1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // do not include precompiled header file
  31 # include "incls/_os_windows.cpp.incl"
  32 
  33 #ifdef _DEBUG
  34 #include <crtdbg.h>
  35 #endif
  36 
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <sys/timeb.h>
  42 #include <objidl.h>
  43 #include <shlobj.h>
  44 
  45 #include <malloc.h>
  46 #include <signal.h>
  47 #include <direct.h>
  48 #include <errno.h>
  49 #include <fcntl.h>
  50 #include <io.h>
  51 #include <process.h>              // For _beginthreadex(), _endthreadex()
  52 #include <imagehlp.h>             // For os::dll_address_to_function_name
  53 
  54 /* for enumerating dll libraries */
  55 #include <tlhelp32.h>
  56 #include <vdmdbg.h>
  57 
  58 // for timer info max values which include all bits
  59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  60 
  61 // For DLL loading/load error detection
  62 // Values of PE COFF
  63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
  65 
  66 static HANDLE main_process;
  67 static HANDLE main_thread;
  68 static int    main_thread_id;
  69 
  70 static FILETIME process_creation_time;
  71 static FILETIME process_exit_time;
  72 static FILETIME process_user_time;
  73 static FILETIME process_kernel_time;
  74 
  75 #ifdef _WIN64
  76 PVOID  topLevelVectoredExceptionHandler = NULL;
  77 #endif
  78 
  79 #ifdef _M_IA64
  80 #define __CPU__ ia64
  81 #elif _M_AMD64
  82 #define __CPU__ amd64
  83 #else
  84 #define __CPU__ i486
  85 #endif
  86 
  87 // save DLL module handle, used by GetModuleFileName
  88 
  89 HINSTANCE vm_lib_handle;
  90 static int getLastErrorString(char *buf, size_t len);
  91 
  92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
  93   switch (reason) {
  94     case DLL_PROCESS_ATTACH:
  95       vm_lib_handle = hinst;
  96       if(ForceTimeHighResolution)
  97         timeBeginPeriod(1L);
  98       break;
  99     case DLL_PROCESS_DETACH:
 100       if(ForceTimeHighResolution)
 101         timeEndPeriod(1L);
 102 #ifdef _WIN64
 103       if (topLevelVectoredExceptionHandler != NULL) {
 104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 105         topLevelVectoredExceptionHandler = NULL;
 106       }
 107 #endif
 108       break;
 109     default:
 110       break;
 111   }
 112   return true;
 113 }
 114 
 115 static inline double fileTimeAsDouble(FILETIME* time) {
 116   const double high  = (double) ((unsigned int) ~0);
 117   const double split = 10000000.0;
 118   double result = (time->dwLowDateTime / split) +
 119                    time->dwHighDateTime * (high/split);
 120   return result;
 121 }
 122 
 123 // Implementation of os
 124 
 125 bool os::getenv(const char* name, char* buffer, int len) {
 126  int result = GetEnvironmentVariable(name, buffer, len);
 127  return result > 0 && result < len;
 128 }
 129 
 130 
 131 // No setuid programs under Windows.
 132 bool os::have_special_privileges() {
 133   return false;
 134 }
 135 
 136 
 137 // This method is  a periodic task to check for misbehaving JNI applications
 138 // under CheckJNI, we can add any periodic checks here.
 139 // For Windows at the moment does nothing
 140 void os::run_periodic_checks() {
 141   return;
 142 }
 143 
 144 #ifndef _WIN64
 145 // previous UnhandledExceptionFilter, if there is one
 146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 147 
 148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 149 #endif
 150 void os::init_system_properties_values() {
 151   /* sysclasspath, java_home, dll_dir */
 152   {
 153       char *home_path;
 154       char *dll_path;
 155       char *pslash;
 156       char *bin = "\\bin";
 157       char home_dir[MAX_PATH];
 158 
 159       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 160           os::jvm_path(home_dir, sizeof(home_dir));
 161           // Found the full path to jvm[_g].dll.
 162           // Now cut the path to <java_home>/jre if we can.
 163           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 164           pslash = strrchr(home_dir, '\\');
 165           if (pslash != NULL) {
 166               *pslash = '\0';                 /* get rid of \{client|server} */
 167               pslash = strrchr(home_dir, '\\');
 168               if (pslash != NULL)
 169                   *pslash = '\0';             /* get rid of \bin */
 170           }
 171       }
 172 
 173       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 174       if (home_path == NULL)
 175           return;
 176       strcpy(home_path, home_dir);
 177       Arguments::set_java_home(home_path);
 178 
 179       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 180       if (dll_path == NULL)
 181           return;
 182       strcpy(dll_path, home_dir);
 183       strcat(dll_path, bin);
 184       Arguments::set_dll_dir(dll_path);
 185 
 186       if (!set_boot_path('\\', ';'))
 187           return;
 188   }
 189 
 190   /* library_path */
 191   #define EXT_DIR "\\lib\\ext"
 192   #define BIN_DIR "\\bin"
 193   #define PACKAGE_DIR "\\Sun\\Java"
 194   {
 195     /* Win32 library search order (See the documentation for LoadLibrary):
 196      *
 197      * 1. The directory from which application is loaded.
 198      * 2. The current directory
 199      * 3. The system wide Java Extensions directory (Java only)
 200      * 4. System directory (GetSystemDirectory)
 201      * 5. Windows directory (GetWindowsDirectory)
 202      * 6. The PATH environment variable
 203      */
 204 
 205     char *library_path;
 206     char tmp[MAX_PATH];
 207     char *path_str = ::getenv("PATH");
 208 
 209     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 210         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 211 
 212     library_path[0] = '\0';
 213 
 214     GetModuleFileName(NULL, tmp, sizeof(tmp));
 215     *(strrchr(tmp, '\\')) = '\0';
 216     strcat(library_path, tmp);
 217 
 218     strcat(library_path, ";.");
 219 
 220     GetWindowsDirectory(tmp, sizeof(tmp));
 221     strcat(library_path, ";");
 222     strcat(library_path, tmp);
 223     strcat(library_path, PACKAGE_DIR BIN_DIR);
 224 
 225     GetSystemDirectory(tmp, sizeof(tmp));
 226     strcat(library_path, ";");
 227     strcat(library_path, tmp);
 228 
 229     GetWindowsDirectory(tmp, sizeof(tmp));
 230     strcat(library_path, ";");
 231     strcat(library_path, tmp);
 232 
 233     if (path_str) {
 234         strcat(library_path, ";");
 235         strcat(library_path, path_str);
 236     }
 237 
 238     Arguments::set_library_path(library_path);
 239     FREE_C_HEAP_ARRAY(char, library_path);
 240   }
 241 
 242   /* Default extensions directory */
 243   {
 244     char path[MAX_PATH];
 245     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 246     GetWindowsDirectory(path, MAX_PATH);
 247     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 248         path, PACKAGE_DIR, EXT_DIR);
 249     Arguments::set_ext_dirs(buf);
 250   }
 251   #undef EXT_DIR
 252   #undef BIN_DIR
 253   #undef PACKAGE_DIR
 254 
 255   /* Default endorsed standards directory. */
 256   {
 257     #define ENDORSED_DIR "\\lib\\endorsed"
 258     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 259     char * buf = NEW_C_HEAP_ARRAY(char, len);
 260     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 261     Arguments::set_endorsed_dirs(buf);
 262     #undef ENDORSED_DIR
 263   }
 264 
 265 #ifndef _WIN64
 266   // set our UnhandledExceptionFilter and save any previous one
 267   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 268 #endif
 269 
 270   // Done
 271   return;
 272 }
 273 
 274 void os::breakpoint() {
 275   DebugBreak();
 276 }
 277 
 278 // Invoked from the BREAKPOINT Macro
 279 extern "C" void breakpoint() {
 280   os::breakpoint();
 281 }
 282 
 283 // Returns an estimate of the current stack pointer. Result must be guaranteed
 284 // to point into the calling threads stack, and be no lower than the current
 285 // stack pointer.
 286 
 287 address os::current_stack_pointer() {
 288   int dummy;
 289   address sp = (address)&dummy;
 290   return sp;
 291 }
 292 
 293 // os::current_stack_base()
 294 //
 295 //   Returns the base of the stack, which is the stack's
 296 //   starting address.  This function must be called
 297 //   while running on the stack of the thread being queried.
 298 
 299 address os::current_stack_base() {
 300   MEMORY_BASIC_INFORMATION minfo;
 301   address stack_bottom;
 302   size_t stack_size;
 303 
 304   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 305   stack_bottom =  (address)minfo.AllocationBase;
 306   stack_size = minfo.RegionSize;
 307 
 308   // Add up the sizes of all the regions with the same
 309   // AllocationBase.
 310   while( 1 )
 311   {
 312     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 313     if ( stack_bottom == (address)minfo.AllocationBase )
 314       stack_size += minfo.RegionSize;
 315     else
 316       break;
 317   }
 318 
 319 #ifdef _M_IA64
 320   // IA64 has memory and register stacks
 321   stack_size = stack_size / 2;
 322 #endif
 323   return stack_bottom + stack_size;
 324 }
 325 
 326 size_t os::current_stack_size() {
 327   size_t sz;
 328   MEMORY_BASIC_INFORMATION minfo;
 329   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 330   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 331   return sz;
 332 }
 333 
 334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 335   const struct tm* time_struct_ptr = localtime(clock);
 336   if (time_struct_ptr != NULL) {
 337     *res = *time_struct_ptr;
 338     return res;
 339   }
 340   return NULL;
 341 }
 342 
 343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 344 
 345 // Thread start routine for all new Java threads
 346 static unsigned __stdcall java_start(Thread* thread) {
 347   // Try to randomize the cache line index of hot stack frames.
 348   // This helps when threads of the same stack traces evict each other's
 349   // cache lines. The threads can be either from the same JVM instance, or
 350   // from different JVM instances. The benefit is especially true for
 351   // processors with hyperthreading technology.
 352   static int counter = 0;
 353   int pid = os::current_process_id();
 354   _alloca(((pid ^ counter++) & 7) * 128);
 355 
 356   OSThread* osthr = thread->osthread();
 357   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 358 
 359   if (UseNUMA) {
 360     int lgrp_id = os::numa_get_group_id();
 361     if (lgrp_id != -1) {
 362       thread->set_lgrp_id(lgrp_id);
 363     }
 364   }
 365 
 366 
 367   if (UseVectoredExceptions) {
 368     // If we are using vectored exception we don't need to set a SEH
 369     thread->run();
 370   }
 371   else {
 372     // Install a win32 structured exception handler around every thread created
 373     // by VM, so VM can genrate error dump when an exception occurred in non-
 374     // Java thread (e.g. VM thread).
 375     __try {
 376        thread->run();
 377     } __except(topLevelExceptionFilter(
 378                (_EXCEPTION_POINTERS*)_exception_info())) {
 379         // Nothing to do.
 380     }
 381   }
 382 
 383   // One less thread is executing
 384   // When the VMThread gets here, the main thread may have already exited
 385   // which frees the CodeHeap containing the Atomic::add code
 386   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 387     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 388   }
 389 
 390   return 0;
 391 }
 392 
 393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 394   // Allocate the OSThread object
 395   OSThread* osthread = new OSThread(NULL, NULL);
 396   if (osthread == NULL) return NULL;
 397 
 398   // Initialize support for Java interrupts
 399   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 400   if (interrupt_event == NULL) {
 401     delete osthread;
 402     return NULL;
 403   }
 404   osthread->set_interrupt_event(interrupt_event);
 405 
 406   // Store info on the Win32 thread into the OSThread
 407   osthread->set_thread_handle(thread_handle);
 408   osthread->set_thread_id(thread_id);
 409 
 410   if (UseNUMA) {
 411     int lgrp_id = os::numa_get_group_id();
 412     if (lgrp_id != -1) {
 413       thread->set_lgrp_id(lgrp_id);
 414     }
 415   }
 416 
 417   // Initial thread state is INITIALIZED, not SUSPENDED
 418   osthread->set_state(INITIALIZED);
 419 
 420   return osthread;
 421 }
 422 
 423 
 424 bool os::create_attached_thread(JavaThread* thread) {
 425 #ifdef ASSERT
 426   thread->verify_not_published();
 427 #endif
 428   HANDLE thread_h;
 429   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 430                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 431     fatal("DuplicateHandle failed\n");
 432   }
 433   OSThread* osthread = create_os_thread(thread, thread_h,
 434                                         (int)current_thread_id());
 435   if (osthread == NULL) {
 436      return false;
 437   }
 438 
 439   // Initial thread state is RUNNABLE
 440   osthread->set_state(RUNNABLE);
 441 
 442   thread->set_osthread(osthread);
 443   return true;
 444 }
 445 
 446 bool os::create_main_thread(JavaThread* thread) {
 447 #ifdef ASSERT
 448   thread->verify_not_published();
 449 #endif
 450   if (_starting_thread == NULL) {
 451     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 452      if (_starting_thread == NULL) {
 453         return false;
 454      }
 455   }
 456 
 457   // The primordial thread is runnable from the start)
 458   _starting_thread->set_state(RUNNABLE);
 459 
 460   thread->set_osthread(_starting_thread);
 461   return true;
 462 }
 463 
 464 // Allocate and initialize a new OSThread
 465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 466   unsigned thread_id;
 467 
 468   // Allocate the OSThread object
 469   OSThread* osthread = new OSThread(NULL, NULL);
 470   if (osthread == NULL) {
 471     return false;
 472   }
 473 
 474   // Initialize support for Java interrupts
 475   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 476   if (interrupt_event == NULL) {
 477     delete osthread;
 478     return NULL;
 479   }
 480   osthread->set_interrupt_event(interrupt_event);
 481   osthread->set_interrupted(false);
 482 
 483   thread->set_osthread(osthread);
 484 
 485   if (stack_size == 0) {
 486     switch (thr_type) {
 487     case os::java_thread:
 488       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 489       if (JavaThread::stack_size_at_create() > 0)
 490         stack_size = JavaThread::stack_size_at_create();
 491       break;
 492     case os::compiler_thread:
 493       if (CompilerThreadStackSize > 0) {
 494         stack_size = (size_t)(CompilerThreadStackSize * K);
 495         break;
 496       } // else fall through:
 497         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 498     case os::vm_thread:
 499     case os::pgc_thread:
 500     case os::cgc_thread:
 501     case os::watcher_thread:
 502       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 503       break;
 504     }
 505   }
 506 
 507   // Create the Win32 thread
 508   //
 509   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 510   // does not specify stack size. Instead, it specifies the size of
 511   // initially committed space. The stack size is determined by
 512   // PE header in the executable. If the committed "stack_size" is larger
 513   // than default value in the PE header, the stack is rounded up to the
 514   // nearest multiple of 1MB. For example if the launcher has default
 515   // stack size of 320k, specifying any size less than 320k does not
 516   // affect the actual stack size at all, it only affects the initial
 517   // commitment. On the other hand, specifying 'stack_size' larger than
 518   // default value may cause significant increase in memory usage, because
 519   // not only the stack space will be rounded up to MB, but also the
 520   // entire space is committed upfront.
 521   //
 522   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 523   // for CreateThread() that can treat 'stack_size' as stack size. However we
 524   // are not supposed to call CreateThread() directly according to MSDN
 525   // document because JVM uses C runtime library. The good news is that the
 526   // flag appears to work with _beginthredex() as well.
 527 
 528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 529 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 530 #endif
 531 
 532   HANDLE thread_handle =
 533     (HANDLE)_beginthreadex(NULL,
 534                            (unsigned)stack_size,
 535                            (unsigned (__stdcall *)(void*)) java_start,
 536                            thread,
 537                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 538                            &thread_id);
 539   if (thread_handle == NULL) {
 540     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 541     // without the flag.
