->as_register() == rdx, "tmp register must be rdx");
2610 
2611     move_regs(lreg, rax);
2612 
2613     int idivl_offset = __ corrected_idivl(rreg);
2614     add_debug_info_for_div0(idivl_offset, info);
2615     if (code == lir_irem) {
2616       move_regs(rdx, dreg); // result is in rdx
2617     } else {
2618       move_regs(rax, dreg);
2619     }
2620   }
2621 }
2622 
2623 
2624 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2625   if (opr1->is_single_cpu()) {
2626     Register reg1 = opr1->as_register();
2627     if (opr2->is_single_cpu()) {
2628       // cpu register - cpu register
2629       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2630         __ cmpptr(reg1, opr2->as_register());
2631       } else {
2632         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2633         __ cmpl(reg1, opr2->as_register());
2634       }
2635     } else if (opr2->is_stack()) {
2636       // cpu register - stack
2637       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2638         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2639       } else {
2640         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2641       }
2642     } else if (opr2->is_constant()) {
2643       // cpu register - constant
2644       LIR_Const* c = opr2->as_constant_ptr();
2645       if (c->type() == T_INT) {
2646         __ cmpl(reg1, c->as_jint());
2647       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2648         // In 64bit oops are single register
2649         jobject o = c->as_jobject();
2650         if (o == NULL) {
2651           __ cmpptr(reg1, (int32_t)NULL_WORD);
2652         } else {
2653 #ifdef _LP64
2654           __ movoop(rscratch1, o);
2655           __ cmpptr(reg1, rscratch1);
2656 #else
2657           __ cmpoop(reg1, c->as_jobject());
2658 #endif // _LP64
2659         }
2660       } else {
2661         ShouldNotReachHere();
2662       }
2663       // cpu register - address
2664     } else if (opr2->is_address()) {
2665       if (op->info() != NULL) {
2666         add_debug_info_for_null_check_here(op->info());
2667       }
2668       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2669     } else {
2670       ShouldNotReachHere();
2671     }
2672 
2673   } else if(opr1->is_double_cpu()) {
2674     Register xlo = opr1->as_register_lo();
2675     Register xhi = opr1->as_register_hi();
2676     if (opr2->is_double_cpu()) {
2677 #ifdef _LP64
2678       __ cmpptr(xlo, opr2->as_register_lo());
2679 #else
2680       // cpu register - cpu register
2681       Register ylo = opr2->as_register_lo();
2682       Register yhi = opr2->as_register_hi();
2683       __ subl(xlo, ylo);
2684       __ sbbl(xhi, yhi);
2685       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2686         __ orl(xhi, xlo);
2687       }
2688 #endif // _LP64
2689     } else if (opr2->is_constant()) {
2690       // cpu register - constant 0
2691       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2692 #ifdef _LP64
2693       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2694 #else
2695       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2696       __ orl(xhi, xlo);
2697 #endif // _LP64
2698     } else {
2699       ShouldNotReachHere();
2700     }
2701 
2702   } else if (opr1->is_single_xmm()) {
2703     XMMRegister reg1 = opr1->as_xmm_float_reg();
2704     if (opr2->is_single_xmm()) {
2705       // xmm register - xmm register
2706       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2707     } else if (opr2->is_stack()) {
2708       // xmm register - stack
2709       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2710     } else if (opr2->is_constant()) {
2711       // xmm register - constant
2712       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2713     } else if (opr2->is_address()) {
2714       // xmm register - address
2715       if (op->info() != NULL) {
2716         add_debug_info_for_null_check_here(op->info());
2717       }
2718       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2719     } else {
2720       ShouldNotReachHere();
2721     }
2722 
2723   } else if (opr1->is_double_xmm()) {
2724     XMMRegister reg1 = opr1->as_xmm_double_reg();
2725     if (opr2->is_double_xmm()) {
2726       // xmm register - xmm register
2727       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2728     } else if (opr2->is_stack()) {
2729       // xmm register - stack
2730       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2731     } else if (opr2->is_constant()) {
2732       // xmm register - constant
2733       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2734     } else if (opr2->is_address()) {
2735       // xmm register - address
2736       if (op->info() != NULL) {
