1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class VM_Version : public Abstract_VM_Version {
  26 public:
  27   // cpuid result register layouts.  These are all unions of a uint32_t
  28   // (in case anyone wants access to the register as a whole) and a bitfield.
  29 
  30   union StdCpuid1Eax {
  31     uint32_t value;
  32     struct {
  33       uint32_t stepping   : 4,
  34                model      : 4,
  35                family     : 4,
  36                proc_type  : 2,
  37                           : 2,
  38                ext_model  : 4,
  39                ext_family : 8,
  40                           : 4;
  41     } bits;
  42   };
  43 
  44   union StdCpuid1Ebx { // example, unused
  45     uint32_t value;
  46     struct {
  47       uint32_t brand_id         : 8,
  48                clflush_size     : 8,
  49                threads_per_cpu  : 8,
  50                apic_id          : 8;
  51     } bits;
  52   };
  53 
  54   union StdCpuid1Ecx {
  55     uint32_t value;
  56     struct {
  57       uint32_t sse3     : 1,
  58                         : 2,
  59                monitor  : 1,
  60                         : 1,
  61                vmx      : 1,
  62                         : 1,
  63                est      : 1,
  64                         : 1,
  65                ssse3    : 1,
  66                cid      : 1,
  67                         : 2,
  68                cmpxchg16: 1,
  69                         : 4,
  70                dca      : 1,
  71                sse4_1   : 1,
  72                sse4_2   : 1,
  73                         : 2,
  74                popcnt   : 1,
  75                         : 8;
  76     } bits;
  77   };
  78 
  79   union StdCpuid1Edx {
  80     uint32_t value;
  81     struct {
  82       uint32_t          : 4,
  83                tsc      : 1,
  84                         : 3,
  85                cmpxchg8 : 1,
  86                         : 6,
  87                cmov     : 1,
  88                         : 7,
  89                mmx      : 1,
  90                fxsr     : 1,
  91                sse      : 1,
  92                sse2     : 1,
  93                         : 1,
  94                ht       : 1,
  95                         : 3;
  96     } bits;
  97   };
  98 
  99   union DcpCpuid4Eax {
 100     uint32_t value;
 101     struct {
 102       uint32_t cache_type    : 5,
 103                              : 21,
 104                cores_per_cpu : 6;
 105     } bits;
 106   };
 107 
 108   union DcpCpuid4Ebx {
 109     uint32_t value;
 110     struct {
 111       uint32_t L1_line_size  : 12,
 112                partitions    : 10,
 113                associativity : 10;
 114     } bits;
 115   };
 116 
 117   union TplCpuidBEbx {
 118     uint32_t value;
 119     struct {
 120       uint32_t logical_cpus : 16,
 121                             : 16;
 122     } bits;
 123   };
 124 
 125   union ExtCpuid1Ecx {
 126     uint32_t value;
 127     struct {
 128       uint32_t LahfSahf     : 1,
 129                CmpLegacy    : 1,
 130                             : 4,
 131                lzcnt        : 1,
 132                sse4a        : 1,
 133                misalignsse  : 1,
 134                prefetchw    : 1,
 135                             : 22;
 136     } bits;
 137   };
 138 
 139   union ExtCpuid1Edx {
 140     uint32_t value;
 141     struct {
 142       uint32_t           : 22,
 143                mmx_amd   : 1,
 144                mmx       : 1,
 145                fxsr      : 1,
 146                          : 4,
 147                long_mode : 1,
 148                tdnow2    : 1,
 149                tdnow     : 1;
 150     } bits;
 151   };
 152 
 153   union ExtCpuid5Ex {
 154     uint32_t value;
 155     struct {
 156       uint32_t L1_line_size : 8,
 157                L1_tag_lines : 8,
 158                L1_assoc     : 8,
 159                L1_size      : 8;
 160     } bits;
 161   };
 162 
 163   union ExtCpuid8Ecx {
 164     uint32_t value;
 165     struct {
 166       uint32_t cores_per_cpu : 8,
 167                              : 24;
 168     } bits;
 169   };
 170 
 171 protected:
 172    static int _cpu;
 173    static int _model;
 174    static int _stepping;
 175    static int _cpuFeatures;     // features returned by the "cpuid" instruction
 176                                 // 0 if this instruction is not available
 177    static const char* _features_str;
 178 
 179    enum {
 180      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 181      CPU_CMOV   = (1 << 1),
 182      CPU_FXSR   = (1 << 2),
 183      CPU_HT     = (1 << 3),
 184      CPU_MMX    = (1 << 4),
 185      CPU_3DNOW  = (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
 186      CPU_SSE    = (1 << 6),
 187      CPU_SSE2   = (1 << 7),
 188      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 189      CPU_SSSE3  = (1 << 9),
 190      CPU_SSE4A  = (1 << 10),
 191      CPU_SSE4_1 = (1 << 11),
 192      CPU_SSE4_2 = (1 << 12),
 193      CPU_POPCNT = (1 << 13),
 194      CPU_LZCNT  = (1 << 14)
 195    } cpuFeatureFlags;
 196 
 197   // cpuid information block.  All info derived from executing cpuid with
 198   // various function numbers is stored here.  Intel and AMD info is
 199   // merged in this block: accessor methods disentangle it.
