1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // do not include  precompiled  header file
  28 # include "incls/_os_linux.cpp.incl"
  29 
  30 // put OS-includes here
  31 # include <sys/types.h>
  32 # include <sys/mman.h>
  33 # include <sys/stat.h>
  34 # include <sys/select.h>
  35 # include <pthread.h>
  36 # include <signal.h>
  37 # include <errno.h>
  38 # include <dlfcn.h>
  39 # include <stdio.h>
  40 # include <unistd.h>
  41 # include <sys/resource.h>
  42 # include <pthread.h>
  43 # include <sys/stat.h>
  44 # include <sys/time.h>
  45 # include <sys/times.h>
  46 # include <sys/utsname.h>
  47 # include <sys/socket.h>
  48 # include <sys/wait.h>
  49 # include <pwd.h>
  50 # include <poll.h>
  51 # include <semaphore.h>
  52 # include <fcntl.h>
  53 # include <string.h>
  54 # include <syscall.h>
  55 # include <sys/sysinfo.h>
  56 # include <gnu/libc-version.h>
  57 # include <sys/ipc.h>
  58 # include <sys/shm.h>
  59 # include <link.h>
  60 # include <stdint.h>
  61 # include <inttypes.h>
  62 
  63 #define MAX_PATH    (2 * K)
  64 
  65 // for timer info max values which include all bits
  66 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  67 #define SEC_IN_NANOSECS  1000000000LL
  68 
  69 ////////////////////////////////////////////////////////////////////////////////
  70 // global variables
  71 julong os::Linux::_physical_memory = 0;
  72 
  73 address   os::Linux::_initial_thread_stack_bottom = NULL;
  74 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
  75 
  76 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
  77 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
  78 Mutex* os::Linux::_createThread_lock = NULL;
  79 pthread_t os::Linux::_main_thread;
  80 int os::Linux::_page_size = -1;
  81 bool os::Linux::_is_floating_stack = false;
  82 bool os::Linux::_is_NPTL = false;
  83 bool os::Linux::_supports_fast_thread_cpu_time = false;
  84 const char * os::Linux::_glibc_version = NULL;
  85 const char * os::Linux::_libpthread_version = NULL;
  86 
  87 static jlong initial_time_count=0;
  88 
  89 static int clock_tics_per_sec = 100;
  90 
  91 // For diagnostics to print a message once. see run_periodic_checks
  92 static sigset_t check_signal_done;
  93 static bool check_signals = true;;
  94 
  95 static pid_t _initial_pid = 0;
  96 
  97 /* Signal number used to suspend/resume a thread */
  98 
  99 /* do not use any signal number less than SIGSEGV, see 4355769 */
 100 static int SR_signum = SIGUSR2;
 101 sigset_t SR_sigset;
 102 
 103 /* Used to protect dlsym() calls */
 104 static pthread_mutex_t dl_mutex;
 105 
 106 ////////////////////////////////////////////////////////////////////////////////
 107 // utility functions
 108 
 109 static int SR_initialize();
 110 static int SR_finalize();
 111 
 112 julong os::available_memory() {
 113   return Linux::available_memory();
 114 }
 115 
 116 julong os::Linux::available_memory() {
 117   // values in struct sysinfo are "unsigned long"
 118   struct sysinfo si;
 119   sysinfo(&si);
 120 
 121   return (julong)si.freeram * si.mem_unit;
 122 }
 123 
 124 julong os::physical_memory() {
 125   return Linux::physical_memory();
 126 }
 127 
 128 julong os::allocatable_physical_memory(julong size) {
 129 #ifdef _LP64
 130   return size;
 131 #else
 132   julong result = MIN2(size, (julong)3800*M);
 133    if (!is_allocatable(result)) {
 134      // See comments under solaris for alignment considerations
 135      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 136      result =  MIN2(size, reasonable_size);
 137    }
 138    return result;
 139 #endif // _LP64
 140 }
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // environment support
 144 
 145 bool os::getenv(const char* name, char* buf, int len) {
 146   const char* val = ::getenv(name);
 147   if (val != NULL && strlen(val) < (size_t)len) {
 148     strcpy(buf, val);
 149     return true;
 150   }
 151   if (len > 0) buf[0] = 0;  // return a null string
 152   return false;
 153 }
 154 
 155 
 156 // Return true if user is running as root.
 157 
 158 bool os::have_special_privileges() {
 159   static bool init = false;
 160   static bool privileges = false;
 161   if (!init) {
 162     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 163     init = true;
 164   }
 165   return privileges;
 166 }
 167 
 168 
 169 #ifndef SYS_gettid
 170 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 171 #ifdef __ia64__
 172 #define SYS_gettid 1105
 173 #elif __i386__
 174 #define SYS_gettid 224
 175 #elif __amd64__
 176 #define SYS_gettid 186
 177 #elif __sparc__
 178 #define SYS_gettid 143
 179 #else
 180 #error define gettid for the arch
 181 #endif
 182 #endif
 183 
 184 // Cpu architecture string
 185 #if   defined(ZERO)
 186 static char cpu_arch[] = ZERO_LIBARCH;
 187 #elif defined(IA64)
 188 static char cpu_arch[] = "ia64";
 189 #elif defined(IA32)
 190 static char cpu_arch[] = "i386";
 191 #elif defined(AMD64)
 192 static char cpu_arch[] = "amd64";
 193 #elif defined(ARM)
 194 static char cpu_arch[] = "arm";
 195 #elif defined(PPC)
 196 static char cpu_arch[] = "ppc";
 197 #elif defined(SPARC)
 198 #  ifdef _LP64
 199 static char cpu_arch[] = "sparcv9";
 200 #  else
 201 static char cpu_arch[] = "sparc";
 202 #  endif
 203 #else
 204 #error Add appropriate cpu_arch setting
 205 #endif
 206 
 207 
 208 // pid_t gettid()
 209 //
 210 // Returns the kernel thread id of the currently running thread. Kernel
 211 // thread id is used to access /proc.
 212 //
 213 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 214 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 215 //
 216 pid_t os::Linux::gettid() {
 217   int rslt = syscall(SYS_gettid);
 218   if (rslt == -1) {
 219      // old kernel, no NPTL support
 220      return getpid();
 221   } else {
 222      return (pid_t)rslt;
 223   }
 224 }
 225 
 226 // Most versions of linux have a bug where the number of processors are
 227 // determined by looking at the /proc file system.  In a chroot environment,
 228 // the system call returns 1.  This causes the VM to act as if it is
 229 // a single processor and elide locking (see is_MP() call).
 230 static bool unsafe_chroot_detected = false;
 231 static const char *unstable_chroot_error = "/proc file system not found.\n"
 232                      "Java may be unstable running multithreaded in a chroot "
 233                      "environment on Linux when /proc filesystem is not mounted.";
 234 
 235 void os::Linux::initialize_system_info() {
 236   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 237   if (processor_count() == 1) {
 238     pid_t pid = os::Linux::gettid();
 239     char fname[32];
 240     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 241     FILE *fp = fopen(fname, "r");
 242     if (fp == NULL) {
 243       unsafe_chroot_detected = true;
 244     } else {
 245       fclose(fp);
 246     }
 247   }
 248   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 249   assert(processor_count() > 0, "linux error");
 250 }
 251 
 252 void os::init_system_properties_values() {
 253 //  char arch[12];
 254 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 255 
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm[_g].so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 274   // it looks like libjvm[_g].so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // The next few definitions allow the code to be verbatim:
 283 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 284 #define getenv(n) ::getenv(n)
 285 
 286 /*
 287  * See ld(1):
 288  *      The linker uses the following search paths to locate required
 289  *      shared libraries:
 290  *        1: ...
 291  *        ...
 292  *        7: The default directories, normally /lib and /usr/lib.
 293  */
 294 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 295 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 296 #else
 297 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 298 #endif
 299 
 300 #define EXTENSIONS_DIR  "/lib/ext"
 301 #define ENDORSED_DIR    "/lib/endorsed"
 302 #define REG_DIR         "/usr/java/packages"
 303 
 304   {
 305     /* sysclasspath, java_home, dll_dir */
 306     {
 307         char *home_path;
 308         char *dll_path;
 309         char *pslash;
 310         char buf[MAXPATHLEN];
 311         os::jvm_path(buf, sizeof(buf));
 312 
 313         // Found the full path to libjvm.so.
 314         // Now cut the path to <java_home>/jre if we can.
 315         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 316         pslash = strrchr(buf, '/');
 317         if (pslash != NULL)
 318             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 319         dll_path = malloc(strlen(buf) + 1);
 320         if (dll_path == NULL)
 321             return;
 322         strcpy(dll_path, buf);
 323         Arguments::set_dll_dir(dll_path);
 324 
 325         if (pslash != NULL) {
 326             pslash = strrchr(buf, '/');
 327             if (pslash != NULL) {
 328                 *pslash = '\0';       /* get rid of /<arch> */
 329                 pslash = strrchr(buf, '/');
 330                 if (pslash != NULL)
 331                     *pslash = '\0';   /* get rid of /lib */
 332             }
 333         }
 334 
 335         home_path = malloc(strlen(buf) + 1);
 336         if (home_path == NULL)
 337             return;
 338         strcpy(home_path, buf);
 339         Arguments::set_java_home(home_path);
 340 
 341         if (!set_boot_path('/', ':'))
 342             return;
 343     }
 344 
 345     /*
 346      * Where to look for native libraries
 347      *
 348      * Note: Due to a legacy implementation, most of the library path
 349      * is set in the launcher.  This was to accomodate linking restrictions
 350      * on legacy Linux implementations (which are no longer supported).
 351      * Eventually, all the library path setting will be done here.
 352      *
 353      * However, to prevent the proliferation of improperly built native
 354      * libraries, the new path component /usr/java/packages is added here.
 355      * Eventually, all the library path setting will be done here.
 356      */
 357     {
 358         char *ld_library_path;
 359 
 360         /*
 361          * Construct the invariant part of ld_library_path. Note that the
 362          * space for the colon and the trailing null are provided by the
 363          * nulls included by the sizeof operator (so actually we allocate
 364          * a byte more than necessary).
 365          */
 366         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 367             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 368         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 369 
 370         /*
 371          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 372          * should always exist (until the legacy problem cited above is
 373          * addressed).
 374          */
 375         char *v = getenv("LD_LIBRARY_PATH");
 376         if (v != NULL) {
 377             char *t = ld_library_path;
 378             /* That's +1 for the colon and +1 for the trailing '\0' */
 379             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 380             sprintf(ld_library_path, "%s:%s", v, t);
 381         }
 382         Arguments::set_library_path(ld_library_path);
 383     }
 384 
 385     /*
 386      * Extensions directories.
 387      *
 388      * Note that the space for the colon and the trailing null are provided
 389      * by the nulls included by the sizeof operator (so actually one byte more
 390      * than necessary is allocated).
 391      */
 392     {
 393         char *buf = malloc(strlen(Arguments::get_java_home()) +
 394             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 395         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 396             Arguments::get_java_home());
 397         Arguments::set_ext_dirs(buf);
 398     }
 399 
 400     /* Endorsed standards default directory. */
 401     {
 402         char * buf;
 403         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 404         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 405         Arguments::set_endorsed_dirs(buf);
 406     }
 407   }
 408 
 409 #undef malloc
 410 #undef getenv
 411 #undef EXTENSIONS_DIR
 412 #undef ENDORSED_DIR
 413 
 414   // Done
 415   return;
 416 }
 417 
 418 ////////////////////////////////////////////////////////////////////////////////
 419 // breakpoint support
 420 
 421 void os::breakpoint() {
 422   BREAKPOINT;
 423 }
 424 
 425 extern "C" void breakpoint() {
 426   // use debugger to set breakpoint here
 427 }
 428 
 429 ////////////////////////////////////////////////////////////////////////////////
 430 // signal support
 431 
 432 debug_only(static bool signal_sets_initialized = false);
 433 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 434 
 435 bool os::Linux::is_sig_ignored(int sig) {
 436       struct sigaction oact;
 437       sigaction(sig, (struct sigaction*)NULL, &oact);
 438       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 439                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 440       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 441            return true;
 442       else
 443            return false;
 444 }
 445 
 446 void os::Linux::signal_sets_init() {
 447   // Should also have an assertion stating we are still single-threaded.
 448   assert(!signal_sets_initialized, "Already initialized");
 449   // Fill in signals that are necessarily unblocked for all threads in
 450   // the VM. Currently, we unblock the following signals:
 451   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 452   //                         by -Xrs (=ReduceSignalUsage));
 453   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 454   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 455   // the dispositions or masks wrt these signals.
 456   // Programs embedding the VM that want to use the above signals for their
 457   // own purposes must, at this time, use the "-Xrs" option to prevent
 458   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 459   // (See bug 4345157, and other related bugs).
 460   // In reality, though, unblocking these signals is really a nop, since
 461   // these signals are not blocked by default.
 462   sigemptyset(&unblocked_sigs);
 463   sigemptyset(&allowdebug_blocked_sigs);
 464   sigaddset(&unblocked_sigs, SIGILL);
 465   sigaddset(&unblocked_sigs, SIGSEGV);
 466   sigaddset(&unblocked_sigs, SIGBUS);
 467   sigaddset(&unblocked_sigs, SIGFPE);
 468   sigaddset(&unblocked_sigs, SR_signum);
 469 
 470   if (!ReduceSignalUsage) {
 471    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 472       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 473       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 474    }
 475    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 476       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 477       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 478    }
 479    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 480       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 481       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 482    }
 483   }
 484   // Fill in signals that are blocked by all but the VM thread.
 485   sigemptyset(&vm_sigs);
 486   if (!ReduceSignalUsage)
 487     sigaddset(&vm_sigs, BREAK_SIGNAL);
 488   debug_only(signal_sets_initialized = true);
 489 
 490 }
 491 
 492 // These are signals that are unblocked while a thread is running Java.
 493 // (For some reason, they get blocked by default.)
 494 sigset_t* os::Linux::unblocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &unblocked_sigs;
 497 }
 498 
 499 // These are the signals that are blocked while a (non-VM) thread is
 500 // running Java. Only the VM thread handles these signals.
 501 sigset_t* os::Linux::vm_signals() {
 502   assert(signal_sets_initialized, "Not initialized");
 503   return &vm_sigs;
 504 }
 505 
 506 // These are signals that are blocked during cond_wait to allow debugger in
 507 sigset_t* os::Linux::allowdebug_blocked_signals() {
 508   assert(signal_sets_initialized, "Not initialized");
 509   return &allowdebug_blocked_sigs;
 510 }
 511 
 512 void os::Linux::hotspot_sigmask(Thread* thread) {
 513 
 514   //Save caller's signal mask before setting VM signal mask
 515   sigset_t caller_sigmask;
 516   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 517 
 518   OSThread* osthread = thread->osthread();
 519   osthread->set_caller_sigmask(caller_sigmask);
 520 
 521   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 522 
 523   if (!ReduceSignalUsage) {
 524     if (thread->is_VM_thread()) {
 525       // Only the VM thread handles BREAK_SIGNAL ...
 526       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 527     } else {
 528       // ... all other threads block BREAK_SIGNAL
 529       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 530     }
 531   }
 532 }
 533 
 534 //////////////////////////////////////////////////////////////////////////////
 535 // detecting pthread library
 536 
 537 void os::Linux::libpthread_init() {
 538   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 539   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 540   // generic name for earlier versions.
 541   // Define macros here so we can build HotSpot on old systems.
 542 # ifndef _CS_GNU_LIBC_VERSION
 543 # define _CS_GNU_LIBC_VERSION 2
 544 # endif
 545 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 546 # define _CS_GNU_LIBPTHREAD_VERSION 3
 547 # endif
 548 
 549   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n);
 552      confstr(_CS_GNU_LIBC_VERSION, str, n);
 553      os::Linux::set_glibc_version(str);
 554   } else {
 555      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 556      static char _gnu_libc_version[32];
 557      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 558               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 559      os::Linux::set_glibc_version(_gnu_libc_version);
 560   }
 561 
 562   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 563   if (n > 0) {
 564      char *str = (char *)malloc(n);
 565      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 566      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 567      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 568      // is the case. LinuxThreads has a hard limit on max number of threads.
 569      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 570      // On the other hand, NPTL does not have such a limit, sysconf()
 571      // will return -1 and errno is not changed. Check if it is really NPTL.
 572      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 573          strstr(str, "NPTL") &&
 574          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 575        free(str);
 576        os::Linux::set_libpthread_version("linuxthreads");
 577      } else {
 578        os::Linux::set_libpthread_version(str);
 579      }
 580   } else {
 581     // glibc before 2.3.2 only has LinuxThreads.
 582     os::Linux::set_libpthread_version("linuxthreads");
 583   }
 584 
 585   if (strstr(libpthread_version(), "NPTL")) {
 586      os::Linux::set_is_NPTL();
 587   } else {
 588      os::Linux::set_is_LinuxThreads();
 589   }
 590 
 591   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 592   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 593   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 594      os::Linux::set_is_floating_stack();
 595   }
 596 }
 597 
 598 /////////////////////////////////////////////////////////////////////////////
 599 // thread stack
 600 
 601 // Force Linux kernel to expand current thread stack. If "bottom" is close
 602 // to the stack guard, caller should block all signals.
 603 //
 604 // MAP_GROWSDOWN:
 605 //   A special mmap() flag that is used to implement thread stacks. It tells
 606 //   kernel that the memory region should extend downwards when needed. This
 607 //   allows early versions of LinuxThreads to only mmap the first few pages
 608 //   when creating a new thread. Linux kernel will automatically expand thread
 609 //   stack as needed (on page faults).
 610 //
 611 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 612 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 613 //   region, it's hard to tell if the fault is due to a legitimate stack
 614 //   access or because of reading/writing non-exist memory (e.g. buffer
 615 //   overrun). As a rule, if the fault happens below current stack pointer,
 616 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 617 //   application (see Linux kernel fault.c).
 618 //
 619 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 620 //   stack overflow detection.
 621 //
 622 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 623 //   not use this flag. However, the stack of initial thread is not created
 624 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 625 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 626 //   and then attach the thread to JVM.
 627 //
 628 // To get around the problem and allow stack banging on Linux, we need to
 629 // manually expand thread stack after receiving the SIGSEGV.
 630 //
 631 // There are two ways to expand thread stack to address "bottom", we used
 632 // both of them in JVM before 1.5:
 633 //   1. adjust stack pointer first so that it is below "bottom", and then
 634 //      touch "bottom"
 635 //   2. mmap() the page in question
 636 //
 637 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 638 // if current sp is already near the lower end of page 101, and we need to
 639 // call mmap() to map page 100, it is possible that part of the mmap() frame
 640 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 641 // That will destroy the mmap() frame and cause VM to crash.
 642 //
 643 // The following code works by adjusting sp first, then accessing the "bottom"
 644 // page to force a page fault. Linux kernel will then automatically expand the
 645 // stack mapping.
 646 //
 647 // _expand_stack_to() assumes its frame size is less than page size, which
 648 // should always be true if the function is not inlined.
 649 
 650 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 651 #define NOINLINE
 652 #else
 653 #define NOINLINE __attribute__ ((noinline))
 654 #endif
 655 
 656 static void _expand_stack_to(address bottom) NOINLINE;
 657 
 658 static void _expand_stack_to(address bottom) {
 659   address sp;
 660   size_t size;
 661   volatile char *p;
 662 
 663   // Adjust bottom to point to the largest address within the same page, it
 664   // gives us a one-page buffer if alloca() allocates slightly more memory.