2737         add_debug_info_for_null_check_here(op->info());
2738       }
2739       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2740     } else {
2741       ShouldNotReachHere();
2742     }
2743 
2744   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2745     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2746     assert(opr2->is_fpu_register(), "both must be registers");
2747     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2748 
2749   } else if (opr1->is_address() && opr2->is_constant()) {
2750     LIR_Const* c = opr2->as_constant_ptr();
2751 #ifdef _LP64
2752     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2753       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2754       __ movoop(rscratch1, c->as_jobject());
2755     }
2756 #endif // LP64
2757     if (op->info() != NULL) {
2758       add_debug_info_for_null_check_here(op->info());
2759     }
2760     // special case: address - constant
2761     LIR_Address* addr = opr1->as_address_ptr();
2762     if (c->type() == T_INT) {
2763       __ cmpl(as_Address(addr), c->as_jint());
2764     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2765 #ifdef _LP64
2766       // %%% Make this explode if addr isn't reachable until we figure out a
2767       // better strategy by giving noreg as the temp for as_Address
2768       __ cmpptr(rscratch1, as_Address(addr, noreg));
2769 #else
2770       __ cmpoop(as_Address(addr), c->as_jobject());
2771 #endif // _LP64
2772     } else {
2773       ShouldNotReachHere();
2774     }
2775 
2776   } else {
2777     ShouldNotReachHere();
2778   }
2779 }
2780 
2781 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2782   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2783     if (left->is_single_xmm()) {
2784       assert(right->is_single_xmm(), "must match");
2785       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2786     } else if (left->is_double_xmm()) {
2787       assert(right->is_double_xmm(), "must match");
2788       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2789 
2790     } else {
2791       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2792       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2793 
2794       assert(left->fpu() == 0, "left must be on TOS");
2795       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2796                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2797     }
2798   } else {
2799     assert(code == lir_cmp_l2i, "check");
2800 #ifdef _LP64
2801     Label done;
2802     Register dest = dst->as_register();
2803     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2804     __ movl(dest, -1);
2805     __ jccb(Assembler::less, done);
2806     __ set_byte_if_not_zero(dest);
2807     __ movzbl(dest, dest);
2808     __ bind(done);
2809 #else
2810     __ lcmp2int(left->as_register_hi(),
2811                 left->as_register_lo(),
2812                 right->as_register_hi(),
2813                 right->as_register_lo());
2814     move_regs(left->as_register_hi(), dst->as_register());
2815 #endif // _LP64
2816   }
2817 }
2818 
2819 
2820 void LIR_Assembler::align_call(LIR_Code code) {
2821   if (os::is_MP()) {
2822     // make sure that the displacement word of the call ends up word aligned
2823     int offset = __ offset();
2824     switch (code) {
2825       case lir_static_call:
2826       case lir_optvirtual_call:
2827       case lir_dynamic_call:
2828         offset += NativeCall::displacement_offset;
2829         break;
2830       case lir_icvirtual_call:
2831         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2832       break;
2833       case lir_virtual_call:  // currently, sparc-specific for niagara
2834       default: ShouldNotReachHere();
2835     }
2836     while (offset++ % BytesPerWord != 0) {
2837       __ nop();
2838     }
2839   }
2840 }
2841 
2842 
2843 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2844   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2845          "must be aligned");
2846   __ call(AddressLiteral(op->addr(), rtype));
2847   add_call_info(code_offset(), op->info());
2848 }
2849 
2850 
2851 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2852   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2853   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2854   assert(!os::is_MP() ||
2855          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2856          "must be aligned");
2857   __ call(AddressLiteral(op->addr(), rh));
2858   add_call_info(code_offset(), op->info());
2859 }
2860 
2861 
2862 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2863 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2864   ShouldNotReachHere();
2865 }
2866 
2867 
