1 /*
   2  * Copyright (c) 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_c1_LinearScan_x86.cpp.incl"
  27 
  28 
  29 //----------------------------------------------------------------------
  30 // Allocation of FPU stack slots (Intel x86 only)
  31 //----------------------------------------------------------------------
  32 
  33 void LinearScan::allocate_fpu_stack() {
  34   // First compute which FPU registers are live at the start of each basic block
  35   // (To minimize the amount of work we have to do if we have to merge FPU stacks)
  36   if (ComputeExactFPURegisterUsage) {
  37     Interval* intervals_in_register, *intervals_in_memory;
  38     create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
  39 
  40     // ignore memory intervals by overwriting intervals_in_memory
  41     // the dummy interval is needed to enforce the walker to walk until the given id:
  42     // without it, the walker stops when the unhandled-list is empty -> live information
  43     // beyond this point would be incorrect.
  44     Interval* dummy_interval = new Interval(any_reg);
  45     dummy_interval->add_range(max_jint - 2, max_jint - 1);
  46     dummy_interval->set_next(Interval::end());
  47     intervals_in_memory = dummy_interval;
  48 
  49     IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
  50 
  51     const int num_blocks = block_count();
  52     for (int i = 0; i < num_blocks; i++) {
  53       BlockBegin* b = block_at(i);
  54 
  55       // register usage is only needed for merging stacks -> compute only
  56       // when more than one predecessor.
  57       // the block must not have any spill moves at the beginning (checked by assertions)
  58       // spill moves would use intervals that are marked as handled and so the usage bit
  59       // would been set incorrectly
  60 
  61       // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
  62       //       predecessor may have spill moves at the begin of the block.
  63       //       If an interval ends at the current instruction id, it is not possible
  64       //       to decide if the register is live or not at the block begin -> the
  65       //       register information would be incorrect.
  66       if (b->number_of_preds() > 1) {
  67         int id = b->first_lir_instruction_id();
  68         BitMap regs(FrameMap::nof_fpu_regs);
  69         regs.clear();
  70 
  71         iw.walk_to(id);   // walk after the first instruction (always a label) of the block
  72         assert(iw.current_position() == id, "did not walk completely to id");
  73 
  74         // Only consider FPU values in registers
  75         Interval* interval = iw.active_first(fixedKind);
  76         while (interval != Interval::end()) {
  77           int reg = interval->assigned_reg();
  78           assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
  79           assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
  80           assert(interval->from() <= id && id < interval->to(), "interval out of range");
  81 
  82 #ifndef PRODUCT
  83           if (TraceFPURegisterUsage) {
  84             tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
  85           }
  86 #endif
  87 
  88           regs.set_bit(reg - pd_first_fpu_reg);
  89           interval = interval->next();
  90         }
  91 
  92         b->set_fpu_register_usage(regs);
  93 
  94 #ifndef PRODUCT
  95         if (TraceFPURegisterUsage) {
  96           tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->print_cr("");
  97         }
  98 #endif
  99       }
 100     }
 101   }
 102 
 103   FpuStackAllocator alloc(ir()->compilation(), this);
 104   _fpu_stack_allocator = &alloc;
 105   alloc.allocate();
 106   _fpu_stack_allocator = NULL;
 107 }
 108 
 109 
 110 FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
 111   : _compilation(compilation)
 112   , _lir(NULL)
 113   , _pos(-1)
 114   , _allocator(allocator)
 115   , _sim(compilation)
 116   , _temp_sim(compilation)
 117 {}
 118 
 119 void FpuStackAllocator::allocate() {
 120   int num_blocks = allocator()->block_count();
 121   for (int i = 0; i < num_blocks; i++) {
 122     // Set up to process block
 123     BlockBegin* block = allocator()->block_at(i);
 124     intArray* fpu_stack_state = block->fpu_stack_state();
 125 
 126 #ifndef PRODUCT
 127     if (TraceFPUStack) {
 128       tty->cr();
 129       tty->print_cr("------- Begin of new Block %d -------", block->block_id());
 130     }
 131 #endif
 132 
 133     assert(fpu_stack_state != NULL ||
 134            block->end()->as_Base() != NULL ||
 135            block->is_set(BlockBegin::exception_entry_flag),
 136            "FPU stack state must be present due to linear-scan order for FPU stack allocation");
 137     // note: exception handler entries always start with an empty fpu stack
 138     //       because stack merging would be too complicated
 139 
 140     if (fpu_stack_state != NULL) {
 141       sim()->read_state(fpu_stack_state);
 142     } else {