 542     thread_handle =
 543     (HANDLE)_beginthreadex(NULL,
 544                            (unsigned)stack_size,
 545                            (unsigned (__stdcall *)(void*)) java_start,
 546                            thread,
 547                            CREATE_SUSPENDED,
 548                            &thread_id);
 549   }
 550   if (thread_handle == NULL) {
 551     // Need to clean up stuff we've allocated so far
 552     CloseHandle(osthread->interrupt_event());
 553     thread->set_osthread(NULL);
 554     delete osthread;
 555     return NULL;
 556   }
 557 
 558   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 559 
 560   // Store info on the Win32 thread into the OSThread
 561   osthread->set_thread_handle(thread_handle);
 562   osthread->set_thread_id(thread_id);
 563 
 564   // Initial thread state is INITIALIZED, not SUSPENDED
 565   osthread->set_state(INITIALIZED);
 566 
 567   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 568   return true;
 569 }
 570 
 571 
 572 // Free Win32 resources related to the OSThread
 573 void os::free_thread(OSThread* osthread) {
 574   assert(osthread != NULL, "osthread not set");
 575   CloseHandle(osthread->thread_handle());
 576   CloseHandle(osthread->interrupt_event());
 577   delete osthread;
 578 }
 579 
 580 
 581 static int    has_performance_count = 0;
 582 static jlong first_filetime;
 583 static jlong initial_performance_count;
 584 static jlong performance_frequency;
 585 
 586 
 587 jlong as_long(LARGE_INTEGER x) {
 588   jlong result = 0; // initialization to avoid warning
 589   set_high(&result, x.HighPart);
 590   set_low(&result,  x.LowPart);
 591   return result;
 592 }
 593 
 594 
 595 jlong os::elapsed_counter() {
 596   LARGE_INTEGER count;
 597   if (has_performance_count) {
 598     QueryPerformanceCounter(&count);
 599     return as_long(count) - initial_performance_count;
 600   } else {
 601     FILETIME wt;
 602     GetSystemTimeAsFileTime(&wt);
 603     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 604   }
 605 }
 606 
 607 
 608 jlong os::elapsed_frequency() {
 609   if (has_performance_count) {
 610     return performance_frequency;
 611   } else {
 612    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 613    return 10000000;
 614   }
 615 }
 616 
 617 
 618 julong os::available_memory() {
 619   return win32::available_memory();
 620 }
 621 
 622 julong os::win32::available_memory() {
 623   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 624   // value if total memory is larger than 4GB
 625   MEMORYSTATUSEX ms;
 626   ms.dwLength = sizeof(ms);
 627   GlobalMemoryStatusEx(&ms);
 628 
 629   return (julong)ms.ullAvailPhys;
 630 }
 631 
 632 julong os::physical_memory() {
 633   return win32::physical_memory();
 634 }
 635 
 636 julong os::allocatable_physical_memory(julong size) {
 637 #ifdef _LP64
 638   return size;
 639 #else
 640   // Limit to 1400m because of the 2gb address space wall
 641   return MIN2(size, (julong)1400*M);
 642 #endif
 643 }
 644 
 645 // VC6 lacks DWORD_PTR
 646 #if _MSC_VER < 1300
 647 typedef UINT_PTR DWORD_PTR;
 648 #endif
 649 
 650 int os::active_processor_count() {
 651   DWORD_PTR lpProcessAffinityMask = 0;
 652   DWORD_PTR lpSystemAffinityMask = 0;
 653   int proc_count = processor_count();
 654   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 655       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 656     // Nof active processors is number of bits in process affinity mask
 657     int bitcount = 0;
 658     while (lpProcessAffinityMask != 0) {
 659       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 660       bitcount++;
 661     }
 662     return bitcount;
 663   } else {
 664     return proc_count;
 665   }
 666 }
 667 
 668 bool os::distribute_processes(uint length, uint* distribution) {
 669   // Not yet implemented.
 670   return false;
 671 }
 672 
 673 bool os::bind_to_processor(uint processor_id) {
 674   // Not yet implemented.
 675   return false;
 676 }
 677 
 678 static void initialize_performance_counter() {
 679   LARGE_INTEGER count;
 680   if (QueryPerformanceFrequency(&count)) {
 681     has_performance_count = 1;
 682     performance_frequency = as_long(count);
 683     QueryPerformanceCounter(&count);
 684     initial_performance_count = as_long(count);
 685   } else {
 686     has_performance_count = 0;
 687     FILETIME wt;
 688     GetSystemTimeAsFileTime(&wt);
 689     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 690   }
 691 }
 692 
 693 
 694 double os::elapsedTime() {
 695   return (double) elapsed_counter() / (double) elapsed_frequency();
 696 }
 697 
 698 
 699 // Windows format:
 700 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 701 // Java format:
 702 //   Java standards require the number of milliseconds since 1/1/1970
 703 
 704 // Constant offset - calculated using offset()
 705 static jlong  _offset   = 116444736000000000;
 706 // Fake time counter for reproducible results when debugging
 707 static jlong  fake_time = 0;
 708 
 709 #ifdef ASSERT
 710 // Just to be safe, recalculate the offset in debug mode
 711 static jlong _calculated_offset = 0;
 712 static int   _has_calculated_offset = 0;
 713 
 714 jlong offset() {
 715   if (_has_calculated_offset) return _calculated_offset;
 716   SYSTEMTIME java_origin;
 717   java_origin.wYear          = 1970;
 718   java_origin.wMonth         = 1;
 719   java_origin.wDayOfWeek     = 0; // ignored
 720   java_origin.wDay           = 1;
 721   java_origin.wHour          = 0;
 722   java_origin.wMinute        = 0;
 723   java_origin.wSecond        = 0;
 724   java_origin.wMilliseconds  = 0;
 725   FILETIME jot;
 726   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 727     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 728   }
 729   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 730   _has_calculated_offset = 1;
 731   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 732   return _calculated_offset;
 733 }
 734 #else
 735 jlong offset() {
 736   return _offset;
 737 }
 738 #endif
 739 
 740 jlong windows_to_java_time(FILETIME wt) {
 741   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 742   return (a - offset()) / 10000;
 743 }
 744 
 745 FILETIME java_to_windows_time(jlong l) {
 746   jlong a = (l * 10000) + offset();
 747   FILETIME result;
 748   result.dwHighDateTime = high(a);
 749   result.dwLowDateTime  = low(a);
 750   return result;
 751 }
 752 
 753 // For now, we say that Windows does not support vtime.  I have no idea
 754 // whether it can actually be made to (DLD, 9/13/05).
 755 
 756 bool os::supports_vtime() { return false; }
 757 bool os::enable_vtime() { return false; }
 758 bool os::vtime_enabled() { return false; }
 759 double os::elapsedVTime() {
 760   // better than nothing, but not much
 761   return elapsedTime();
 762 }
 763 
 764 jlong os::javaTimeMillis() {
 765   if (UseFakeTimers) {
 766     return fake_time++;
 767   } else {
 768     FILETIME wt;
 769     GetSystemTimeAsFileTime(&wt);
 770     return windows_to_java_time(wt);
 771   }
 772 }
 773 
 774 #define NANOS_PER_SEC         CONST64(1000000000)
 775 #define NANOS_PER_MILLISEC    1000000
 776 jlong os::javaTimeNanos() {
 777   if (!has_performance_count) {
 778     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 779   } else {
 780     LARGE_INTEGER current_count;
 781     QueryPerformanceCounter(&current_count);
 782     double current = as_long(current_count);
 783     double freq = performance_frequency;
 784     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 785     return time;
 786   }
 787 }
 788 
 789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 790   if (!has_performance_count) {
 791     // javaTimeMillis() doesn't have much percision,
 792     // but it is not going to wrap -- so all 64 bits
 793     info_ptr->max_value = ALL_64_BITS;
 794 
 795     // this is a wall clock timer, so may skip
 796     info_ptr->may_skip_backward = true;
 797     info_ptr->may_skip_forward = true;
 798   } else {
 799     jlong freq = performance_frequency;
 800     if (freq < NANOS_PER_SEC) {
 801       // the performance counter is 64 bits and we will
 802       // be multiplying it -- so no wrap in 64 bits
 803       info_ptr->max_value = ALL_64_BITS;
 804     } else if (freq > NANOS_PER_SEC) {
 805       // use the max value the counter can reach to
 806       // determine the max value which could be returned
 807       julong max_counter = (julong)ALL_64_BITS;
 808       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 809     } else {
 810       // the performance counter is 64 bits and we will
 811       // be using it directly -- so no wrap in 64 bits
 812       info_ptr->max_value = ALL_64_BITS;
 813     }
 814 
 815     // using a counter, so no skipping
 816     info_ptr->may_skip_backward = false;
 817     info_ptr->may_skip_forward = false;
 818   }
 819   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 820 }
 821 
 822 char* os::local_time_string(char *buf, size_t buflen) {
 823   SYSTEMTIME st;
 824   GetLocalTime(&st);
 825   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 826                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 827   return buf;
 828 }
 829 
 830 bool os::getTimesSecs(double* process_real_time,
 831                      double* process_user_time,
 832                      double* process_system_time) {
 833   HANDLE h_process = GetCurrentProcess();
 834   FILETIME create_time, exit_time, kernel_time, user_time;
 835   BOOL result = GetProcessTimes(h_process,
 836                                &create_time,
 837                                &exit_time,
 838                                &kernel_time,
 839                                &user_time);
 840   if (result != 0) {
 841     FILETIME wt;
 842     GetSystemTimeAsFileTime(&wt);
 843     jlong rtc_millis = windows_to_java_time(wt);
 844     jlong user_millis = windows_to_java_time(user_time);
 845     jlong system_millis = windows_to_java_time(kernel_time);
 846     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 847     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 848     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 849     return true;
 850   } else {
 851     return false;
 852   }
 853 }
 854 
 855 void os::shutdown() {
 856 
 857   // allow PerfMemory to attempt cleanup of any persistent resources
 858   perfMemory_exit();
 859 
 860   // flush buffered output, finish log files
 861   ostream_abort();
 862 
 863   // Check for abort hook
 864   abort_hook_t abort_hook = Arguments::abort_hook();
 865   if (abort_hook != NULL) {
 866     abort_hook();
 867   }
 868 }
 869 
 870 void os::abort(bool dump_core)
 871 {
 872   os::shutdown();
 873   // no core dump on Windows
 874   ::exit(1);
 875 }
 876 
 877 // Die immediately, no exit hook, no abort hook, no cleanup.
 878 void os::die() {
 879   _exit(-1);
 880 }
 881 
 882 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 883 //  * dirent_md.c       1.15 00/02/02
 884 //
 885 // The declarations for DIR and struct dirent are in jvm_win32.h.
 886 
 887 /* Caller must have already run dirname through JVM_NativePath, which removes
 888    duplicate slashes and converts all instances of '/' into '\\'. */
 889 
 890 DIR *
 891 os::opendir(const char *dirname)
 892 {
 893     assert(dirname != NULL, "just checking");   // hotspot change
 894     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 895     DWORD fattr;                                // hotspot change
 896     char alt_dirname[4] = { 0, 0, 0, 0 };
 897 
 898     if (dirp == 0) {
 899         errno = ENOMEM;
 900         return 0;
 901     }
 902 
 903     /*
 904      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 905      * as a directory in FindFirstFile().  We detect this case here and
 906      * prepend the current drive name.
 907      */
 908     if (dirname[1] == '\0' && dirname[0] == '\\') {
 909         alt_dirname[0] = _getdrive() + 'A' - 1;
 910         alt_dirname[1] = ':';
 911         alt_dirname[2] = '\\';
 912         alt_dirname[3] = '\0';
 913         dirname = alt_dirname;
 914     }
 915 
 916     dirp->path = (char *)malloc(strlen(dirname) + 5);
 917     if (dirp->path == 0) {
 918         free(dirp);
 919         errno = ENOMEM;
 920         return 0;
 921     }
 922     strcpy(dirp->path, dirname);
 923 
 924     fattr = GetFileAttributes(dirp->path);
 925     if (fattr == 0xffffffff) {
 926         free(dirp->path);
 927         free(dirp);
 928         errno = ENOENT;
 929         return 0;
 930     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 931         free(dirp->path);
 932         free(dirp);
 933         errno = ENOTDIR;
 934         return 0;
 935     }
 936 
 937     /* Append "*.*", or possibly "\\*.*", to path */
 938     if (dirp->path[1] == ':'
 939         && (dirp->path[2] == '\0'
 940             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 941         /* No '\\' needed for cases like "Z:" or "Z:\" */
 942         strcat(dirp->path, "*.*");
 943     } else {
 944         strcat(dirp->path, "\\*.*");
 945     }
 946 
 947     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 948     if (dirp->handle == INVALID_HANDLE_VALUE) {
 949         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 950             free(dirp->path);
 951             free(dirp);
 952             errno = EACCES;
 953             return 0;
 954         }
 955     }
 956     return dirp;
 957 }
 958 
 959 /* parameter dbuf unused on Windows */
 960 
 961 struct dirent *
 962 os::readdir(DIR *dirp, dirent *dbuf)
 963 {
 964     assert(dirp != NULL, "just checking");      // hotspot change
 965     if (dirp->handle == INVALID_HANDLE_VALUE) {
 966         return 0;
 967     }
 968 
 969     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
 970 
 971     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
 972         if (GetLastError() == ERROR_INVALID_HANDLE) {
 973             errno = EBADF;
 974             return 0;
 975         }
 976         FindClose(dirp->handle);
 977         dirp->handle = INVALID_HANDLE_VALUE;
 978     }
 979 
 980     return &dirp->dirent;
 981 }
 982 
 983 int
 984 os::closedir(DIR *dirp)
 985 {
 986     assert(dirp != NULL, "just checking");      // hotspot change
 987     if (dirp->handle != INVALID_HANDLE_VALUE) {
 988         if (!FindClose(dirp->handle)) {
 989             errno = EBADF;
 990             return -1;
 991         }
 992         dirp->handle = INVALID_HANDLE_VALUE;
 993     }
 994     free(dirp->path);
 995     free(dirp);
 996     return 0;
 997 }
 998 
 999 const char* os::dll_file_extension() { return ".dll"; }
1000 
1001 const char* os::get_temp_directory() {
1002   const char *prop = Arguments::get_property("java.io.tmpdir");
1003   if (prop != 0) return prop;
1004   static char path_buf[MAX_PATH];
1005   if (GetTempPath(MAX_PATH, path_buf)>0)
1006     return path_buf;
1007   else{
1008     path_buf[0]='\0';
1009     return path_buf;
1010   }
1011 }
1012 
1013 static bool file_exists(const char* filename) {
1014   if (filename == NULL || strlen(filename) == 0) {
1015     return false;
1016   }
1017   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1018 }
1019 
1020 void os::dll_build_name(char *buffer, size_t buflen,
1021                         const char* pname, const char* fname) {
1022   // Copied from libhpi
1023   const size_t pnamelen = pname ? strlen(pname) : 0;
1024   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1025 
1026   // Quietly truncates on buffer overflow. Should be an error.