 200   //
 201   // The info block is laid out in subblocks of 4 dwords corresponding to
 202   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 203   struct CpuidInfo {
 204     // cpuid function 0
 205     uint32_t std_max_function;
 206     uint32_t std_vendor_name_0;
 207     uint32_t std_vendor_name_1;
 208     uint32_t std_vendor_name_2;
 209 
 210     // cpuid function 1
 211     StdCpuid1Eax std_cpuid1_eax;
 212     StdCpuid1Ebx std_cpuid1_ebx;
 213     StdCpuid1Ecx std_cpuid1_ecx;
 214     StdCpuid1Edx std_cpuid1_edx;
 215 
 216     // cpuid function 4 (deterministic cache parameters)
 217     DcpCpuid4Eax dcp_cpuid4_eax;
 218     DcpCpuid4Ebx dcp_cpuid4_ebx;
 219     uint32_t     dcp_cpuid4_ecx; // unused currently
 220     uint32_t     dcp_cpuid4_edx; // unused currently
 221 
 222     // cpuid function 0xB (processor topology)
 223     // ecx = 0
 224     uint32_t     tpl_cpuidB0_eax;
 225     TplCpuidBEbx tpl_cpuidB0_ebx;
 226     uint32_t     tpl_cpuidB0_ecx; // unused currently
 227     uint32_t     tpl_cpuidB0_edx; // unused currently
 228 
 229     // ecx = 1
 230     uint32_t     tpl_cpuidB1_eax;
 231     TplCpuidBEbx tpl_cpuidB1_ebx;
 232     uint32_t     tpl_cpuidB1_ecx; // unused currently
 233     uint32_t     tpl_cpuidB1_edx; // unused currently
 234 
 235     // ecx = 2
 236     uint32_t     tpl_cpuidB2_eax;
 237     TplCpuidBEbx tpl_cpuidB2_ebx;
 238     uint32_t     tpl_cpuidB2_ecx; // unused currently
 239     uint32_t     tpl_cpuidB2_edx; // unused currently
 240 
 241     // cpuid function 0x80000000 // example, unused
 242     uint32_t ext_max_function;
 243     uint32_t ext_vendor_name_0;
 244     uint32_t ext_vendor_name_1;
 245     uint32_t ext_vendor_name_2;
 246 
 247     // cpuid function 0x80000001
 248     uint32_t     ext_cpuid1_eax; // reserved
 249     uint32_t     ext_cpuid1_ebx; // reserved
 250     ExtCpuid1Ecx ext_cpuid1_ecx;
 251     ExtCpuid1Edx ext_cpuid1_edx;
 252 
 253     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 254     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 255     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 256     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 257 
 258     // cpuid function 0x80000005 //AMD L1, Intel reserved
 259     uint32_t     ext_cpuid5_eax; // unused currently
 260     uint32_t     ext_cpuid5_ebx; // reserved
 261     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 262     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 263 
 264     // cpuid function 0x80000008
 265     uint32_t     ext_cpuid8_eax; // unused currently
 266     uint32_t     ext_cpuid8_ebx; // reserved
 267     ExtCpuid8Ecx ext_cpuid8_ecx;
 268     uint32_t     ext_cpuid8_edx; // reserved
 269   };
 270 
 271   // The actual cpuid info block
 272   static CpuidInfo _cpuid_info;
 273 
 274   // Extractors and predicates
 275   static uint32_t extended_cpu_family() {
 276     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 277     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 278     return result;
 279   }
 280   static uint32_t extended_cpu_model() {
 281     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 282     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 283     return result;
 284   }
 285   static uint32_t cpu_stepping() {
 286     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 287     return result;
 288   }
 289   static uint logical_processor_count() {
 290     uint result = threads_per_core();
 291     return result;
 292   }
 293   static uint32_t feature_flags() {
 294     uint32_t result = 0;
 295     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 296       result |= CPU_CX8;
 297     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 298       result |= CPU_CMOV;
 299     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 300         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 301       result |= CPU_FXSR;
 302     // HT flag is set for multi-core processors also.
 303     if (threads_per_core() > 1)
 304       result |= CPU_HT;
 305     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 306         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 307       result |= CPU_MMX;
 308     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 309       result |= CPU_SSE;
 310     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 311       result |= CPU_SSE2;
 312     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 313       result |= CPU_SSE3;
 314     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 315       result |= CPU_SSSE3;
 316     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 317       result |= CPU_SSE4_1;
 318     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 319       result |= CPU_SSE4_2;
 320     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 321       result |= CPU_POPCNT;
 322 
 323     // AMD features.