 143       sim()->clear();
 144     }
 145 
 146 #ifndef PRODUCT
 147     if (TraceFPUStack) {
 148       tty->print("Reading FPU state for block %d:", block->block_id());
 149       sim()->print();
 150       tty->cr();
 151     }
 152 #endif
 153 
 154     allocate_block(block);
 155     CHECK_BAILOUT();
 156   }
 157 }
 158 
 159 void FpuStackAllocator::allocate_block(BlockBegin* block) {
 160   bool processed_merge = false;
 161   LIR_OpList* insts = block->lir()->instructions_list();
 162   set_lir(block->lir());
 163   set_pos(0);
 164 
 165 
 166   // Note: insts->length() may change during loop
 167   while (pos() < insts->length()) {
 168     LIR_Op* op = insts->at(pos());
 169     _debug_information_computed = false;
 170 
 171 #ifndef PRODUCT
 172     if (TraceFPUStack) {
 173       op->print();
 174     }
 175     check_invalid_lir_op(op);
 176 #endif
 177 
 178     LIR_OpBranch* branch = op->as_OpBranch();
 179     LIR_Op1* op1 = op->as_Op1();
 180     LIR_Op2* op2 = op->as_Op2();
 181     LIR_OpCall* opCall = op->as_OpCall();
 182 
 183     if (branch != NULL && branch->block() != NULL) {
 184       if (!processed_merge) {
 185         // propagate stack at first branch to a successor
 186         processed_merge = true;
 187         bool required_merge = merge_fpu_stack_with_successors(block);
 188 
 189         assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
 190       }
 191 
 192     } else if (op1 != NULL) {
 193       handle_op1(op1);
 194     } else if (op2 != NULL) {
 195       handle_op2(op2);
 196     } else if (opCall != NULL) {
 197       handle_opCall(opCall);
 198     }
 199 
 200     compute_debug_information(op);
 201 
 202     set_pos(1 + pos());
 203   }
 204 
 205   // Propagate stack when block does not end with branch
 206   if (!processed_merge) {
 207     merge_fpu_stack_with_successors(block);
 208   }
 209 }
 210 
 211 
 212 void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
 213   if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
 214     visitor.visit(op);
 215 
 216     // exception handling
 217     if (allocator()->compilation()->has_exception_handlers()) {
 218       XHandlers* xhandlers = visitor.all_xhandler();
 219       int n = xhandlers->length();
 220       for (int k = 0; k < n; k++) {
 221         allocate_exception_handler(xhandlers->handler_at(k));
 222       }
 223     } else {
 224       assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
 225     }
 226 
 227     // compute debug information
 228     int n = visitor.info_count();
 229     assert(n > 0, "should not visit operation otherwise");
 230 
 231     for (int j = 0; j < n; j++) {
 232       CodeEmitInfo* info = visitor.info_at(j);
 233       // Compute debug information
 234       allocator()->compute_debug_info(info, op->id());
 235     }
 236   }
 237   _debug_information_computed = true;
 238 }
 239 
 240 void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
 241   if (!sim()->is_empty()) {
 242     LIR_List* old_lir = lir();
 243     int old_pos = pos();
 244     intArray* old_state = sim()->write_state();
 245 
 246 #ifndef PRODUCT
 247     if (TraceFPUStack) {
 248       tty->cr();
 249       tty->print_cr("------- begin of exception handler -------");
 250     }
 251 #endif
 252 
 253     if (xhandler->entry_code() == NULL) {
 254       // need entry code to clear FPU stack
 255       LIR_List* entry_code = new LIR_List(_compilation);
 256       entry_code->jump(xhandler->entry_block());
 257       xhandler->set_entry_code(entry_code);
 258     }
 259 
 260     LIR_OpList* insts = xhandler->entry_code()->instructions_list();
 261     set_lir(xhandler->entry_code());
 262     set_pos(0);
 263 
 264     // Note: insts->length() may change during loop
 265     while (pos() < insts->length()) {
 266       LIR_Op* op = insts->at(pos());
 267 
 268 #ifndef PRODUCT
 269       if (TraceFPUStack) {
 270         op->print();
 271       }
 272       check_invalid_lir_op(op);
 273 #endif
 274 
 275       switch (op->code()) {
 276         case lir_move:
 277           assert(op->as_Op1() != NULL, "must be LIR_Op1");
 278           assert(pos() != insts->length() - 1, "must not be last operation");
 279 
 280           handle_op1((LIR_Op1*)op);
 281           break;
 282 
 283         case lir_branch:
 284           assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
 285           assert(pos() == insts->length() - 1, "must be last operation");
 286 
 287           // remove all remaining dead registers from FPU stack
 288           clear_fpu_stack(LIR_OprFact::illegalOpr);
 289           break;
 290 
 291         default:
 292           // other operations not allowed in exception entry code
 293           ShouldNotReachHere();
 294       }
 295 
 296       set_pos(pos() + 1);
 297     }
 298 
 299 #ifndef PRODUCT
 300     if (TraceFPUStack) {
 301       tty->cr();
 302       tty->print_cr("------- end of exception handler -------");
 303     }
 304 #endif
 305 
 306     set_lir(old_lir);
 307     set_pos(old_pos);