1027   if (pnamelen + strlen(fname) + 10 > buflen) {
1028     *buffer = '\0';
1029     return;
1030   }
1031 
1032   if (pnamelen == 0) {
1033     jio_snprintf(buffer, buflen, "%s.dll", fname);
1034   } else if (c == ':' || c == '\\') {
1035     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1036   } else if (strchr(pname, *os::path_separator()) != NULL) {
1037     int n;
1038     char** pelements = split_path(pname, &n);
1039     for (int i = 0 ; i < n ; i++) {
1040       char* path = pelements[i];
1041       // Really shouldn't be NULL, but check can't hurt
1042       size_t plen = (path == NULL) ? 0 : strlen(path);
1043       if (plen == 0) {
1044         continue; // skip the empty path values
1045       }
1046       const char lastchar = path[plen - 1];
1047       if (lastchar == ':' || lastchar == '\\') {
1048         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1049       } else {
1050         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1051       }
1052       if (file_exists(buffer)) {
1053         break;
1054       }
1055     }
1056     // release the storage
1057     for (int i = 0 ; i < n ; i++) {
1058       if (pelements[i] != NULL) {
1059         FREE_C_HEAP_ARRAY(char, pelements[i]);
1060       }
1061     }
1062     if (pelements != NULL) {
1063       FREE_C_HEAP_ARRAY(char*, pelements);
1064     }
1065   } else {
1066     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1067   }
1068 }
1069 
1070 // Needs to be in os specific directory because windows requires another
1071 // header file <direct.h>
1072 const char* os::get_current_directory(char *buf, int buflen) {
1073   return _getcwd(buf, buflen);
1074 }
1075 
1076 //-----------------------------------------------------------
1077 // Helper functions for fatal error handler
1078 
1079 // The following library functions are resolved dynamically at runtime:
1080 
1081 // PSAPI functions, for Windows NT, 2000, XP
1082 
1083 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1084 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1085 typedef struct _MODULEINFO {
1086     LPVOID lpBaseOfDll;
1087     DWORD SizeOfImage;
1088     LPVOID EntryPoint;
1089 } MODULEINFO, *LPMODULEINFO;
1090 
1091 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1092 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1093 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1094 
1095 // ToolHelp Functions, for Windows 95, 98 and ME
1096 
1097 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1098 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1099 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1100 
1101 bool _has_psapi;
1102 bool _psapi_init = false;
1103 bool _has_toolhelp;
1104 
1105 static bool _init_psapi() {
1106   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1107   if( psapi == NULL ) return false ;
1108 
1109   _EnumProcessModules = CAST_TO_FN_PTR(
1110       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1111       GetProcAddress(psapi, "EnumProcessModules")) ;
1112   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1113       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1114       GetProcAddress(psapi, "GetModuleFileNameExA"));
1115   _GetModuleInformation = CAST_TO_FN_PTR(
1116       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1117       GetProcAddress(psapi, "GetModuleInformation"));
1118 
1119   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1120   _psapi_init = true;
1121   return _has_psapi;
1122 }
1123 
1124 static bool _init_toolhelp() {
1125   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1126   if (kernel32 == NULL) return false ;
1127 
1128   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1129       HANDLE(WINAPI *)(DWORD,DWORD),
1130       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1131   _Module32First = CAST_TO_FN_PTR(
1132       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1133       GetProcAddress(kernel32, "Module32First" ));
1134   _Module32Next = CAST_TO_FN_PTR(
1135       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1136       GetProcAddress(kernel32, "Module32Next" ));
1137 
1138   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1139   return _has_toolhelp;
1140 }
1141 
1142 #ifdef _WIN64
1143 // Helper routine which returns true if address in
1144 // within the NTDLL address space.
1145 //
1146 static bool _addr_in_ntdll( address addr )
1147 {
1148   HMODULE hmod;
1149   MODULEINFO minfo;
1150 
1151   hmod = GetModuleHandle("NTDLL.DLL");
1152   if ( hmod == NULL ) return false;
1153   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1154                                &minfo, sizeof(MODULEINFO)) )
1155     return false;
1156 
1157   if ( (addr >= minfo.lpBaseOfDll) &&
1158        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1159     return true;
1160   else
1161     return false;
1162 }
1163 #endif
1164 
1165 
1166 // Enumerate all modules for a given process ID
1167 //
1168 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1169 // different API for doing this. We use PSAPI.DLL on NT based
1170 // Windows and ToolHelp on 95/98/Me.
1171 
1172 // Callback function that is called by enumerate_modules() on
1173 // every DLL module.
1174 // Input parameters:
1175 //    int       pid,
1176 //    char*     module_file_name,
1177 //    address   module_base_addr,
1178 //    unsigned  module_size,
1179 //    void*     param
1180 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1181 
1182 // enumerate_modules for Windows NT, using PSAPI
1183 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1184 {
1185   HANDLE   hProcess ;
1186 
1187 # define MAX_NUM_MODULES 128
1188   HMODULE     modules[MAX_NUM_MODULES];
1189   static char filename[ MAX_PATH ];
1190   int         result = 0;
1191 
1192   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1193 
1194   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1195                          FALSE, pid ) ;
1196   if (hProcess == NULL) return 0;
1197 
1198   DWORD size_needed;
1199   if (!_EnumProcessModules(hProcess, modules,
1200                            sizeof(modules), &size_needed)) {
1201       CloseHandle( hProcess );
1202       return 0;
1203   }
1204 
1205   // number of modules that are currently loaded
1206   int num_modules = size_needed / sizeof(HMODULE);
1207 
1208   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1209     // Get Full pathname:
1210     if(!_GetModuleFileNameEx(hProcess, modules[i],
1211                              filename, sizeof(filename))) {
1212         filename[0] = '\0';
1213     }
1214 
1215     MODULEINFO modinfo;
1216     if (!_GetModuleInformation(hProcess, modules[i],
1217                                &modinfo, sizeof(modinfo))) {
1218         modinfo.lpBaseOfDll = NULL;
1219         modinfo.SizeOfImage = 0;
1220     }
1221 
1222     // Invoke callback function
1223     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1224                   modinfo.SizeOfImage, param);
1225     if (result) break;
1226   }
1227 
1228   CloseHandle( hProcess ) ;
1229   return result;
1230 }
1231 
1232 
1233 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1234 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1235 {
1236   HANDLE                hSnapShot ;
1237   static MODULEENTRY32  modentry ;
1238   int                   result = 0;
1239 
1240   if (!_has_toolhelp) return 0;
1241 
1242   // Get a handle to a Toolhelp snapshot of the system
1243   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1244   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1245       return FALSE ;
1246   }
1247 
1248   // iterate through all modules
1249   modentry.dwSize = sizeof(MODULEENTRY32) ;
1250   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1251 
1252   while( not_done ) {
1253     // invoke the callback
1254     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1255                 modentry.modBaseSize, param);
1256     if (result) break;
1257 
1258     modentry.dwSize = sizeof(MODULEENTRY32) ;
1259     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1260   }
1261 
1262   CloseHandle(hSnapShot);
1263   return result;
1264 }
1265 
1266 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1267 {
1268   // Get current process ID if caller doesn't provide it.
1269   if (!pid) pid = os::current_process_id();
1270 
1271   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1272   else                    return _enumerate_modules_windows(pid, func, param);
1273 }
1274 
1275 struct _modinfo {
1276    address addr;
1277    char*   full_path;   // point to a char buffer
1278    int     buflen;      // size of the buffer
1279    address base_addr;
1280 };
1281 
1282 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1283                                   unsigned size, void * param) {
1284    struct _modinfo *pmod = (struct _modinfo *)param;
1285    if (!pmod) return -1;
1286 
1287    if (base_addr     <= pmod->addr &&
1288        base_addr+size > pmod->addr) {
1289      // if a buffer is provided, copy path name to the buffer
1290      if (pmod->full_path) {
1291        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1292      }
1293      pmod->base_addr = base_addr;
1294      return 1;
1295    }
1296    return 0;
1297 }
1298 
1299 bool os::dll_address_to_library_name(address addr, char* buf,
1300                                      int buflen, int* offset) {
1301 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1302 //       return the full path to the DLL file, sometimes it returns path
1303 //       to the corresponding PDB file (debug info); sometimes it only
1304 //       returns partial path, which makes life painful.
1305 
1306    struct _modinfo mi;
1307    mi.addr      = addr;
1308    mi.full_path = buf;
1309    mi.buflen    = buflen;
1310    int pid = os::current_process_id();
1311    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1312       // buf already contains path name
1313       if (offset) *offset = addr - mi.base_addr;
1314       return true;
1315    } else {
1316       if (buf) buf[0] = '\0';
1317       if (offset) *offset = -1;
1318       return false;
1319    }
1320 }
1321 
1322 bool os::dll_address_to_function_name(address addr, char *buf,
1323                                       int buflen, int *offset) {
1324   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1325   // we need to initialize imagehlp/dbghelp, then load symbol table
1326   // for every module. That's too much work to do after a fatal error.
1327   // For an example on how to implement this function, see 1.4.2.
1328   if (offset)  *offset  = -1;
1329   if (buf) buf[0] = '\0';
1330   return false;
1331 }
1332 
1333 void* os::dll_lookup(void* handle, const char* name) {
1334   return GetProcAddress((HMODULE)handle, name);
1335 }
1336 
1337 // save the start and end address of jvm.dll into param[0] and param[1]
1338 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1339                     unsigned size, void * param) {
1340    if (!param) return -1;
1341 
1342    if (base_addr     <= (address)_locate_jvm_dll &&
1343        base_addr+size > (address)_locate_jvm_dll) {
1344          ((address*)param)[0] = base_addr;
1345          ((address*)param)[1] = base_addr + size;
1346          return 1;
1347    }
1348    return 0;
1349 }
1350 
1351 address vm_lib_location[2];    // start and end address of jvm.dll
1352 
1353 // check if addr is inside jvm.dll
1354 bool os::address_is_in_vm(address addr) {
1355   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1356     int pid = os::current_process_id();
1357     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1358       assert(false, "Can't find jvm module.");
1359       return false;
1360     }
1361   }
1362 
1363   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1364 }
1365 
1366 // print module info; param is outputStream*
1367 static int _print_module(int pid, char* fname, address base,
1368                          unsigned size, void* param) {
1369    if (!param) return -1;
1370 
1371    outputStream* st = (outputStream*)param;
1372 
1373    address end_addr = base + size;
1374    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1375    return 0;
1376 }
1377 
1378 // Loads .dll/.so and
1379 // in case of error it checks if .dll/.so was built for the
1380 // same architecture as Hotspot is running on
1381 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1382 {
1383   void * result = LoadLibrary(name);
1384   if (result != NULL)
1385   {
1386     return result;
1387   }
1388 
1389   long errcode = GetLastError();
1390   if (errcode == ERROR_MOD_NOT_FOUND) {
1391     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1392     ebuf[ebuflen-1]='\0';
1393     return NULL;
1394   }
1395 
1396   // Parsing dll below
1397   // If we can read dll-info and find that dll was built
1398   // for an architecture other than Hotspot is running in
1399   // - then print to buffer "DLL was built for a different architecture"
1400   // else call getLastErrorString to obtain system error message
1401 
1402   // Read system error message into ebuf
1403   // It may or may not be overwritten below (in the for loop and just above)
1404   getLastErrorString(ebuf, (size_t) ebuflen);
1405   ebuf[ebuflen-1]='\0';
1406   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1407   if (file_descriptor<0)
1408   {
1409     return NULL;
1410   }
1411 
1412   uint32_t signature_offset;
1413   uint16_t lib_arch=0;
1414   bool failed_to_get_lib_arch=
1415   (
1416     //Go to position 3c in the dll
1417     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1418     ||
1419     // Read loacation of signature
1420     (sizeof(signature_offset)!=
1421       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1422     ||
1423     //Go to COFF File Header in dll
1424     //that is located after"signature" (4 bytes long)
1425     (os::seek_to_file_offset(file_descriptor,
1426       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1427     ||
1428     //Read field that contains code of architecture
1429     // that dll was build for
1430     (sizeof(lib_arch)!=
1431       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1432   );
1433 
1434   ::close(file_descriptor);
1435   if (failed_to_get_lib_arch)
1436   {
1437     // file i/o error - report getLastErrorString(...) msg
1438     return NULL;
1439   }
1440 
1441   typedef struct
1442   {
1443     uint16_t arch_code;
1444     char* arch_name;
1445   } arch_t;
1446 
1447   static const arch_t arch_array[]={
1448     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1449     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1450     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1451   };
1452   #if   (defined _M_IA64)
1453     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1454   #elif (defined _M_AMD64)
1455     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1456   #elif (defined _M_IX86)
1457     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1458   #else
1459     #error Method os::dll_load requires that one of following \
1460            is defined :_M_IA64,_M_AMD64 or _M_IX86
1461   #endif
1462 
1463 
1464   // Obtain a string for printf operation
1465   // lib_arch_str shall contain string what platform this .dll was built for
1466   // running_arch_str shall string contain what platform Hotspot was built for
1467   char *running_arch_str=NULL,*lib_arch_str=NULL;
1468   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1469   {
1470     if (lib_arch==arch_array[i].arch_code)
1471       lib_arch_str=arch_array[i].arch_name;
1472     if (running_arch==arch_array[i].arch_code)
1473       running_arch_str=arch_array[i].arch_name;
1474   }
1475 
1476   assert(running_arch_str,
1477     "Didn't find runing architecture code in arch_array");
1478 
1479   // If the architure is right
1480   // but some other error took place - report getLastErrorString(...) msg
1481   if (lib_arch == running_arch)
1482   {
1483     return NULL;
1484   }
1485 
1486   if (lib_arch_str!=NULL)
1487   {
1488     ::_snprintf(ebuf, ebuflen-1,
1489       "Can't load %s-bit .dll on a %s-bit platform",
1490       lib_arch_str,running_arch_str);
1491   }
1492   else
1493   {
1494     // don't know what architecture this dll was build for
1495     ::_snprintf(ebuf, ebuflen-1,
1496       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1497       lib_arch,running_arch_str);
1498   }
1499 
1500   return NULL;
1501 }
1502 
1503 
1504 void os::print_dll_info(outputStream *st) {
1505    int pid = os::current_process_id();
1506    st->print_cr("Dynamic libraries:");
1507    enumerate_modules(pid, _print_module, (void *)st);
1508 }
1509 
1510 // function pointer to Windows API "GetNativeSystemInfo".
1511 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1512 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1513 
1514 void os::print_os_info(outputStream* st) {
1515   st->print("OS:");
1516 
1517   OSVERSIONINFOEX osvi;
1518   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1519   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1520 
1521   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1522     st->print_cr("N/A");
1523     return;
1524   }
1525 
1526   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1527   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1528     switch (os_vers) {
1529     case 3051: st->print(" Windows NT 3.51"); break;
1530     case 4000: st->print(" Windows NT 4.0"); break;
1531     case 5000: st->print(" Windows 2000"); break;
1532     case 5001: st->print(" Windows XP"); break;
1533     case 5002:
1534     case 6000:
1535     case 6001: {
1536       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1537       // find out whether we are running on 64 bit processor or not.
1538       SYSTEM_INFO si;
1539       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1540       // Check to see if _GetNativeSystemInfo has been initialized.