 665   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 666   bottom += os::Linux::page_size() - 1;
 667 
 668   // sp might be slightly above current stack pointer; if that's the case, we
 669   // will alloca() a little more space than necessary, which is OK. Don't use
 670   // os::current_stack_pointer(), as its result can be slightly below current
 671   // stack pointer, causing us to not alloca enough to reach "bottom".
 672   sp = (address)&sp;
 673 
 674   if (sp > bottom) {
 675     size = sp - bottom;
 676     p = (volatile char *)alloca(size);
 677     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 678     p[0] = '\0';
 679   }
 680 }
 681 
 682 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 683   assert(t!=NULL, "just checking");
 684   assert(t->osthread()->expanding_stack(), "expand should be set");
 685   assert(t->stack_base() != NULL, "stack_base was not initialized");
 686 
 687   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 688     sigset_t mask_all, old_sigset;
 689     sigfillset(&mask_all);
 690     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 691     _expand_stack_to(addr);
 692     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 693     return true;
 694   }
 695   return false;
 696 }
 697 
 698 //////////////////////////////////////////////////////////////////////////////
 699 // create new thread
 700 
 701 static address highest_vm_reserved_address();
 702 
 703 // check if it's safe to start a new thread
 704 static bool _thread_safety_check(Thread* thread) {
 705   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 706     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 707     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 708     //   allocated (MAP_FIXED) from high address space. Every thread stack
 709     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 710     //   it to other values if they rebuild LinuxThreads).
 711     //
 712     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 713     // the memory region has already been mmap'ed. That means if we have too
 714     // many threads and/or very large heap, eventually thread stack will
 715     // collide with heap.
 716     //
 717     // Here we try to prevent heap/stack collision by comparing current
 718     // stack bottom with the highest address that has been mmap'ed by JVM
 719     // plus a safety margin for memory maps created by native code.
 720     //
 721     // This feature can be disabled by setting ThreadSafetyMargin to 0
 722     //
 723     if (ThreadSafetyMargin > 0) {
 724       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 725 
 726       // not safe if our stack extends below the safety margin
 727       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 728     } else {
 729       return true;
 730     }
 731   } else {
 732     // Floating stack LinuxThreads or NPTL:
 733     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 734     //   there's not enough space left, pthread_create() will fail. If we come
 735     //   here, that means enough space has been reserved for stack.
 736     return true;
 737   }
 738 }
 739 
 740 // Thread start routine for all newly created threads
 741 static void *java_start(Thread *thread) {
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   ThreadLocalStorage::set_thread(thread);
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   // non floating stack LinuxThreads needs extra check, see above
 757   if (!_thread_safety_check(thread)) {
 758     // notify parent thread
 759     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 760     osthread->set_state(ZOMBIE);
 761     sync->notify_all();
 762     return NULL;
 763   }
 764 
 765   // thread_id is kernel thread id (similar to Solaris LWP id)
 766   osthread->set_thread_id(os::Linux::gettid());
 767 
 768   if (UseNUMA) {
 769     int lgrp_id = os::numa_get_group_id();
 770     if (lgrp_id != -1) {
 771       thread->set_lgrp_id(lgrp_id);
 772     }
 773   }
 774   // initialize signal mask for this thread
 775   os::Linux::hotspot_sigmask(thread);
 776 
 777   // initialize floating point control register
 778   os::Linux::init_thread_fpu_state();
 779 
 780   // handshaking with parent thread
 781   {
 782     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 783 
 784     // notify parent thread
 785     osthread->set_state(INITIALIZED);
 786     sync->notify_all();
 787 
 788     // wait until os::start_thread()
 789     while (osthread->get_state() == INITIALIZED) {
 790       sync->wait(Mutex::_no_safepoint_check_flag);
 791     }
 792   }
 793 
 794   // call one more level start routine
 795   thread->run();
 796 
 797   return 0;
 798 }
 799 
 800 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 801   assert(thread->osthread() == NULL, "caller responsible");
 802 
 803   // Allocate the OSThread object
 804   OSThread* osthread = new OSThread(NULL, NULL);
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // set the correct thread state
 810   osthread->set_thread_type(thr_type);
 811 
 812   // Initial state is ALLOCATED but not INITIALIZED
 813   osthread->set_state(ALLOCATED);
 814 
 815   thread->set_osthread(osthread);
 816 
 817   // init thread attributes
 818   pthread_attr_t attr;
 819   pthread_attr_init(&attr);
 820   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 821 
 822   // stack size
 823   if (os::Linux::supports_variable_stack_size()) {
 824     // calculate stack size if it's not specified by caller
 825     if (stack_size == 0) {
 826       stack_size = os::Linux::default_stack_size(thr_type);
 827 
 828       switch (thr_type) {
 829       case os::java_thread:
 830         // Java threads use ThreadStackSize which default value can be
 831         // changed with the flag -Xss
 832         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 833         stack_size = JavaThread::stack_size_at_create();
 834         break;
 835       case os::compiler_thread:
 836         if (CompilerThreadStackSize > 0) {
 837           stack_size = (size_t)(CompilerThreadStackSize * K);
 838           break;
 839         } // else fall through:
 840           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 841       case os::vm_thread:
 842       case os::pgc_thread:
 843       case os::cgc_thread:
 844       case os::watcher_thread:
 845         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 846         break;
 847       }
 848     }
 849 
 850     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 851     pthread_attr_setstacksize(&attr, stack_size);
 852   } else {
 853     // let pthread_create() pick the default value.
 854   }
 855 
 856   // glibc guard page
 857   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 858 
 859   ThreadState state;
 860 
 861   {
 862     // Serialize thread creation if we are running with fixed stack LinuxThreads
 863     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 864     if (lock) {
 865       os::Linux::createThread_lock()->lock_without_safepoint_check();
 866     }
 867 
 868     pthread_t tid;
 869     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 870 
 871     pthread_attr_destroy(&attr);
 872 
 873     if (ret != 0) {
 874       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 875         perror("pthread_create()");
 876       }
 877       // Need to clean up stuff we've allocated so far
 878       thread->set_osthread(NULL);
 879       delete osthread;
 880       if (lock) os::Linux::createThread_lock()->unlock();
 881       return false;
 882     }
 883 
 884     // Store pthread info into the OSThread
 885     osthread->set_pthread_id(tid);
 886 
 887     // Wait until child thread is either initialized or aborted
 888     {
 889       Monitor* sync_with_child = osthread->startThread_lock();
 890       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 891       while ((state = osthread->get_state()) == ALLOCATED) {
 892         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 893       }
 894     }
 895 
 896     if (lock) {
 897       os::Linux::createThread_lock()->unlock();
 898     }
 899   }
 900 
 901   // Aborted due to thread limit being reached
 902   if (state == ZOMBIE) {
 903       thread->set_osthread(NULL);
 904       delete osthread;
 905       return false;
 906   }
 907 
 908   // The thread is returned suspended (in state INITIALIZED),
 909   // and is started higher up in the call chain
 910   assert(state == INITIALIZED, "race condition");
 911   return true;
 912 }
 913 
 914 /////////////////////////////////////////////////////////////////////////////
 915 // attach existing thread
 916 
 917 // bootstrap the main thread
 918 bool os::create_main_thread(JavaThread* thread) {
 919   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 920   return create_attached_thread(thread);
 921 }
 922 
 923 bool os::create_attached_thread(JavaThread* thread) {
 924 #ifdef ASSERT
 925     thread->verify_not_published();
 926 #endif
 927 
 928   // Allocate the OSThread object
 929   OSThread* osthread = new OSThread(NULL, NULL);
 930 
 931   if (osthread == NULL) {
 932     return false;
 933   }
 934 
 935   // Store pthread info into the OSThread
 936   osthread->set_thread_id(os::Linux::gettid());
 937   osthread->set_pthread_id(::pthread_self());
 938 
 939   // initialize floating point control register
 940   os::Linux::init_thread_fpu_state();
 941 
 942   // Initial thread state is RUNNABLE
 943   osthread->set_state(RUNNABLE);
 944 
 945   thread->set_osthread(osthread);
 946 
 947   if (UseNUMA) {
 948     int lgrp_id = os::numa_get_group_id();
 949     if (lgrp_id != -1) {
 950       thread->set_lgrp_id(lgrp_id);
 951     }
 952   }
 953 
 954   if (os::Linux::is_initial_thread()) {
 955     // If current thread is initial thread, its stack is mapped on demand,
 956     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 957     // the entire stack region to avoid SEGV in stack banging.
 958     // It is also useful to get around the heap-stack-gap problem on SuSE
 959     // kernel (see 4821821 for details). We first expand stack to the top
 960     // of yellow zone, then enable stack yellow zone (order is significant,
 961     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 962     // is no gap between the last two virtual memory regions.
 963 
 964     JavaThread *jt = (JavaThread *)thread;
 965     address addr = jt->stack_yellow_zone_base();
 966     assert(addr != NULL, "initialization problem?");
 967     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 968 
 969     osthread->set_expanding_stack();
 970     os::Linux::manually_expand_stack(jt, addr);
 971     osthread->clear_expanding_stack();
 972   }
 973 
 974   // initialize signal mask for this thread
 975   // and save the caller's signal mask
 976   os::Linux::hotspot_sigmask(thread);
 977 
 978   return true;
 979 }
 980 
 981 void os::pd_start_thread(Thread* thread) {
 982   OSThread * osthread = thread->osthread();
 983   assert(osthread->get_state() != INITIALIZED, "just checking");
 984   Monitor* sync_with_child = osthread->startThread_lock();
 985   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 986   sync_with_child->notify();
 987 }
 988 
 989 // Free Linux resources related to the OSThread
 990 void os::free_thread(OSThread* osthread) {
 991   assert(osthread != NULL, "osthread not set");
 992 
 993   if (Thread::current()->osthread() == osthread) {
 994     // Restore caller's signal mask
 995     sigset_t sigmask = osthread->caller_sigmask();
 996     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 997    }
 998 
 999   delete osthread;
1000 }
1001 
1002 //////////////////////////////////////////////////////////////////////////////
1003 // thread local storage
1004 
1005 int os::allocate_thread_local_storage() {
1006   pthread_key_t key;
1007   int rslt = pthread_key_create(&key, NULL);
1008   assert(rslt == 0, "cannot allocate thread local storage");
1009   return (int)key;
1010 }
1011 
1012 // Note: This is currently not used by VM, as we don't destroy TLS key
1013 // on VM exit.
1014 void os::free_thread_local_storage(int index) {
1015   int rslt = pthread_key_delete((pthread_key_t)index);
1016   assert(rslt == 0, "invalid index");
1017 }
1018 
1019 void os::thread_local_storage_at_put(int index, void* value) {
1020   int rslt = pthread_setspecific((pthread_key_t)index, value);
1021   assert(rslt == 0, "pthread_setspecific failed");
1022 }
1023 
1024 extern "C" Thread* get_thread() {
1025   return ThreadLocalStorage::thread();
1026 }
1027 
1028 //////////////////////////////////////////////////////////////////////////////
1029 // initial thread
1030 
1031 // Check if current thread is the initial thread, similar to Solaris thr_main.
1032 bool os::Linux::is_initial_thread(void) {
1033   char dummy;
1034   // If called before init complete, thread stack bottom will be null.
1035   // Can be called if fatal error occurs before initialization.
1036   if (initial_thread_stack_bottom() == NULL) return false;
1037   assert(initial_thread_stack_bottom() != NULL &&
1038          initial_thread_stack_size()   != 0,
1039          "os::init did not locate initial thread's stack region");
1040   if ((address)&dummy >= initial_thread_stack_bottom() &&
1041       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1042        return true;
1043   else return false;
1044 }
1045 
1046 // Find the virtual memory area that contains addr
1047 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1048   FILE *fp = fopen("/proc/self/maps", "r");
1049   if (fp) {
1050     address low, high;
1051     while (!feof(fp)) {
1052       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1053         if (low <= addr && addr < high) {
1054            if (vma_low)  *vma_low  = low;
1055            if (vma_high) *vma_high = high;
1056            fclose (fp);
1057            return true;
1058         }
1059       }
1060       for (;;) {
1061         int ch = fgetc(fp);
1062         if (ch == EOF || ch == (int)'\n') break;
1063       }
1064     }
1065     fclose(fp);
1066   }
1067   return false;
1068 }
1069 
1070 // Locate initial thread stack. This special handling of initial thread stack
1071 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1072 // bogus value for initial thread.
1073 void os::Linux::capture_initial_stack(size_t max_size) {
1074   // stack size is the easy part, get it from RLIMIT_STACK
1075   size_t stack_size;
1076   struct rlimit rlim;
1077   getrlimit(RLIMIT_STACK, &rlim);
1078   stack_size = rlim.rlim_cur;
1079 
1080   // 6308388: a bug in ld.so will relocate its own .data section to the
1081   //   lower end of primordial stack; reduce ulimit -s value a little bit
1082   //   so we won't install guard page on ld.so's data section.
1083   stack_size -= 2 * page_size();
1084 
1085   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1086   //   7.1, in both cases we will get 2G in return value.
1087   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1088   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1089   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1090   //   in case other parts in glibc still assumes 2M max stack size.
1091   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1092 #ifndef IA64
1093   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1094 #else
1095   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1096   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1097 #endif
1098 
1099   // Try to figure out where the stack base (top) is. This is harder.
1100   //
1101   // When an application is started, glibc saves the initial stack pointer in
1102   // a global variable "__libc_stack_end", which is then used by system
1103   // libraries. __libc_stack_end should be pretty close to stack top. The
1104   // variable is available since the very early days. However, because it is
1105   // a private interface, it could disappear in the future.
1106   //
1107   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1108   // to __libc_stack_end, it is very close to stack top, but isn't the real
1109   // stack top. Note that /proc may not exist if VM is running as a chroot
1110   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1111   // /proc/<pid>/stat could change in the future (though unlikely).
1112   //
1113   // We try __libc_stack_end first. If that doesn't work, look for
1114   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1115   // as a hint, which should work well in most cases.
1116 
1117   uintptr_t stack_start;
1118 
1119   // try __libc_stack_end first
1120   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1121   if (p && *p) {
1122     stack_start = *p;
1123   } else {
1124     // see if we can get the start_stack field from /proc/self/stat
1125     FILE *fp;
1126     int pid;
1127     char state;
1128     int ppid;
1129     int pgrp;
1130     int session;
1131     int nr;
1132     int tpgrp;
1133     unsigned long flags;
1134     unsigned long minflt;
1135     unsigned long cminflt;
1136     unsigned long majflt;
1137     unsigned long cmajflt;
1138     unsigned long utime;
1139     unsigned long stime;
1140     long cutime;
1141     long cstime;
1142     long prio;
1143     long nice;
1144     long junk;
1145     long it_real;
1146     uintptr_t start;
1147     uintptr_t vsize;
1148     intptr_t rss;
1149     uintptr_t rsslim;
1150     uintptr_t scodes;
1151     uintptr_t ecode;
1152     int i;
1153 
1154     // Figure what the primordial thread stack base is. Code is inspired
1155     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1156     // followed by command name surrounded by parentheses, state, etc.
1157     char stat[2048];
1158     int statlen;
1159 
1160     fp = fopen("/proc/self/stat", "r");
1161     if (fp) {
1162       statlen = fread(stat, 1, 2047, fp);
1163       stat[statlen] = '\0';
1164       fclose(fp);
1165 
1166       // Skip pid and the command string. Note that we could be dealing with
1167       // weird command names, e.g. user could decide to rename java launcher
1168       // to "java 1.4.2 :)", then the stat file would look like
1169       //                1234 (java 1.4.2 :)) R ... ...
1170       // We don't really need to know the command string, just find the last
1171       // occurrence of ")" and then start parsing from there. See bug 4726580.
1172       char * s = strrchr(stat, ')');
1173 
1174       i = 0;
1175       if (s) {
1176         // Skip blank chars
1177         do s++; while (isspace(*s));
1178 
1179 #define _UFM UINTX_FORMAT
1180 #define _DFM INTX_FORMAT
1181 
1182         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1183         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1184         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1185              &state,          /* 3  %c  */
1186              &ppid,           /* 4  %d  */
1187              &pgrp,           /* 5  %d  */
1188              &session,        /* 6  %d  */
1189              &nr,             /* 7  %d  */
1190              &tpgrp,          /* 8  %d  */
1191              &flags,          /* 9  %lu  */
1192              &minflt,         /* 10 %lu  */
1193              &cminflt,        /* 11 %lu  */
1194              &majflt,         /* 12 %lu  */
1195              &cmajflt,        /* 13 %lu  */
1196              &utime,          /* 14 %lu  */
1197              &stime,          /* 15 %lu  */
1198              &cutime,         /* 16 %ld  */
1199              &cstime,         /* 17 %ld  */
1200              &prio,           /* 18 %ld  */
1201              &nice,           /* 19 %ld  */
1202              &junk,           /* 20 %ld  */
1203              &it_real,        /* 21 %ld  */
1204              &start,          /* 22 UINTX_FORMAT */
1205              &vsize,          /* 23 UINTX_FORMAT */
1206              &rss,            /* 24 INTX_FORMAT  */
1207              &rsslim,         /* 25 UINTX_FORMAT */
1208              &scodes,         /* 26 UINTX_FORMAT */
1209              &ecode,          /* 27 UINTX_FORMAT */
1210              &stack_start);   /* 28 UINTX_FORMAT */
1211       }
1212 
1213 #undef _UFM
1214 #undef _DFM
1215 
1216       if (i != 28 - 2) {
1217          assert(false, "Bad conversion from /proc/self/stat");
1218          // product mode - assume we are the initial thread, good luck in the
1219          // embedded case.
1220          warning("Can't detect initial thread stack location - bad conversion");
1221          stack_start = (uintptr_t) &rlim;
1222       }
1223     } else {
1224       // For some reason we can't open /proc/self/stat (for example, running on
1225       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1226       // most cases, so don't abort:
1227       warning("Can't detect initial thread stack location - no /proc/self/stat");
1228       stack_start = (uintptr_t) &rlim;
1229     }
1230   }
1231 
1232   // Now we have a pointer (stack_start) very close to the stack top, the
1233   // next thing to do is to figure out the exact location of stack top. We
1234   // can find out the virtual memory area that contains stack_start by
1235   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1236   // and its upper limit is the real stack top. (again, this would fail if
1237   // running inside chroot, because /proc may not exist.)
1238 
1239   uintptr_t stack_top;
1240   address low, high;
1241   if (find_vma((address)stack_start, &low, &high)) {
1242     // success, "high" is the true stack top. (ignore "low", because initial
1243     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1244     stack_top = (uintptr_t)high;
1245   } else {
1246     // failed, likely because /proc/self/maps does not exist
1247     warning("Can't detect initial thread stack location - find_vma failed");
1248     // best effort: stack_start is normally within a few pages below the real
1249     // stack top, use it as stack top, and reduce stack size so we won't put
1250     // guard page outside stack.
1251     stack_top = stack_start;
1252     stack_size -= 16 * page_size();
1253   }
1254 
1255   // stack_top could be partially down the page so align it
1256   stack_top = align_size_up(stack_top, page_size());
1257 
1258   if (max_size && stack_size > max_size) {
1259      _initial_thread_stack_size = max_size;
1260   } else {
1261      _initial_thread_stack_size = stack_size;
1262   }
1263 
1264   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1265   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1266 }
1267 
1268 ////////////////////////////////////////////////////////////////////////////////
1269 // time support
1270 
1271 // Time since start-up in seconds to a fine granularity.