 308     sim()->read_state(old_state);
 309   }
 310 }
 311 
 312 
 313 int FpuStackAllocator::fpu_num(LIR_Opr opr) {
 314   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
 315   return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
 316 }
 317 
 318 int FpuStackAllocator::tos_offset(LIR_Opr opr) {
 319   return sim()->offset_from_tos(fpu_num(opr));
 320 }
 321 
 322 
 323 LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
 324   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
 325 
 326   int stack_offset = tos_offset(opr);
 327   if (opr->is_single_fpu()) {
 328     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
 329   } else {
 330     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
 331     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
 332   }
 333 }
 334 
 335 LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
 336   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
 337   assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
 338 
 339   int stack_offset = 0;
 340   if (opr->is_single_fpu()) {
 341     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
 342   } else {
 343     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
 344     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
 345   }
 346 }
 347 
 348 
 349 
 350 void FpuStackAllocator::insert_op(LIR_Op* op) {
 351   lir()->insert_before(pos(), op);
 352   set_pos(1 + pos());
 353 }
 354 
 355 
 356 void FpuStackAllocator::insert_exchange(int offset) {
 357   if (offset > 0) {
 358     LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
 359     insert_op(fxch_op);
 360     sim()->swap(offset);
 361 
 362 #ifndef PRODUCT
 363     if (TraceFPUStack) {
 364       tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
 365     }
 366 #endif
 367 
 368   }
 369 }
 370 
 371 void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
 372   insert_exchange(tos_offset(opr));
 373 }
 374 
 375 
 376 void FpuStackAllocator::insert_free(int offset) {
 377   // move stack slot to the top of stack and then pop it
 378   insert_exchange(offset);
 379 
 380   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
 381   insert_op(fpop);
 382   sim()->pop();
 383 
 384 #ifndef PRODUCT
 385     if (TraceFPUStack) {
 386       tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
 387     }
 388 #endif
 389 }
 390 
 391 
 392 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
 393   if (sim()->contains(fpu_num(opr))) {
 394     int res_slot = tos_offset(opr);
 395     insert_free(res_slot);
 396   }
 397 }
 398 
 399 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
 400   if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
 401     int res_slot = tos_offset(opr);
 402     insert_free(res_slot);
 403   }
 404 }
 405 
 406 void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
 407   int offset = tos_offset(from);
 408   LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
 409   insert_op(fld);
 410 
 411   sim()->push(fpu_num(to));
 412 
 413 #ifndef PRODUCT
 414   if (TraceFPUStack) {
 415     tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
 416   }
 417 #endif
 418 }
 419 
 420 void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
 421   sim()->rename(fpu_num(from), fpu_num(to));
 422 }
 423 
 424 void FpuStackAllocator::do_push(LIR_Opr opr) {
 425   sim()->push(fpu_num(opr));
 426 }
 427 
 428 void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
 429   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
 430   assert(tos_offset(opr) == 0, "can only pop stack top");
 431 
 432   if (opr->is_last_use()) {
 433     op->set_fpu_pop_count(1);
 434     sim()->pop();
 435   }
 436 }
 437 
 438 void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
 439   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
 440   assert(tos_offset(opr) == 0, "can only pop stack top");
 441 
 442   op->set_fpu_pop_count(1);
 443   sim()->pop();
 444 }
 445 
 446 void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
 447   int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
 448   while (sim()->stack_size() > result_stack_size) {
 449     assert(!sim()->slot_is_empty(0), "not allowed");
 450 
 451     if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
 452       insert_free(0);
 453     } else {
 454       // move "preserve" to bottom of stack so that all other stack slots can be popped
 455       insert_exchange(sim()->stack_size() - 1);
 456     }
 457   }
 458 }
 459 
 460 
 461 void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
 462   LIR_Opr in  = op1->in_opr();
 463   LIR_Opr res = op1->result_opr();
 464 
 465   LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
 466   LIR_Opr new_res = res;
 467 
 468   // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
 469   //       so checks for is_float_kind() are necessary inside the cases
 470   switch (op1->code()) {
 471 
 472     case lir_return: {
 473       // FPU-Stack must only contain the (optional) fpu return value.