1541       if (_GetNativeSystemInfo == NULL) {
1542         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1543         _GetNativeSystemInfo =
1544             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1545                            GetProcAddress(hKernel32,
1546                                           "GetNativeSystemInfo"));
1547         if (_GetNativeSystemInfo == NULL)
1548           GetSystemInfo(&si);
1549       } else {
1550         _GetNativeSystemInfo(&si);
1551       }
1552       if (os_vers == 5002) {
1553         if (osvi.wProductType == VER_NT_WORKSTATION &&
1554             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1555           st->print(" Windows XP x64 Edition");
1556         else
1557             st->print(" Windows Server 2003 family");
1558       } else if (os_vers == 6000) {
1559         if (osvi.wProductType == VER_NT_WORKSTATION)
1560             st->print(" Windows Vista");
1561         else
1562             st->print(" Windows Server 2008");
1563         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1564             st->print(" , 64 bit");
1565       } else if (os_vers == 6001) {
1566         if (osvi.wProductType == VER_NT_WORKSTATION) {
1567             st->print(" Windows 7");
1568         } else {
1569             // Unrecognized windows, print out its major and minor versions
1570             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1571         }
1572         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1573             st->print(" , 64 bit");
1574       } else { // future os
1575         // Unrecognized windows, print out its major and minor versions
1576         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1577         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1578             st->print(" , 64 bit");
1579       }
1580       break;
1581     }
1582     default: // future windows, print out its major and minor versions
1583       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1584     }
1585   } else {
1586     switch (os_vers) {
1587     case 4000: st->print(" Windows 95"); break;
1588     case 4010: st->print(" Windows 98"); break;
1589     case 4090: st->print(" Windows Me"); break;
1590     default: // future windows, print out its major and minor versions
1591       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1592     }
1593   }
1594   st->print(" Build %d", osvi.dwBuildNumber);
1595   st->print(" %s", osvi.szCSDVersion);           // service pack
1596   st->cr();
1597 }
1598 
1599 void os::print_memory_info(outputStream* st) {
1600   st->print("Memory:");
1601   st->print(" %dk page", os::vm_page_size()>>10);
1602 
1603   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1604   // value if total memory is larger than 4GB
1605   MEMORYSTATUSEX ms;
1606   ms.dwLength = sizeof(ms);
1607   GlobalMemoryStatusEx(&ms);
1608 
1609   st->print(", physical %uk", os::physical_memory() >> 10);
1610   st->print("(%uk free)", os::available_memory() >> 10);
1611 
1612   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1613   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1614   st->cr();
1615 }
1616 
1617 void os::print_siginfo(outputStream *st, void *siginfo) {
1618   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1619   st->print("siginfo:");
1620   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1621 
1622   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1623       er->NumberParameters >= 2) {
1624       switch (er->ExceptionInformation[0]) {
1625       case 0: st->print(", reading address"); break;
1626       case 1: st->print(", writing address"); break;
1627       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1628                             er->ExceptionInformation[0]);
1629       }
1630       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1631   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1632              er->NumberParameters >= 2 && UseSharedSpaces) {
1633     FileMapInfo* mapinfo = FileMapInfo::current_info();
1634     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1635       st->print("\n\nError accessing class data sharing archive."       \
1636                 " Mapped file inaccessible during execution, "          \
1637                 " possible disk/network problem.");
1638     }
1639   } else {
1640     int num = er->NumberParameters;
1641     if (num > 0) {
1642       st->print(", ExceptionInformation=");
1643       for (int i = 0; i < num; i++) {
1644         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1645       }
1646     }
1647   }
1648   st->cr();
1649 }
1650 
1651 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1652   // do nothing
1653 }
1654 
1655 static char saved_jvm_path[MAX_PATH] = {0};
1656 
1657 // Find the full path to the current module, jvm.dll or jvm_g.dll
1658 void os::jvm_path(char *buf, jint buflen) {
1659   // Error checking.
1660   if (buflen < MAX_PATH) {
1661     assert(false, "must use a large-enough buffer");
1662     buf[0] = '\0';
1663     return;
1664   }
1665   // Lazy resolve the path to current module.
1666   if (saved_jvm_path[0] != 0) {
1667     strcpy(buf, saved_jvm_path);
1668     return;
1669   }
1670 
1671   GetModuleFileName(vm_lib_handle, buf, buflen);
1672   strcpy(saved_jvm_path, buf);
1673 }
1674 
1675 
1676 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1677 #ifndef _WIN64
1678   st->print("_");
1679 #endif
1680 }
1681 
1682 
1683 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1684 #ifndef _WIN64
1685   st->print("@%d", args_size  * sizeof(int));
1686 #endif
1687 }
1688 
1689 // sun.misc.Signal
1690 // NOTE that this is a workaround for an apparent kernel bug where if
1691 // a signal handler for SIGBREAK is installed then that signal handler
1692 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1693 // See bug 4416763.
1694 static void (*sigbreakHandler)(int) = NULL;
1695 
1696 static void UserHandler(int sig, void *siginfo, void *context) {
1697   os::signal_notify(sig);
1698   // We need to reinstate the signal handler each time...
1699   os::signal(sig, (void*)UserHandler);
1700 }
1701 
1702 void* os::user_handler() {
1703   return (void*) UserHandler;
1704 }
1705 
1706 void* os::signal(int signal_number, void* handler) {
1707   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1708     void (*oldHandler)(int) = sigbreakHandler;
1709     sigbreakHandler = (void (*)(int)) handler;
1710     return (void*) oldHandler;
1711   } else {
1712     return (void*)::signal(signal_number, (void (*)(int))handler);
1713   }
1714 }
1715 
1716 void os::signal_raise(int signal_number) {
1717   raise(signal_number);
1718 }
1719 
1720 // The Win32 C runtime library maps all console control events other than ^C
1721 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1722 // logoff, and shutdown events.  We therefore install our own console handler
1723 // that raises SIGTERM for the latter cases.
1724 //
1725 static BOOL WINAPI consoleHandler(DWORD event) {
1726   switch(event) {
1727     case CTRL_C_EVENT:
1728       if (is_error_reported()) {
1729         // Ctrl-C is pressed during error reporting, likely because the error
1730         // handler fails to abort. Let VM die immediately.
1731         os::die();
1732       }
1733 
1734       os::signal_raise(SIGINT);
1735       return TRUE;
1736       break;
1737     case CTRL_BREAK_EVENT:
1738       if (sigbreakHandler != NULL) {
1739         (*sigbreakHandler)(SIGBREAK);
1740       }
1741       return TRUE;
1742       break;
1743     case CTRL_CLOSE_EVENT:
1744     case CTRL_LOGOFF_EVENT:
1745     case CTRL_SHUTDOWN_EVENT:
1746       os::signal_raise(SIGTERM);
1747       return TRUE;
1748       break;
1749     default:
1750       break;
1751   }
1752   return FALSE;
1753 }
1754 
1755 /*
1756  * The following code is moved from os.cpp for making this
1757  * code platform specific, which it is by its very nature.
1758  */
1759 
1760 // Return maximum OS signal used + 1 for internal use only
1761 // Used as exit signal for signal_thread
1762 int os::sigexitnum_pd(){
1763   return NSIG;
1764 }
1765 
1766 // a counter for each possible signal value, including signal_thread exit signal
1767 static volatile jint pending_signals[NSIG+1] = { 0 };
1768 static HANDLE sig_sem;
1769 
1770 void os::signal_init_pd() {
1771   // Initialize signal structures
1772   memset((void*)pending_signals, 0, sizeof(pending_signals));
1773 
1774   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1775 
1776   // Programs embedding the VM do not want it to attempt to receive
1777   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1778   // shutdown hooks mechanism introduced in 1.3.  For example, when
1779   // the VM is run as part of a Windows NT service (i.e., a servlet
1780   // engine in a web server), the correct behavior is for any console
1781   // control handler to return FALSE, not TRUE, because the OS's
1782   // "final" handler for such events allows the process to continue if
1783   // it is a service (while terminating it if it is not a service).
1784   // To make this behavior uniform and the mechanism simpler, we
1785   // completely disable the VM's usage of these console events if -Xrs
1786   // (=ReduceSignalUsage) is specified.  This means, for example, that
1787   // the CTRL-BREAK thread dump mechanism is also disabled in this
1788   // case.  See bugs 4323062, 4345157, and related bugs.
1789 
1790   if (!ReduceSignalUsage) {
1791     // Add a CTRL-C handler
1792     SetConsoleCtrlHandler(consoleHandler, TRUE);
1793   }
1794 }
1795 
1796 void os::signal_notify(int signal_number) {
1797   BOOL ret;
1798 
1799   Atomic::inc(&pending_signals[signal_number]);
1800   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1801   assert(ret != 0, "ReleaseSemaphore() failed");
1802 }
1803 
1804 static int check_pending_signals(bool wait_for_signal) {
1805   DWORD ret;
1806   while (true) {
1807     for (int i = 0; i < NSIG + 1; i++) {
1808       jint n = pending_signals[i];
1809       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1810         return i;
1811       }
1812     }
1813     if (!wait_for_signal) {
1814       return -1;
1815     }
1816 
1817     JavaThread *thread = JavaThread::current();
1818 
1819     ThreadBlockInVM tbivm(thread);
1820 
1821     bool threadIsSuspended;
1822     do {
1823       thread->set_suspend_equivalent();
1824       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1825       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1826       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1827 
1828       // were we externally suspended while we were waiting?
1829       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1830       if (threadIsSuspended) {
1831         //
1832         // The semaphore has been incremented, but while we were waiting
1833         // another thread suspended us. We don't want to continue running
1834         // while suspended because that would surprise the thread that
1835         // suspended us.
1836         //
1837         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1838         assert(ret != 0, "ReleaseSemaphore() failed");
1839 
1840         thread->java_suspend_self();
1841       }
1842     } while (threadIsSuspended);
1843   }
1844 }
1845 
1846 int os::signal_lookup() {
1847   return check_pending_signals(false);
1848 }
1849 
1850 int os::signal_wait() {
1851   return check_pending_signals(true);
1852 }
1853 
1854 // Implicit OS exception handling
1855 
1856 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1857   JavaThread* thread = JavaThread::current();
1858   // Save pc in thread
1859 #ifdef _M_IA64
1860   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1861   // Set pc to handler
1862   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1863 #elif _M_AMD64
1864   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1865   // Set pc to handler
1866   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1867 #else
1868   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1869   // Set pc to handler
1870   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1871 #endif
1872 
1873   // Continue the execution
1874   return EXCEPTION_CONTINUE_EXECUTION;
1875 }
1876 
1877 
1878 // Used for PostMortemDump
1879 extern "C" void safepoints();
1880 extern "C" void find(int x);
1881 extern "C" void events();
1882 
1883 // According to Windows API documentation, an illegal instruction sequence should generate
1884 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1885 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1886 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1887 
1888 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1889 
1890 // From "Execution Protection in the Windows Operating System" draft 0.35
1891 // Once a system header becomes available, the "real" define should be
1892 // included or copied here.
1893 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1894 
1895 #define def_excpt(val) #val, val
1896 
1897 struct siglabel {
1898   char *name;
1899   int   number;
1900 };
1901 
1902 struct siglabel exceptlabels[] = {
1903     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1904     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1905     def_excpt(EXCEPTION_BREAKPOINT),
1906     def_excpt(EXCEPTION_SINGLE_STEP),
1907     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1908     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1909     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1910     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1911     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1912     def_excpt(EXCEPTION_FLT_OVERFLOW),
1913     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1914     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1915     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1916     def_excpt(EXCEPTION_INT_OVERFLOW),
1917     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1918     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1919     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1920     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1921     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1922     def_excpt(EXCEPTION_STACK_OVERFLOW),
1923     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1924     def_excpt(EXCEPTION_GUARD_PAGE),
1925     def_excpt(EXCEPTION_INVALID_HANDLE),
1926     NULL, 0
1927 };
1928 
1929 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1930   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1931     if (exceptlabels[i].number == exception_code) {
1932        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1933        return buf;
1934     }
1935   }
1936 
1937   return NULL;
1938 }
1939 
1940 //-----------------------------------------------------------------------------
1941 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1942   // handle exception caused by idiv; should only happen for -MinInt/-1
1943   // (division by zero is handled explicitly)
1944 #ifdef _M_IA64
1945   assert(0, "Fix Handle_IDiv_Exception");
1946 #elif _M_AMD64
1947   PCONTEXT ctx = exceptionInfo->ContextRecord;
1948   address pc = (address)ctx->Rip;
1949   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1950   assert(pc[0] == 0xF7, "not an idiv opcode");
1951   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1952   assert(ctx->Rax == min_jint, "unexpected idiv exception");
1953   // set correct result values and continue after idiv instruction
1954   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1955   ctx->Rax = (DWORD)min_jint;      // result
1956   ctx->Rdx = (DWORD)0;             // remainder
1957   // Continue the execution
1958 #else
1959   PCONTEXT ctx = exceptionInfo->ContextRecord;
1960   address pc = (address)ctx->Eip;
1961   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1962   assert(pc[0] == 0xF7, "not an idiv opcode");
1963   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1964   assert(ctx->Eax == min_jint, "unexpected idiv exception");
1965   // set correct result values and continue after idiv instruction
1966   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1967   ctx->Eax = (DWORD)min_jint;      // result
1968   ctx->Edx = (DWORD)0;             // remainder
1969   // Continue the execution
1970 #endif
1971   return EXCEPTION_CONTINUE_EXECUTION;
1972 }
1973 
1974 #ifndef  _WIN64
1975 //-----------------------------------------------------------------------------
1976 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1977   // handle exception caused by native method modifying control word
1978   PCONTEXT ctx = exceptionInfo->ContextRecord;
1979   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1980 
1981   switch (exception_code) {
1982     case EXCEPTION_FLT_DENORMAL_OPERAND:
1983     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1984     case EXCEPTION_FLT_INEXACT_RESULT:
1985     case EXCEPTION_FLT_INVALID_OPERATION:
1986     case EXCEPTION_FLT_OVERFLOW:
1987     case EXCEPTION_FLT_STACK_CHECK:
1988     case EXCEPTION_FLT_UNDERFLOW:
1989       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1990       if (fp_control_word != ctx->FloatSave.ControlWord) {
1991         // Restore FPCW and mask out FLT exceptions
1992         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1993         // Mask out pending FLT exceptions
1994         ctx->FloatSave.StatusWord &=  0xffffff00;
1995         return EXCEPTION_CONTINUE_EXECUTION;
1996       }
1997   }
1998 
1999   if (prev_uef_handler != NULL) {
2000     // We didn't handle this exception so pass it to the previous
2001     // UnhandledExceptionFilter.
2002     return (prev_uef_handler)(exceptionInfo);
2003   }
2004 
2005   return EXCEPTION_CONTINUE_SEARCH;
2006 }
2007 #else //_WIN64
2008 /*
2009   On Windows, the mxcsr control bits are non-volatile across calls
2010   See also CR 6192333
2011   If EXCEPTION_FLT_* happened after some native method modified
2012   mxcsr - it is not a jvm fault.
2013   However should we decide to restore of mxcsr after a faulty
2014   native method we can uncomment following code
2015       jint MxCsr = INITIAL_MXCSR;
2016         // we can't use StubRoutines::addr_mxcsr_std()
2017         // because in Win64 mxcsr is not saved there
2018       if (MxCsr != ctx->MxCsr) {
2019         ctx->MxCsr = MxCsr;
2020         return EXCEPTION_CONTINUE_EXECUTION;
2021       }
2022 
2023 */
2024 #endif //_WIN64
2025 
2026 
2027 // Fatal error reporting is single threaded so we can make this a
2028 // static and preallocated.  If it's more than MAX_PATH silently ignore
2029 // it.
2030 static char saved_error_file[MAX_PATH] = {0};
2031 
2032 void os::set_error_file(const char *logfile) {
2033   if (strlen(logfile) <= MAX_PATH) {
2034     strncpy(saved_error_file, logfile, MAX_PATH);
2035   }
2036 }
2037 
2038 static inline void report_error(Thread* t, DWORD exception_code,
2039                                 address addr, void* siginfo, void* context) {
2040   VMError err(t, exception_code, addr, siginfo, context);
2041   err.report_and_die();
2042 
2043   // If UseOsErrorReporting, this will return here and save the error file
2044   // somewhere where we can find it in the minidump.