1272 // Used by VMSelfDestructTimer and the MemProfiler.
1273 double os::elapsedTime() {
1274 
1275   return (double)(os::elapsed_counter()) * 0.000001;
1276 }
1277 
1278 jlong os::elapsed_counter() {
1279   timeval time;
1280   int status = gettimeofday(&time, NULL);
1281   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1282 }
1283 
1284 jlong os::elapsed_frequency() {
1285   return (1000 * 1000);
1286 }
1287 
1288 // For now, we say that linux does not support vtime.  I have no idea
1289 // whether it can actually be made to (DLD, 9/13/05).
1290 
1291 bool os::supports_vtime() { return false; }
1292 bool os::enable_vtime()   { return false; }
1293 bool os::vtime_enabled()  { return false; }
1294 double os::elapsedVTime() {
1295   // better than nothing, but not much
1296   return elapsedTime();
1297 }
1298 
1299 jlong os::javaTimeMillis() {
1300   timeval time;
1301   int status = gettimeofday(&time, NULL);
1302   assert(status != -1, "linux error");
1303   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1304 }
1305 
1306 #ifndef CLOCK_MONOTONIC
1307 #define CLOCK_MONOTONIC (1)
1308 #endif
1309 
1310 void os::Linux::clock_init() {
1311   // we do dlopen's in this particular order due to bug in linux
1312   // dynamical loader (see 6348968) leading to crash on exit
1313   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1314   if (handle == NULL) {
1315     handle = dlopen("librt.so", RTLD_LAZY);
1316   }
1317 
1318   if (handle) {
1319     int (*clock_getres_func)(clockid_t, struct timespec*) =
1320            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1321     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1322            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1323     if (clock_getres_func && clock_gettime_func) {
1324       // See if monotonic clock is supported by the kernel. Note that some
1325       // early implementations simply return kernel jiffies (updated every
1326       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1327       // for nano time (though the monotonic property is still nice to have).
1328       // It's fixed in newer kernels, however clock_getres() still returns
1329       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1330       // resolution for now. Hopefully as people move to new kernels, this
1331       // won't be a problem.
1332       struct timespec res;
1333       struct timespec tp;
1334       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1335           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1336         // yes, monotonic clock is supported
1337         _clock_gettime = clock_gettime_func;
1338       } else {
1339         // close librt if there is no monotonic clock
1340         dlclose(handle);
1341       }
1342     }
1343   }
1344 }
1345 
1346 #ifndef SYS_clock_getres
1347 
1348 #if defined(IA32) || defined(AMD64)
1349 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1350 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1351 #else
1352 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1353 #define sys_clock_getres(x,y)  -1
1354 #endif
1355 
1356 #else
1357 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1358 #endif
1359 
1360 void os::Linux::fast_thread_clock_init() {
1361   if (!UseLinuxPosixThreadCPUClocks) {
1362     return;
1363   }
1364   clockid_t clockid;
1365   struct timespec tp;
1366   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1367       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1368 
1369   // Switch to using fast clocks for thread cpu time if
1370   // the sys_clock_getres() returns 0 error code.
1371   // Note, that some kernels may support the current thread
1372   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1373   // returned by the pthread_getcpuclockid().
1374   // If the fast Posix clocks are supported then the sys_clock_getres()
1375   // must return at least tp.tv_sec == 0 which means a resolution
1376   // better than 1 sec. This is extra check for reliability.
1377 
1378   if(pthread_getcpuclockid_func &&
1379      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1380      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1381 
1382     _supports_fast_thread_cpu_time = true;
1383     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1384   }
1385 }
1386 
1387 jlong os::javaTimeNanos() {
1388   if (Linux::supports_monotonic_clock()) {
1389     struct timespec tp;
1390     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1391     assert(status == 0, "gettime error");
1392     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1393     return result;
1394   } else {
1395     timeval time;
1396     int status = gettimeofday(&time, NULL);
1397     assert(status != -1, "linux error");
1398     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1399     return 1000 * usecs;
1400   }
1401 }
1402 
1403 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1404   if (Linux::supports_monotonic_clock()) {
1405     info_ptr->max_value = ALL_64_BITS;
1406 
1407     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1408     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1409     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1410   } else {
1411     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1412     info_ptr->max_value = ALL_64_BITS;
1413 
1414     // gettimeofday is a real time clock so it skips
1415     info_ptr->may_skip_backward = true;
1416     info_ptr->may_skip_forward = true;
1417   }
1418 
1419   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1420 }
1421 
1422 // Return the real, user, and system times in seconds from an
1423 // arbitrary fixed point in the past.
1424 bool os::getTimesSecs(double* process_real_time,
1425                       double* process_user_time,
1426                       double* process_system_time) {
1427   struct tms ticks;
1428   clock_t real_ticks = times(&ticks);
1429 
1430   if (real_ticks == (clock_t) (-1)) {
1431     return false;
1432   } else {
1433     double ticks_per_second = (double) clock_tics_per_sec;
1434     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1435     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1436     *process_real_time = ((double) real_ticks) / ticks_per_second;
1437 
1438     return true;
1439   }
1440 }
1441 
1442 
1443 char * os::local_time_string(char *buf, size_t buflen) {
1444   struct tm t;
1445   time_t long_time;
1446   time(&long_time);
1447   localtime_r(&long_time, &t);
1448   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1449                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1450                t.tm_hour, t.tm_min, t.tm_sec);
1451   return buf;
1452 }
1453 
1454 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1455   return localtime_r(clock, res);
1456 }
1457 
1458 ////////////////////////////////////////////////////////////////////////////////
1459 // runtime exit support
1460 
1461 // Note: os::shutdown() might be called very early during initialization, or
1462 // called from signal handler. Before adding something to os::shutdown(), make
1463 // sure it is async-safe and can handle partially initialized VM.
1464 void os::shutdown() {
1465 
1466   // allow PerfMemory to attempt cleanup of any persistent resources
1467   perfMemory_exit();
1468 
1469   // needs to remove object in file system
1470   AttachListener::abort();
1471 
1472   // flush buffered output, finish log files
1473   ostream_abort();
1474 
1475   // Check for abort hook
1476   abort_hook_t abort_hook = Arguments::abort_hook();
1477   if (abort_hook != NULL) {
1478     abort_hook();
1479   }
1480 
1481 }
1482 
1483 // Note: os::abort() might be called very early during initialization, or
1484 // called from signal handler. Before adding something to os::abort(), make
1485 // sure it is async-safe and can handle partially initialized VM.
1486 void os::abort(bool dump_core) {
1487   os::shutdown();
1488   if (dump_core) {
1489 #ifndef PRODUCT
1490     fdStream out(defaultStream::output_fd());
1491     out.print_raw("Current thread is ");
1492     char buf[16];
1493     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1494     out.print_raw_cr(buf);
1495     out.print_raw_cr("Dumping core ...");
1496 #endif
1497     ::abort(); // dump core
1498   }
1499 
1500   ::exit(1);
1501 }
1502 
1503 // Die immediately, no exit hook, no abort hook, no cleanup.
1504 void os::die() {
1505   // _exit() on LinuxThreads only kills current thread
1506   ::abort();
1507 }
1508 
1509 // unused on linux for now.
1510 void os::set_error_file(const char *logfile) {}
1511 
1512 intx os::current_thread_id() { return (intx)pthread_self(); }
1513 int os::current_process_id() {
1514 
1515   // Under the old linux thread library, linux gives each thread
1516   // its own process id. Because of this each thread will return
1517   // a different pid if this method were to return the result
1518   // of getpid(2). Linux provides no api that returns the pid
1519   // of the launcher thread for the vm. This implementation
1520   // returns a unique pid, the pid of the launcher thread
1521   // that starts the vm 'process'.
1522 
1523   // Under the NPTL, getpid() returns the same pid as the
1524   // launcher thread rather than a unique pid per thread.
1525   // Use gettid() if you want the old pre NPTL behaviour.
1526 
1527   // if you are looking for the result of a call to getpid() that
1528   // returns a unique pid for the calling thread, then look at the
1529   // OSThread::thread_id() method in osThread_linux.hpp file
1530 
1531   return (int)(_initial_pid ? _initial_pid : getpid());
1532 }
1533 
1534 // DLL functions
1535 
1536 const char* os::dll_file_extension() { return ".so"; }
1537 
1538 const char* os::get_temp_directory() {
1539   const char *prop = Arguments::get_property("java.io.tmpdir");
1540   return prop == NULL ? "/tmp" : prop;
1541 }
1542 
1543 static bool file_exists(const char* filename) {
1544   struct stat statbuf;
1545   if (filename == NULL || strlen(filename) == 0) {
1546     return false;
1547   }
1548   return os::stat(filename, &statbuf) == 0;
1549 }
1550 
1551 void os::dll_build_name(char* buffer, size_t buflen,
1552                         const char* pname, const char* fname) {
1553   // Copied from libhpi
1554   const size_t pnamelen = pname ? strlen(pname) : 0;
1555 
1556   // Quietly truncate on buffer overflow.  Should be an error.
1557   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1558       *buffer = '\0';
1559       return;
1560   }
1561 
1562   if (pnamelen == 0) {
1563     snprintf(buffer, buflen, "lib%s.so", fname);
1564   } else if (strchr(pname, *os::path_separator()) != NULL) {
1565     int n;
1566     char** pelements = split_path(pname, &n);
1567     for (int i = 0 ; i < n ; i++) {
1568       // Really shouldn't be NULL, but check can't hurt
1569       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1570         continue; // skip the empty path values
1571       }
1572       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1573       if (file_exists(buffer)) {
1574         break;
1575       }
1576     }
1577     // release the storage
1578     for (int i = 0 ; i < n ; i++) {
1579       if (pelements[i] != NULL) {
1580         FREE_C_HEAP_ARRAY(char, pelements[i]);
1581       }
1582     }
1583     if (pelements != NULL) {
1584       FREE_C_HEAP_ARRAY(char*, pelements);
1585     }
1586   } else {
1587     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1588   }
1589 }
1590 
1591 const char* os::get_current_directory(char *buf, int buflen) {
1592   return getcwd(buf, buflen);
1593 }
1594 
1595 // check if addr is inside libjvm[_g].so
1596 bool os::address_is_in_vm(address addr) {
1597   static address libjvm_base_addr;
1598   Dl_info dlinfo;
1599 
1600   if (libjvm_base_addr == NULL) {
1601     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1602     libjvm_base_addr = (address)dlinfo.dli_fbase;
1603     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1604   }
1605 
1606   if (dladdr((void *)addr, &dlinfo)) {
1607     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1608   }
1609 
1610   return false;
1611 }
1612 
1613 bool os::dll_address_to_function_name(address addr, char *buf,
1614                                       int buflen, int *offset) {
1615   Dl_info dlinfo;
1616 
1617   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1618     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1619     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1620     return true;
1621   } else {
1622     if (buf) buf[0] = '\0';
1623     if (offset) *offset = -1;
1624     return false;
1625   }
1626 }
1627 
1628 struct _address_to_library_name {
1629   address addr;          // input : memory address
1630   size_t  buflen;        //         size of fname
1631   char*   fname;         // output: library name
1632   address base;          //         library base addr
1633 };
1634 
1635 static int address_to_library_name_callback(struct dl_phdr_info *info,
1636                                             size_t size, void *data) {
1637   int i;
1638   bool found = false;
1639   address libbase = NULL;
1640   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1641 
1642   // iterate through all loadable segments
1643   for (i = 0; i < info->dlpi_phnum; i++) {
1644     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1645     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1646       // base address of a library is the lowest address of its loaded
1647       // segments.
1648       if (libbase == NULL || libbase > segbase) {
1649         libbase = segbase;
1650       }
1651       // see if 'addr' is within current segment
1652       if (segbase <= d->addr &&
1653           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1654         found = true;
1655       }
1656     }
1657   }
1658 
1659   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1660   // so dll_address_to_library_name() can fall through to use dladdr() which
1661   // can figure out executable name from argv[0].
1662   if (found && info->dlpi_name && info->dlpi_name[0]) {
1663     d->base = libbase;
1664     if (d->fname) {
1665       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1666     }
1667     return 1;
1668   }
1669   return 0;
1670 }
1671 
1672 bool os::dll_address_to_library_name(address addr, char* buf,
1673                                      int buflen, int* offset) {
1674   Dl_info dlinfo;
1675   struct _address_to_library_name data;
1676 
1677   // There is a bug in old glibc dladdr() implementation that it could resolve
1678   // to wrong library name if the .so file has a base address != NULL. Here
1679   // we iterate through the program headers of all loaded libraries to find
1680   // out which library 'addr' really belongs to. This workaround can be
1681   // removed once the minimum requirement for glibc is moved to 2.3.x.
1682   data.addr = addr;
1683   data.fname = buf;
1684   data.buflen = buflen;
1685   data.base = NULL;
1686   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1687 
1688   if (rslt) {
1689      // buf already contains library name
1690      if (offset) *offset = addr - data.base;
1691      return true;
1692   } else if (dladdr((void*)addr, &dlinfo)){
1693      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1694      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1695      return true;
1696   } else {
1697      if (buf) buf[0] = '\0';
1698      if (offset) *offset = -1;
1699      return false;
1700   }
1701 }
1702 
1703   // Loads .dll/.so and
1704   // in case of error it checks if .dll/.so was built for the
1705   // same architecture as Hotspot is running on
1706 
1707 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1708 {
1709   void * result= ::dlopen(filename, RTLD_LAZY);
1710   if (result != NULL) {
1711     // Successful loading
1712     return result;
1713   }
1714 
1715   Elf32_Ehdr elf_head;
1716 
1717   // Read system error message into ebuf
1718   // It may or may not be overwritten below
1719   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1720   ebuf[ebuflen-1]='\0';
1721   int diag_msg_max_length=ebuflen-strlen(ebuf);
1722   char* diag_msg_buf=ebuf+strlen(ebuf);
1723 
1724   if (diag_msg_max_length==0) {
1725     // No more space in ebuf for additional diagnostics message
1726     return NULL;
1727   }
1728 
1729 
1730   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1731 
1732   if (file_descriptor < 0) {
1733     // Can't open library, report dlerror() message
1734     return NULL;
1735   }
1736 
1737   bool failed_to_read_elf_head=
1738     (sizeof(elf_head)!=
1739         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1740 
1741   ::close(file_descriptor);
1742   if (failed_to_read_elf_head) {
1743     // file i/o error - report dlerror() msg
1744     return NULL;
1745   }
1746 
1747   typedef struct {
1748     Elf32_Half  code;         // Actual value as defined in elf.h
1749     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1750     char        elf_class;    // 32 or 64 bit
1751     char        endianess;    // MSB or LSB
1752     char*       name;         // String representation
1753   } arch_t;
1754 
1755   #ifndef EM_486
1756   #define EM_486          6               /* Intel 80486 */
1757   #endif
1758 
1759   static const arch_t arch_array[]={
1760     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1761     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1762     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1763     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1764     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1765     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1766     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1767     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1768     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1769     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1770     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1771     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1772     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1773     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1774     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1775     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1776   };
1777 
1778   #if  (defined IA32)
1779     static  Elf32_Half running_arch_code=EM_386;
1780   #elif   (defined AMD64)
1781     static  Elf32_Half running_arch_code=EM_X86_64;
1782   #elif  (defined IA64)
1783     static  Elf32_Half running_arch_code=EM_IA_64;
1784   #elif  (defined __sparc) && (defined _LP64)
1785     static  Elf32_Half running_arch_code=EM_SPARCV9;
1786   #elif  (defined __sparc) && (!defined _LP64)
1787     static  Elf32_Half running_arch_code=EM_SPARC;
1788   #elif  (defined __powerpc64__)
1789     static  Elf32_Half running_arch_code=EM_PPC64;
1790   #elif  (defined __powerpc__)
1791     static  Elf32_Half running_arch_code=EM_PPC;
1792   #elif  (defined ARM)
1793     static  Elf32_Half running_arch_code=EM_ARM;
1794   #elif  (defined S390)
1795     static  Elf32_Half running_arch_code=EM_S390;
1796   #elif  (defined ALPHA)
1797     static  Elf32_Half running_arch_code=EM_ALPHA;
1798   #elif  (defined MIPSEL)
1799     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1800   #elif  (defined PARISC)
1801     static  Elf32_Half running_arch_code=EM_PARISC;
1802   #elif  (defined MIPS)
1803     static  Elf32_Half running_arch_code=EM_MIPS;
1804   #elif  (defined M68K)
1805     static  Elf32_Half running_arch_code=EM_68K;
1806   #else
1807     #error Method os::dll_load requires that one of following is defined:\
1808          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1809   #endif
1810 
1811   // Identify compatability class for VM's architecture and library's architecture
1812   // Obtain string descriptions for architectures
1813 
1814   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1815   int running_arch_index=-1;
1816 
1817   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1818     if (running_arch_code == arch_array[i].code) {
1819       running_arch_index    = i;
1820     }
1821     if (lib_arch.code == arch_array[i].code) {
1822       lib_arch.compat_class = arch_array[i].compat_class;
1823       lib_arch.name         = arch_array[i].name;
1824     }
1825   }
1826 
1827   assert(running_arch_index != -1,
1828     "Didn't find running architecture code (running_arch_code) in arch_array");
1829   if (running_arch_index == -1) {
1830     // Even though running architecture detection failed
1831     // we may still continue with reporting dlerror() message
1832     return NULL;
1833   }
1834 
1835   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1836     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1837     return NULL;
1838   }
1839 
1840 #ifndef S390
1841   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1842     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1843     return NULL;
1844   }
1845 #endif // !S390
1846 
1847   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1848     if ( lib_arch.name!=NULL ) {
1849       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1851         lib_arch.name, arch_array[running_arch_index].name);
1852     } else {
1853       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1854       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1855         lib_arch.code,
1856         arch_array[running_arch_index].name);
1857     }
1858   }
1859 
1860   return NULL;
1861 }
1862 
1863 /*
1864  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1865  * chances are you might want to run the generated bits against glibc-2.0
1866  * libdl.so, so always use locking for any version of glibc.
1867  */
1868 void* os::dll_lookup(void* handle, const char* name) {
1869   pthread_mutex_lock(&dl_mutex);
1870   void* res = dlsym(handle, name);
1871   pthread_mutex_unlock(&dl_mutex);
1872   return res;
1873 }
1874 
1875 
1876 bool _print_ascii_file(const char* filename, outputStream* st) {
1877   int fd = open(filename, O_RDONLY);
1878   if (fd == -1) {
1879      return false;
1880   }
1881 
1882   char buf[32];
1883   int bytes;
1884   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1885     st->print_raw(buf, bytes);
1886   }
1887 
1888   close(fd);
1889 
1890   return true;
1891 }
1892 
1893 void os::print_dll_info(outputStream *st) {
1894    st->print_cr("Dynamic libraries:");
1895 
1896    char fname[32];
1897    pid_t pid = os::Linux::gettid();
1898 
1899    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1900 
1901    if (!_print_ascii_file(fname, st)) {
1902      st->print("Can not get library information for pid = %d\n", pid);
1903    }
1904 }
1905 
1906 
1907 void os::print_os_info(outputStream* st) {
1908   st->print("OS:");
1909 
1910   // Try to identify popular distros.
1911   // Most Linux distributions have /etc/XXX-release file, which contains
1912   // the OS version string. Some have more than one /etc/XXX-release file
1913   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1914   // so the order is important.