 474       // All remaining dead values are popped from the stack
 475       // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
 476 
 477       clear_fpu_stack(in);
 478       if (in->is_fpu_register() && !in->is_xmm_register()) {
 479         new_in = to_fpu_stack_top(in);
 480       }
 481 
 482       break;
 483     }
 484 
 485     case lir_move: {
 486       if (in->is_fpu_register() && !in->is_xmm_register()) {
 487         if (res->is_xmm_register()) {
 488           // move from fpu register to xmm register (necessary for operations that
 489           // are not available in the SSE instruction set)
 490           insert_exchange(in);
 491           new_in = to_fpu_stack_top(in);
 492           pop_always(op1, in);
 493 
 494         } else if (res->is_fpu_register() && !res->is_xmm_register()) {
 495           // move from fpu-register to fpu-register:
 496           // * input and result register equal:
 497           //   nothing to do
 498           // * input register is last use:
 499           //   rename the input register to result register -> input register
 500           //   not present on fpu-stack afterwards
 501           // * input register not last use:
 502           //   duplicate input register to result register to preserve input
 503           //
 504           // Note: The LIR-Assembler does not produce any code for fpu register moves,
 505           //       so input and result stack index must be equal
 506 
 507           if (fpu_num(in) == fpu_num(res)) {
 508             // nothing to do
 509           } else if (in->is_last_use()) {
 510             insert_free_if_dead(res);//, in);
 511             do_rename(in, res);
 512           } else {
 513             insert_free_if_dead(res);
 514             insert_copy(in, res);
 515           }
 516           new_in = to_fpu_stack(res);
 517           new_res = new_in;
 518 
 519         } else {
 520           // move from fpu-register to memory
 521           // input operand must be on top of stack
 522 
 523           insert_exchange(in);
 524 
 525           // create debug information here because afterwards the register may have been popped
 526           compute_debug_information(op1);
 527 
 528           new_in = to_fpu_stack_top(in);
 529           pop_if_last_use(op1, in);
 530         }
 531 
 532       } else if (res->is_fpu_register() && !res->is_xmm_register()) {
 533         // move from memory/constant to fpu register
 534         // result is pushed on the stack
 535 
 536         insert_free_if_dead(res);
 537 
 538         // create debug information before register is pushed
 539         compute_debug_information(op1);
 540 
 541         do_push(res);
 542         new_res = to_fpu_stack_top(res);
 543       }
 544       break;
 545     }
 546 
 547     case lir_neg: {
 548       if (in->is_fpu_register() && !in->is_xmm_register()) {
 549         assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
 550         assert(in->is_last_use(), "old value gets destroyed");
 551 
 552         insert_free_if_dead(res, in);
 553         insert_exchange(in);
 554         new_in = to_fpu_stack_top(in);
 555 
 556         do_rename(in, res);
 557         new_res = to_fpu_stack_top(res);
 558       }
 559       break;
 560     }
 561 
 562     case lir_convert: {
 563       Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
 564       switch (bc) {
 565         case Bytecodes::_d2f:
 566         case Bytecodes::_f2d:
 567           assert(res->is_fpu_register(), "must be");
 568           assert(in->is_fpu_register(), "must be");
 569 
 570           if (!in->is_xmm_register() && !res->is_xmm_register()) {
 571             // this is quite the same as a move from fpu-register to fpu-register
 572             // Note: input and result operands must have different types
 573             if (fpu_num(in) == fpu_num(res)) {
 574               // nothing to do
 575               new_in = to_fpu_stack(in);
 576             } else if (in->is_last_use()) {
 577               insert_free_if_dead(res);//, in);
 578               new_in = to_fpu_stack(in);
 579               do_rename(in, res);
 580             } else {
 581               insert_free_if_dead(res);
 582               insert_copy(in, res);
 583               new_in = to_fpu_stack_top(in, true);
 584             }
 585             new_res = to_fpu_stack(res);
 586           }
 587 
 588           break;
 589 
 590         case Bytecodes::_i2f:
 591         case Bytecodes::_l2f:
 592         case Bytecodes::_i2d:
 593         case Bytecodes::_l2d:
 594           assert(res->is_fpu_register(), "must be");
 595           if (!res->is_xmm_register()) {
 596             insert_free_if_dead(res);
 597             do_push(res);
 598             new_res = to_fpu_stack_top(res);
 599           }
 600           break;
 601 
 602         case Bytecodes::_f2i:
 603         case Bytecodes::_d2i:
 604           assert(in->is_fpu_register(), "must be");
 605           if (!in->is_xmm_register()) {
 606             insert_exchange(in);
 607             new_in = to_fpu_stack_top(in);
 608 
 609             // TODO: update registes of stub
 610           }
 611           break;
 612 
 613         case Bytecodes::_f2l:
 614         case Bytecodes::_d2l:
 615           assert(in->is_fpu_register(), "must be");
 616           if (!in->is_xmm_register()) {
 617             insert_exchange(in);
 618             new_in = to_fpu_stack_top(in);
 619             pop_always(op1, in);
 620           }
 621           break;
 622 
 623         case Bytecodes::_i2l:
 624         case Bytecodes::_l2i:
 625         case Bytecodes::_i2b:
 626         case Bytecodes::_i2c:
 627         case Bytecodes::_i2s:
 628           // no fpu operands
 629           break;
 630 
 631         default:
 632           ShouldNotReachHere();
 633       }
 634       break;
 635     }
 636 
 637     case lir_roundfp: {
 638       assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
 639       assert(res->is_stack(), "result must be on stack");
 640 
 641       insert_exchange(in);
 642       new_in = to_fpu_stack_top(in);
 643       pop_if_last_use(op1, in);
 644       break;
 645     }
 646 
 647     default: {
 648       assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
 649     }
 650   }
 651 
 652   op1->set_in_opr(new_in);
 653   op1->set_result_opr(new_res);
 654 }
 655 
 656 void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
 657   LIR_Opr left  = op2->in_opr1();
 658   if (!left->is_float_kind()) {
 659     return;
 660   }
 661   if (left->is_xmm_register()) {
 662     return;
 663   }
 664 
 665   LIR_Opr right = op2->in_opr2();
 666   LIR_Opr res   = op2->result_opr();
 667   LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
 668   LIR_Opr new_right = right;
 669   LIR_Opr new_res   = res;
 670 
 671   assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
 672 
 673   switch (op2->code()) {
 674     case lir_cmp:
 675     case lir_cmp_fd2i:
 676     case lir_ucmp_fd2i: {
 677       assert(left->is_fpu_register(), "invalid LIR");
 678       assert(right->is_fpu_register(), "invalid LIR");
 679 
 680       // the left-hand side must be on top of stack.
 681       // the right-hand side is never popped, even if is_last_use is set
 682       insert_exchange(left);
 683       new_left = to_fpu_stack_top(left);
 684       new_right = to_fpu_stack(right);
 685       pop_if_last_use(op2, left);
 686       break;
 687     }
 688 
 689     case lir_mul_strictfp:
 690     case lir_div_strictfp: {
 691       assert(op2->tmp_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
 692       insert_free_if_dead(op2->tmp_opr());
 693       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
 694       // fall-through: continue with the normal handling of lir_mul and lir_div
 695     }
 696     case lir_add:
 697     case lir_sub:
 698     case lir_mul:
 699     case lir_div: {
 700       assert(left->is_fpu_register(), "must be");
 701       assert(res->is_fpu_register(), "must be");
 702       assert(left->is_equal(res), "must be");
 703 
 704       // either the left-hand or the right-hand side must be on top of stack
 705       // (if right is not a register, left must be on top)
 706       if (!right->is_fpu_register()) {
 707         insert_exchange(left);
 708         new_left = to_fpu_stack_top(left);
 709       } else {
 710         // no exchange necessary if right is alredy on top of stack
 711         if (tos_offset(right) == 0) {
 712           new_left = to_fpu_stack(left);
 713           new_right = to_fpu_stack_top(right);
 714         } else {
 715           insert_exchange(left);
 716           new_left = to_fpu_stack_top(left);
 717           new_right = to_fpu_stack(right);
 718         }
 719 
 720         if (right->is_last_use()) {
 721           op2->set_fpu_pop_count(1);
 722 
 723           if (tos_offset(right) == 0) {
 724             sim()->pop();
 725           } else {
 726             // if left is on top of stack, the result is placed in the stack
 727             // slot of right, so a renaming from right to res is necessary
 728             assert(tos_offset(left) == 0, "must be");
 729             sim()->pop();
 730             do_rename(right, res);
 731           }
 732         }
 733       }
 734       new_res = to_fpu_stack(res);
 735 
 736       break;
 737     }
 738 
 739     case lir_rem: {
 740       assert(left->is_fpu_register(), "must be");
 741       assert(right->is_fpu_register(), "must be");
 742       assert(res->is_fpu_register(), "must be");
 743       assert(left->is_equal(res), "must be");
 744 
 745       // Must bring both operands to top of stack with following operand ordering:
 746       // * fpu stack before rem: ... right left
 747       // * fpu stack after rem:  ... left
 748       if (tos_offset(right) != 1) {
 749         insert_exchange(right);
 750         insert_exchange(1);
 751       }
 752       insert_exchange(left);
 753       assert(tos_offset(right) == 1, "check");
 754       assert(tos_offset(left) == 0, "check");
 755 
 756       new_left = to_fpu_stack_top(left);
 757       new_right = to_fpu_stack(right);
 758 
 759       op2->set_fpu_pop_count(1);
 760       sim()->pop();
 761       do_rename(right, res);
 762 
 763       new_res = to_fpu_stack_top(res);
 764       break;
 765     }
 766 
 767     case lir_abs:
 768     case lir_sqrt: {
 769       // Right argument appears to be unused
 770       assert(right->is_illegal(), "must be");
 771       assert(left->is_fpu_register(), "must be");
 772       assert(res->is_fpu_register(), "must be");
 773       assert(left->is_last_use(), "old value gets destroyed");
 774 
 775       insert_free_if_dead(res, left);
 776       insert_exchange(left);
 777       do_rename(left, res);
 778 
 779       new_left = to_fpu_stack_top(res);
 780       new_res = new_left;
 781 
 782       op2->set_fpu_stack_size(sim()->stack_size());
 783       break;
 784     }
 785 
 786     case lir_log:
 787     case lir_log10: {
 788       // log and log10 needs one temporary fpu stack slot, so there is ontemporary
 789       // registers stored in temp of the operation.