2045 }
2046 
2047 //-----------------------------------------------------------------------------
2048 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2049   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2050   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2051 #ifdef _M_IA64
2052   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2053 #elif _M_AMD64
2054   address pc = (address) exceptionInfo->ContextRecord->Rip;
2055 #else
2056   address pc = (address) exceptionInfo->ContextRecord->Eip;
2057 #endif
2058   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2059 
2060 #ifndef _WIN64
2061   // Execution protection violation - win32 running on AMD64 only
2062   // Handled first to avoid misdiagnosis as a "normal" access violation;
2063   // This is safe to do because we have a new/unique ExceptionInformation
2064   // code for this condition.
2065   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2066     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2067     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2068     address addr = (address) exceptionRecord->ExceptionInformation[1];
2069 
2070     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2071       int page_size = os::vm_page_size();
2072 
2073       // Make sure the pc and the faulting address are sane.
2074       //
2075       // If an instruction spans a page boundary, and the page containing
2076       // the beginning of the instruction is executable but the following
2077       // page is not, the pc and the faulting address might be slightly
2078       // different - we still want to unguard the 2nd page in this case.
2079       //
2080       // 15 bytes seems to be a (very) safe value for max instruction size.
2081       bool pc_is_near_addr =
2082         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2083       bool instr_spans_page_boundary =
2084         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2085                          (intptr_t) page_size) > 0);
2086 
2087       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2088         static volatile address last_addr =
2089           (address) os::non_memory_address_word();
2090 
2091         // In conservative mode, don't unguard unless the address is in the VM
2092         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2093             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2094 
2095           // Set memory to RWX and retry
2096           address page_start =
2097             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2098           bool res = os::protect_memory((char*) page_start, page_size,
2099                                         os::MEM_PROT_RWX);
2100 
2101           if (PrintMiscellaneous && Verbose) {
2102             char buf[256];
2103             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2104                          "at " INTPTR_FORMAT
2105                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2106                          page_start, (res ? "success" : strerror(errno)));
2107             tty->print_raw_cr(buf);
2108           }
2109 
2110           // Set last_addr so if we fault again at the same address, we don't
2111           // end up in an endless loop.
2112           //
2113           // There are two potential complications here.  Two threads trapping
2114           // at the same address at the same time could cause one of the
2115           // threads to think it already unguarded, and abort the VM.  Likely
2116           // very rare.
2117           //
2118           // The other race involves two threads alternately trapping at
2119           // different addresses and failing to unguard the page, resulting in
2120           // an endless loop.  This condition is probably even more unlikely
2121           // than the first.
2122           //
2123           // Although both cases could be avoided by using locks or thread
2124           // local last_addr, these solutions are unnecessary complication:
2125           // this handler is a best-effort safety net, not a complete solution.
2126           // It is disabled by default and should only be used as a workaround
2127           // in case we missed any no-execute-unsafe VM code.
2128 
2129           last_addr = addr;
2130 
2131           return EXCEPTION_CONTINUE_EXECUTION;
2132         }
2133       }
2134 
2135       // Last unguard failed or not unguarding
2136       tty->print_raw_cr("Execution protection violation");
2137       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2138                    exceptionInfo->ContextRecord);
2139       return EXCEPTION_CONTINUE_SEARCH;
2140     }
2141   }
2142 #endif // _WIN64
2143 
2144   // Check to see if we caught the safepoint code in the
2145   // process of write protecting the memory serialization page.
2146   // It write enables the page immediately after protecting it
2147   // so just return.
2148   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2149     JavaThread* thread = (JavaThread*) t;
2150     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2151     address addr = (address) exceptionRecord->ExceptionInformation[1];
2152     if ( os::is_memory_serialize_page(thread, addr) ) {
2153       // Block current thread until the memory serialize page permission restored.
2154       os::block_on_serialize_page_trap();
2155       return EXCEPTION_CONTINUE_EXECUTION;
2156     }
2157   }
2158 
2159 
2160   if (t != NULL && t->is_Java_thread()) {
2161     JavaThread* thread = (JavaThread*) t;
2162     bool in_java = thread->thread_state() == _thread_in_Java;
2163 
2164     // Handle potential stack overflows up front.
2165     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2166       if (os::uses_stack_guard_pages()) {
2167 #ifdef _M_IA64
2168         //
2169         // If it's a legal stack address continue, Windows will map it in.
2170         //
2171         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2172         address addr = (address) exceptionRecord->ExceptionInformation[1];
2173         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2174           return EXCEPTION_CONTINUE_EXECUTION;
2175 
2176         // The register save area is the same size as the memory stack
2177         // and starts at the page just above the start of the memory stack.
2178         // If we get a fault in this area, we've run out of register
2179         // stack.  If we are in java, try throwing a stack overflow exception.
2180         if (addr > thread->stack_base() &&
2181                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2182           char buf[256];
2183           jio_snprintf(buf, sizeof(buf),
2184                        "Register stack overflow, addr:%p, stack_base:%p\n",
2185                        addr, thread->stack_base() );
2186           tty->print_raw_cr(buf);
2187           // If not in java code, return and hope for the best.
2188           return in_java ? Handle_Exception(exceptionInfo,
2189             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2190             :  EXCEPTION_CONTINUE_EXECUTION;
2191         }
2192 #endif
2193         if (thread->stack_yellow_zone_enabled()) {
2194           // Yellow zone violation.  The o/s has unprotected the first yellow
2195           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2196           // update the enabled status, even if the zone contains only one page.
2197           thread->disable_stack_yellow_zone();
2198           // If not in java code, return and hope for the best.
2199           return in_java ? Handle_Exception(exceptionInfo,
2200             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2201             :  EXCEPTION_CONTINUE_EXECUTION;
2202         } else {
2203           // Fatal red zone violation.
2204           thread->disable_stack_red_zone();
2205           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2206           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2207                        exceptionInfo->ContextRecord);
2208           return EXCEPTION_CONTINUE_SEARCH;
2209         }
2210       } else if (in_java) {
2211         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2212         // a one-time-only guard page, which it has released to us.  The next
2213         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2214         return Handle_Exception(exceptionInfo,
2215           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2216       } else {
2217         // Can only return and hope for the best.  Further stack growth will
2218         // result in an ACCESS_VIOLATION.
2219         return EXCEPTION_CONTINUE_EXECUTION;
2220       }
2221     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2222       // Either stack overflow or null pointer exception.
2223       if (in_java) {
2224         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2225         address addr = (address) exceptionRecord->ExceptionInformation[1];
2226         address stack_end = thread->stack_base() - thread->stack_size();
2227         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2228           // Stack overflow.
2229           assert(!os::uses_stack_guard_pages(),
2230             "should be caught by red zone code above.");
2231           return Handle_Exception(exceptionInfo,
2232             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2233         }
2234         //
2235         // Check for safepoint polling and implicit null
2236         // We only expect null pointers in the stubs (vtable)
2237         // the rest are checked explicitly now.
2238         //
2239         CodeBlob* cb = CodeCache::find_blob(pc);
2240         if (cb != NULL) {
2241           if (os::is_poll_address(addr)) {
2242             address stub = SharedRuntime::get_poll_stub(pc);
2243             return Handle_Exception(exceptionInfo, stub);
2244           }
2245         }
2246         {
2247 #ifdef _WIN64
2248           //
2249           // If it's a legal stack address map the entire region in
2250           //
2251           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2252           address addr = (address) exceptionRecord->ExceptionInformation[1];
2253           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2254                   addr = (address)((uintptr_t)addr &
2255                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2256                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2257                                     false );
2258                   return EXCEPTION_CONTINUE_EXECUTION;
2259           }
2260           else
2261 #endif
2262           {
2263             // Null pointer exception.
2264 #ifdef _M_IA64
2265             // We catch register stack overflows in compiled code by doing
2266             // an explicit compare and executing a st8(G0, G0) if the
2267             // BSP enters into our guard area.  We test for the overflow
2268             // condition and fall into the normal null pointer exception
2269             // code if BSP hasn't overflowed.
2270             if ( in_java ) {
2271               if(thread->register_stack_overflow()) {
2272                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2273                                 thread->register_stack_limit(),
2274                                "GR7 doesn't contain register_stack_limit");
2275                 // Disable the yellow zone which sets the state that
2276                 // we've got a stack overflow problem.
2277                 if (thread->stack_yellow_zone_enabled()) {
2278                   thread->disable_stack_yellow_zone();
2279                 }
2280                 // Give us some room to process the exception
2281                 thread->disable_register_stack_guard();
2282                 // Update GR7 with the new limit so we can continue running
2283                 // compiled code.
2284                 exceptionInfo->ContextRecord->IntS3 =
2285                                (ULONGLONG)thread->register_stack_limit();
2286                 return Handle_Exception(exceptionInfo,
2287                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2288               } else {
2289                 //
2290                 // Check for implicit null
2291                 // We only expect null pointers in the stubs (vtable)
2292                 // the rest are checked explicitly now.
2293                 //
2294                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2295                   // an access to the first page of VM--assume it is a null pointer
2296                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2297                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2298                 }
2299               }
2300             } // in_java
2301 
2302             // IA64 doesn't use implicit null checking yet. So we shouldn't
2303             // get here.
2304             tty->print_raw_cr("Access violation, possible null pointer exception");
2305             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2306                          exceptionInfo->ContextRecord);
2307             return EXCEPTION_CONTINUE_SEARCH;
2308 #else /* !IA64 */
2309 
2310             // Windows 98 reports faulting addresses incorrectly
2311             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2312                 !os::win32::is_nt()) {
2313               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2314               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2315             }
2316             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2317                          exceptionInfo->ContextRecord);
2318             return EXCEPTION_CONTINUE_SEARCH;
2319 #endif
2320           }
2321         }
2322       }
2323 
2324 #ifdef _WIN64
2325       // Special care for fast JNI field accessors.
2326       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2327       // in and the heap gets shrunk before the field access.
2328       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2329         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2330         if (addr != (address)-1) {
2331           return Handle_Exception(exceptionInfo, addr);
2332         }
2333       }
2334 #endif
2335 
2336 #ifdef _WIN64
2337       // Windows will sometimes generate an access violation
2338       // when we call malloc.  Since we use VectoredExceptions
2339       // on 64 bit platforms, we see this exception.  We must
2340       // pass this exception on so Windows can recover.
2341       // We check to see if the pc of the fault is in NTDLL.DLL
2342       // if so, we pass control on to Windows for handling.
2343       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2344 #endif
2345 
2346       // Stack overflow or null pointer exception in native code.
2347       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2348                    exceptionInfo->ContextRecord);
2349       return EXCEPTION_CONTINUE_SEARCH;
2350     }
2351 
2352     if (in_java) {
2353       switch (exception_code) {
2354       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2355         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2356 
2357       case EXCEPTION_INT_OVERFLOW:
2358         return Handle_IDiv_Exception(exceptionInfo);
2359 
2360       } // switch
2361     }
2362 #ifndef _WIN64
2363     if ((thread->thread_state() == _thread_in_Java) ||
2364         (thread->thread_state() == _thread_in_native) )
2365     {
2366       LONG result=Handle_FLT_Exception(exceptionInfo);
2367       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2368     }
2369 #endif //_WIN64
2370   }
2371 
2372   if (exception_code != EXCEPTION_BREAKPOINT) {
2373 #ifndef _WIN64
2374     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2375                  exceptionInfo->ContextRecord);
2376 #else
2377     // Itanium Windows uses a VectoredExceptionHandler
2378     // Which means that C++ programatic exception handlers (try/except)
2379     // will get here.  Continue the search for the right except block if
2380     // the exception code is not a fatal code.
2381     switch ( exception_code ) {
2382       case EXCEPTION_ACCESS_VIOLATION:
2383       case EXCEPTION_STACK_OVERFLOW:
2384       case EXCEPTION_ILLEGAL_INSTRUCTION:
2385       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2386       case EXCEPTION_INT_OVERFLOW:
2387       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2388       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2389                        exceptionInfo->ContextRecord);
2390       }
2391         break;
2392       default:
2393         break;
2394     }
2395 #endif
2396   }
2397   return EXCEPTION_CONTINUE_SEARCH;
2398 }
2399 
2400 #ifndef _WIN64
2401 // Special care for fast JNI accessors.
2402 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2403 // the heap gets shrunk before the field access.
2404 // Need to install our own structured exception handler since native code may
2405 // install its own.
2406 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2407   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2408   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2409     address pc = (address) exceptionInfo->ContextRecord->Eip;
2410     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2411     if (addr != (address)-1) {
2412       return Handle_Exception(exceptionInfo, addr);
2413     }
2414   }
2415   return EXCEPTION_CONTINUE_SEARCH;
2416 }
2417 
2418 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2419 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2420   __try { \
2421     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2422   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2423   } \
2424   return 0; \
2425 }
2426 
2427 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2428 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2429 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2430 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2431 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2432 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2433 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2434 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2435 
2436 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2437   switch (type) {
2438     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2439     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2440     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2441     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2442     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2443     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2444     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2445     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2446     default:        ShouldNotReachHere();
2447   }
2448   return (address)-1;
2449 }
2450 #endif
2451 
2452 // Virtual Memory
2453 
2454 int os::vm_page_size() { return os::win32::vm_page_size(); }
2455 int os::vm_allocation_granularity() {
2456   return os::win32::vm_allocation_granularity();
2457 }
2458 
2459 // Windows large page support is available on Windows 2003. In order to use
2460 // large page memory, the administrator must first assign additional privilege
2461 // to the user:
2462 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2463 //   + select Local Policies -> User Rights Assignment
2464 //   + double click "Lock pages in memory", add users and/or groups
2465 //   + reboot
2466 // Note the above steps are needed for administrator as well, as administrators
2467 // by default do not have the privilege to lock pages in memory.
2468 //
2469 // Note about Windows 2003: although the API supports committing large page
2470 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2471 // scenario, I found through experiment it only uses large page if the entire
2472 // memory region is reserved and committed in a single VirtualAlloc() call.
2473 // This makes Windows large page support more or less like Solaris ISM, in
2474 // that the entire heap must be committed upfront. This probably will change
2475 // in the future, if so the code below needs to be revisited.
2476 
2477 #ifndef MEM_LARGE_PAGES
2478 #define MEM_LARGE_PAGES 0x20000000
2479 #endif
2480 
2481 // GetLargePageMinimum is only available on Windows 2003. The other functions
2482 // are available on NT but not on Windows 98/Me. We have to resolve them at
2483 // runtime.
2484 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2485 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2486              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2487 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2488 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2489 
2490 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2491 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2492 static OpenProcessToken_func_type      _OpenProcessToken;
2493 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2494 
2495 static HINSTANCE _kernel32;
2496 static HINSTANCE _advapi32;
2497 static HANDLE    _hProcess;
2498 static HANDLE    _hToken;
2499 
2500 static size_t _large_page_size = 0;
2501 
2502 static bool resolve_functions_for_large_page_init() {
2503   _kernel32 = LoadLibrary("kernel32.dll");
2504   if (_kernel32 == NULL) return false;
2505 
2506   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2507                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2508   if (_GetLargePageMinimum == NULL) return false;
2509 
2510   _advapi32 = LoadLibrary("advapi32.dll");
2511   if (_advapi32 == NULL) return false;
2512 
2513   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2514                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2515   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2516                             GetProcAddress(_advapi32, "OpenProcessToken"));
2517   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2518                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2519   return _AdjustTokenPrivileges != NULL &&
2520          _OpenProcessToken      != NULL &&
2521          _LookupPrivilegeValue  != NULL;
2522 }
2523 
2524 static bool request_lock_memory_privilege() {
2525   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2526                                 os::current_process_id());
2527 
2528   LUID luid;
2529   if (_hProcess != NULL &&
2530       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2531       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2532 
2533     TOKEN_PRIVILEGES tp;
2534     tp.PrivilegeCount = 1;
2535     tp.Privileges[0].Luid = luid;
2536     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2537 
2538     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2539     // privilege. Check GetLastError() too. See MSDN document.