1915   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1916       !_print_ascii_file("/etc/sun-release", st) &&
1917       !_print_ascii_file("/etc/redhat-release", st) &&
1918       !_print_ascii_file("/etc/SuSE-release", st) &&
1919       !_print_ascii_file("/etc/turbolinux-release", st) &&
1920       !_print_ascii_file("/etc/gentoo-release", st) &&
1921       !_print_ascii_file("/etc/debian_version", st) &&
1922       !_print_ascii_file("/etc/ltib-release", st) &&
1923       !_print_ascii_file("/etc/angstrom-version", st)) {
1924       st->print("Linux");
1925   }
1926   st->cr();
1927 
1928   // kernel
1929   st->print("uname:");
1930   struct utsname name;
1931   uname(&name);
1932   st->print(name.sysname); st->print(" ");
1933   st->print(name.release); st->print(" ");
1934   st->print(name.version); st->print(" ");
1935   st->print(name.machine);
1936   st->cr();
1937 
1938   // Print warning if unsafe chroot environment detected
1939   if (unsafe_chroot_detected) {
1940     st->print("WARNING!! ");
1941     st->print_cr(unstable_chroot_error);
1942   }
1943 
1944   // libc, pthread
1945   st->print("libc:");
1946   st->print(os::Linux::glibc_version()); st->print(" ");
1947   st->print(os::Linux::libpthread_version()); st->print(" ");
1948   if (os::Linux::is_LinuxThreads()) {
1949      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1950   }
1951   st->cr();
1952 
1953   // rlimit
1954   st->print("rlimit:");
1955   struct rlimit rlim;
1956 
1957   st->print(" STACK ");
1958   getrlimit(RLIMIT_STACK, &rlim);
1959   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1960   else st->print("%uk", rlim.rlim_cur >> 10);
1961 
1962   st->print(", CORE ");
1963   getrlimit(RLIMIT_CORE, &rlim);
1964   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1965   else st->print("%uk", rlim.rlim_cur >> 10);
1966 
1967   st->print(", NPROC ");
1968   getrlimit(RLIMIT_NPROC, &rlim);
1969   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1970   else st->print("%d", rlim.rlim_cur);
1971 
1972   st->print(", NOFILE ");
1973   getrlimit(RLIMIT_NOFILE, &rlim);
1974   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1975   else st->print("%d", rlim.rlim_cur);
1976 
1977   st->print(", AS ");
1978   getrlimit(RLIMIT_AS, &rlim);
1979   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1980   else st->print("%uk", rlim.rlim_cur >> 10);
1981   st->cr();
1982 
1983   // load average
1984   st->print("load average:");
1985   double loadavg[3];
1986   os::loadavg(loadavg, 3);
1987   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1988   st->cr();
1989 
1990   // meminfo
1991   st->print("\n/proc/meminfo:\n");
1992   _print_ascii_file("/proc/meminfo", st);
1993   st->cr();
1994 }
1995 
1996 void os::print_memory_info(outputStream* st) {
1997 
1998   st->print("Memory:");
1999   st->print(" %dk page", os::vm_page_size()>>10);
2000 
2001   // values in struct sysinfo are "unsigned long"
2002   struct sysinfo si;
2003   sysinfo(&si);
2004 
2005   st->print(", physical " UINT64_FORMAT "k",
2006             os::physical_memory() >> 10);
2007   st->print("(" UINT64_FORMAT "k free)",
2008             os::available_memory() >> 10);
2009   st->print(", swap " UINT64_FORMAT "k",
2010             ((jlong)si.totalswap * si.mem_unit) >> 10);
2011   st->print("(" UINT64_FORMAT "k free)",
2012             ((jlong)si.freeswap * si.mem_unit) >> 10);
2013   st->cr();
2014 }
2015 
2016 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2017 // but they're the same for all the linux arch that we support
2018 // and they're the same for solaris but there's no common place to put this.
2019 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2020                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2021                           "ILL_COPROC", "ILL_BADSTK" };
2022 
2023 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2024                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2025                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2026 
2027 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2028 
2029 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2030 
2031 void os::print_siginfo(outputStream* st, void* siginfo) {
2032   st->print("siginfo:");
2033 
2034   const int buflen = 100;
2035   char buf[buflen];
2036   siginfo_t *si = (siginfo_t*)siginfo;
2037   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2038   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2039     st->print("si_errno=%s", buf);
2040   } else {
2041     st->print("si_errno=%d", si->si_errno);
2042   }
2043   const int c = si->si_code;
2044   assert(c > 0, "unexpected si_code");
2045   switch (si->si_signo) {
2046   case SIGILL:
2047     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2048     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2049     break;
2050   case SIGFPE:
2051     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2052     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2053     break;
2054   case SIGSEGV:
2055     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2056     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2057     break;
2058   case SIGBUS:
2059     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2060     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2061     break;
2062   default:
2063     st->print(", si_code=%d", si->si_code);
2064     // no si_addr
2065   }
2066 
2067   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2068       UseSharedSpaces) {
2069     FileMapInfo* mapinfo = FileMapInfo::current_info();
2070     if (mapinfo->is_in_shared_space(si->si_addr)) {
2071       st->print("\n\nError accessing class data sharing archive."   \
2072                 " Mapped file inaccessible during execution, "      \
2073                 " possible disk/network problem.");
2074     }
2075   }
2076   st->cr();
2077 }
2078 
2079 
2080 static void print_signal_handler(outputStream* st, int sig,
2081                                  char* buf, size_t buflen);
2082 
2083 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2084   st->print_cr("Signal Handlers:");
2085   print_signal_handler(st, SIGSEGV, buf, buflen);
2086   print_signal_handler(st, SIGBUS , buf, buflen);
2087   print_signal_handler(st, SIGFPE , buf, buflen);
2088   print_signal_handler(st, SIGPIPE, buf, buflen);
2089   print_signal_handler(st, SIGXFSZ, buf, buflen);
2090   print_signal_handler(st, SIGILL , buf, buflen);
2091   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2092   print_signal_handler(st, SR_signum, buf, buflen);
2093   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2094   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2095   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2096   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2097 }
2098 
2099 static char saved_jvm_path[MAXPATHLEN] = {0};
2100 
2101 // Find the full path to the current module, libjvm.so or libjvm_g.so
2102 void os::jvm_path(char *buf, jint buflen) {
2103   // Error checking.
2104   if (buflen < MAXPATHLEN) {
2105     assert(false, "must use a large-enough buffer");
2106     buf[0] = '\0';
2107     return;
2108   }
2109   // Lazy resolve the path to current module.
2110   if (saved_jvm_path[0] != 0) {
2111     strcpy(buf, saved_jvm_path);
2112     return;
2113   }
2114 
2115   char dli_fname[MAXPATHLEN];
2116   bool ret = dll_address_to_library_name(
2117                 CAST_FROM_FN_PTR(address, os::jvm_path),
2118                 dli_fname, sizeof(dli_fname), NULL);
2119   assert(ret != 0, "cannot locate libjvm");
2120   char *rp = realpath(dli_fname, buf);
2121   if (rp == NULL)
2122     return;
2123 
2124   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2125     // Support for the gamma launcher.  Typical value for buf is
2126     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2127     // the right place in the string, then assume we are installed in a JDK and
2128     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2129     // up the path so it looks like libjvm.so is installed there (append a
2130     // fake suffix hotspot/libjvm.so).
2131     const char *p = buf + strlen(buf) - 1;
2132     for (int count = 0; p > buf && count < 5; ++count) {
2133       for (--p; p > buf && *p != '/'; --p)
2134         /* empty */ ;
2135     }
2136 
2137     if (strncmp(p, "/jre/lib/", 9) != 0) {
2138       // Look for JAVA_HOME in the environment.
2139       char* java_home_var = ::getenv("JAVA_HOME");
2140       if (java_home_var != NULL && java_home_var[0] != 0) {
2141         char* jrelib_p;
2142         int len;
2143 
2144         // Check the current module name "libjvm.so" or "libjvm_g.so".
2145         p = strrchr(buf, '/');
2146         assert(strstr(p, "/libjvm") == p, "invalid library name");
2147         p = strstr(p, "_g") ? "_g" : "";
2148 
2149         rp = realpath(java_home_var, buf);
2150         if (rp == NULL)
2151           return;
2152 
2153         // determine if this is a legacy image or modules image
2154         // modules image doesn't have "jre" subdirectory
2155         len = strlen(buf);
2156         jrelib_p = buf + len;
2157         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2158         if (0 != access(buf, F_OK)) {
2159           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2160         }
2161 
2162         if (0 == access(buf, F_OK)) {
2163           // Use current module name "libjvm[_g].so" instead of
2164           // "libjvm"debug_only("_g")".so" since for fastdebug version
2165           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2166           // It is used when we are choosing the HPI library's name
2167           // "libhpi[_g].so" in hpi::initialize_get_interface().
2168           len = strlen(buf);
2169           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2170         } else {
2171           // Go back to path of .so
2172           rp = realpath(dli_fname, buf);
2173           if (rp == NULL)
2174             return;
2175         }
2176       }
2177     }
2178   }
2179 
2180   strcpy(saved_jvm_path, buf);
2181 }
2182 
2183 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2184   // no prefix required, not even "_"
2185 }
2186 
2187 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2188   // no suffix required
2189 }
2190 
2191 ////////////////////////////////////////////////////////////////////////////////
2192 // sun.misc.Signal support
2193 
2194 static volatile jint sigint_count = 0;
2195 
2196 static void
2197 UserHandler(int sig, void *siginfo, void *context) {
2198   // 4511530 - sem_post is serialized and handled by the manager thread. When
2199   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2200   // don't want to flood the manager thread with sem_post requests.
2201   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2202       return;
2203 
2204   // Ctrl-C is pressed during error reporting, likely because the error
2205   // handler fails to abort. Let VM die immediately.
2206   if (sig == SIGINT && is_error_reported()) {
2207      os::die();
2208   }
2209 
2210   os::signal_notify(sig);
2211 }
2212 
2213 void* os::user_handler() {
2214   return CAST_FROM_FN_PTR(void*, UserHandler);
2215 }
2216 
2217 extern "C" {
2218   typedef void (*sa_handler_t)(int);
2219   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2220 }
2221 
2222 void* os::signal(int signal_number, void* handler) {
2223   struct sigaction sigAct, oldSigAct;
2224 
2225   sigfillset(&(sigAct.sa_mask));
2226   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2227   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2228 
2229   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2230     // -1 means registration failed
2231     return (void *)-1;
2232   }
2233 
2234   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2235 }
2236 
2237 void os::signal_raise(int signal_number) {
2238   ::raise(signal_number);
2239 }
2240 
2241 /*
2242  * The following code is moved from os.cpp for making this
2243  * code platform specific, which it is by its very nature.
2244  */
2245 
2246 // Will be modified when max signal is changed to be dynamic
2247 int os::sigexitnum_pd() {
2248   return NSIG;
2249 }
2250 
2251 // a counter for each possible signal value
2252 static volatile jint pending_signals[NSIG+1] = { 0 };
2253 
2254 // Linux(POSIX) specific hand shaking semaphore.
2255 static sem_t sig_sem;
2256 
2257 void os::signal_init_pd() {
2258   // Initialize signal structures
2259   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2260 
2261   // Initialize signal semaphore
2262   ::sem_init(&sig_sem, 0, 0);
2263 }
2264 
2265 void os::signal_notify(int sig) {
2266   Atomic::inc(&pending_signals[sig]);
2267   ::sem_post(&sig_sem);
2268 }
2269 
2270 static int check_pending_signals(bool wait) {
2271   Atomic::store(0, &sigint_count);
2272   for (;;) {
2273     for (int i = 0; i < NSIG + 1; i++) {
2274       jint n = pending_signals[i];
2275       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2276         return i;
2277       }
2278     }
2279     if (!wait) {
2280       return -1;
2281     }
2282     JavaThread *thread = JavaThread::current();
2283     ThreadBlockInVM tbivm(thread);
2284 
2285     bool threadIsSuspended;
2286     do {
2287       thread->set_suspend_equivalent();
2288       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2289       ::sem_wait(&sig_sem);
2290 
2291       // were we externally suspended while we were waiting?
2292       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2293       if (threadIsSuspended) {
2294         //
2295         // The semaphore has been incremented, but while we were waiting
2296         // another thread suspended us. We don't want to continue running
2297         // while suspended because that would surprise the thread that
2298         // suspended us.
2299         //
2300         ::sem_post(&sig_sem);
2301 
2302         thread->java_suspend_self();
2303       }
2304     } while (threadIsSuspended);
2305   }
2306 }
2307 
2308 int os::signal_lookup() {
2309   return check_pending_signals(false);
2310 }
2311 
2312 int os::signal_wait() {
2313   return check_pending_signals(true);
2314 }
2315 
2316 ////////////////////////////////////////////////////////////////////////////////
2317 // Virtual Memory
2318 
2319 int os::vm_page_size() {
2320   // Seems redundant as all get out
2321   assert(os::Linux::page_size() != -1, "must call os::init");
2322   return os::Linux::page_size();
2323 }
2324 
2325 // Solaris allocates memory by pages.
2326 int os::vm_allocation_granularity() {
2327   assert(os::Linux::page_size() != -1, "must call os::init");
2328   return os::Linux::page_size();
2329 }
2330 
2331 // Rationale behind this function:
2332 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2333 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2334 //  samples for JITted code. Here we create private executable mapping over the code cache
2335 //  and then we can use standard (well, almost, as mapping can change) way to provide
2336 //  info for the reporting script by storing timestamp and location of symbol
2337 void linux_wrap_code(char* base, size_t size) {
2338   static volatile jint cnt = 0;
2339 
2340   if (!UseOprofile) {
2341     return;
2342   }
2343 
2344   char buf[PATH_MAX+1];
2345   int num = Atomic::add(1, &cnt);
2346 
2347   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2348            os::get_temp_directory(), os::current_process_id(), num);
2349   unlink(buf);
2350 
2351   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2352 
2353   if (fd != -1) {
2354     off_t rv = lseek(fd, size-2, SEEK_SET);
2355     if (rv != (off_t)-1) {
2356       if (write(fd, "", 1) == 1) {
2357         mmap(base, size,
2358              PROT_READ|PROT_WRITE|PROT_EXEC,
2359              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2360       }
2361     }
2362     close(fd);
2363     unlink(buf);
2364   }
2365 }
2366 
2367 // NOTE: Linux kernel does not really reserve the pages for us.
2368 //       All it does is to check if there are enough free pages
2369 //       left at the time of mmap(). This could be a potential
2370 //       problem.
2371 bool os::commit_memory(char* addr, size_t size, bool exec) {
2372   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2373   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2374                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2375   return res != (uintptr_t) MAP_FAILED;
2376 }
2377 
2378 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2379                        bool exec) {
2380   return commit_memory(addr, size, exec);
2381 }
2382 
2383 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2384 
2385 void os::free_memory(char *addr, size_t bytes) {
2386   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2387          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2388 }
2389 
2390 void os::numa_make_global(char *addr, size_t bytes) {
2391   Linux::numa_interleave_memory(addr, bytes);
2392 }
2393 
2394 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2395   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2396 }
2397 
2398 bool os::numa_topology_changed()   { return false; }
2399 
2400 size_t os::numa_get_groups_num() {
2401   int max_node = Linux::numa_max_node();
2402   return max_node > 0 ? max_node + 1 : 1;
2403 }
2404 
2405 int os::numa_get_group_id() {
2406   int cpu_id = Linux::sched_getcpu();
2407   if (cpu_id != -1) {
2408     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2409     if (lgrp_id != -1) {
2410       return lgrp_id;
2411     }
2412   }
2413   return 0;
2414 }
2415 
2416 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2417   for (size_t i = 0; i < size; i++) {
2418     ids[i] = i;
2419   }
2420   return size;
2421 }
2422 
2423 bool os::get_page_info(char *start, page_info* info) {
2424   return false;
2425 }
2426 
2427 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2428   return end;
2429 }
2430 
2431 extern "C" void numa_warn(int number, char *where, ...) { }
2432 extern "C" void numa_error(char *where) { }
2433 
2434 
2435 // If we are running with libnuma version > 2, then we should
2436 // be trying to use symbols with versions 1.1
2437 // If we are running with earlier version, which did not have symbol versions,
2438 // we should use the base version.
2439 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2440   void *f = dlvsym(handle, name, "libnuma_1.1");
2441   if (f == NULL) {
2442     f = dlsym(handle, name);
2443   }
2444   return f;
2445 }
2446 
2447 bool os::Linux::libnuma_init() {
2448   // sched_getcpu() should be in libc.
2449   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2450                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2451 
2452   if (sched_getcpu() != -1) { // Does it work?
2453     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2454     if (handle != NULL) {
2455       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2456                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2457       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2458                                        libnuma_dlsym(handle, "numa_max_node")));
2459       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2460                                         libnuma_dlsym(handle, "numa_available")));
2461       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2462                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2463       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2464                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2465 
2466 
2467       if (numa_available() != -1) {
2468         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2469         // Create a cpu -> node mapping
2470         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2471         rebuild_cpu_to_node_map();
2472         return true;
2473       }
2474     }
2475   }
2476   return false;
2477 }
2478 
2479 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2480 // The table is later used in get_node_by_cpu().
2481 void os::Linux::rebuild_cpu_to_node_map() {
2482   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2483                               // in libnuma (possible values are starting from 16,
2484                               // and continuing up with every other power of 2, but less
2485                               // than the maximum number of CPUs supported by kernel), and
2486                               // is a subject to change (in libnuma version 2 the requirements
2487                               // are more reasonable) we'll just hardcode the number they use
2488                               // in the library.
2489   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2490 
2491   size_t cpu_num = os::active_processor_count();
2492   size_t cpu_map_size = NCPUS / BitsPerCLong;
2493   size_t cpu_map_valid_size =
2494     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2495 
2496   cpu_to_node()->clear();
2497   cpu_to_node()->at_grow(cpu_num - 1);
2498   size_t node_num = numa_get_groups_num();
2499 
2500   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2501   for (size_t i = 0; i < node_num; i++) {
2502     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2503       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2504         if (cpu_map[j] != 0) {
2505           for (size_t k = 0; k < BitsPerCLong; k++) {
2506             if (cpu_map[j] & (1UL << k)) {
2507               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2508             }
2509           }
2510         }
2511       }
2512     }
2513   }
2514   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2515 }
2516 
2517 int os::Linux::get_node_by_cpu(int cpu_id) {
2518   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2519     return cpu_to_node()->at(cpu_id);
2520   }
2521   return -1;
2522 }
2523 
2524 GrowableArray<int>* os::Linux::_cpu_to_node;
2525 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2526 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2527 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2528 os::Linux::numa_available_func_t os::Linux::_numa_available;
2529 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2530 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2531 unsigned long* os::Linux::_numa_all_nodes;
2532 
2533 bool os::uncommit_memory(char* addr, size_t size) {
2534   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2535                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2536   return res  != (uintptr_t) MAP_FAILED;
2537 }
2538 
2539 // Linux uses a growable mapping for the stack, and if the mapping for
2540 // the stack guard pages is not removed when we detach a thread the
2541 // stack cannot grow beyond the pages where the stack guard was
2542 // mapped.  If at some point later in the process the stack expands to
2543 // that point, the Linux kernel cannot expand the stack any further
2544 // because the guard pages are in the way, and a segfault occurs.