2868 void LIR_Assembler::emit_static_call_stub() {
2869   address call_pc = __ pc();
2870   address stub = __ start_a_stub(call_stub_size);
2871   if (stub == NULL) {
2872     bailout("static call stub overflow");
2873     return;
2874   }
2875 
2876   int start = __ offset();
2877   if (os::is_MP()) {
2878     // make sure that the displacement word of the call ends up word aligned
2879     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2880     while (offset++ % BytesPerWord != 0) {
2881       __ nop();
2882     }
2883   }
2884   __ relocate(static_stub_Relocation::spec(call_pc));
2885   __ movoop(rbx, (jobject)NULL);
2886   // must be set to -1 at code generation time
2887   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2888   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2889   __ jump(RuntimeAddress(__ pc()));
2890 
2891   assert(__ offset() - start <= call_stub_size, "stub too big");
2892   __ end_a_stub();
2893 }
2894 
2895 
2896 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2897   assert(exceptionOop->as_register() == rax, "must match");
2898   assert(exceptionPC->as_register() == rdx, "must match");
2899 
2900   // exception object is not added to oop map by LinearScan
2901   // (LinearScan assumes that no oops are in fixed registers)
2902   info->add_register_oop(exceptionOop);
2903   Runtime1::StubID unwind_id;
2904 
2905   // get current pc information
2906   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2907   int pc_for_athrow_offset = __ offset();
2908   InternalAddress pc_for_athrow(__ pc());
2909   __ lea(exceptionPC->as_register(), pc_for_athrow);
2910   add_call_info(pc_for_athrow_offset, info); // for exception handler
2911 
2912   __ verify_not_null_oop(rax);
2913   // search an exception handler (rax: exception oop, rdx: throwing pc)
2914   if (compilation()->has_fpu_code()) {
2915     unwind_id = Runtime1::handle_exception_id;
2916   } else {
2917     unwind_id = Runtime1::handle_exception_nofpu_id;
2918   }
2919   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2920 
2921   // enough room for two byte trap
2922   __ nop();
2923 }
2924 
2925 
2926 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2927   assert(exceptionOop->as_register() == rax, "must match");
2928 
2929   __ jmp(_unwind_handler_entry);
2930 }
2931 
2932 
2933 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2934 
2935   // optimized version for linear scan:
2936   // * count must be already in ECX (guaranteed by LinearScan)
2937   // * left and dest must be equal
2938   // * tmp must be unused
2939   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2940   assert(left == dest, "left and dest must be equal");
2941   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2942 
2943   if (left->is_single_cpu()) {
2944     Register value = left->as_register();
2945     assert(value != SHIFT_count, "left cannot be ECX");
2946 
2947     switch (code) {
2948       case lir_shl:  __ shll(value); break;
2949       case lir_shr:  __ sarl(value); break;
2950       case lir_ushr: __ shrl(value); break;
2951       default: ShouldNotReachHere();
2952     }
2953   } else if (left->is_double_cpu()) {
2954     Register lo = left->as_register_lo();
2955     Register hi = left->as_register_hi();
2956     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2957 #ifdef _LP64
2958     switch (code) {
2959       case lir_shl:  __ shlptr(lo);        break;
2960       case lir_shr:  __ sarptr(lo);        break;
2961       case lir_ushr: __ shrptr(lo);        break;
2962       default: ShouldNotReachHere();
2963     }
2964 #else
2965 
2966     switch (code) {
2967       case lir_shl:  __ lshl(hi, lo);        break;
2968       case lir_shr:  __ lshr(hi, lo, true);  break;
2969       case lir_ushr: __ lshr(hi, lo, false); break;
2970       default: ShouldNotReachHere();
2971     }
2972 #endif // LP64
2973   } else {
2974     ShouldNotReachHere();
2975   }
2976 }
2977 
2978 
2979 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2980   if (dest->is_single_cpu()) {
2981     // first move left into dest so that left is not destroyed by the shift
2982     Register value = dest->as_register();
2983     count = count & 0x1F; // Java spec
2984 
2985     move_regs(left->as_register(), value);
2986     switch (code) {
2987       case lir_shl:  __ shll(value, count); break;
2988       case lir_shr:  __ sarl(value, count); break;
2989       case lir_ushr: __ shrl(value, count); break;
2990       default: ShouldNotReachHere();
2991     }
2992   } else if (dest->is_double_cpu()) {
2993 #ifndef _LP64
2994     Unimplemented();
2995 #else
2996     // first move left into dest so that left is not destroyed by the shift
2997     Register value = dest->as_register_lo();