2540     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2541         (GetLastError() == ERROR_SUCCESS)) {
2542       return true;
2543     }
2544   }
2545 
2546   return false;
2547 }
2548 
2549 static void cleanup_after_large_page_init() {
2550   _GetLargePageMinimum = NULL;
2551   _AdjustTokenPrivileges = NULL;
2552   _OpenProcessToken = NULL;
2553   _LookupPrivilegeValue = NULL;
2554   if (_kernel32) FreeLibrary(_kernel32);
2555   _kernel32 = NULL;
2556   if (_advapi32) FreeLibrary(_advapi32);
2557   _advapi32 = NULL;
2558   if (_hProcess) CloseHandle(_hProcess);
2559   _hProcess = NULL;
2560   if (_hToken) CloseHandle(_hToken);
2561   _hToken = NULL;
2562 }
2563 
2564 bool os::large_page_init() {
2565   if (!UseLargePages) return false;
2566 
2567   // print a warning if any large page related flag is specified on command line
2568   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2569                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2570   bool success = false;
2571 
2572 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2573   if (resolve_functions_for_large_page_init()) {
2574     if (request_lock_memory_privilege()) {
2575       size_t s = _GetLargePageMinimum();
2576       if (s) {
2577 #if defined(IA32) || defined(AMD64)
2578         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2579           WARN("JVM cannot use large pages bigger than 4mb.");
2580         } else {
2581 #endif
2582           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2583             _large_page_size = LargePageSizeInBytes;
2584           } else {
2585             _large_page_size = s;
2586           }
2587           success = true;
2588 #if defined(IA32) || defined(AMD64)
2589         }
2590 #endif
2591       } else {
2592         WARN("Large page is not supported by the processor.");
2593       }
2594     } else {
2595       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2596     }
2597   } else {
2598     WARN("Large page is not supported by the operating system.");
2599   }
2600 #undef WARN
2601 
2602   const size_t default_page_size = (size_t) vm_page_size();
2603   if (success && _large_page_size > default_page_size) {
2604     _page_sizes[0] = _large_page_size;
2605     _page_sizes[1] = default_page_size;
2606     _page_sizes[2] = 0;
2607   }
2608 
2609   cleanup_after_large_page_init();
2610   return success;
2611 }
2612 
2613 // On win32, one cannot release just a part of reserved memory, it's an
2614 // all or nothing deal.  When we split a reservation, we must break the
2615 // reservation into two reservations.
2616 void os::split_reserved_memory(char *base, size_t size, size_t split,
2617                               bool realloc) {
2618   if (size > 0) {
2619     release_memory(base, size);
2620     if (realloc) {
2621       reserve_memory(split, base);
2622     }
2623     if (size != split) {
2624       reserve_memory(size - split, base + split);
2625     }
2626   }
2627 }
2628 
2629 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2630   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2631          "reserve alignment");
2632   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2633   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2634   assert(res == NULL || addr == NULL || addr == res,
2635          "Unexpected address from reserve.");
2636   return res;
2637 }
2638 
2639 // Reserve memory at an arbitrary address, only if that area is
2640 // available (and not reserved for something else).
2641 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2642   // Windows os::reserve_memory() fails of the requested address range is
2643   // not avilable.
2644   return reserve_memory(bytes, requested_addr);
2645 }
2646 
2647 size_t os::large_page_size() {
2648   return _large_page_size;
2649 }
2650 
2651 bool os::can_commit_large_page_memory() {
2652   // Windows only uses large page memory when the entire region is reserved
2653   // and committed in a single VirtualAlloc() call. This may change in the
2654   // future, but with Windows 2003 it's not possible to commit on demand.
2655   return false;
2656 }
2657 
2658 bool os::can_execute_large_page_memory() {
2659   return true;
2660 }
2661 
2662 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2663 
2664   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2665 
2666   if (UseLargePagesIndividualAllocation) {
2667     if (TracePageSizes && Verbose) {
2668        tty->print_cr("Reserving large pages individually.");
2669     }
2670     char * p_buf;
2671     // first reserve enough address space in advance since we want to be
2672     // able to break a single contiguous virtual address range into multiple
2673     // large page commits but WS2003 does not allow reserving large page space
2674     // so we just use 4K pages for reserve, this gives us a legal contiguous
2675     // address space. then we will deallocate that reservation, and re alloc
2676     // using large pages
2677     const size_t size_of_reserve = bytes + _large_page_size;
2678     if (bytes > size_of_reserve) {
2679       // Overflowed.
2680       warning("Individually allocated large pages failed, "
2681         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2682       return NULL;
2683     }
2684     p_buf = (char *) VirtualAlloc(addr,
2685                                  size_of_reserve,  // size of Reserve
2686                                  MEM_RESERVE,
2687                                  PAGE_READWRITE);
2688     // If reservation failed, return NULL
2689     if (p_buf == NULL) return NULL;
2690 
2691     release_memory(p_buf, bytes + _large_page_size);
2692     // round up to page boundary.  If the size_of_reserve did not
2693     // overflow and the reservation did not fail, this align up
2694     // should not overflow.
2695     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2696 
2697     // now go through and allocate one page at a time until all bytes are
2698     // allocated
2699     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2700     // An overflow of align_size_up() would have been caught above
2701     // in the calculation of size_of_reserve.
2702     char * next_alloc_addr = p_buf;
2703 
2704 #ifdef ASSERT
2705     // Variable for the failure injection
2706     long ran_num = os::random();
2707     size_t fail_after = ran_num % bytes;
2708 #endif
2709 
2710     while (bytes_remaining) {
2711       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2712       // Note allocate and commit
2713       char * p_new;
2714 
2715 #ifdef ASSERT
2716       bool inject_error = LargePagesIndividualAllocationInjectError &&
2717           (bytes_remaining <= fail_after);
2718 #else
2719       const bool inject_error = false;
2720 #endif
2721 
2722       if (inject_error) {
2723         p_new = NULL;
2724       } else {
2725         p_new = (char *) VirtualAlloc(next_alloc_addr,
2726                                     bytes_to_rq,
2727                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2728                                     prot);
2729       }
2730 
2731       if (p_new == NULL) {
2732         // Free any allocated pages
2733         if (next_alloc_addr > p_buf) {
2734           // Some memory was committed so release it.
2735           size_t bytes_to_release = bytes - bytes_remaining;
2736           release_memory(p_buf, bytes_to_release);
2737         }
2738 #ifdef ASSERT
2739         if (UseLargePagesIndividualAllocation &&
2740             LargePagesIndividualAllocationInjectError) {
2741           if (TracePageSizes && Verbose) {
2742              tty->print_cr("Reserving large pages individually failed.");
2743           }
2744         }
2745 #endif
2746         return NULL;
2747       }
2748       bytes_remaining -= bytes_to_rq;
2749       next_alloc_addr += bytes_to_rq;
2750     }
2751 
2752     return p_buf;
2753 
2754   } else {
2755     // normal policy just allocate it all at once
2756     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2757     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2758     return res;
2759   }
2760 }
2761 
2762 bool os::release_memory_special(char* base, size_t bytes) {
2763   return release_memory(base, bytes);
2764 }
2765 
2766 void os::print_statistics() {
2767 }
2768 
2769 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2770   if (bytes == 0) {
2771     // Don't bother the OS with noops.
2772     return true;
2773   }
2774   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2775   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2776   // Don't attempt to print anything if the OS call fails. We're
2777   // probably low on resources, so the print itself may cause crashes.
2778   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2779   if (result != NULL && exec) {
2780     DWORD oldprot;
2781     // Windows doc says to use VirtualProtect to get execute permissions
2782     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2783   } else {
2784     return result;
2785   }
2786 }
2787 
2788 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2789                        bool exec) {
2790   return commit_memory(addr, size, exec);
2791 }
2792 
2793 bool os::uncommit_memory(char* addr, size_t bytes) {
2794   if (bytes == 0) {
2795     // Don't bother the OS with noops.
2796     return true;
2797   }
2798   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2799   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2800   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2801 }
2802 
2803 bool os::release_memory(char* addr, size_t bytes) {
2804   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2805 }
2806 
2807 bool os::create_stack_guard_pages(char* addr, size_t size) {
2808   return os::commit_memory(addr, size);
2809 }
2810 
2811 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2812   return os::uncommit_memory(addr, size);
2813 }
2814 
2815 // Set protections specified
2816 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2817                         bool is_committed) {
2818   unsigned int p = 0;
2819   switch (prot) {
2820   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2821   case MEM_PROT_READ: p = PAGE_READONLY; break;
2822   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2823   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2824   default:
2825     ShouldNotReachHere();
2826   }
2827 
2828   DWORD old_status;
2829 
2830   // Strange enough, but on Win32 one can change protection only for committed
2831   // memory, not a big deal anyway, as bytes less or equal than 64K
2832   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2833     fatal("cannot commit protection page");
2834   }
2835   // One cannot use os::guard_memory() here, as on Win32 guard page
2836   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2837   //
2838   // Pages in the region become guard pages. Any attempt to access a guard page
2839   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2840   // the guard page status. Guard pages thus act as a one-time access alarm.
2841   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2842 }
2843 
2844 bool os::guard_memory(char* addr, size_t bytes) {
2845   DWORD old_status;
2846   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2847 }
2848 
2849 bool os::unguard_memory(char* addr, size_t bytes) {
2850   DWORD old_status;
2851   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2852 }
2853 
2854 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2855 void os::free_memory(char *addr, size_t bytes)         { }
2856 void os::numa_make_global(char *addr, size_t bytes)    { }
2857 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2858 bool os::numa_topology_changed()                       { return false; }
2859 size_t os::numa_get_groups_num()                       { return 1; }
2860 int os::numa_get_group_id()                            { return 0; }
2861 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2862   if (size > 0) {
2863     ids[0] = 0;
2864     return 1;
2865   }
2866   return 0;
2867 }
2868 
2869 bool os::get_page_info(char *start, page_info* info) {
2870   return false;
2871 }
2872 
2873 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2874   return end;
2875 }
2876 
2877 char* os::non_memory_address_word() {
2878   // Must never look like an address returned by reserve_memory,
2879   // even in its subfields (as defined by the CPU immediate fields,
2880   // if the CPU splits constants across multiple instructions).
2881   return (char*)-1;
2882 }
2883 
2884 #define MAX_ERROR_COUNT 100
2885 #define SYS_THREAD_ERROR 0xffffffffUL
2886 
2887 void os::pd_start_thread(Thread* thread) {
2888   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2889   // Returns previous suspend state:
2890   // 0:  Thread was not suspended
2891   // 1:  Thread is running now
2892   // >1: Thread is still suspended.
2893   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2894 }
2895 
2896 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2897   return ::read(fd, buf, nBytes);
2898 }
2899 
2900 class HighResolutionInterval {
2901   // The default timer resolution seems to be 10 milliseconds.
2902   // (Where is this written down?)
2903   // If someone wants to sleep for only a fraction of the default,
2904   // then we set the timer resolution down to 1 millisecond for
2905   // the duration of their interval.
2906   // We carefully set the resolution back, since otherwise we
2907   // seem to incur an overhead (3%?) that we don't need.
2908   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2909   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2910   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2911   // timeBeginPeriod() if the relative error exceeded some threshold.
2912   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2913   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2914   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2915   // resolution timers running.
2916 private:
2917     jlong resolution;
2918 public:
2919   HighResolutionInterval(jlong ms) {
2920     resolution = ms % 10L;
2921     if (resolution != 0) {
2922       MMRESULT result = timeBeginPeriod(1L);
2923     }
2924   }
2925   ~HighResolutionInterval() {
2926     if (resolution != 0) {
2927       MMRESULT result = timeEndPeriod(1L);
2928     }
2929     resolution = 0L;
2930   }
2931 };
2932 
2933 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2934   jlong limit = (jlong) MAXDWORD;
2935 
2936   while(ms > limit) {
2937     int res;
2938     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2939       return res;
2940     ms -= limit;
2941   }
2942 
2943   assert(thread == Thread::current(),  "thread consistency check");
2944   OSThread* osthread = thread->osthread();
2945   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2946   int result;
2947   if (interruptable) {
2948     assert(thread->is_Java_thread(), "must be java thread");
2949     JavaThread *jt = (JavaThread *) thread;
2950     ThreadBlockInVM tbivm(jt);
2951 
2952     jt->set_suspend_equivalent();
2953     // cleared by handle_special_suspend_equivalent_condition() or
2954     // java_suspend_self() via check_and_wait_while_suspended()
2955 
2956     HANDLE events[1];
2957     events[0] = osthread->interrupt_event();
2958     HighResolutionInterval *phri=NULL;
2959     if(!ForceTimeHighResolution)
2960       phri = new HighResolutionInterval( ms );
2961     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2962       result = OS_TIMEOUT;
2963     } else {
2964       ResetEvent(osthread->interrupt_event());
2965       osthread->set_interrupted(false);
2966       result = OS_INTRPT;
2967     }
2968     delete phri; //if it is NULL, harmless
2969 
2970     // were we externally suspended while we were waiting?
2971     jt->check_and_wait_while_suspended();
2972   } else {
2973     assert(!thread->is_Java_thread(), "must not be java thread");
2974     Sleep((long) ms);
2975     result = OS_TIMEOUT;
2976   }
2977   return result;
2978 }
2979 
2980 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2981 void os::infinite_sleep() {
2982   while (true) {    // sleep forever ...
2983     Sleep(100000);  // ... 100 seconds at a time
2984   }
2985 }
2986 
2987 typedef BOOL (WINAPI * STTSignature)(void) ;
2988 
2989 os::YieldResult os::NakedYield() {
2990   // Use either SwitchToThread() or Sleep(0)
2991   // Consider passing back the return value from SwitchToThread().
2992   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2993   // In that case we revert to Sleep(0).
2994   static volatile STTSignature stt = (STTSignature) 1 ;
2995 
2996   if (stt == ((STTSignature) 1)) {
2997     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2998     // It's OK if threads race during initialization as the operation above is idempotent.
2999   }
3000   if (stt != NULL) {
3001     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3002   } else {
3003     Sleep (0) ;
3004   }
3005   return os::YIELD_UNKNOWN ;
3006 }
3007 
3008 void os::yield() {  os::NakedYield(); }
3009 
3010 void os::yield_all(int attempts) {
3011   // Yields to all threads, including threads with lower priorities
3012   Sleep(1);
3013 }
3014 
3015 // Win32 only gives you access to seven real priorities at a time,
3016 // so we compress Java's ten down to seven.  It would be better
3017 // if we dynamically adjusted relative priorities.
3018 
3019 int os::java_to_os_priority[MaxPriority + 1] = {
3020   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3021   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3022   THREAD_PRIORITY_LOWEST,                       // 2
3023   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3024   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3025   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3026   THREAD_PRIORITY_NORMAL,                       // 6
3027   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3028   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3029   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3030   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3031 };
3032 
3033 int prio_policy1[MaxPriority + 1] = {
3034   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3035   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3036   THREAD_PRIORITY_LOWEST,                       // 2
3037   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3038   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3039   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3040   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3041   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3042   THREAD_PRIORITY_HIGHEST,                      // 8
3043   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3044   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3045 };
3046 
3047 static int prio_init() {
3048   // If ThreadPriorityPolicy is 1, switch tables
3049   if (ThreadPriorityPolicy == 1) {
3050     int i;
3051     for (i = 0; i < MaxPriority + 1; i++) {
3052       os::java_to_os_priority[i] = prio_policy1[i];
3053     }
3054   }
3055   return 0;
3056 }
3057 
3058 OSReturn os::set_native_priority(Thread* thread, int priority) {
3059   if (!UseThreadPriorities) return OS_OK;
3060   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3061   return ret ? OS_OK : OS_ERR;
3062 }
3063 
3064 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3065   if ( !UseThreadPriorities ) {
3066     *priority_ptr = java_to_os_priority[NormPriority];
3067     return OS_OK;
3068   }
3069   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3070   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3071     assert(false, "GetThreadPriority failed");
3072     return OS_ERR;
3073   }
3074   *priority_ptr = os_prio;
3075   return OS_OK;
3076 }
3077 
3078 
3079 // Hint to the underlying OS that a task switch would not be good.