2545 //
2546 // However, it's essential not to split the stack region by unmapping
2547 // a region (leaving a hole) that's already part of the stack mapping,
2548 // so if the stack mapping has already grown beyond the guard pages at
2549 // the time we create them, we have to truncate the stack mapping.
2550 // So, we need to know the extent of the stack mapping when
2551 // create_stack_guard_pages() is called.
2552 
2553 // Find the bounds of the stack mapping.  Return true for success.
2554 //
2555 // We only need this for stacks that are growable: at the time of
2556 // writing thread stacks don't use growable mappings (i.e. those
2557 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2558 // only applies to the main thread.
2559 static bool
2560 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2561 {
2562   FILE *f = fopen("/proc/self/maps", "r");
2563   if (f == NULL)
2564     return false;
2565 
2566   while (!feof(f)) {
2567     size_t dummy;
2568     char *str = NULL;
2569     ssize_t len = getline(&str, &dummy, f);
2570     if (len == -1) {
2571       fclose(f);
2572       return false;
2573     }
2574 
2575     if (len > 0 && str[len-1] == '\n') {
2576       str[len-1] = 0;
2577       len--;
2578     }
2579 
2580     static const char *stack_str = "[stack]";
2581     if (len > (ssize_t)strlen(stack_str)
2582        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2583       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2584         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2585         if (sp >= *bottom && sp <= *top) {
2586           free(str);
2587           fclose(f);
2588           return true;
2589         }
2590       }
2591     }
2592     free(str);
2593   }
2594   fclose(f);
2595   return false;
2596 }
2597 
2598 // If the (growable) stack mapping already extends beyond the point
2599 // where we're going to put our guard pages, truncate the mapping at
2600 // that point by munmap()ping it.  This ensures that when we later
2601 // munmap() the guard pages we don't leave a hole in the stack
2602 // mapping. This only affects the main/initial thread, but guard
2603 // against future OS changes
2604 bool os::create_stack_guard_pages(char* addr, size_t size) {
2605   uintptr_t stack_extent, stack_base;
2606   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2607   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2608       assert(os::Linux::is_initial_thread(),
2609            "growable stack in non-initial thread");
2610     if (stack_extent < (uintptr_t)addr)
2611       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2612   }
2613 
2614   return os::commit_memory(addr, size);
2615 }
2616 
2617 // If this is a growable mapping, remove the guard pages entirely by
2618 // munmap()ping them.  If not, just call uncommit_memory(). This only
2619 // affects the main/initial thread, but guard against future OS changes
2620 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2621   uintptr_t stack_extent, stack_base;
2622   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2623   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2624       assert(os::Linux::is_initial_thread(),
2625            "growable stack in non-initial thread");
2626 
2627     return ::munmap(addr, size) == 0;
2628   }
2629 
2630   return os::uncommit_memory(addr, size);
2631 }
2632 
2633 static address _highest_vm_reserved_address = NULL;
2634 
2635 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2636 // at 'requested_addr'. If there are existing memory mappings at the same
2637 // location, however, they will be overwritten. If 'fixed' is false,
2638 // 'requested_addr' is only treated as a hint, the return value may or
2639 // may not start from the requested address. Unlike Linux mmap(), this
2640 // function returns NULL to indicate failure.
2641 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2642   char * addr;
2643   int flags;
2644 
2645   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2646   if (fixed) {
2647     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2648     flags |= MAP_FIXED;
2649   }
2650 
2651   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2652   // to PROT_EXEC if executable when we commit the page.
2653   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2654                        flags, -1, 0);
2655 
2656   if (addr != MAP_FAILED) {
2657     // anon_mmap() should only get called during VM initialization,
2658     // don't need lock (actually we can skip locking even it can be called
2659     // from multiple threads, because _highest_vm_reserved_address is just a
2660     // hint about the upper limit of non-stack memory regions.)
2661     if ((address)addr + bytes > _highest_vm_reserved_address) {
2662       _highest_vm_reserved_address = (address)addr + bytes;
2663     }
2664   }
2665 
2666   return addr == MAP_FAILED ? NULL : addr;
2667 }
2668 
2669 // Don't update _highest_vm_reserved_address, because there might be memory
2670 // regions above addr + size. If so, releasing a memory region only creates
2671 // a hole in the address space, it doesn't help prevent heap-stack collision.
2672 //
2673 static int anon_munmap(char * addr, size_t size) {
2674   return ::munmap(addr, size) == 0;
2675 }
2676 
2677 char* os::reserve_memory(size_t bytes, char* requested_addr,
2678                          size_t alignment_hint) {
2679   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2680 }
2681 
2682 bool os::release_memory(char* addr, size_t size) {
2683   return anon_munmap(addr, size);
2684 }
2685 
2686 static address highest_vm_reserved_address() {
2687   return _highest_vm_reserved_address;
2688 }
2689 
2690 static bool linux_mprotect(char* addr, size_t size, int prot) {
2691   // Linux wants the mprotect address argument to be page aligned.
2692   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2693 
2694   // According to SUSv3, mprotect() should only be used with mappings
2695   // established by mmap(), and mmap() always maps whole pages. Unaligned
2696   // 'addr' likely indicates problem in the VM (e.g. trying to change
2697   // protection of malloc'ed or statically allocated memory). Check the
2698   // caller if you hit this assert.
2699   assert(addr == bottom, "sanity check");
2700 
2701   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2702   return ::mprotect(bottom, size, prot) == 0;
2703 }
2704 
2705 // Set protections specified
2706 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2707                         bool is_committed) {
2708   unsigned int p = 0;
2709   switch (prot) {
2710   case MEM_PROT_NONE: p = PROT_NONE; break;
2711   case MEM_PROT_READ: p = PROT_READ; break;
2712   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2713   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2714   default:
2715     ShouldNotReachHere();
2716   }
2717   // is_committed is unused.
2718   return linux_mprotect(addr, bytes, p);
2719 }
2720 
2721 bool os::guard_memory(char* addr, size_t size) {
2722   return linux_mprotect(addr, size, PROT_NONE);
2723 }
2724 
2725 bool os::unguard_memory(char* addr, size_t size) {
2726   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2727 }
2728 
2729 // Large page support
2730 
2731 static size_t _large_page_size = 0;
2732 
2733 bool os::large_page_init() {
2734   if (!UseLargePages) return false;
2735 
2736   if (LargePageSizeInBytes) {
2737     _large_page_size = LargePageSizeInBytes;
2738   } else {
2739     // large_page_size on Linux is used to round up heap size. x86 uses either
2740     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2741     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2742     // page as large as 256M.
2743     //
2744     // Here we try to figure out page size by parsing /proc/meminfo and looking
2745     // for a line with the following format:
2746     //    Hugepagesize:     2048 kB
2747     //
2748     // If we can't determine the value (e.g. /proc is not mounted, or the text
2749     // format has been changed), we'll use the largest page size supported by
2750     // the processor.
2751 
2752 #ifndef ZERO
2753     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2754                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2755 #endif // ZERO
2756 
2757     FILE *fp = fopen("/proc/meminfo", "r");
2758     if (fp) {
2759       while (!feof(fp)) {
2760         int x = 0;
2761         char buf[16];
2762         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2763           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2764             _large_page_size = x * K;
2765             break;
2766           }
2767         } else {
2768           // skip to next line
2769           for (;;) {
2770             int ch = fgetc(fp);
2771             if (ch == EOF || ch == (int)'\n') break;
2772           }
2773         }
2774       }
2775       fclose(fp);
2776     }
2777   }
2778 
2779   const size_t default_page_size = (size_t)Linux::page_size();
2780   if (_large_page_size > default_page_size) {
2781     _page_sizes[0] = _large_page_size;
2782     _page_sizes[1] = default_page_size;
2783     _page_sizes[2] = 0;
2784   }
2785 
2786   // Large page support is available on 2.6 or newer kernel, some vendors
2787   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2788   // We optimistically assume the support is available. If later it turns out
2789   // not true, VM will automatically switch to use regular page size.
2790   return true;
2791 }
2792 
2793 #ifndef SHM_HUGETLB
2794 #define SHM_HUGETLB 04000
2795 #endif
2796 
2797 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2798   // "exec" is passed in but not used.  Creating the shared image for
2799   // the code cache doesn't have an SHM_X executable permission to check.
2800   assert(UseLargePages, "only for large pages");
2801 
2802   key_t key = IPC_PRIVATE;
2803   char *addr;
2804 
2805   bool warn_on_failure = UseLargePages &&
2806                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2807                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2808                         );
2809   char msg[128];
2810 
2811   // Create a large shared memory region to attach to based on size.
2812   // Currently, size is the total size of the heap
2813   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2814   if (shmid == -1) {
2815      // Possible reasons for shmget failure:
2816      // 1. shmmax is too small for Java heap.
2817      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2818      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2819      // 2. not enough large page memory.
2820      //    > check available large pages: cat /proc/meminfo
2821      //    > increase amount of large pages:
2822      //          echo new_value > /proc/sys/vm/nr_hugepages
2823      //      Note 1: different Linux may use different name for this property,
2824      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2825      //      Note 2: it's possible there's enough physical memory available but
2826      //            they are so fragmented after a long run that they can't
2827      //            coalesce into large pages. Try to reserve large pages when
2828      //            the system is still "fresh".
2829      if (warn_on_failure) {
2830        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2831        warning(msg);
2832      }
2833      return NULL;
2834   }
2835 
2836   // attach to the region
2837   addr = (char*)shmat(shmid, req_addr, 0);
2838   int err = errno;
2839 
2840   // Remove shmid. If shmat() is successful, the actual shared memory segment
2841   // will be deleted when it's detached by shmdt() or when the process
2842   // terminates. If shmat() is not successful this will remove the shared
2843   // segment immediately.
2844   shmctl(shmid, IPC_RMID, NULL);
2845 
2846   if ((intptr_t)addr == -1) {
2847      if (warn_on_failure) {
2848        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2849        warning(msg);
2850      }
2851      return NULL;
2852   }
2853 
2854   return addr;
2855 }
2856 
2857 bool os::release_memory_special(char* base, size_t bytes) {
2858   // detaching the SHM segment will also delete it, see reserve_memory_special()
2859   int rslt = shmdt(base);
2860   return rslt == 0;
2861 }
2862 
2863 size_t os::large_page_size() {
2864   return _large_page_size;
2865 }
2866 
2867 // Linux does not support anonymous mmap with large page memory. The only way
2868 // to reserve large page memory without file backing is through SysV shared
2869 // memory API. The entire memory region is committed and pinned upfront.
2870 // Hopefully this will change in the future...
2871 bool os::can_commit_large_page_memory() {
2872   return false;
2873 }
2874 
2875 bool os::can_execute_large_page_memory() {
2876   return false;
2877 }
2878 
2879 // Reserve memory at an arbitrary address, only if that area is
2880 // available (and not reserved for something else).
2881 
2882 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2883   const int max_tries = 10;
2884   char* base[max_tries];
2885   size_t size[max_tries];
2886   const size_t gap = 0x000000;
2887 
2888   // Assert only that the size is a multiple of the page size, since
2889   // that's all that mmap requires, and since that's all we really know
2890   // about at this low abstraction level.  If we need higher alignment,
2891   // we can either pass an alignment to this method or verify alignment
2892   // in one of the methods further up the call chain.  See bug 5044738.
2893   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2894 
2895   // Repeatedly allocate blocks until the block is allocated at the
2896   // right spot. Give up after max_tries. Note that reserve_memory() will
2897   // automatically update _highest_vm_reserved_address if the call is
2898   // successful. The variable tracks the highest memory address every reserved
2899   // by JVM. It is used to detect heap-stack collision if running with
2900   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2901   // space than needed, it could confuse the collision detecting code. To
2902   // solve the problem, save current _highest_vm_reserved_address and
2903   // calculate the correct value before return.
2904   address old_highest = _highest_vm_reserved_address;
2905 
2906   // Linux mmap allows caller to pass an address as hint; give it a try first,
2907   // if kernel honors the hint then we can return immediately.
2908   char * addr = anon_mmap(requested_addr, bytes, false);
2909   if (addr == requested_addr) {
2910      return requested_addr;
2911   }
2912 
2913   if (addr != NULL) {
2914      // mmap() is successful but it fails to reserve at the requested address
2915      anon_munmap(addr, bytes);
2916   }
2917 
2918   int i;
2919   for (i = 0; i < max_tries; ++i) {
2920     base[i] = reserve_memory(bytes);
2921 
2922     if (base[i] != NULL) {
2923       // Is this the block we wanted?
2924       if (base[i] == requested_addr) {
2925         size[i] = bytes;
2926         break;
2927       }
2928 
2929       // Does this overlap the block we wanted? Give back the overlapped
2930       // parts and try again.
2931 
2932       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2933       if (top_overlap >= 0 && top_overlap < bytes) {
2934         unmap_memory(base[i], top_overlap);
2935         base[i] += top_overlap;
2936         size[i] = bytes - top_overlap;
2937       } else {
2938         size_t bottom_overlap = base[i] + bytes - requested_addr;
2939         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2940           unmap_memory(requested_addr, bottom_overlap);
2941           size[i] = bytes - bottom_overlap;
2942         } else {
2943           size[i] = bytes;
2944         }
2945       }
2946     }
2947   }
2948 
2949   // Give back the unused reserved pieces.
2950 
2951   for (int j = 0; j < i; ++j) {
2952     if (base[j] != NULL) {
2953       unmap_memory(base[j], size[j]);
2954     }
2955   }
2956 
2957   if (i < max_tries) {
2958     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2959     return requested_addr;
2960   } else {
2961     _highest_vm_reserved_address = old_highest;
2962     return NULL;
2963   }
2964 }
2965 
2966 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2967   return ::read(fd, buf, nBytes);
2968 }
2969 
2970 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2971 // Solaris uses poll(), linux uses park().
2972 // Poll() is likely a better choice, assuming that Thread.interrupt()
2973 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2974 // SIGSEGV, see 4355769.
2975 
2976 const int NANOSECS_PER_MILLISECS = 1000000;
2977 
2978 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2979   assert(thread == Thread::current(),  "thread consistency check");
2980 
2981   ParkEvent * const slp = thread->_SleepEvent ;
2982   slp->reset() ;
2983   OrderAccess::fence() ;
2984 
2985   if (interruptible) {
2986     jlong prevtime = javaTimeNanos();
2987 
2988     for (;;) {
2989       if (os::is_interrupted(thread, true)) {
2990         return OS_INTRPT;
2991       }
2992 
2993       jlong newtime = javaTimeNanos();
2994 
2995       if (newtime - prevtime < 0) {
2996         // time moving backwards, should only happen if no monotonic clock
2997         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2998         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2999       } else {
3000         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3001       }
3002 
3003       if(millis <= 0) {
3004         return OS_OK;
3005       }
3006 
3007       prevtime = newtime;
3008 
3009       {
3010         assert(thread->is_Java_thread(), "sanity check");
3011         JavaThread *jt = (JavaThread *) thread;
3012         ThreadBlockInVM tbivm(jt);
3013         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3014 
3015         jt->set_suspend_equivalent();
3016         // cleared by handle_special_suspend_equivalent_condition() or
3017         // java_suspend_self() via check_and_wait_while_suspended()
3018 
3019         slp->park(millis);
3020 
3021         // were we externally suspended while we were waiting?
3022         jt->check_and_wait_while_suspended();
3023       }
3024     }
3025   } else {
3026     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3027     jlong prevtime = javaTimeNanos();
3028 
3029     for (;;) {
3030       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3031       // the 1st iteration ...
3032       jlong newtime = javaTimeNanos();
3033 
3034       if (newtime - prevtime < 0) {
3035         // time moving backwards, should only happen if no monotonic clock
3036         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3037         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3038       } else {
3039         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3040       }
3041 
3042       if(millis <= 0) break ;
3043 
3044       prevtime = newtime;
3045       slp->park(millis);
3046     }
3047     return OS_OK ;
3048   }
3049 }
3050 
3051 int os::naked_sleep() {
3052   // %% make the sleep time an integer flag. for now use 1 millisec.
3053   return os::sleep(Thread::current(), 1, false);
3054 }
3055 
3056 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3057 void os::infinite_sleep() {
3058   while (true) {    // sleep forever ...
3059     ::sleep(100);   // ... 100 seconds at a time
3060   }
3061 }
3062 
3063 // Used to convert frequent JVM_Yield() to nops
3064 bool os::dont_yield() {
3065   return DontYieldALot;
3066 }
3067 
3068 void os::yield() {
3069   sched_yield();
3070 }
3071 
3072 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3073 
3074 void os::yield_all(int attempts) {
3075   // Yields to all threads, including threads with lower priorities
3076   // Threads on Linux are all with same priority. The Solaris style
3077   // os::yield_all() with nanosleep(1ms) is not necessary.
3078   sched_yield();
3079 }
3080 
3081 // Called from the tight loops to possibly influence time-sharing heuristics
3082 void os::loop_breaker(int attempts) {
3083   os::yield_all(attempts);
3084 }
3085 
3086 ////////////////////////////////////////////////////////////////////////////////
3087 // thread priority support
3088 
3089 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3090 // only supports dynamic priority, static priority must be zero. For real-time
3091 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3092 // However, for large multi-threaded applications, SCHED_RR is not only slower
3093 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3094 // of 5 runs - Sep 2005).
3095 //
3096 // The following code actually changes the niceness of kernel-thread/LWP. It
3097 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3098 // not the entire user process, and user level threads are 1:1 mapped to kernel
3099 // threads. It has always been the case, but could change in the future. For
3100 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3101 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3102 
3103 int os::java_to_os_priority[MaxPriority + 1] = {
3104   19,              // 0 Entry should never be used
3105 
3106    4,              // 1 MinPriority
3107    3,              // 2
3108    2,              // 3
3109 
3110    1,              // 4
3111    0,              // 5 NormPriority
3112   -1,              // 6
3113 
3114   -2,              // 7
3115   -3,              // 8
3116   -4,              // 9 NearMaxPriority
3117 
3118   -5               // 10 MaxPriority
3119 };
3120 
3121 static int prio_init() {
3122   if (ThreadPriorityPolicy == 1) {
3123     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3124     // if effective uid is not root. Perhaps, a more elegant way of doing
3125     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3126     if (geteuid() != 0) {
3127       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3128         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3129       }
3130       ThreadPriorityPolicy = 0;
3131     }
3132   }
3133   return 0;
3134 }
3135 
3136 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3137   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3138 
3139   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3140   return (ret == 0) ? OS_OK : OS_ERR;
3141 }
3142 
3143 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3144   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3145     *priority_ptr = java_to_os_priority[NormPriority];
3146     return OS_OK;
3147   }
3148 
3149   errno = 0;
3150   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3151   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3152 }
3153 
3154 // Hint to the underlying OS that a task switch would not be good.
3155 // Void return because it's a hint and can fail.
3156 void os::hint_no_preempt() {}
3157 
3158 ////////////////////////////////////////////////////////////////////////////////
3159 // suspend/resume support
3160 
3161 //  the low-level signal-based suspend/resume support is a remnant from the
3162 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3163 //  within hotspot. Now there is a single use-case for this:
3164 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3165 //      that runs in the watcher thread.
3166 //  The remaining code is greatly simplified from the more general suspension
3167 //  code that used to be used.