 790       // the stack allocator must guarantee that the stack slots are really free,
 791       // otherwise there might be a stack overflow.
 792       assert(right->is_illegal(), "must be");
 793       assert(left->is_fpu_register(), "must be");
 794       assert(res->is_fpu_register(), "must be");
 795       assert(op2->tmp_opr()->is_fpu_register(), "must be");
 796 
 797       insert_free_if_dead(op2->tmp_opr());
 798       insert_free_if_dead(res, left);
 799       insert_exchange(left);
 800       do_rename(left, res);
 801 
 802       new_left = to_fpu_stack_top(res);
 803       new_res = new_left;
 804 
 805       op2->set_fpu_stack_size(sim()->stack_size());
 806       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
 807       break;
 808     }
 809 
 810 
 811     case lir_tan:
 812     case lir_sin:
 813     case lir_cos: {
 814       // sin and cos need two temporary fpu stack slots, so there are two temporary
 815       // registers (stored in right and temp of the operation).
 816       // the stack allocator must guarantee that the stack slots are really free,
 817       // otherwise there might be a stack overflow.
 818       assert(left->is_fpu_register(), "must be");
 819       assert(res->is_fpu_register(), "must be");
 820       // assert(left->is_last_use(), "old value gets destroyed");
 821       assert(right->is_fpu_register(), "right is used as the first temporary register");
 822       assert(op2->tmp_opr()->is_fpu_register(), "temp is used as the second temporary register");
 823       assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp_opr()) && fpu_num(op2->tmp_opr()) != fpu_num(res), "need distinct temp registers");
 824 
 825       insert_free_if_dead(right);
 826       insert_free_if_dead(op2->tmp_opr());
 827 
 828       insert_free_if_dead(res, left);
 829       insert_exchange(left);
 830       do_rename(left, res);
 831 
 832       new_left = to_fpu_stack_top(res);
 833       new_res = new_left;
 834 
 835       op2->set_fpu_stack_size(sim()->stack_size());
 836       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
 837       break;
 838     }
 839 
 840     default: {
 841       assert(false, "missed a fpu-operation");
 842     }
 843   }
 844 
 845   op2->set_in_opr1(new_left);
 846   op2->set_in_opr2(new_right);
 847   op2->set_result_opr(new_res);
 848 }
 849 
 850 void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
 851   LIR_Opr res = opCall->result_opr();
 852 
 853   // clear fpu-stack before call
 854   // it may contain dead values that could not have been remved by previous operations
 855   clear_fpu_stack(LIR_OprFact::illegalOpr);
 856   assert(sim()->is_empty(), "fpu stack must be empty now");
 857 
 858   // compute debug information before (possible) fpu result is pushed
 859   compute_debug_information(opCall);
 860 
 861   if (res->is_fpu_register() && !res->is_xmm_register()) {
 862     do_push(res);
 863     opCall->set_result_opr(to_fpu_stack_top(res));
 864   }
 865 }
 866 
 867 #ifndef PRODUCT
 868 void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
 869   switch (op->code()) {
 870     case lir_24bit_FPU:
 871     case lir_reset_FPU:
 872     case lir_ffree:
 873       assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
 874       break;
 875 
 876     case lir_fpop_raw:
 877     case lir_fxch:
 878     case lir_fld:
 879       assert(false, "operations only inserted by FpuStackAllocator");
 880       break;
 881   }
 882 }
 883 #endif
 884 
 885 
 886 void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
 887   LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
 888 
 889   instrs->instructions_list()->push(move);
 890 
 891   cur_sim->push(reg);
 892   move->set_result_opr(to_fpu_stack(move->result_opr()));
 893 
 894   #ifndef PRODUCT
 895     if (TraceFPUStack) {
 896       tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
 897     }
 898   #endif
 899 }
 900 
 901 void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
 902   assert(slot > 0, "no exchange necessary");
 903 
 904   LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
 905   instrs->instructions_list()->push(fxch);
 906   cur_sim->swap(slot);
 907 
 908   #ifndef PRODUCT
 909     if (TraceFPUStack) {
 910       tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
 911     }
 912   #endif
 913 }
 914 
 915 void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
 916   int reg = cur_sim->get_slot(0);
 917 
 918   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
 919   instrs->instructions_list()->push(fpop);
 920   cur_sim->pop(reg);
 921 
 922   #ifndef PRODUCT
 923     if (TraceFPUStack) {
 924       tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
 925     }
 926   #endif