2998     count = count & 0x1F; // Java spec
2999 
3000     move_regs(left->as_register_lo(), value);
3001     switch (code) {
3002       case lir_shl:  __ shlptr(value, count); break;
3003       case lir_shr:  __ sarptr(value, count); break;
3004       case lir_ushr: __ shrptr(value, count); break;
3005       default: ShouldNotReachHere();
3006     }
3007 #endif // _LP64
3008   } else {
3009     ShouldNotReachHere();
3010   }
3011 }
3012 
3013 
3014 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3015   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3016   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3017   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3018   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3019 }
3020 
3021 
3022 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3023   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3024   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3025   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3026   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3027 }
3028 
3029 
3030 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3031   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3032   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3033   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3034   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3035 }
3036 
3037 
3038 // This code replaces a call to arraycopy; no exception may
3039 // be thrown in this code, they must be thrown in the System.arraycopy
3040 // activation frame; we could save some checks if this would not be the case
3041 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3042   ciArrayKlass* default_type = op->expected_type();
3043   Register src = op->src()->as_register();
3044   Register dst = op->dst()->as_register();
3045   Register src_pos = op->src_pos()->as_register();
3046   Register dst_pos = op->dst_pos()->as_register();
3047   Register length  = op->length()->as_register();
3048   Register tmp = op->tmp()->as_register();
3049 
3050   CodeStub* stub = op->stub();
3051   int flags = op->flags();
3052   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3053   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3054 
3055   // if we don't know anything or it's an object array, just go through the generic arraycopy
3056   if (default_type == NULL) {
3057     Label done;
3058     // save outgoing arguments on stack in case call to System.arraycopy is needed
3059     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3060     // for interpreter calling conventions. Now we have to do it in new style conventions.
3061     // For the moment until C1 gets the new register allocator I just force all the
3062     // args to the right place (except the register args) and then on the back side
3063     // reload the register args properly if we go slow path. Yuck
3064 
3065     // These are proper for the calling convention
3066 
3067     store_parameter(length, 2);
3068     store_parameter(dst_pos, 1);
3069     store_parameter(dst, 0);
3070 
3071     // these are just temporary placements until we need to reload
3072     store_parameter(src_pos, 3);
3073     store_parameter(src, 4);
3074     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3075 
3076     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3077 
3078     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3079 #ifdef _LP64
3080     // The arguments are in java calling convention so we can trivially shift them to C
3081     // convention
3082     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3083     __ mov(c_rarg0, j_rarg0);
3084     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3085     __ mov(c_rarg1, j_rarg1);
3086     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3087     __ mov(c_rarg2, j_rarg2);
3088     assert_different_registers(c_rarg3, j_rarg4);
3089     __ mov(c_rarg3, j_rarg3);
3090 #ifdef _WIN64
3091     // Allocate abi space for args but be sure to keep stack aligned
3092     __ subptr(rsp, 6*wordSize);
3093     store_parameter(j_rarg4, 4);
3094     __ call(RuntimeAddress(entry));
3095     __ addptr(rsp, 6*wordSize);
3096 #else
3097     __ mov(c_rarg4, j_rarg4);
3098     __ call(RuntimeAddress(entry));
3099 #endif // _WIN64
3100 #else
3101     __ push(length);
3102     __ push(dst_pos);
3103     __ push(dst);
3104     __ push(src_pos);
3105     __ push(src);
3106     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3107 
3108 #endif // _LP64
3109 
3110     __ cmpl(rax, 0);
3111     __ jcc(Assembler::equal, *stub->continuation());
3112 
3113     // Reload values from the stack so they are where the stub
3114     // expects them.