3080 // Void return because it's a hint and can fail.
3081 void os::hint_no_preempt() {}
3082 
3083 void os::interrupt(Thread* thread) {
3084   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3085          "possibility of dangling Thread pointer");
3086 
3087   OSThread* osthread = thread->osthread();
3088   osthread->set_interrupted(true);
3089   // More than one thread can get here with the same value of osthread,
3090   // resulting in multiple notifications.  We do, however, want the store
3091   // to interrupted() to be visible to other threads before we post
3092   // the interrupt event.
3093   OrderAccess::release();
3094   SetEvent(osthread->interrupt_event());
3095   // For JSR166:  unpark after setting status
3096   if (thread->is_Java_thread())
3097     ((JavaThread*)thread)->parker()->unpark();
3098 
3099   ParkEvent * ev = thread->_ParkEvent ;
3100   if (ev != NULL) ev->unpark() ;
3101 
3102 }
3103 
3104 
3105 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3106   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3107          "possibility of dangling Thread pointer");
3108 
3109   OSThread* osthread = thread->osthread();
3110   bool interrupted;
3111   interrupted = osthread->interrupted();
3112   if (clear_interrupted == true) {
3113     osthread->set_interrupted(false);
3114     ResetEvent(osthread->interrupt_event());
3115   } // Otherwise leave the interrupted state alone
3116 
3117   return interrupted;
3118 }
3119 
3120 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3121 ExtendedPC os::get_thread_pc(Thread* thread) {
3122   CONTEXT context;
3123   context.ContextFlags = CONTEXT_CONTROL;
3124   HANDLE handle = thread->osthread()->thread_handle();
3125 #ifdef _M_IA64
3126   assert(0, "Fix get_thread_pc");
3127   return ExtendedPC(NULL);
3128 #else
3129   if (GetThreadContext(handle, &context)) {
3130 #ifdef _M_AMD64
3131     return ExtendedPC((address) context.Rip);
3132 #else
3133     return ExtendedPC((address) context.Eip);
3134 #endif
3135   } else {
3136     return ExtendedPC(NULL);
3137   }
3138 #endif
3139 }
3140 
3141 // GetCurrentThreadId() returns DWORD
3142 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3143 
3144 static int _initial_pid = 0;
3145 
3146 int os::current_process_id()
3147 {
3148   return (_initial_pid ? _initial_pid : _getpid());
3149 }
3150 
3151 int    os::win32::_vm_page_size       = 0;
3152 int    os::win32::_vm_allocation_granularity = 0;
3153 int    os::win32::_processor_type     = 0;
3154 // Processor level is not available on non-NT systems, use vm_version instead
3155 int    os::win32::_processor_level    = 0;
3156 julong os::win32::_physical_memory    = 0;
3157 size_t os::win32::_default_stack_size = 0;
3158 
3159          intx os::win32::_os_thread_limit    = 0;
3160 volatile intx os::win32::_os_thread_count    = 0;
3161 
3162 bool   os::win32::_is_nt              = false;
3163 bool   os::win32::_is_windows_2003    = false;
3164 
3165 
3166 void os::win32::initialize_system_info() {
3167   SYSTEM_INFO si;
3168   GetSystemInfo(&si);
3169   _vm_page_size    = si.dwPageSize;
3170   _vm_allocation_granularity = si.dwAllocationGranularity;
3171   _processor_type  = si.dwProcessorType;
3172   _processor_level = si.wProcessorLevel;
3173   set_processor_count(si.dwNumberOfProcessors);
3174 
3175   MEMORYSTATUSEX ms;
3176   ms.dwLength = sizeof(ms);
3177 
3178   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3179   // dwMemoryLoad (% of memory in use)
3180   GlobalMemoryStatusEx(&ms);
3181   _physical_memory = ms.ullTotalPhys;
3182 
3183   OSVERSIONINFO oi;
3184   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3185   GetVersionEx(&oi);
3186   switch(oi.dwPlatformId) {
3187     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3188     case VER_PLATFORM_WIN32_NT:
3189       _is_nt = true;
3190       {
3191         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3192         if (os_vers == 5002) {
3193           _is_windows_2003 = true;
3194         }
3195       }
3196       break;
3197     default: fatal("Unknown platform");
3198   }
3199 
3200   _default_stack_size = os::current_stack_size();
3201   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3202   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3203     "stack size not a multiple of page size");
3204 
3205   initialize_performance_counter();
3206 
3207   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3208   // known to deadlock the system, if the VM issues to thread operations with
3209   // a too high frequency, e.g., such as changing the priorities.
3210   // The 6000 seems to work well - no deadlocks has been notices on the test
3211   // programs that we have seen experience this problem.
3212   if (!os::win32::is_nt()) {
3213     StarvationMonitorInterval = 6000;
3214   }
3215 }
3216 
3217 
3218 void os::win32::setmode_streams() {
3219   _setmode(_fileno(stdin), _O_BINARY);
3220   _setmode(_fileno(stdout), _O_BINARY);
3221   _setmode(_fileno(stderr), _O_BINARY);
3222 }
3223 
3224 
3225 int os::message_box(const char* title, const char* message) {
3226   int result = MessageBox(NULL, message, title,
3227                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3228   return result == IDYES;
3229 }
3230 
3231 int os::allocate_thread_local_storage() {
3232   return TlsAlloc();
3233 }
3234 
3235 
3236 void os::free_thread_local_storage(int index) {
3237   TlsFree(index);
3238 }
3239 
3240 
3241 void os::thread_local_storage_at_put(int index, void* value) {
3242   TlsSetValue(index, value);
3243   assert(thread_local_storage_at(index) == value, "Just checking");
3244 }
3245 
3246 
3247 void* os::thread_local_storage_at(int index) {
3248   return TlsGetValue(index);
3249 }
3250 
3251 
3252 #ifndef PRODUCT
3253 #ifndef _WIN64
3254 // Helpers to check whether NX protection is enabled
3255 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3256   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3257       pex->ExceptionRecord->NumberParameters > 0 &&
3258       pex->ExceptionRecord->ExceptionInformation[0] ==
3259       EXCEPTION_INFO_EXEC_VIOLATION) {
3260     return EXCEPTION_EXECUTE_HANDLER;
3261   }
3262   return EXCEPTION_CONTINUE_SEARCH;
3263 }
3264 
3265 void nx_check_protection() {
3266   // If NX is enabled we'll get an exception calling into code on the stack
3267   char code[] = { (char)0xC3 }; // ret
3268   void *code_ptr = (void *)code;
3269   __try {
3270     __asm call code_ptr
3271   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3272     tty->print_raw_cr("NX protection detected.");
3273   }
3274 }
3275 #endif // _WIN64
3276 #endif // PRODUCT
3277 
3278 // this is called _before_ the global arguments have been parsed
3279 void os::init(void) {
3280   _initial_pid = _getpid();
3281 
3282   init_random(1234567);
3283 
3284   win32::initialize_system_info();
3285   win32::setmode_streams();
3286   init_page_sizes((size_t) win32::vm_page_size());
3287 
3288   // For better scalability on MP systems (must be called after initialize_system_info)
3289 #ifndef PRODUCT
3290   if (is_MP()) {
3291     NoYieldsInMicrolock = true;
3292   }
3293 #endif
3294   // This may be overridden later when argument processing is done.
3295   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3296     os::win32::is_windows_2003());
3297 
3298   // Initialize main_process and main_thread
3299   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3300  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3301                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3302     fatal("DuplicateHandle failed\n");
3303   }
3304   main_thread_id = (int) GetCurrentThreadId();
3305 }
3306 
3307 // To install functions for atexit processing
3308 extern "C" {
3309   static void perfMemory_exit_helper() {
3310     perfMemory_exit();
3311   }
3312 }
3313 
3314 // this is called _after_ the global arguments have been parsed
3315 jint os::init_2(void) {
3316   // Allocate a single page and mark it as readable for safepoint polling
3317   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3318   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3319 
3320   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3321   guarantee( return_page != NULL, "Commit Failed for polling page");
3322 
3323   os::set_polling_page( polling_page );
3324 
3325 #ifndef PRODUCT
3326   if( Verbose && PrintMiscellaneous )
3327     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3328 #endif
3329 
3330   if (!UseMembar) {
3331     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3332     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3333 
3334     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3335     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3336 
3337     os::set_memory_serialize_page( mem_serialize_page );
3338 
3339 #ifndef PRODUCT
3340     if(Verbose && PrintMiscellaneous)
3341       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3342 #endif
3343 }
3344 
3345   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3346 
3347   // Setup Windows Exceptions
3348 
3349   // On Itanium systems, Structured Exception Handling does not
3350   // work since stack frames must be walkable by the OS.  Since
3351   // much of our code is dynamically generated, and we do not have
3352   // proper unwind .xdata sections, the system simply exits
3353   // rather than delivering the exception.  To work around
3354   // this we use VectorExceptions instead.
3355 #ifdef _WIN64
3356   if (UseVectoredExceptions) {
3357     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3358   }
3359 #endif
3360 
3361   // for debugging float code generation bugs
3362   if (ForceFloatExceptions) {
3363 #ifndef  _WIN64
3364     static long fp_control_word = 0;
3365     __asm { fstcw fp_control_word }
3366     // see Intel PPro Manual, Vol. 2, p 7-16
3367     const long precision = 0x20;
3368     const long underflow = 0x10;
3369     const long overflow  = 0x08;
3370     const long zero_div  = 0x04;
3371     const long denorm    = 0x02;
3372     const long invalid   = 0x01;
3373     fp_control_word |= invalid;
3374     __asm { fldcw fp_control_word }
3375 #endif
3376   }
3377 
3378   // Initialize HPI.
3379   jint hpi_result = hpi::initialize();
3380   if (hpi_result != JNI_OK) { return hpi_result; }
3381 
3382   // If stack_commit_size is 0, windows will reserve the default size,
3383   // but only commit a small portion of it.
3384   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3385   size_t default_reserve_size = os::win32::default_stack_size();
3386   size_t actual_reserve_size = stack_commit_size;
3387   if (stack_commit_size < default_reserve_size) {
3388     // If stack_commit_size == 0, we want this too
3389     actual_reserve_size = default_reserve_size;
3390   }
3391 
3392   // Check minimum allowable stack size for thread creation and to initialize
3393   // the java system classes, including StackOverflowError - depends on page
3394   // size.  Add a page for compiler2 recursion in main thread.
3395   // Add in 2*BytesPerWord times page size to account for VM stack during
3396   // class initialization depending on 32 or 64 bit VM.
3397   size_t min_stack_allowed =
3398             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3399             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3400   if (actual_reserve_size < min_stack_allowed) {
3401     tty->print_cr("\nThe stack size specified is too small, "
3402                   "Specify at least %dk",
3403                   min_stack_allowed / K);
3404     return JNI_ERR;
3405   }
3406 
3407   JavaThread::set_stack_size_at_create(stack_commit_size);
3408 
3409   // Calculate theoretical max. size of Threads to guard gainst artifical
3410   // out-of-memory situations, where all available address-space has been
3411   // reserved by thread stacks.
3412   assert(actual_reserve_size != 0, "Must have a stack");
3413 
3414   // Calculate the thread limit when we should start doing Virtual Memory
3415   // banging. Currently when the threads will have used all but 200Mb of space.
3416   //
3417   // TODO: consider performing a similar calculation for commit size instead
3418   // as reserve size, since on a 64-bit platform we'll run into that more
3419   // often than running out of virtual memory space.  We can use the
3420   // lower value of the two calculations as the os_thread_limit.
3421   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3422   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3423 
3424   // at exit methods are called in the reverse order of their registration.
3425   // there is no limit to the number of functions registered. atexit does
3426   // not set errno.
3427 
3428   if (PerfAllowAtExitRegistration) {
3429     // only register atexit functions if PerfAllowAtExitRegistration is set.
3430     // atexit functions can be delayed until process exit time, which
3431     // can be problematic for embedded VM situations. Embedded VMs should
3432     // call DestroyJavaVM() to assure that VM resources are released.
3433 
3434     // note: perfMemory_exit_helper atexit function may be removed in
3435     // the future if the appropriate cleanup code can be added to the
3436     // VM_Exit VMOperation's doit method.
3437     if (atexit(perfMemory_exit_helper) != 0) {
3438       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3439     }
3440   }
3441 
3442   // initialize PSAPI or ToolHelp for fatal error handler
3443   if (win32::is_nt()) _init_psapi();
3444   else _init_toolhelp();
3445 
3446 #ifndef _WIN64
3447   // Print something if NX is enabled (win32 on AMD64)
3448   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3449 #endif
3450 
3451   // initialize thread priority policy
3452   prio_init();
3453 
3454   if (UseNUMA && !ForceNUMA) {
3455     UseNUMA = false; // Currently unsupported.
3456   }
3457 
3458   return JNI_OK;
3459 }
3460 
3461 void os::init_3(void) {
3462   return;
3463 }
3464 
3465 // Mark the polling page as unreadable
3466 void os::make_polling_page_unreadable(void) {
3467   DWORD old_status;
3468   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3469     fatal("Could not disable polling page");
3470 };
3471 
3472 // Mark the polling page as readable
3473 void os::make_polling_page_readable(void) {
3474   DWORD old_status;
3475   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3476     fatal("Could not enable polling page");
3477 };
3478 
3479 
3480 int os::stat(const char *path, struct stat *sbuf) {
3481   char pathbuf[MAX_PATH];
3482   if (strlen(path) > MAX_PATH - 1) {
3483     errno = ENAMETOOLONG;
3484     return -1;
3485   }
3486   hpi::native_path(strcpy(pathbuf, path));
3487   int ret = ::stat(pathbuf, sbuf);
3488   if (sbuf != NULL && UseUTCFileTimestamp) {
3489     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3490     // the system timezone and so can return different values for the
3491     // same file if/when daylight savings time changes.  This adjustment
3492     // makes sure the same timestamp is returned regardless of the TZ.
3493     //
3494     // See:
3495     // http://msdn.microsoft.com/library/
3496     //   default.asp?url=/library/en-us/sysinfo/base/
3497     //   time_zone_information_str.asp
3498     // and
3499     // http://msdn.microsoft.com/library/default.asp?url=
3500     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3501     //
3502     // NOTE: there is a insidious bug here:  If the timezone is changed
3503     // after the call to stat() but before 'GetTimeZoneInformation()', then
3504     // the adjustment we do here will be wrong and we'll return the wrong
3505     // value (which will likely end up creating an invalid class data
3506     // archive).  Absent a better API for this, or some time zone locking
3507     // mechanism, we'll have to live with this risk.
3508     TIME_ZONE_INFORMATION tz;
3509     DWORD tzid = GetTimeZoneInformation(&tz);
3510     int daylightBias =
3511       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3512     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3513   }
3514   return ret;
3515 }
3516 
3517 
3518 #define FT2INT64(ft) \
3519   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3520 
3521 
3522 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3523 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3524 // of a thread.