 927 }
 928 
 929 bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
 930   int reg = cur_sim->get_slot(change_slot);
 931 
 932   for (int slot = start_slot; slot >= 0; slot--) {
 933     int new_reg = sux_sim->get_slot(slot);
 934 
 935     if (!cur_sim->contains(new_reg)) {
 936       cur_sim->set_slot(change_slot, new_reg);
 937 
 938       #ifndef PRODUCT
 939         if (TraceFPUStack) {
 940           tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
 941         }
 942       #endif
 943 
 944       return true;
 945     }
 946   }
 947   return false;
 948 }
 949 
 950 
 951 void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
 952 #ifndef PRODUCT
 953   if (TraceFPUStack) {
 954     tty->cr();
 955     tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
 956     tty->print("                 sux: "); sux_sim->print(); tty->cr();
 957   }
 958 
 959   int slot;
 960   for (slot = 0; slot < cur_sim->stack_size(); slot++) {
 961     assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
 962   }
 963   for (slot = 0; slot < sux_sim->stack_size(); slot++) {
 964     assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
 965   }
 966 #endif
 967 
 968   // size difference between cur and sux that must be resolved by adding or removing values form the stack
 969   int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
 970 
 971   if (!ComputeExactFPURegisterUsage) {
 972     // add slots that are currently free, but used in successor
 973     // When the exact FPU register usage is computed, the stack does
 974     // not contain dead values at merging -> no values must be added
 975 
 976     int sux_slot = sux_sim->stack_size() - 1;
 977     while (size_diff < 0) {
 978       assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
 979 
 980       int reg = sux_sim->get_slot(sux_slot);
 981       if (!cur_sim->contains(reg)) {
 982         merge_insert_add(instrs, cur_sim, reg);
 983         size_diff++;
 984 
 985         if (sux_slot + size_diff != 0) {
 986           merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
 987         }
 988       }
 989      sux_slot--;
 990     }
 991   }
 992 
 993   assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
 994   assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
 995 
 996   // stack merge algorithm:
 997   // 1) as long as the current stack top is not in the right location (that meens
 998   //    it should not be on the stack top), exchange it into the right location
 999   // 2) if the stack top is right, but the remaining stack is not ordered correctly,
1000   //    the stack top is exchanged away to get another value on top ->
1001   //    now step 1) can be continued
1002   // the stack can also contain unused items -> these items are removed from stack
1003 
1004   int finished_slot = sux_sim->stack_size() - 1;
1005   while (finished_slot >= 0 || size_diff > 0) {
1006     while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
1007       int reg = cur_sim->get_slot(0);
1008       if (sux_sim->contains(reg)) {
1009         int sux_slot = sux_sim->offset_from_tos(reg);
1010         merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1011 
1012       } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
1013         assert(size_diff > 0, "must be");
1014 
1015         merge_insert_pop(instrs, cur_sim);
1016         size_diff--;
1017       }
1018       assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
1019     }
1020 
1021     while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
1022       finished_slot--;
1023     }
1024 
1025     if (finished_slot >= 0) {
1026       int reg = cur_sim->get_slot(finished_slot);
1027 
1028       if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
1029         assert(sux_sim->contains(reg) || size_diff > 0, "must be");
1030         merge_insert_xchg(instrs, cur_sim, finished_slot);
1031       }
1032       assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
1033     }
1034   }
1035 
1036 #ifndef PRODUCT
1037   if (TraceFPUStack) {
1038     tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
1039     tty->print("                 sux: "); sux_sim->print(); tty->cr();
1040     tty->cr();
1041   }
1042 #endif
1043   assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
1044 }
1045 
1046 
1047 void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
1048 #ifndef PRODUCT
1049   if (TraceFPUStack) {
1050     tty->cr();
1051     tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
1052     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1053   }
1054 #endif
1055 
1056   int slot = 0;
1057   while (slot < cur_sim->stack_size()) {
1058     int reg = cur_sim->get_slot(slot);
1059     if (!live_fpu_regs.at(reg)) {