3115     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3116     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3117     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3118     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3119     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3120     __ jmp(*stub->entry());
3121 
3122     __ bind(*stub->continuation());
3123     return;
3124   }
3125 
3126   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3127 
3128   int elem_size = type2aelembytes(basic_type);
3129   int shift_amount;
3130   Address::ScaleFactor scale;
3131 
3132   switch (elem_size) {
3133     case 1 :
3134       shift_amount = 0;
3135       scale = Address::times_1;
3136       break;
3137     case 2 :
3138       shift_amount = 1;
3139       scale = Address::times_2;
3140       break;
3141     case 4 :
3142       shift_amount = 2;
3143       scale = Address::times_4;
3144       break;
3145     case 8 :
3146       shift_amount = 3;
3147       scale = Address::times_8;
3148       break;
3149     default:
3150       ShouldNotReachHere();
3151   }
3152 
3153   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3154   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3155   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3156   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3157 
3158   // length and pos's are all sign extended at this point on 64bit
3159 
3160   // test for NULL
3161   if (flags & LIR_OpArrayCopy::src_null_check) {
3162     __ testptr(src, src);
3163     __ jcc(Assembler::zero, *stub->entry());
3164   }
3165   if (flags & LIR_OpArrayCopy::dst_null_check) {
3166     __ testptr(dst, dst);
3167     __ jcc(Assembler::zero, *stub->entry());
3168   }
3169 
3170   // check if negative
3171   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3172     __ testl(src_pos, src_pos);
3173     __ jcc(Assembler::less, *stub->entry());
3174   }
3175   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3176     __ testl(dst_pos, dst_pos);
3177     __ jcc(Assembler::less, *stub->entry());
3178   }
3179   if (flags & LIR_OpArrayCopy::length_positive_check) {
3180     __ testl(length, length);
3181     __ jcc(Assembler::less, *stub->entry());
3182   }
3183 
3184   if (flags & LIR_OpArrayCopy::src_range_check) {
3185     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3186     __ cmpl(tmp, src_length_addr);
3187     __ jcc(Assembler::above, *stub->entry());
3188   }
3189   if (flags & LIR_OpArrayCopy::dst_range_check) {
3190     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3191     __ cmpl(tmp, dst_length_addr);
3192     __ jcc(Assembler::above, *stub->entry());
3193   }
3194 
3195   if (flags & LIR_OpArrayCopy::type_check) {
3196     __ movptr(tmp, src_klass_addr);
3197     __ cmpptr(tmp, dst_klass_addr);
3198     __ jcc(Assembler::notEqual, *stub->entry());
3199   }
3200 
3201 #ifdef ASSERT
3202   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3203     // Sanity check the known type with the incoming class.  For the
3204     // primitive case the types must match exactly with src.klass and
3205     // dst.klass each exactly matching the default type.  For the
3206     // object array case, if no type check is needed then either the
3207     // dst type is exactly the expected type and the src type is a
3208     // subtype which we can't check or src is the same array as dst
3209     // but not necessarily exactly of type default_type.
3210     Label known_ok, halt;
3211     __ movoop(tmp, default_type->constant_encoding());
3212     if (basic_type != T_OBJECT) {
3213       __ cmpptr(tmp, dst_klass_addr);
3214       __ jcc(Assembler::notEqual, halt);
3215       __ cmpptr(tmp, src_klass_addr);
3216       __ jcc(Assembler::equal, known_ok);
3217     } else {
3218       __ cmpptr(tmp, dst_klass_addr);
3219       __ jcc(Assembler::equal, known_ok);
3220       __ cmpptr(src, dst);
3221       __ jcc(Assembler::equal, known_ok);
3222     }
3223     __ bind(halt);
3224     __ stop("incorrect type information in arraycopy");
3225     __ bind(known_ok);
3226   }
3227 #endif
3228 
3229   if (shift_amount > 0 && basic_type != T_OBJECT) {
3230     __ shlptr(length, shift_amount);
3231   }
3232 
3233 #ifdef _LP64
3234   assert_different_registers(c_rarg0, dst, dst_pos, length);
3235   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3236   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3237   assert_different_registers(c_rarg1, length);
3238   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3239   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3240   __ mov(c_rarg2, length);
3241 
3242 #else
3243   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3244   store_parameter(tmp, 0);