3168 //
3169 //  The protocol is quite simple:
3170 //  - suspend:
3171 //      - sends a signal to the target thread
3172 //      - polls the suspend state of the osthread using a yield loop
3173 //      - target thread signal handler (SR_handler) sets suspend state
3174 //        and blocks in sigsuspend until continued
3175 //  - resume:
3176 //      - sets target osthread state to continue
3177 //      - sends signal to end the sigsuspend loop in the SR_handler
3178 //
3179 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3180 //
3181 
3182 static void resume_clear_context(OSThread *osthread) {
3183   osthread->set_ucontext(NULL);
3184   osthread->set_siginfo(NULL);
3185 
3186   // notify the suspend action is completed, we have now resumed
3187   osthread->sr.clear_suspended();
3188 }
3189 
3190 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3191   osthread->set_ucontext(context);
3192   osthread->set_siginfo(siginfo);
3193 }
3194 
3195 //
3196 // Handler function invoked when a thread's execution is suspended or
3197 // resumed. We have to be careful that only async-safe functions are
3198 // called here (Note: most pthread functions are not async safe and
3199 // should be avoided.)
3200 //
3201 // Note: sigwait() is a more natural fit than sigsuspend() from an
3202 // interface point of view, but sigwait() prevents the signal hander
3203 // from being run. libpthread would get very confused by not having
3204 // its signal handlers run and prevents sigwait()'s use with the
3205 // mutex granting granting signal.
3206 //
3207 // Currently only ever called on the VMThread
3208 //
3209 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3210   // Save and restore errno to avoid confusing native code with EINTR
3211   // after sigsuspend.
3212   int old_errno = errno;
3213 
3214   Thread* thread = Thread::current();
3215   OSThread* osthread = thread->osthread();
3216   assert(thread->is_VM_thread(), "Must be VMThread");
3217   // read current suspend action
3218   int action = osthread->sr.suspend_action();
3219   if (action == SR_SUSPEND) {
3220     suspend_save_context(osthread, siginfo, context);
3221 
3222     // Notify the suspend action is about to be completed. do_suspend()
3223     // waits until SR_SUSPENDED is set and then returns. We will wait
3224     // here for a resume signal and that completes the suspend-other
3225     // action. do_suspend/do_resume is always called as a pair from
3226     // the same thread - so there are no races
3227 
3228     // notify the caller
3229     osthread->sr.set_suspended();
3230 
3231     sigset_t suspend_set;  // signals for sigsuspend()
3232 
3233     // get current set of blocked signals and unblock resume signal
3234     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3235     sigdelset(&suspend_set, SR_signum);
3236 
3237     // wait here until we are resumed
3238     do {
3239       sigsuspend(&suspend_set);
3240       // ignore all returns until we get a resume signal
3241     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3242 
3243     resume_clear_context(osthread);
3244 
3245   } else {
3246     assert(action == SR_CONTINUE, "unexpected sr action");
3247     // nothing special to do - just leave the handler
3248   }
3249 
3250   errno = old_errno;
3251 }
3252 
3253 
3254 static int SR_initialize() {
3255   struct sigaction act;
3256   char *s;
3257   /* Get signal number to use for suspend/resume */
3258   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3259     int sig = ::strtol(s, 0, 10);
3260     if (sig > 0 || sig < _NSIG) {
3261         SR_signum = sig;
3262     }
3263   }
3264 
3265   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3266         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3267 
3268   sigemptyset(&SR_sigset);
3269   sigaddset(&SR_sigset, SR_signum);
3270 
3271   /* Set up signal handler for suspend/resume */
3272   act.sa_flags = SA_RESTART|SA_SIGINFO;
3273   act.sa_handler = (void (*)(int)) SR_handler;
3274 
3275   // SR_signum is blocked by default.
3276   // 4528190 - We also need to block pthread restart signal (32 on all
3277   // supported Linux platforms). Note that LinuxThreads need to block
3278   // this signal for all threads to work properly. So we don't have
3279   // to use hard-coded signal number when setting up the mask.
3280   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3281 
3282   if (sigaction(SR_signum, &act, 0) == -1) {
3283     return -1;
3284   }
3285 
3286   // Save signal flag
3287   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3288   return 0;
3289 }
3290 
3291 static int SR_finalize() {
3292   return 0;
3293 }
3294 
3295 
3296 // returns true on success and false on error - really an error is fatal
3297 // but this seems the normal response to library errors
3298 static bool do_suspend(OSThread* osthread) {
3299   // mark as suspended and send signal
3300   osthread->sr.set_suspend_action(SR_SUSPEND);
3301   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3302   assert_status(status == 0, status, "pthread_kill");
3303 
3304   // check status and wait until notified of suspension
3305   if (status == 0) {
3306     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3307       os::yield_all(i);
3308     }
3309     osthread->sr.set_suspend_action(SR_NONE);
3310     return true;
3311   }
3312   else {
3313     osthread->sr.set_suspend_action(SR_NONE);
3314     return false;
3315   }
3316 }
3317 
3318 static void do_resume(OSThread* osthread) {
3319   assert(osthread->sr.is_suspended(), "thread should be suspended");
3320   osthread->sr.set_suspend_action(SR_CONTINUE);
3321 
3322   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3323   assert_status(status == 0, status, "pthread_kill");
3324   // check status and wait unit notified of resumption
3325   if (status == 0) {
3326     for (int i = 0; osthread->sr.is_suspended(); i++) {
3327       os::yield_all(i);
3328     }
3329   }
3330   osthread->sr.set_suspend_action(SR_NONE);
3331 }
3332 
3333 ////////////////////////////////////////////////////////////////////////////////
3334 // interrupt support
3335 
3336 void os::interrupt(Thread* thread) {
3337   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3338     "possibility of dangling Thread pointer");
3339 
3340   OSThread* osthread = thread->osthread();
3341 
3342   if (!osthread->interrupted()) {
3343     osthread->set_interrupted(true);
3344     // More than one thread can get here with the same value of osthread,
3345     // resulting in multiple notifications.  We do, however, want the store
3346     // to interrupted() to be visible to other threads before we execute unpark().
3347     OrderAccess::fence();
3348     ParkEvent * const slp = thread->_SleepEvent ;
3349     if (slp != NULL) slp->unpark() ;
3350   }
3351 
3352   // For JSR166. Unpark even if interrupt status already was set
3353   if (thread->is_Java_thread())
3354     ((JavaThread*)thread)->parker()->unpark();
3355 
3356   ParkEvent * ev = thread->_ParkEvent ;
3357   if (ev != NULL) ev->unpark() ;
3358 
3359 }
3360 
3361 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3362   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3363     "possibility of dangling Thread pointer");
3364 
3365   OSThread* osthread = thread->osthread();
3366 
3367   bool interrupted = osthread->interrupted();
3368 
3369   if (interrupted && clear_interrupted) {
3370     osthread->set_interrupted(false);
3371     // consider thread->_SleepEvent->reset() ... optional optimization
3372   }
3373 
3374   return interrupted;
3375 }
3376 
3377 ///////////////////////////////////////////////////////////////////////////////////
3378 // signal handling (except suspend/resume)
3379 
3380 // This routine may be used by user applications as a "hook" to catch signals.
3381 // The user-defined signal handler must pass unrecognized signals to this
3382 // routine, and if it returns true (non-zero), then the signal handler must
3383 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3384 // routine will never retun false (zero), but instead will execute a VM panic
3385 // routine kill the process.
3386 //
3387 // If this routine returns false, it is OK to call it again.  This allows
3388 // the user-defined signal handler to perform checks either before or after
3389 // the VM performs its own checks.  Naturally, the user code would be making
3390 // a serious error if it tried to handle an exception (such as a null check
3391 // or breakpoint) that the VM was generating for its own correct operation.
3392 //
3393 // This routine may recognize any of the following kinds of signals:
3394 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3395 // It should be consulted by handlers for any of those signals.
3396 //
3397 // The caller of this routine must pass in the three arguments supplied
3398 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3399 // field of the structure passed to sigaction().  This routine assumes that
3400 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3401 //
3402 // Note that the VM will print warnings if it detects conflicting signal
3403 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3404 //
3405 extern "C" int
3406 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3407                         void* ucontext, int abort_if_unrecognized);
3408 
3409 void signalHandler(int sig, siginfo_t* info, void* uc) {
3410   assert(info != NULL && uc != NULL, "it must be old kernel");
3411   JVM_handle_linux_signal(sig, info, uc, true);
3412 }
3413 
3414 
3415 // This boolean allows users to forward their own non-matching signals
3416 // to JVM_handle_linux_signal, harmlessly.
3417 bool os::Linux::signal_handlers_are_installed = false;
3418 
3419 // For signal-chaining
3420 struct sigaction os::Linux::sigact[MAXSIGNUM];
3421 unsigned int os::Linux::sigs = 0;
3422 bool os::Linux::libjsig_is_loaded = false;
3423 typedef struct sigaction *(*get_signal_t)(int);
3424 get_signal_t os::Linux::get_signal_action = NULL;
3425 
3426 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3427   struct sigaction *actp = NULL;
3428 
3429   if (libjsig_is_loaded) {
3430     // Retrieve the old signal handler from libjsig
3431     actp = (*get_signal_action)(sig);
3432   }
3433   if (actp == NULL) {
3434     // Retrieve the preinstalled signal handler from jvm
3435     actp = get_preinstalled_handler(sig);
3436   }
3437 
3438   return actp;
3439 }
3440 
3441 static bool call_chained_handler(struct sigaction *actp, int sig,
3442                                  siginfo_t *siginfo, void *context) {
3443   // Call the old signal handler
3444   if (actp->sa_handler == SIG_DFL) {
3445     // It's more reasonable to let jvm treat it as an unexpected exception
3446     // instead of taking the default action.
3447     return false;
3448   } else if (actp->sa_handler != SIG_IGN) {
3449     if ((actp->sa_flags & SA_NODEFER) == 0) {
3450       // automaticlly block the signal
3451       sigaddset(&(actp->sa_mask), sig);
3452     }
3453 
3454     sa_handler_t hand;
3455     sa_sigaction_t sa;
3456     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3457     // retrieve the chained handler
3458     if (siginfo_flag_set) {
3459       sa = actp->sa_sigaction;
3460     } else {
3461       hand = actp->sa_handler;
3462     }
3463 
3464     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3465       actp->sa_handler = SIG_DFL;
3466     }
3467 
3468     // try to honor the signal mask
3469     sigset_t oset;
3470     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3471 
3472     // call into the chained handler
3473     if (siginfo_flag_set) {
3474       (*sa)(sig, siginfo, context);
3475     } else {
3476       (*hand)(sig);
3477     }
3478 
3479     // restore the signal mask
3480     pthread_sigmask(SIG_SETMASK, &oset, 0);
3481   }
3482   // Tell jvm's signal handler the signal is taken care of.
3483   return true;
3484 }
3485 
3486 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3487   bool chained = false;
3488   // signal-chaining
3489   if (UseSignalChaining) {
3490     struct sigaction *actp = get_chained_signal_action(sig);
3491     if (actp != NULL) {
3492       chained = call_chained_handler(actp, sig, siginfo, context);
3493     }
3494   }
3495   return chained;
3496 }
3497 
3498 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3499   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3500     return &sigact[sig];
3501   }
3502   return NULL;
3503 }
3504 
3505 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3506   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3507   sigact[sig] = oldAct;
3508   sigs |= (unsigned int)1 << sig;
3509 }
3510 
3511 // for diagnostic
3512 int os::Linux::sigflags[MAXSIGNUM];
3513 
3514 int os::Linux::get_our_sigflags(int sig) {
3515   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3516   return sigflags[sig];
3517 }
3518 
3519 void os::Linux::set_our_sigflags(int sig, int flags) {
3520   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3521   sigflags[sig] = flags;
3522 }
3523 
3524 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3525   // Check for overwrite.
3526   struct sigaction oldAct;
3527   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3528 
3529   void* oldhand = oldAct.sa_sigaction
3530                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3531                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3532   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3533       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3534       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3535     if (AllowUserSignalHandlers || !set_installed) {
3536       // Do not overwrite; user takes responsibility to forward to us.
3537       return;
3538     } else if (UseSignalChaining) {
3539       // save the old handler in jvm
3540       save_preinstalled_handler(sig, oldAct);
3541       // libjsig also interposes the sigaction() call below and saves the
3542       // old sigaction on it own.
3543     } else {
3544       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3545                     "%#lx for signal %d.", (long)oldhand, sig));
3546     }
3547   }
3548 
3549   struct sigaction sigAct;
3550   sigfillset(&(sigAct.sa_mask));
3551   sigAct.sa_handler = SIG_DFL;
3552   if (!set_installed) {
3553     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3554   } else {
3555     sigAct.sa_sigaction = signalHandler;
3556     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3557   }
3558   // Save flags, which are set by ours
3559   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3560   sigflags[sig] = sigAct.sa_flags;
3561 
3562   int ret = sigaction(sig, &sigAct, &oldAct);
3563   assert(ret == 0, "check");
3564 
3565   void* oldhand2  = oldAct.sa_sigaction
3566                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3567                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3568   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3569 }
3570 
3571 // install signal handlers for signals that HotSpot needs to
3572 // handle in order to support Java-level exception handling.
3573 
3574 void os::Linux::install_signal_handlers() {
3575   if (!signal_handlers_are_installed) {
3576     signal_handlers_are_installed = true;
3577 
3578     // signal-chaining
3579     typedef void (*signal_setting_t)();
3580     signal_setting_t begin_signal_setting = NULL;
3581     signal_setting_t end_signal_setting = NULL;
3582     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3583                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3584     if (begin_signal_setting != NULL) {
3585       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3586                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3587       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3588                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3589       libjsig_is_loaded = true;
3590       assert(UseSignalChaining, "should enable signal-chaining");
3591     }
3592     if (libjsig_is_loaded) {
3593       // Tell libjsig jvm is setting signal handlers
3594       (*begin_signal_setting)();
3595     }
3596 
3597     set_signal_handler(SIGSEGV, true);
3598     set_signal_handler(SIGPIPE, true);
3599     set_signal_handler(SIGBUS, true);
3600     set_signal_handler(SIGILL, true);
3601     set_signal_handler(SIGFPE, true);
3602     set_signal_handler(SIGXFSZ, true);
3603 
3604     if (libjsig_is_loaded) {
3605       // Tell libjsig jvm finishes setting signal handlers
3606       (*end_signal_setting)();
3607     }
3608 
3609     // We don't activate signal checker if libjsig is in place, we trust ourselves
3610     // and if UserSignalHandler is installed all bets are off
3611     if (CheckJNICalls) {
3612       if (libjsig_is_loaded) {
3613         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3614         check_signals = false;
3615       }
3616       if (AllowUserSignalHandlers) {
3617         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3618         check_signals = false;
3619       }
3620     }
3621   }
3622 }
3623 
3624 // This is the fastest way to get thread cpu time on Linux.
3625 // Returns cpu time (user+sys) for any thread, not only for current.
3626 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3627 // It might work on 2.6.10+ with a special kernel/glibc patch.
3628 // For reference, please, see IEEE Std 1003.1-2004:
3629 //   http://www.unix.org/single_unix_specification
3630 
3631 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3632   struct timespec tp;
3633   int rc = os::Linux::clock_gettime(clockid, &tp);
3634   assert(rc == 0, "clock_gettime is expected to return 0 code");
3635 
3636   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3637 }
3638 
3639 /////
3640 // glibc on Linux platform uses non-documented flag
3641 // to indicate, that some special sort of signal
3642 // trampoline is used.
3643 // We will never set this flag, and we should
3644 // ignore this flag in our diagnostic
3645 #ifdef SIGNIFICANT_SIGNAL_MASK
3646 #undef SIGNIFICANT_SIGNAL_MASK
3647 #endif
3648 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3649 
3650 static const char* get_signal_handler_name(address handler,
3651                                            char* buf, int buflen) {
3652   int offset;
3653   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3654   if (found) {
3655     // skip directory names
3656     const char *p1, *p2;
3657     p1 = buf;
3658     size_t len = strlen(os::file_separator());
3659     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3660     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3661   } else {
3662     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3663   }
3664   return buf;
3665 }
3666 
3667 static void print_signal_handler(outputStream* st, int sig,
3668                                  char* buf, size_t buflen) {
3669   struct sigaction sa;
3670 
3671   sigaction(sig, NULL, &sa);
3672 
3673   // See comment for SIGNIFICANT_SIGNAL_MASK define
3674   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3675 
3676   st->print("%s: ", os::exception_name(sig, buf, buflen));
3677 
3678   address handler = (sa.sa_flags & SA_SIGINFO)
3679     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3680     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3681 
3682   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3683     st->print("SIG_DFL");
3684   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3685     st->print("SIG_IGN");
3686   } else {
3687     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3688   }
3689 
3690   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3691 
3692   address rh = VMError::get_resetted_sighandler(sig);
3693   // May be, handler was resetted by VMError?
3694   if(rh != NULL) {
3695     handler = rh;
3696     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3697   }
3698 
3699   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3700 
3701   // Check: is it our handler?
3702   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3703      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3704     // It is our signal handler
3705     // check for flags, reset system-used one!
3706     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3707       st->print(
3708                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3709                 os::Linux::get_our_sigflags(sig));
3710     }
3711   }
3712   st->cr();
3713 }
3714 
3715 
3716 #define DO_SIGNAL_CHECK(sig) \
3717   if (!sigismember(&check_signal_done, sig)) \
3718     os::Linux::check_signal_handler(sig)
3719 
3720 // This method is a periodic task to check for misbehaving JNI applications
3721 // under CheckJNI, we can add any periodic checks here
3722 
3723 void os::run_periodic_checks() {
3724 
3725   if (check_signals == false) return;
3726 
3727   // SEGV and BUS if overridden could potentially prevent
3728   // generation of hs*.log in the event of a crash, debugging
3729   // such a case can be very challenging, so we absolutely
3730   // check the following for a good measure:
3731   DO_SIGNAL_CHECK(SIGSEGV);
3732   DO_SIGNAL_CHECK(SIGILL);
3733   DO_SIGNAL_CHECK(SIGFPE);
3734   DO_SIGNAL_CHECK(SIGBUS);
3735   DO_SIGNAL_CHECK(SIGPIPE);
3736   DO_SIGNAL_CHECK(SIGXFSZ);
3737 
3738 
3739   // ReduceSignalUsage allows the user to override these handlers
3740   // see comments at the very top and jvm_solaris.h
3741   if (!ReduceSignalUsage) {
3742     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3743     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3744     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3745     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3746   }
3747 
3748   DO_SIGNAL_CHECK(SR_signum);
3749   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3750 }
3751 
3752 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3753 
3754 static os_sigaction_t os_sigaction = NULL;
3755 
3756 void os::Linux::check_signal_handler(int sig) {
3757   char buf[O_BUFLEN];
3758   address jvmHandler = NULL;
3759 
3760 
3761   struct sigaction act;
3762   if (os_sigaction == NULL) {
3763     // only trust the default sigaction, in case it has been interposed
3764     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3765     if (os_sigaction == NULL) return;
3766   }
3767 
3768   os_sigaction(sig, (struct sigaction*)NULL, &act);
3769 
3770 
3771   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3772 
3773   address thisHandler = (act.sa_flags & SA_SIGINFO)
3774     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3775     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3776 
3777 
3778   switch(sig) {
3779   case SIGSEGV:
3780   case SIGBUS:
3781   case SIGFPE:
3782   case SIGPIPE:
3783   case SIGILL:
3784   case SIGXFSZ:
3785     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3786     break;
3787 
3788   case SHUTDOWN1_SIGNAL:
3789   case SHUTDOWN2_SIGNAL:
3790   case SHUTDOWN3_SIGNAL:
3791   case BREAK_SIGNAL:
3792     jvmHandler = (address)user_handler();
3793     break;
3794 
3795   case INTERRUPT_SIGNAL:
3796     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3797     break;
3798 
3799   default:
3800     if (sig == SR_signum) {
3801       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3802     } else {
3803       return;
3804     }
3805     break;
3806   }
3807 
3808   if (thisHandler != jvmHandler) {
3809     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3810     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3811     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3812     // No need to check this sig any longer
3813     sigaddset(&check_signal_done, sig);
3814   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3815     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3816     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3817     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3818     // No need to check this sig any longer
3819     sigaddset(&check_signal_done, sig);
3820   }
3821 
3822   // Dump all the signal
3823   if (sigismember(&check_signal_done, sig)) {
3824     print_signal_handlers(tty, buf, O_BUFLEN);
3825   }
3826 }
3827 
3828 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3829 
3830 extern bool signal_name(int signo, char* buf, size_t len);
3831 
3832 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3833   if (0 < exception_code && exception_code <= SIGRTMAX) {
3834     // signal
3835     if (!signal_name(exception_code, buf, size)) {
3836       jio_snprintf(buf, size, "SIG%d", exception_code);
3837     }
3838     return buf;
3839   } else {
3840     return NULL;
3841   }
3842 }
3843 
3844 // this is called _before_ the most of global arguments have been parsed
3845 void os::init(void) {
3846   char dummy;   /* used to get a guess on initial stack address */
3847 //  first_hrtime = gethrtime();
3848 
3849   // With LinuxThreads the JavaMain thread pid (primordial thread)
3850   // is different than the pid of the java launcher thread.