1060       if (slot != 0) {
1061         merge_insert_xchg(instrs, cur_sim, slot);
1062       }
1063       merge_insert_pop(instrs, cur_sim);
1064     } else {
1065       slot++;
1066     }
1067   }
1068 
1069 #ifndef PRODUCT
1070   if (TraceFPUStack) {
1071     tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
1072     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1073     tty->cr();
1074   }
1075 
1076   // check if fpu stack only contains live registers
1077   for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
1078     if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
1079       tty->print_cr("mismatch between required and actual stack content");
1080       break;
1081     }
1082   }
1083 #endif
1084 }
1085 
1086 
1087 bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
1088 #ifndef PRODUCT
1089   if (TraceFPUStack) {
1090     tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
1091                   block->block_id(), pos());
1092     sim()->print();
1093     tty->cr();
1094   }
1095 #endif
1096 
1097   bool changed = false;
1098   int number_of_sux = block->number_of_sux();
1099 
1100   if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
1101     // The successor has at least two incoming edges, so a stack merge will be necessary
1102     // If this block is the first predecessor, cleanup the current stack and propagate it
1103     // If this block is not the first predecessor, a stack merge will be necessary
1104 
1105     BlockBegin* sux = block->sux_at(0);
1106     intArray* state = sux->fpu_stack_state();
1107     LIR_List* instrs = new LIR_List(_compilation);
1108 
1109     if (state != NULL) {
1110       // Merge with a successors that already has a FPU stack state
1111       // the block must only have one successor because critical edges must been split
1112       FpuStackSim* cur_sim = sim();
1113       FpuStackSim* sux_sim = temp_sim();
1114       sux_sim->read_state(state);
1115 
1116       merge_fpu_stack(instrs, cur_sim, sux_sim);
1117 
1118     } else {
1119       // propagate current FPU stack state to successor without state
1120       // clean up stack first so that there are no dead values on the stack
1121       if (ComputeExactFPURegisterUsage) {
1122         FpuStackSim* cur_sim = sim();
1123         BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
1124         assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
1125 
1126         merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
1127       }
1128 
1129       intArray* state = sim()->write_state();
1130       if (TraceFPUStack) {
1131         tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
1132         sim()->print(); tty->cr();
1133       }
1134       sux->set_fpu_stack_state(state);
1135     }
1136 
1137     if (instrs->instructions_list()->length() > 0) {
1138       lir()->insert_before(pos(), instrs);
1139       set_pos(instrs->instructions_list()->length() + pos());
1140       changed = true;
1141     }
1142 
1143   } else {
1144     // Propagate unmodified Stack to successors where a stack merge is not necessary
1145     intArray* state = sim()->write_state();
1146     for (int i = 0; i < number_of_sux; i++) {
1147       BlockBegin* sux = block->sux_at(i);
1148 
1149 #ifdef ASSERT
1150       for (int j = 0; j < sux->number_of_preds(); j++) {
1151         assert(block == sux->pred_at(j), "all critical edges must be broken");
1152       }
1153 
1154       // check if new state is same
1155       if (sux->fpu_stack_state() != NULL) {
1156         intArray* sux_state = sux->fpu_stack_state();
1157         assert(state->length() == sux_state->length(), "overwriting existing stack state");
1158         for (int j = 0; j < state->length(); j++) {
1159           assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
1160         }
1161       }
1162 #endif
1163 #ifndef PRODUCT
1164       if (TraceFPUStack) {
1165         tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
1166         sim()->print(); tty->cr();
1167       }
1168 #endif
1169 
1170       sux->set_fpu_stack_state(state);
1171     }
1172   }
1173 
1174 #ifndef PRODUCT
1175   // assertions that FPU stack state conforms to all successors' states
1176   intArray* cur_state = sim()->write_state();
1177   for (int i = 0; i < number_of_sux; i++) {
1178     BlockBegin* sux = block->sux_at(i);
1179     intArray* sux_state = sux->fpu_stack_state();
1180 
1181     assert(sux_state != NULL, "no fpu state");
1182     assert(cur_state->length() == sux_state->length(), "incorrect length");
1183     for (int i = 0; i < cur_state->length(); i++) {
1184       assert(cur_state->at(i) == sux_state->at(i), "element not equal");
1185     }
1186   }
1187 #endif
1188 
1189   return changed;
1190 }