 324     if (is_amd()) {
 325       if (_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0)
 326         result |= CPU_3DNOW;
 327       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 328         result |= CPU_LZCNT;
 329       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 330         result |= CPU_SSE4A;
 331     }
 332 
 333     return result;
 334   }
 335 
 336   static void get_processor_features();
 337 
 338 public:
 339   // Offsets for cpuid asm stub
 340   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 341   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 342   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 343   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 344   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 345   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 346   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 347   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 348   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 349 
 350   // Initialization
 351   static void initialize();
 352 
 353   // Asserts
 354   static void assert_is_initialized() {
 355     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 356   }
 357 
 358   //
 359   // Processor family:
 360   //       3   -  386
 361   //       4   -  486
 362   //       5   -  Pentium
 363   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 364   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 365   //    family 6 model:   9,        13,       14,        15
 366   //    0x0f   -  Pentium 4, Opteron
 367   //
 368   // Note: The cpu family should be used to select between
 369   //       instruction sequences which are valid on all Intel
 370   //       processors.  Use the feature test functions below to
 371   //       determine whether a particular instruction is supported.
 372   //
 373   static int  cpu_family()        { return _cpu;}
 374   static bool is_P6()             { return cpu_family() >= 6; }
 375 
 376   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 377   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 378 
 379   static bool supports_processor_topology() {
 380     return (_cpuid_info.std_max_function >= 0xB) &&
 381            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 382            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 383            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 384   }
 385 
 386   static uint cores_per_cpu()  {
 387     uint result = 1;
 388     if (is_intel()) {
 389       if (supports_processor_topology()) {
 390         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 391                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 392       } else {
 393         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 394       }
 395     } else if (is_amd()) {
 396       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 397     }
 398     return result;
 399   }
 400 
 401   static uint threads_per_core()  {
 402     uint result = 1;
 403     if (is_intel() && supports_processor_topology()) {
 404       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 405     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 406       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 407                cores_per_cpu();
 408     }
 409     return result;
 410   }
 411 
 412   static intx L1_data_cache_line_size()  {
 413     intx result = 0;
 414     if (is_intel()) {
 415       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 416     } else if (is_amd()) {
 417       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 418     }
 419     if (result < 32) // not defined ?
 420       result = 32;   // 32 bytes by default on x86 and other x64
 421     return result;
 422   }
 423 
 424   //
 425   // Feature identification
 426   //
 427   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 428   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 429   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 430   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 431   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 432   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 433   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 434   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 435   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 436   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 437   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 438   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 439   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 440   //
 441   // AMD features
 442   //
 443   static bool supports_3dnow()    { return (_cpuFeatures & CPU_3DNOW) != 0; }
 444   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 445   static bool supports_3dnow2()   { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow2 != 0; }
 446   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 447   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 448 
 449   static bool supports_compare_and_exchange() { return true; }
 450 
 451   static const char* cpu_features()           { return _features_str; }
 452 
 453   static intx allocate_prefetch_distance() {
 454     // This method should be called before allocate_prefetch_style().
 455     //
 456     // Hardware prefetching (distance/size in bytes):
 457     // Pentium 3 -  64 /  32
 458     // Pentium 4 - 256 / 128
 459     // Athlon    -  64 /  32 ????
 460     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 461     // Core      - 128 /  64
 462     //
 463     // Software prefetching (distance in bytes / instruction with best score):
 464     // Pentium 3 - 128 / prefetchnta
 465     // Pentium 4 - 512 / prefetchnta
 466     // Athlon    - 128 / prefetchnta
 467     // Opteron   - 256 / prefetchnta
 468     // Core      - 256 / prefetchnta
 469     // It will be used only when AllocatePrefetchStyle > 0
 470 
 471     intx count = AllocatePrefetchDistance;
 472     if (count < 0) {   // default ?
 473       if (is_amd()) {  // AMD
 474         if (supports_sse2())
 475           count = 256; // Opteron
 476         else
 477           count = 128; // Athlon
 478       } else {         // Intel
 479         if (supports_sse2())
 480           if (cpu_family() == 6) {
 481             count = 256; // Pentium M, Core, Core2
 482           } else {
 483             count = 512; // Pentium 4
 484           }
 485         else
 486           count = 128; // Pentium 3 (and all other old CPUs)
 487       }
 488     }
 489     return count;
 490   }
 491   static intx allocate_prefetch_style() {
 492     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 493     // Return 0 if AllocatePrefetchDistance was not defined.
 494     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 495   }
 496 
 497   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 498   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 499   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 500   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 501 
 502   // gc copy/scan is disabled if prefetchw isn't supported, because
 503   // Prefetch::write emits an inlined prefetchw on Linux.
 504   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 505   // The used prefetcht0 instruction works for both amd64 and em64t.
 506   static intx prefetch_copy_interval_in_bytes() {
 507     intx interval = PrefetchCopyIntervalInBytes;
 508     return interval >= 0 ? interval : 576;
 509   }
 510   static intx prefetch_scan_interval_in_bytes() {
 511     intx interval = PrefetchScanIntervalInBytes;
 512     return interval >= 0 ? interval : 576;
 513   }
 514   static intx prefetch_fields_ahead() {
 515     intx count = PrefetchFieldsAhead;
 516     return count >= 0 ? count : 1;
 517   }
 518 };