3851   // So, on Linux, the launcher thread pid is passed to the VM
3852   // via the sun.java.launcher.pid property.
3853   // Use this property instead of getpid() if it was correctly passed.
3854   // See bug 6351349.
3855   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3856 
3857   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3858 
3859   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3860 
3861   init_random(1234567);
3862 
3863   ThreadCritical::initialize();
3864 
3865   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3866   if (Linux::page_size() == -1) {
3867     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3868                   strerror(errno)));
3869   }
3870   init_page_sizes((size_t) Linux::page_size());
3871 
3872   Linux::initialize_system_info();
3873 
3874   // main_thread points to the aboriginal thread
3875   Linux::_main_thread = pthread_self();
3876 
3877   Linux::clock_init();
3878   initial_time_count = os::elapsed_counter();
3879   pthread_mutex_init(&dl_mutex, NULL);
3880 }
3881 
3882 // To install functions for atexit system call
3883 extern "C" {
3884   static void perfMemory_exit_helper() {
3885     perfMemory_exit();
3886   }
3887 }
3888 
3889 // this is called _after_ the global arguments have been parsed
3890 jint os::init_2(void)
3891 {
3892   Linux::fast_thread_clock_init();
3893 
3894   // Allocate a single page and mark it as readable for safepoint polling
3895   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3896   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3897 
3898   os::set_polling_page( polling_page );
3899 
3900 #ifndef PRODUCT
3901   if(Verbose && PrintMiscellaneous)
3902     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3903 #endif
3904 
3905   if (!UseMembar) {
3906     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3907     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3908     os::set_memory_serialize_page( mem_serialize_page );
3909 
3910 #ifndef PRODUCT
3911     if(Verbose && PrintMiscellaneous)
3912       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3913 #endif
3914   }
3915 
3916   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3917 
3918   // initialize suspend/resume support - must do this before signal_sets_init()
3919   if (SR_initialize() != 0) {
3920     perror("SR_initialize failed");
3921     return JNI_ERR;
3922   }
3923 
3924   Linux::signal_sets_init();
3925   Linux::install_signal_handlers();
3926 
3927   // Check minimum allowable stack size for thread creation and to initialize
3928   // the java system classes, including StackOverflowError - depends on page
3929   // size.  Add a page for compiler2 recursion in main thread.
3930   // Add in 2*BytesPerWord times page size to account for VM stack during
3931   // class initialization depending on 32 or 64 bit VM.
3932   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
3933             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3934                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
3935 
3936   size_t threadStackSizeInBytes = ThreadStackSize * K;
3937   if (threadStackSizeInBytes != 0 &&
3938       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
3939         tty->print_cr("\nThe stack size specified is too small, "
3940                       "Specify at least %dk",
3941                       os::Linux::min_stack_allowed/ K);
3942         return JNI_ERR;
3943   }
3944 
3945   // Make the stack size a multiple of the page size so that
3946   // the yellow/red zones can be guarded.
3947   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3948         vm_page_size()));
3949 
3950   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3951 
3952   Linux::libpthread_init();
3953   if (PrintMiscellaneous && (Verbose || WizardMode)) {
3954      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3955           Linux::glibc_version(), Linux::libpthread_version(),
3956           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3957   }
3958 
3959   if (UseNUMA) {
3960     if (!Linux::libnuma_init()) {
3961       UseNUMA = false;
3962     } else {
3963       if ((Linux::numa_max_node() < 1)) {
3964         // There's only one node(they start from 0), disable NUMA.
3965         UseNUMA = false;
3966       }
3967     }
3968     if (!UseNUMA && ForceNUMA) {
3969       UseNUMA = true;
3970     }
3971   }
3972 
3973   if (MaxFDLimit) {
3974     // set the number of file descriptors to max. print out error
3975     // if getrlimit/setrlimit fails but continue regardless.
3976     struct rlimit nbr_files;
3977     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3978     if (status != 0) {
3979       if (PrintMiscellaneous && (Verbose || WizardMode))
3980         perror("os::init_2 getrlimit failed");
3981     } else {
3982       nbr_files.rlim_cur = nbr_files.rlim_max;
3983       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3984       if (status != 0) {
3985         if (PrintMiscellaneous && (Verbose || WizardMode))
3986           perror("os::init_2 setrlimit failed");
3987       }
3988     }
3989   }
3990 
3991   // Initialize lock used to serialize thread creation (see os::create_thread)
3992   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3993 
3994   // Initialize HPI.
3995   jint hpi_result = hpi::initialize();
3996   if (hpi_result != JNI_OK) {
3997     tty->print_cr("There was an error trying to initialize the HPI library.");
3998     return hpi_result;
3999   }
4000 
4001   // at-exit methods are called in the reverse order of their registration.
4002   // atexit functions are called on return from main or as a result of a
4003   // call to exit(3C). There can be only 32 of these functions registered
4004   // and atexit() does not set errno.
4005 
4006   if (PerfAllowAtExitRegistration) {
4007     // only register atexit functions if PerfAllowAtExitRegistration is set.
4008     // atexit functions can be delayed until process exit time, which
4009     // can be problematic for embedded VM situations. Embedded VMs should
4010     // call DestroyJavaVM() to assure that VM resources are released.
4011 
4012     // note: perfMemory_exit_helper atexit function may be removed in
4013     // the future if the appropriate cleanup code can be added to the
4014     // VM_Exit VMOperation's doit method.
4015     if (atexit(perfMemory_exit_helper) != 0) {
4016       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4017     }
4018   }
4019 
4020   // initialize thread priority policy
4021   prio_init();
4022 
4023   return JNI_OK;
4024 }
4025 
4026 // this is called at the end of vm_initialization
4027 void os::init_3(void) { }
4028 
4029 // Mark the polling page as unreadable
4030 void os::make_polling_page_unreadable(void) {
4031   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4032     fatal("Could not disable polling page");
4033 };
4034 
4035 // Mark the polling page as readable
4036 void os::make_polling_page_readable(void) {
4037   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4038     fatal("Could not enable polling page");
4039   }
4040 };
4041 
4042 int os::active_processor_count() {
4043   // Linux doesn't yet have a (official) notion of processor sets,
4044   // so just return the number of online processors.
4045   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4046   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4047   return online_cpus;
4048 }
4049 
4050 bool os::distribute_processes(uint length, uint* distribution) {
4051   // Not yet implemented.
4052   return false;
4053 }
4054 
4055 bool os::bind_to_processor(uint processor_id) {
4056   // Not yet implemented.
4057   return false;
4058 }
4059 
4060 ///
4061 
4062 // Suspends the target using the signal mechanism and then grabs the PC before
4063 // resuming the target. Used by the flat-profiler only
4064 ExtendedPC os::get_thread_pc(Thread* thread) {
4065   // Make sure that it is called by the watcher for the VMThread
4066   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4067   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4068 
4069   ExtendedPC epc;
4070 
4071   OSThread* osthread = thread->osthread();
4072   if (do_suspend(osthread)) {
4073     if (osthread->ucontext() != NULL) {
4074       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4075     } else {
4076       // NULL context is unexpected, double-check this is the VMThread
4077       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4078     }
4079     do_resume(osthread);
4080   }
4081   // failure means pthread_kill failed for some reason - arguably this is
4082   // a fatal problem, but such problems are ignored elsewhere
4083 
4084   return epc;
4085 }
4086 
4087 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4088 {
4089    if (is_NPTL()) {
4090       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4091    } else {
4092 #ifndef IA64
4093       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4094       // word back to default 64bit precision if condvar is signaled. Java
4095       // wants 53bit precision.  Save and restore current value.
4096       int fpu = get_fpu_control_word();
4097 #endif // IA64
4098       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4099 #ifndef IA64
4100       set_fpu_control_word(fpu);
4101 #endif // IA64
4102       return status;
4103    }
4104 }
4105 
4106 ////////////////////////////////////////////////////////////////////////////////
4107 // debug support
4108 
4109 static address same_page(address x, address y) {
4110   int page_bits = -os::vm_page_size();
4111   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4112     return x;
4113   else if (x > y)
4114     return (address)(intptr_t(y) | ~page_bits) + 1;
4115   else
4116     return (address)(intptr_t(y) & page_bits);
4117 }
4118 
4119 bool os::find(address addr, outputStream* st) {
4120   Dl_info dlinfo;
4121   memset(&dlinfo, 0, sizeof(dlinfo));
4122   if (dladdr(addr, &dlinfo)) {
4123     st->print(PTR_FORMAT ": ", addr);
4124     if (dlinfo.dli_sname != NULL) {
4125       st->print("%s+%#x", dlinfo.dli_sname,
4126                  addr - (intptr_t)dlinfo.dli_saddr);
4127     } else if (dlinfo.dli_fname) {
4128       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4129     } else {
4130       st->print("<absolute address>");
4131     }
4132     if (dlinfo.dli_fname) {
4133       st->print(" in %s", dlinfo.dli_fname);
4134     }
4135     if (dlinfo.dli_fbase) {
4136       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4137     }
4138     st->cr();
4139 
4140     if (Verbose) {
4141       // decode some bytes around the PC
4142       address begin = same_page(addr-40, addr);
4143       address end   = same_page(addr+40, addr);
4144       address       lowest = (address) dlinfo.dli_sname;
4145       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4146       if (begin < lowest)  begin = lowest;
4147       Dl_info dlinfo2;
4148       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4149           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4150         end = (address) dlinfo2.dli_saddr;
4151       Disassembler::decode(begin, end, st);
4152     }
4153     return true;
4154   }
4155   return false;
4156 }
4157 
4158 ////////////////////////////////////////////////////////////////////////////////
4159 // misc
4160 
4161 // This does not do anything on Linux. This is basically a hook for being
4162 // able to use structured exception handling (thread-local exception filters)
4163 // on, e.g., Win32.
4164 void
4165 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4166                          JavaCallArguments* args, Thread* thread) {
4167   f(value, method, args, thread);
4168 }
4169 
4170 void os::print_statistics() {
4171 }
4172 
4173 int os::message_box(const char* title, const char* message) {
4174   int i;
4175   fdStream err(defaultStream::error_fd());
4176   for (i = 0; i < 78; i++) err.print_raw("=");
4177   err.cr();
4178   err.print_raw_cr(title);
4179   for (i = 0; i < 78; i++) err.print_raw("-");
4180   err.cr();
4181   err.print_raw_cr(message);
4182   for (i = 0; i < 78; i++) err.print_raw("=");
4183   err.cr();
4184 
4185   char buf[16];
4186   // Prevent process from exiting upon "read error" without consuming all CPU
4187   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4188 
4189   return buf[0] == 'y' || buf[0] == 'Y';
4190 }
4191 
4192 int os::stat(const char *path, struct stat *sbuf) {
4193   char pathbuf[MAX_PATH];
4194   if (strlen(path) > MAX_PATH - 1) {
4195     errno = ENAMETOOLONG;
4196     return -1;
4197   }
4198   hpi::native_path(strcpy(pathbuf, path));
4199   return ::stat(pathbuf, sbuf);
4200 }
4201 
4202 bool os::check_heap(bool force) {
4203   return true;
4204 }
4205 
4206 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4207   return ::vsnprintf(buf, count, format, args);
4208 }
4209 
4210 // Is a (classpath) directory empty?
4211 bool os::dir_is_empty(const char* path) {
4212   DIR *dir = NULL;
4213   struct dirent *ptr;
4214 
4215   dir = opendir(path);
4216   if (dir == NULL) return true;
4217 
4218   /* Scan the directory */
4219   bool result = true;
4220   char buf[sizeof(struct dirent) + MAX_PATH];
4221   while (result && (ptr = ::readdir(dir)) != NULL) {
4222     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4223       result = false;
4224     }
4225   }
4226   closedir(dir);
4227   return result;
4228 }
4229 
4230 // create binary file, rewriting existing file if required
4231 int os::create_binary_file(const char* path, bool rewrite_existing) {
4232   int oflags = O_WRONLY | O_CREAT;
4233   if (!rewrite_existing) {
4234     oflags |= O_EXCL;
4235   }
4236   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4237 }
4238 
4239 // return current position of file pointer
4240 jlong os::current_file_offset(int fd) {
4241   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4242 }
4243 
4244 // move file pointer to the specified offset
4245 jlong os::seek_to_file_offset(int fd, jlong offset) {
4246   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4247 }
4248 
4249 // Map a block of memory.
4250 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4251                      char *addr, size_t bytes, bool read_only,
4252                      bool allow_exec) {
4253   int prot;
4254   int flags;
4255 
4256   if (read_only) {
4257     prot = PROT_READ;
4258     flags = MAP_SHARED;
4259   } else {
4260     prot = PROT_READ | PROT_WRITE;
4261     flags = MAP_PRIVATE;
4262   }
4263 
4264   if (allow_exec) {
4265     prot |= PROT_EXEC;
4266   }
4267 
4268   if (addr != NULL) {
4269     flags |= MAP_FIXED;
4270   }
4271 
4272   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4273                                      fd, file_offset);
4274   if (mapped_address == MAP_FAILED) {
4275     return NULL;
4276   }
4277   return mapped_address;
4278 }
4279 
4280 
4281 // Remap a block of memory.
4282 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4283                        char *addr, size_t bytes, bool read_only,
4284                        bool allow_exec) {
4285   // same as map_memory() on this OS
4286   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4287                         allow_exec);
4288 }
4289 
4290 
4291 // Unmap a block of memory.
4292 bool os::unmap_memory(char* addr, size_t bytes) {
4293   return munmap(addr, bytes) == 0;
4294 }
4295 
4296 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4297 
4298 static clockid_t thread_cpu_clockid(Thread* thread) {
4299   pthread_t tid = thread->osthread()->pthread_id();
4300   clockid_t clockid;
4301 
4302   // Get thread clockid
4303   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4304   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4305   return clockid;
4306 }
4307 
4308 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4309 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4310 // of a thread.
4311 //
4312 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4313 // the fast estimate available on the platform.
4314 
4315 jlong os::current_thread_cpu_time() {
4316   if (os::Linux::supports_fast_thread_cpu_time()) {
4317     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4318   } else {
4319     // return user + sys since the cost is the same
4320     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4321   }
4322 }
4323 
4324 jlong os::thread_cpu_time(Thread* thread) {
4325   // consistent with what current_thread_cpu_time() returns
4326   if (os::Linux::supports_fast_thread_cpu_time()) {
4327     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4328   } else {
4329     return slow_thread_cpu_time(thread, true /* user + sys */);
4330   }
4331 }
4332 
4333 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4334   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4335     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4336   } else {
4337     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4338   }
4339 }
4340 
4341 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4342   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4343     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4344   } else {
4345     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4346   }
4347 }
4348 
4349 //
4350 //  -1 on error.
4351 //
4352 
4353 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4354   static bool proc_pid_cpu_avail = true;
4355   static bool proc_task_unchecked = true;
4356   static const char *proc_stat_path = "/proc/%d/stat";
4357   pid_t  tid = thread->osthread()->thread_id();
4358   int i;
4359   char *s;
4360   char stat[2048];
4361   int statlen;
4362   char proc_name[64];
4363   int count;
4364   long sys_time, user_time;
4365   char string[64];
4366   char cdummy;
4367   int idummy;
4368   long ldummy;
4369   FILE *fp;
4370 
4371   // We first try accessing /proc/<pid>/cpu since this is faster to
4372   // process.  If this file is not present (linux kernels 2.5 and above)
4373   // then we open /proc/<pid>/stat.
4374   if ( proc_pid_cpu_avail ) {
4375     sprintf(proc_name, "/proc/%d/cpu", tid);
4376     fp =  fopen(proc_name, "r");
4377     if ( fp != NULL ) {
4378       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4379       fclose(fp);
4380       if ( count != 3 ) return -1;
4381 
4382       if (user_sys_cpu_time) {
4383         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4384       } else {
4385         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4386       }
4387     }
4388     else proc_pid_cpu_avail = false;
4389   }
4390 
4391   // The /proc/<tid>/stat aggregates per-process usage on
4392   // new Linux kernels 2.6+ where NPTL is supported.
4393   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4394   // See bug 6328462.
4395   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4396   // and possibly in some other cases, so we check its availability.
4397   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4398     // This is executed only once
4399     proc_task_unchecked = false;
4400     fp = fopen("/proc/self/task", "r");
4401     if (fp != NULL) {
4402       proc_stat_path = "/proc/self/task/%d/stat";
4403       fclose(fp);
4404     }
4405   }
4406 
4407   sprintf(proc_name, proc_stat_path, tid);
4408   fp = fopen(proc_name, "r");
4409   if ( fp == NULL ) return -1;
4410   statlen = fread(stat, 1, 2047, fp);
4411   stat[statlen] = '\0';
4412   fclose(fp);
4413 
4414   // Skip pid and the command string. Note that we could be dealing with
4415   // weird command names, e.g. user could decide to rename java launcher
4416   // to "java 1.4.2 :)", then the stat file would look like
4417   //                1234 (java 1.4.2 :)) R ... ...
4418   // We don't really need to know the command string, just find the last
4419   // occurrence of ")" and then start parsing from there. See bug 4726580.
4420   s = strrchr(stat, ')');
4421   i = 0;
4422   if (s == NULL ) return -1;
4423 
4424   // Skip blank chars
4425   do s++; while (isspace(*s));
4426 
4427   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4428                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4429                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4430                  &user_time, &sys_time);
4431   if ( count != 13 ) return -1;
4432   if (user_sys_cpu_time) {
4433     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4434   } else {
4435     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4436   }
4437 }
4438 
4439 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4440   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4441   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4442   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4443   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4444 }
4445 
4446 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4447   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4448   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4449   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4450   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4451 }
4452 
4453 bool os::is_thread_cpu_time_supported() {
4454   return true;
4455 }
4456 
4457 // System loadavg support.  Returns -1 if load average cannot be obtained.