3245   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3246   store_parameter(tmp, 1);
3247   store_parameter(length, 2);
3248 #endif // _LP64
3249   if (basic_type == T_OBJECT) {
3250     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3251   } else {
3252     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3253   }
3254 
3255   __ bind(*stub->continuation());
3256 }
3257 
3258 
3259 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3260   Register obj = op->obj_opr()->as_register();  // may not be an oop
3261   Register hdr = op->hdr_opr()->as_register();
3262   Register lock = op->lock_opr()->as_register();
3263   if (!UseFastLocking) {
3264     __ jmp(*op->stub()->entry());
3265   } else if (op->code() == lir_lock) {
3266     Register scratch = noreg;
3267     if (UseBiasedLocking) {
3268       scratch = op->scratch_opr()->as_register();
3269     }
3270     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3271     // add debug info for NullPointerException only if one is possible
3272     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3273     if (op->info() != NULL) {
3274       add_debug_info_for_null_check(null_check_offset, op->info());
3275     }
3276     // done
3277   } else if (op->code() == lir_unlock) {
3278     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3279     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3280   } else {
3281     Unimplemented();
3282   }
3283   __ bind(*op->stub()->continuation());
3284 }
3285 
3286 
3287 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3288   ciMethod* method = op->profiled_method();
3289   int bci          = op->profiled_bci();
3290 
3291   // Update counter for all call types
3292   ciMethodData* md = method->method_data();
3293   if (md == NULL) {
3294     bailout("out of memory building methodDataOop");
3295     return;
3296   }
3297   ciProfileData* data = md->bci_to_data(bci);
3298   assert(data->is_CounterData(), "need CounterData for calls");
3299   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3300   Register mdo  = op->mdo()->as_register();
3301   __ movoop(mdo, md->constant_encoding());
3302   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3303   Bytecodes::Code bc = method->java_code_at_bci(bci);
3304   // Perform additional virtual call profiling for invokevirtual and
3305   // invokeinterface bytecodes
3306   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3307       C1ProfileVirtualCalls) {
3308     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3309     Register recv = op->recv()->as_register();
3310     assert_different_registers(mdo, recv);
3311     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3312     ciKlass* known_klass = op->known_holder();
3313     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3314       // We know the type that will be seen at this call site; we can
3315       // statically update the methodDataOop rather than needing to do
3316       // dynamic tests on the receiver type
3317 
3318       // NOTE: we should probably put a lock around this search to
3319       // avoid collisions by concurrent compilations
3320       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3321       uint i;
3322       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3323         ciKlass* receiver = vc_data->receiver(i);
3324         if (known_klass->equals(receiver)) {
3325           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3326           __ addptr(data_addr, DataLayout::counter_increment);
3327           return;
3328         }
3329       }
3330 
3331       // Receiver type not found in profile data; select an empty slot
3332 
3333       // Note that this is less efficient than it should be because it
3334       // always does a write to the receiver part of the
3335       // VirtualCallData rather than just the first time
3336       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3337         ciKlass* receiver = vc_data->receiver(i);
3338         if (receiver == NULL) {
3339           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3340           __ movoop(recv_addr, known_klass->constant_encoding());
3341           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3342           __ addptr(data_addr, DataLayout::counter_increment);
3343           return;
3344         }
3345       }
3346     } else {
3347       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3348       Label update_done;
3349       type_profile_helper(mdo, md, data, recv, &update_done);
3350       // Receiver did not match any saved receiver and there is no empty row for it.
3351       // Increment total counter to indicate polymorphic case.