4458 // Linux doesn't yet have a (official) notion of processor sets,
4459 // so just return the system wide load average.
4460 int os::loadavg(double loadavg[], int nelem) {
4461   return ::getloadavg(loadavg, nelem);
4462 }
4463 
4464 void os::pause() {
4465   char filename[MAX_PATH];
4466   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4467     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4468   } else {
4469     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4470   }
4471 
4472   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4473   if (fd != -1) {
4474     struct stat buf;
4475     close(fd);
4476     while (::stat(filename, &buf) == 0) {
4477       (void)::poll(NULL, 0, 100);
4478     }
4479   } else {
4480     jio_fprintf(stderr,
4481       "Could not open pause file '%s', continuing immediately.\n", filename);
4482   }
4483 }
4484 
4485 extern "C" {
4486 
4487 /**
4488  * NOTE: the following code is to keep the green threads code
4489  * in the libjava.so happy. Once the green threads is removed,
4490  * these code will no longer be needed.
4491  */
4492 int
4493 jdk_waitpid(pid_t pid, int* status, int options) {
4494     return waitpid(pid, status, options);
4495 }
4496 
4497 int
4498 fork1() {
4499     return fork();
4500 }
4501 
4502 int
4503 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4504     return sem_init(sem, pshared, value);
4505 }
4506 
4507 int
4508 jdk_sem_post(sem_t *sem) {
4509     return sem_post(sem);
4510 }
4511 
4512 int
4513 jdk_sem_wait(sem_t *sem) {
4514     return sem_wait(sem);
4515 }
4516 
4517 int
4518 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4519     return pthread_sigmask(how , newmask, oldmask);
4520 }
4521 
4522 }
4523 
4524 // Refer to the comments in os_solaris.cpp park-unpark.
4525 //
4526 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4527 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4528 // For specifics regarding the bug see GLIBC BUGID 261237 :
4529 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4530 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4531 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4532 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4533 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4534 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4535 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4536 // of libpthread avoids the problem, but isn't practical.
4537 //
4538 // Possible remedies:
4539 //
4540 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4541 //      This is palliative and probabilistic, however.  If the thread is preempted
4542 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4543 //      than the minimum period may have passed, and the abstime may be stale (in the
4544 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4545 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4546 //
4547 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4548 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4549 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4550 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4551 //      thread.
4552 //
4553 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4554 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4555 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4556 //      This also works well.  In fact it avoids kernel-level scalability impediments
4557 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4558 //      timers in a graceful fashion.
4559 //
4560 // 4.   When the abstime value is in the past it appears that control returns
4561 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4562 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4563 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4564 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4565 //      It may be possible to avoid reinitialization by checking the return
4566 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4567 //      condvar we must establish the invariant that cond_signal() is only called
4568 //      within critical sections protected by the adjunct mutex.  This prevents
4569 //      cond_signal() from "seeing" a condvar that's in the midst of being
4570 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4571 //      desirable signal-after-unlock optimization that avoids futile context switching.
4572 //
4573 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4574 //      structure when a condvar is used or initialized.  cond_destroy()  would
4575 //      release the helper structure.  Our reinitialize-after-timedwait fix
4576 //      put excessive stress on malloc/free and locks protecting the c-heap.
4577 //
4578 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4579 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4580 // and only enabling the work-around for vulnerable environments.
4581 
4582 // utility to compute the abstime argument to timedwait:
4583 // millis is the relative timeout time
4584 // abstime will be the absolute timeout time
4585 // TODO: replace compute_abstime() with unpackTime()
4586 
4587 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4588   if (millis < 0)  millis = 0;
4589   struct timeval now;
4590   int status = gettimeofday(&now, NULL);
4591   assert(status == 0, "gettimeofday");
4592   jlong seconds = millis / 1000;
4593   millis %= 1000;
4594   if (seconds > 50000000) { // see man cond_timedwait(3T)
4595     seconds = 50000000;
4596   }
4597   abstime->tv_sec = now.tv_sec  + seconds;
4598   long       usec = now.tv_usec + millis * 1000;
4599   if (usec >= 1000000) {
4600     abstime->tv_sec += 1;
4601     usec -= 1000000;
4602   }
4603   abstime->tv_nsec = usec * 1000;
4604   return abstime;
4605 }
4606 
4607 
4608 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4609 // Conceptually TryPark() should be equivalent to park(0).
4610 
4611 int os::PlatformEvent::TryPark() {
4612   for (;;) {
4613     const int v = _Event ;
4614     guarantee ((v == 0) || (v == 1), "invariant") ;
4615     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4616   }
4617 }
4618 
4619 void os::PlatformEvent::park() {       // AKA "down()"
4620   // Invariant: Only the thread associated with the Event/PlatformEvent
4621   // may call park().
4622   // TODO: assert that _Assoc != NULL or _Assoc == Self
4623   int v ;
4624   for (;;) {
4625       v = _Event ;
4626       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4627   }
4628   guarantee (v >= 0, "invariant") ;
4629   if (v == 0) {
4630      // Do this the hard way by blocking ...
4631      int status = pthread_mutex_lock(_mutex);
4632      assert_status(status == 0, status, "mutex_lock");
4633      guarantee (_nParked == 0, "invariant") ;
4634      ++ _nParked ;
4635      while (_Event < 0) {
4636         status = pthread_cond_wait(_cond, _mutex);
4637         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4638         // Treat this the same as if the wait was interrupted
4639         if (status == ETIME) { status = EINTR; }
4640         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4641      }
4642      -- _nParked ;
4643 
4644     // In theory we could move the ST of 0 into _Event past the unlock(),
4645     // but then we'd need a MEMBAR after the ST.
4646     _Event = 0 ;
4647      status = pthread_mutex_unlock(_mutex);
4648      assert_status(status == 0, status, "mutex_unlock");
4649   }
4650   guarantee (_Event >= 0, "invariant") ;
4651 }
4652 
4653 int os::PlatformEvent::park(jlong millis) {
4654   guarantee (_nParked == 0, "invariant") ;
4655 
4656   int v ;
4657   for (;;) {
4658       v = _Event ;
4659       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4660   }
4661   guarantee (v >= 0, "invariant") ;
4662   if (v != 0) return OS_OK ;
4663 
4664   // We do this the hard way, by blocking the thread.
4665   // Consider enforcing a minimum timeout value.
4666   struct timespec abst;
4667   compute_abstime(&abst, millis);
4668 
4669   int ret = OS_TIMEOUT;
4670   int status = pthread_mutex_lock(_mutex);
4671   assert_status(status == 0, status, "mutex_lock");
4672   guarantee (_nParked == 0, "invariant") ;
4673   ++_nParked ;
4674 
4675   // Object.wait(timo) will return because of
4676   // (a) notification
4677   // (b) timeout
4678   // (c) thread.interrupt
4679   //
4680   // Thread.interrupt and object.notify{All} both call Event::set.
4681   // That is, we treat thread.interrupt as a special case of notification.
4682   // The underlying Solaris implementation, cond_timedwait, admits
4683   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4684   // JVM from making those visible to Java code.  As such, we must
4685   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4686   //
4687   // TODO: properly differentiate simultaneous notify+interrupt.
4688   // In that case, we should propagate the notify to another waiter.
4689 
4690   while (_Event < 0) {
4691     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4692     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4693       pthread_cond_destroy (_cond);
4694       pthread_cond_init (_cond, NULL) ;
4695     }
4696     assert_status(status == 0 || status == EINTR ||
4697                   status == ETIME || status == ETIMEDOUT,
4698                   status, "cond_timedwait");
4699     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4700     if (status == ETIME || status == ETIMEDOUT) break ;
4701     // We consume and ignore EINTR and spurious wakeups.
4702   }
4703   --_nParked ;
4704   if (_Event >= 0) {
4705      ret = OS_OK;
4706   }
4707   _Event = 0 ;
4708   status = pthread_mutex_unlock(_mutex);
4709   assert_status(status == 0, status, "mutex_unlock");
4710   assert (_nParked == 0, "invariant") ;
4711   return ret;
4712 }
4713 
4714 void os::PlatformEvent::unpark() {
4715   int v, AnyWaiters ;
4716   for (;;) {
4717       v = _Event ;
4718       if (v > 0) {
4719          // The LD of _Event could have reordered or be satisfied
4720          // by a read-aside from this processor's write buffer.
4721          // To avoid problems execute a barrier and then
4722          // ratify the value.
4723          OrderAccess::fence() ;
4724          if (_Event == v) return ;
4725          continue ;
4726       }
4727       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4728   }
4729   if (v < 0) {
4730      // Wait for the thread associated with the event to vacate
4731      int status = pthread_mutex_lock(_mutex);
4732      assert_status(status == 0, status, "mutex_lock");
4733      AnyWaiters = _nParked ;
4734      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4735      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4736         AnyWaiters = 0 ;
4737         pthread_cond_signal (_cond);
4738      }
4739      status = pthread_mutex_unlock(_mutex);
4740      assert_status(status == 0, status, "mutex_unlock");
4741      if (AnyWaiters != 0) {
4742         status = pthread_cond_signal(_cond);
4743         assert_status(status == 0, status, "cond_signal");
4744      }
4745   }
4746 
4747   // Note that we signal() _after dropping the lock for "immortal" Events.
4748   // This is safe and avoids a common class of  futile wakeups.  In rare
4749   // circumstances this can cause a thread to return prematurely from
4750   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4751   // simply re-test the condition and re-park itself.
4752 }
4753 
4754 
4755 // JSR166
4756 // -------------------------------------------------------
4757 
4758 /*
4759  * The solaris and linux implementations of park/unpark are fairly
4760  * conservative for now, but can be improved. They currently use a
4761  * mutex/condvar pair, plus a a count.
4762  * Park decrements count if > 0, else does a condvar wait.  Unpark
4763  * sets count to 1 and signals condvar.  Only one thread ever waits
4764  * on the condvar. Contention seen when trying to park implies that someone
4765  * is unparking you, so don't wait. And spurious returns are fine, so there
4766  * is no need to track notifications.
4767  */
4768 
4769 
4770 #define NANOSECS_PER_SEC 1000000000
4771 #define NANOSECS_PER_MILLISEC 1000000
4772 #define MAX_SECS 100000000
4773 /*
4774  * This code is common to linux and solaris and will be moved to a
4775  * common place in dolphin.
4776  *
4777  * The passed in time value is either a relative time in nanoseconds
4778  * or an absolute time in milliseconds. Either way it has to be unpacked
4779  * into suitable seconds and nanoseconds components and stored in the
4780  * given timespec structure.
4781  * Given time is a 64-bit value and the time_t used in the timespec is only
4782  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4783  * overflow if times way in the future are given. Further on Solaris versions
4784  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4785  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4786  * As it will be 28 years before "now + 100000000" will overflow we can
4787  * ignore overflow and just impose a hard-limit on seconds using the value
4788  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4789  * years from "now".
4790  */
4791 
4792 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4793   assert (time > 0, "convertTime");
4794 
4795   struct timeval now;
4796   int status = gettimeofday(&now, NULL);
4797   assert(status == 0, "gettimeofday");
4798 
4799   time_t max_secs = now.tv_sec + MAX_SECS;
4800 
4801   if (isAbsolute) {
4802     jlong secs = time / 1000;
4803     if (secs > max_secs) {
4804       absTime->tv_sec = max_secs;
4805     }
4806     else {
4807       absTime->tv_sec = secs;
4808     }
4809     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4810   }
4811   else {
4812     jlong secs = time / NANOSECS_PER_SEC;
4813     if (secs >= MAX_SECS) {
4814       absTime->tv_sec = max_secs;
4815       absTime->tv_nsec = 0;
4816     }
4817     else {
4818       absTime->tv_sec = now.tv_sec + secs;
4819       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4820       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4821         absTime->tv_nsec -= NANOSECS_PER_SEC;
4822         ++absTime->tv_sec; // note: this must be <= max_secs
4823       }
4824     }
4825   }
4826   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4827   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4828   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4829   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4830 }
4831 
4832 void Parker::park(bool isAbsolute, jlong time) {
4833   // Optional fast-path check:
4834   // Return immediately if a permit is available.
4835   if (_counter > 0) {
4836       _counter = 0 ;
4837       OrderAccess::fence();
4838       return ;
4839   }
4840 
4841   Thread* thread = Thread::current();
4842   assert(thread->is_Java_thread(), "Must be JavaThread");
4843   JavaThread *jt = (JavaThread *)thread;
4844 
4845   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4846   // Check interrupt before trying to wait
4847   if (Thread::is_interrupted(thread, false)) {
4848     return;
4849   }
4850 
4851   // Next, demultiplex/decode time arguments
4852   timespec absTime;
4853   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4854     return;
4855   }
4856   if (time > 0) {
4857     unpackTime(&absTime, isAbsolute, time);
4858   }
4859 
4860 
4861   // Enter safepoint region
4862   // Beware of deadlocks such as 6317397.
4863   // The per-thread Parker:: mutex is a classic leaf-lock.
4864   // In particular a thread must never block on the Threads_lock while
4865   // holding the Parker:: mutex.  If safepoints are pending both the
4866   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4867   ThreadBlockInVM tbivm(jt);
4868 
4869   // Don't wait if cannot get lock since interference arises from
4870   // unblocking.  Also. check interrupt before trying wait
4871   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4872     return;
4873   }
4874 
4875   int status ;
4876   if (_counter > 0)  { // no wait needed
4877     _counter = 0;
4878     status = pthread_mutex_unlock(_mutex);
4879     assert (status == 0, "invariant") ;
4880     OrderAccess::fence();
4881     return;
4882   }
4883 
4884 #ifdef ASSERT
4885   // Don't catch signals while blocked; let the running threads have the signals.
4886   // (This allows a debugger to break into the running thread.)
4887   sigset_t oldsigs;
4888   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4889   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4890 #endif
4891 
4892   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4893   jt->set_suspend_equivalent();
4894   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4895 
4896   if (time == 0) {
4897     status = pthread_cond_wait (_cond, _mutex) ;
4898   } else {
4899     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4900     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4901       pthread_cond_destroy (_cond) ;
4902       pthread_cond_init    (_cond, NULL);
4903     }
4904   }
4905   assert_status(status == 0 || status == EINTR ||
4906                 status == ETIME || status == ETIMEDOUT,
4907                 status, "cond_timedwait");
4908 
4909 #ifdef ASSERT
4910   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4911 #endif
4912 
4913   _counter = 0 ;
4914   status = pthread_mutex_unlock(_mutex) ;
4915   assert_status(status == 0, status, "invariant") ;
4916   // If externally suspended while waiting, re-suspend
4917   if (jt->handle_special_suspend_equivalent_condition()) {
4918     jt->java_suspend_self();
4919   }
4920 
4921   OrderAccess::fence();
4922 }
4923 
4924 void Parker::unpark() {
4925   int s, status ;
4926   status = pthread_mutex_lock(_mutex);
4927   assert (status == 0, "invariant") ;
4928   s = _counter;
4929   _counter = 1;
4930   if (s < 1) {
4931      if (WorkAroundNPTLTimedWaitHang) {
4932         status = pthread_cond_signal (_cond) ;
4933         assert (status == 0, "invariant") ;
4934         status = pthread_mutex_unlock(_mutex);
4935         assert (status == 0, "invariant") ;
4936      } else {
4937         status = pthread_mutex_unlock(_mutex);
4938         assert (status == 0, "invariant") ;
4939         status = pthread_cond_signal (_cond) ;
4940         assert (status == 0, "invariant") ;
4941      }
4942   } else {
4943     pthread_mutex_unlock(_mutex);
4944     assert (status == 0, "invariant") ;
4945   }
4946 }
4947 
4948 
4949 extern char** environ;
4950 
4951 #ifndef __NR_fork
4952 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4953 #endif
4954 
4955 #ifndef __NR_execve
4956 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4957 #endif
4958 
4959 // Run the specified command in a separate process. Return its exit value,
4960 // or -1 on failure (e.g. can't fork a new process).
4961 // Unlike system(), this function can be called from signal handler. It
4962 // doesn't block SIGINT et al.
4963 int os::fork_and_exec(char* cmd) {
4964   const char * argv[4] = {"sh", "-c", cmd, NULL};
4965 
4966   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4967   // pthread_atfork handlers and reset pthread library. All we need is a
4968   // separate process to execve. Make a direct syscall to fork process.
4969   // On IA64 there's no fork syscall, we have to use fork() and hope for
4970   // the best...
4971   pid_t pid = NOT_IA64(syscall(__NR_fork);)
4972               IA64_ONLY(fork();)
4973 
4974   if (pid < 0) {
4975     // fork failed
4976     return -1;
4977 
4978   } else if (pid == 0) {
4979     // child process
4980 
4981     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4982     // first to kill every thread on the thread list. Because this list is
4983     // not reset by fork() (see notes above), execve() will instead kill
4984     // every thread in the parent process. We know this is the only thread
4985     // in the new process, so make a system call directly.
4986     // IA64 should use normal execve() from glibc to match the glibc fork()
4987     // above.
4988     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4989     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4990 
4991     // execve failed
4992     _exit(-1);
4993 
4994   } else  {
4995     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4996     // care about the actual exit code, for now.
4997 
4998     int status;
4999 
5000     // Wait for the child process to exit.  This returns immediately if
5001     // the child has already exited. */
5002     while (waitpid(pid, &status, 0) < 0) {
5003         switch (errno) {
5004         case ECHILD: return 0;
5005         case EINTR: break;
5006         default: return -1;
5007         }
5008     }
5009 
5010     if (WIFEXITED(status)) {
5011        // The child exited normally; get its exit code.
5012        return WEXITSTATUS(status);
5013     } else if (WIFSIGNALED(status)) {
5014        // The child exited because of a signal
5015        // The best value to return is 0x80 + signal number,
5016        // because that is what all Unix shells do, and because
5017        // it allows callers to distinguish between process exit and
5018        // process death by signal.
5019        return 0x80 + WTERMSIG(status);
5020     } else {
5021        // Unknown exit code; pass it through
5022        return status;
5023     }
5024   }
5025 }
5026 
5027 // is_headless_jre()
5028 //
5029 // Test for the existence of libmawt in motif21 or xawt directories
5030 // in order to report if we are running in a headless jre
5031 //
5032 bool os::is_headless_jre() {
5033     struct stat statbuf;
5034     char buf[MAXPATHLEN];
5035     char libmawtpath[MAXPATHLEN];
5036     const char *xawtstr  = "/xawt/libmawt.so";
5037     const char *motifstr = "/motif21/libmawt.so";
5038     char *p;
5039 
5040     // Get path to libjvm.so
5041     os::jvm_path(buf, sizeof(buf));
5042 
5043     // Get rid of libjvm.so
5044     p = strrchr(buf, '/');
5045     if (p == NULL) return false;
5046     else *p = '\0';
5047 
5048     // Get rid of client or server
5049     p = strrchr(buf, '/');
5050     if (p == NULL) return false;
5051     else *p = '\0';
5052 
5053     // check xawt/libmawt.so
5054     strcpy(libmawtpath, buf);
5055     strcat(libmawtpath, xawtstr);
5056     if (::stat(libmawtpath, &statbuf) == 0) return false;
5057 
5058     // check motif21/libmawt.so
5059     strcpy(libmawtpath, buf);
5060     strcat(libmawtpath, motifstr);
5061     if (::stat(libmawtpath, &statbuf) == 0) return false;
5062 
5063     return true;
5064 }
5065