3352       __ addptr(counter_addr, DataLayout::counter_increment);
3353 
3354       __ bind(update_done);
3355     }
3356   } else {
3357     // Static call
3358     __ addptr(counter_addr, DataLayout::counter_increment);
3359   }
3360 }
3361 
3362 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3363   Unimplemented();
3364 }
3365 
3366 
3367 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3368   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3369 }
3370 
3371 
3372 void LIR_Assembler::align_backward_branch_target() {
3373   __ align(BytesPerWord);
3374 }
3375 
3376 
3377 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3378   if (left->is_single_cpu()) {
3379     __ negl(left->as_register());
3380     move_regs(left->as_register(), dest->as_register());
3381 
3382   } else if (left->is_double_cpu()) {
3383     Register lo = left->as_register_lo();
3384 #ifdef _LP64
3385     Register dst = dest->as_register_lo();
3386     __ movptr(dst, lo);
3387     __ negptr(dst);
3388 #else
3389     Register hi = left->as_register_hi();
3390     __ lneg(hi, lo);
3391     if (dest->as_register_lo() == hi) {
3392       assert(dest->as_register_hi() != lo, "destroying register");
3393       move_regs(hi, dest->as_register_hi());
3394       move_regs(lo, dest->as_register_lo());
3395     } else {
3396       move_regs(lo, dest->as_register_lo());
3397       move_regs(hi, dest->as_register_hi());
3398     }
3399 #endif // _LP64
3400 
3401   } else if (dest->is_single_xmm()) {
3402     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3403       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3404     }
3405     __ xorps(dest->as_xmm_float_reg(),
3406              ExternalAddress((address)float_signflip_pool));
3407 
3408   } else if (dest->is_double_xmm()) {
3409     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3410       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3411     }
3412     __ xorpd(dest->as_xmm_double_reg(),
3413              ExternalAddress((address)double_signflip_pool));
3414 
3415   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3416     assert(left->fpu() == 0, "arg must be on TOS");
3417     assert(dest->fpu() == 0, "dest must be TOS");
3418     __ fchs();
3419 
3420   } else {
3421     ShouldNotReachHere();
3422   }
3423 }
3424 
3425 
3426 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3427   assert(addr->is_address() && dest->is_register(), "check");
3428   Register reg;
3429   reg = dest->as_pointer_register();
3430   __ lea(reg, as_Address(addr->as_address_ptr()));
3431 }
3432 
3433 
3434 
3435 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3436   assert(!tmp->is_valid(), "don't need temporary");
3437   __ call(RuntimeAddress(dest));
3438   if (info != NULL) {
3439     add_call_info_here(info);
3440   }
3441 }
3442 
3443 
3444 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3445   assert(type == T_LONG, "only for volatile long fields");
3446 
3447   if (info != NULL) {
3448     add_debug_info_for_null_check_here(info);
3449   }
3450 
3451   if (src->is_double_xmm()) {
3452     if (dest->is_double_cpu()) {
3453 #ifdef _LP64
3454       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3455 #else
3456       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3457       __ psrlq(src->as_xmm_double_reg(), 32);
3458       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3459 #endif // _LP64
3460     } else if (dest->is_double_stack()) {
3461       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3462     } else if (dest->is_address()) {
3463       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3464     } else {
3465       ShouldNotReachHere();
3466     }
3467 
3468   } else if (dest->is_double_xmm()) {
3469     if (src->is_double_stack()) {
3470       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3471     } else if (src->is_address()) {
3472       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3473     } else {
3474       ShouldNotReachHere();
3475     }
3476 
3477   } else if (src->is_double_fpu()) {
3478     assert(src->fpu_regnrLo() == 0, "must be TOS");
3479     if (dest->is_double_stack()) {
3480       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3481     } else if (dest->is_address()) {
3482       __ fistp_d(as_Address(dest->as_address_ptr()));
3483     } else {
3484       ShouldNotReachHere();
3485     }
3486 
3487   } else if (dest->is_double_fpu()) {
3488     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3489     if (src->is_double_stack()) {
3490       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3491     } else if (src->is_address()) {
3492       __ fild_d(as_Address(src->as_address_ptr()));
3493     } else {
3494       ShouldNotReachHere();
3495     }
3496   } else {
3497     ShouldNotReachHere();
3498   }
3499 }
3500 
3501 
3502 void LIR_Assembler::membar() {
3503   // QQQ sparc TSO uses this,
3504   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3505 }
3506 
3507 void LIR_Assembler::membar_acquire() {
3508   // No x86 machines currently require load fences
3509   // __ load_fence();
3510 }
3511 
3512 void LIR_Assembler::membar_release() {
3513   // No x86 machines currently require store fences
3514   // __ store_fence();
3515 }
3516 
3517 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3518   assert(result_reg->is_register(), "check");
3519 #ifdef _LP64
3520   // __ get_thread(result_reg->as_register_lo());
3521   __ mov(result_reg->as_register(), r15_thread);
3522 #else
3523   __ get_thread(result_reg->as_register());
3524 #endif // _LP64
3525 }
3526 
3527 
3528 void LIR_Assembler::peephole(LIR_List*) {
3529   // do nothing for now
3530 }
3531 
3532 
3533 #undef __