3525 //
3526 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3527 // the fast estimate available on the platform.
3528 
3529 // current_thread_cpu_time() is not optimized for Windows yet
3530 jlong os::current_thread_cpu_time() {
3531   // return user + sys since the cost is the same
3532   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3533 }
3534 
3535 jlong os::thread_cpu_time(Thread* thread) {
3536   // consistent with what current_thread_cpu_time() returns.
3537   return os::thread_cpu_time(thread, true /* user+sys */);
3538 }
3539 
3540 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3541   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3542 }
3543 
3544 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3545   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3546   // If this function changes, os::is_thread_cpu_time_supported() should too
3547   if (os::win32::is_nt()) {
3548     FILETIME CreationTime;
3549     FILETIME ExitTime;
3550     FILETIME KernelTime;
3551     FILETIME UserTime;
3552 
3553     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3554                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3555       return -1;
3556     else
3557       if (user_sys_cpu_time) {
3558         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3559       } else {
3560         return FT2INT64(UserTime) * 100;
3561       }
3562   } else {
3563     return (jlong) timeGetTime() * 1000000;
3564   }
3565 }
3566 
3567 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3568   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3569   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3570   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3571   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3572 }
3573 
3574 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3575   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3576   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3577   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3578   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3579 }
3580 
3581 bool os::is_thread_cpu_time_supported() {
3582   // see os::thread_cpu_time
3583   if (os::win32::is_nt()) {
3584     FILETIME CreationTime;
3585     FILETIME ExitTime;
3586     FILETIME KernelTime;
3587     FILETIME UserTime;
3588 
3589     if ( GetThreadTimes(GetCurrentThread(),
3590                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3591       return false;
3592     else
3593       return true;
3594   } else {
3595     return false;
3596   }
3597 }
3598 
3599 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3600 // It does have primitives (PDH API) to get CPU usage and run queue length.
3601 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3602 // If we wanted to implement loadavg on Windows, we have a few options:
3603 //
3604 // a) Query CPU usage and run queue length and "fake" an answer by
3605 //    returning the CPU usage if it's under 100%, and the run queue
3606 //    length otherwise.  It turns out that querying is pretty slow
3607 //    on Windows, on the order of 200 microseconds on a fast machine.
3608 //    Note that on the Windows the CPU usage value is the % usage
3609 //    since the last time the API was called (and the first call
3610 //    returns 100%), so we'd have to deal with that as well.
3611 //
3612 // b) Sample the "fake" answer using a sampling thread and store
3613 //    the answer in a global variable.  The call to loadavg would
3614 //    just return the value of the global, avoiding the slow query.
3615 //
3616 // c) Sample a better answer using exponential decay to smooth the
3617 //    value.  This is basically the algorithm used by UNIX kernels.
3618 //
3619 // Note that sampling thread starvation could affect both (b) and (c).
3620 int os::loadavg(double loadavg[], int nelem) {
3621   return -1;
3622 }
3623 
3624 
3625 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3626 bool os::dont_yield() {
3627   return DontYieldALot;
3628 }
3629 
3630 // Is a (classpath) directory empty?
3631 bool os::dir_is_empty(const char* path) {
3632   WIN32_FIND_DATA fd;
3633   HANDLE f = FindFirstFile(path, &fd);
3634   if (f == INVALID_HANDLE_VALUE) {
3635     return true;
3636   }
3637   FindClose(f);
3638   return false;
3639 }
3640 
3641 // create binary file, rewriting existing file if required
3642 int os::create_binary_file(const char* path, bool rewrite_existing) {
3643   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3644   if (!rewrite_existing) {
3645     oflags |= _O_EXCL;
3646   }
3647   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3648 }
3649 
3650 // return current position of file pointer
3651 jlong os::current_file_offset(int fd) {
3652   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3653 }
3654 
3655 // move file pointer to the specified offset
3656 jlong os::seek_to_file_offset(int fd, jlong offset) {
3657   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3658 }
3659 
3660 
3661 // Map a block of memory.
3662 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3663                      char *addr, size_t bytes, bool read_only,
3664                      bool allow_exec) {
3665   HANDLE hFile;
3666   char* base;
3667 
3668   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3669                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3670   if (hFile == NULL) {
3671     if (PrintMiscellaneous && Verbose) {
3672       DWORD err = GetLastError();
3673       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3674     }
3675     return NULL;
3676   }
3677 
3678   if (allow_exec) {
3679     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3680     // unless it comes from a PE image (which the shared archive is not.)
3681     // Even VirtualProtect refuses to give execute access to mapped memory
3682     // that was not previously executable.
3683     //
3684     // Instead, stick the executable region in anonymous memory.  Yuck.
3685     // Penalty is that ~4 pages will not be shareable - in the future
3686     // we might consider DLLizing the shared archive with a proper PE
3687     // header so that mapping executable + sharing is possible.
3688 
3689     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3690                                 PAGE_READWRITE);
3691     if (base == NULL) {
3692       if (PrintMiscellaneous && Verbose) {
3693         DWORD err = GetLastError();
3694         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3695       }
3696       CloseHandle(hFile);
3697       return NULL;
3698     }
3699 
3700     DWORD bytes_read;
3701     OVERLAPPED overlapped;
3702     overlapped.Offset = (DWORD)file_offset;
3703     overlapped.OffsetHigh = 0;
3704     overlapped.hEvent = NULL;
3705     // ReadFile guarantees that if the return value is true, the requested
3706     // number of bytes were read before returning.
3707     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3708     if (!res) {
3709       if (PrintMiscellaneous && Verbose) {
3710         DWORD err = GetLastError();
3711         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3712       }
3713       release_memory(base, bytes);
3714       CloseHandle(hFile);
3715       return NULL;
3716     }
3717   } else {
3718     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3719                                     NULL /*file_name*/);
3720     if (hMap == NULL) {
3721       if (PrintMiscellaneous && Verbose) {
3722         DWORD err = GetLastError();
3723         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3724       }
3725       CloseHandle(hFile);
3726       return NULL;
3727     }
3728 
3729     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3730     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3731                                   (DWORD)bytes, addr);
3732     if (base == NULL) {
3733       if (PrintMiscellaneous && Verbose) {
3734         DWORD err = GetLastError();
3735         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3736       }
3737       CloseHandle(hMap);
3738       CloseHandle(hFile);
3739       return NULL;
3740     }
3741 
3742     if (CloseHandle(hMap) == 0) {
3743       if (PrintMiscellaneous && Verbose) {
3744         DWORD err = GetLastError();
3745         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3746       }
3747       CloseHandle(hFile);
3748       return base;
3749     }
3750   }
3751 
3752   if (allow_exec) {
3753     DWORD old_protect;
3754     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3755     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3756 
3757     if (!res) {
3758       if (PrintMiscellaneous && Verbose) {
3759         DWORD err = GetLastError();
3760         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3761       }
3762       // Don't consider this a hard error, on IA32 even if the
3763       // VirtualProtect fails, we should still be able to execute
3764       CloseHandle(hFile);
3765       return base;
3766     }
3767   }
3768 
3769   if (CloseHandle(hFile) == 0) {
3770     if (PrintMiscellaneous && Verbose) {
3771       DWORD err = GetLastError();
3772       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3773     }
3774     return base;
3775   }
3776 
3777   return base;
3778 }
3779 
3780 
3781 // Remap a block of memory.
3782 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3783                        char *addr, size_t bytes, bool read_only,
3784                        bool allow_exec) {
3785   // This OS does not allow existing memory maps to be remapped so we
3786   // have to unmap the memory before we remap it.
3787   if (!os::unmap_memory(addr, bytes)) {
3788     return NULL;
3789   }
3790 
3791   // There is a very small theoretical window between the unmap_memory()
3792   // call above and the map_memory() call below where a thread in native
3793   // code may be able to access an address that is no longer mapped.
3794 
3795   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3796                         allow_exec);
3797 }
3798 
3799 
3800 // Unmap a block of memory.
3801 // Returns true=success, otherwise false.
3802 
3803 bool os::unmap_memory(char* addr, size_t bytes) {
3804   BOOL result = UnmapViewOfFile(addr);
3805   if (result == 0) {
3806     if (PrintMiscellaneous && Verbose) {
3807       DWORD err = GetLastError();
3808       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3809     }
3810     return false;
3811   }
3812   return true;
3813 }
3814 
3815 void os::pause() {
3816   char filename[MAX_PATH];
3817   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3818     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3819   } else {
3820     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3821   }
3822 
3823   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3824   if (fd != -1) {
3825     struct stat buf;
3826     close(fd);
3827     while (::stat(filename, &buf) == 0) {
3828       Sleep(100);
3829     }
3830   } else {
3831     jio_fprintf(stderr,
3832       "Could not open pause file '%s', continuing immediately.\n", filename);
3833   }
3834 }
3835 
3836 // An Event wraps a win32 "CreateEvent" kernel handle.
3837 //
3838 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3839 //
3840 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3841 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3842 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3843 //     In addition, an unpark() operation might fetch the handle field, but the
3844 //     event could recycle between the fetch and the SetEvent() operation.
3845 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3846 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3847 //     on an stale but recycled handle would be harmless, but in practice this might
3848 //     confuse other non-Sun code, so it's not a viable approach.
3849 //
3850 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3851 //     with the Event.  The event handle is never closed.  This could be construed
3852 //     as handle leakage, but only up to the maximum # of threads that have been extant
3853 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3854 //     permit a process to have hundreds of thousands of open handles.
3855 //
3856 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3857 //     and release unused handles.
3858 //
3859 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3860 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3861 //
3862 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3863 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3864 //
3865 // We use (2).
3866 //
3867 // TODO-FIXME:
3868 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3869 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3870 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3871 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3872 //     into a single win32 CreateEvent() handle.
3873 //
3874 // _Event transitions in park()
3875 //   -1 => -1 : illegal
3876 //    1 =>  0 : pass - return immediately
3877 //    0 => -1 : block
3878 //
3879 // _Event serves as a restricted-range semaphore :
3880 //    -1 : thread is blocked
3881 //     0 : neutral  - thread is running or ready
3882 //     1 : signaled - thread is running or ready
3883 //
3884 // Another possible encoding of _Event would be
3885 // with explicit "PARKED" and "SIGNALED" bits.
3886 
3887 int os::PlatformEvent::park (jlong Millis) {
3888     guarantee (_ParkHandle != NULL , "Invariant") ;
3889     guarantee (Millis > 0          , "Invariant") ;
3890     int v ;
3891 
3892     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3893     // the initial park() operation.
3894 
3895     for (;;) {
3896         v = _Event ;
3897         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3898     }
3899     guarantee ((v == 0) || (v == 1), "invariant") ;
3900     if (v != 0) return OS_OK ;
3901 
3902     // Do this the hard way by blocking ...
3903     // TODO: consider a brief spin here, gated on the success of recent
3904     // spin attempts by this thread.
3905     //
3906     // We decompose long timeouts into series of shorter timed waits.
3907     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3908     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3909     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3910     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3911     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3912     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3913     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3914     // for the already waited time.  This policy does not admit any new outcomes.
3915     // In the future, however, we might want to track the accumulated wait time and
3916     // adjust Millis accordingly if we encounter a spurious wakeup.
3917 
3918     const int MAXTIMEOUT = 0x10000000 ;
3919     DWORD rv = WAIT_TIMEOUT ;
3920     while (_Event < 0 && Millis > 0) {
3921        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3922        if (Millis > MAXTIMEOUT) {
3923           prd = MAXTIMEOUT ;
3924        }
3925        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3926        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3927        if (rv == WAIT_TIMEOUT) {
3928            Millis -= prd ;
3929        }
3930     }
3931     v = _Event ;
3932     _Event = 0 ;
3933     OrderAccess::fence() ;
3934     // If we encounter a nearly simultanous timeout expiry and unpark()
3935     // we return OS_OK indicating we awoke via unpark().
3936     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3937     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3938 }
3939 
3940 void os::PlatformEvent::park () {
3941     guarantee (_ParkHandle != NULL, "Invariant") ;
3942     // Invariant: Only the thread associated with the Event/PlatformEvent
3943     // may call park().
3944     int v ;
3945     for (;;) {
3946         v = _Event ;
3947         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3948     }
3949     guarantee ((v == 0) || (v == 1), "invariant") ;
3950     if (v != 0) return ;
3951 
3952     // Do this the hard way by blocking ...
3953     // TODO: consider a brief spin here, gated on the success of recent
3954     // spin attempts by this thread.
3955     while (_Event < 0) {
3956        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3957        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3958     }
3959 
3960     // Usually we'll find _Event == 0 at this point, but as
3961     // an optional optimization we clear it, just in case can
3962     // multiple unpark() operations drove _Event up to 1.
3963     _Event = 0 ;
3964     OrderAccess::fence() ;
3965     guarantee (_Event >= 0, "invariant") ;
3966 }
3967 
3968 void os::PlatformEvent::unpark() {
3969   guarantee (_ParkHandle != NULL, "Invariant") ;
3970   int v ;
3971   for (;;) {
3972       v = _Event ;      // Increment _Event if it's < 1.
3973       if (v > 0) {
3974          // If it's already signaled just return.
3975          // The LD of _Event could have reordered or be satisfied
3976          // by a read-aside from this processor's write buffer.
3977          // To avoid problems execute a barrier and then
3978          // ratify the value.  A degenerate CAS() would also work.
3979          // Viz., CAS (v+0, &_Event, v) == v).
3980          OrderAccess::fence() ;
3981          if (_Event == v) return ;
3982          continue ;
3983       }
3984       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3985   }
3986   if (v < 0) {
3987      ::SetEvent (_ParkHandle) ;
3988   }
3989 }
3990 
3991 
3992 // JSR166
3993 // -------------------------------------------------------
3994 
3995 /*
3996  * The Windows implementation of Park is very straightforward: Basic
3997  * operations on Win32 Events turn out to have the right semantics to
3998  * use them directly. We opportunistically resuse the event inherited
3999  * from Monitor.
4000  */
4001 
4002 
4003 void Parker::park(bool isAbsolute, jlong time) {
4004   guarantee (_ParkEvent != NULL, "invariant") ;
4005   // First, demultiplex/decode time arguments
4006   if (time < 0) { // don't wait
4007     return;
4008   }
4009   else if (time == 0 && !isAbsolute) {
4010     time = INFINITE;
4011   }
4012   else if  (isAbsolute) {
4013     time -= os::javaTimeMillis(); // convert to relative time
4014     if (time <= 0) // already elapsed
4015       return;
4016   }
4017   else { // relative
4018     time /= 1000000; // Must coarsen from nanos to millis
4019     if (time == 0)   // Wait for the minimal time unit if zero
4020       time = 1;
4021   }
4022 
4023   JavaThread* thread = (JavaThread*)(Thread::current());
4024   assert(thread->is_Java_thread(), "Must be JavaThread");
4025   JavaThread *jt = (JavaThread *)thread;
4026 
4027   // Don't wait if interrupted or already triggered
4028   if (Thread::is_interrupted(thread, false) ||
4029     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4030     ResetEvent(_ParkEvent);
4031     return;
4032   }
4033   else {
4034     ThreadBlockInVM tbivm(jt);
4035     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4036     jt->set_suspend_equivalent();
4037 
4038     WaitForSingleObject(_ParkEvent,  time);
4039     ResetEvent(_ParkEvent);
4040 
4041     // If externally suspended while waiting, re-suspend
4042     if (jt->handle_special_suspend_equivalent_condition()) {
4043       jt->java_suspend_self();
4044     }
4045   }
4046 }
4047 
4048 void Parker::unpark() {
4049   guarantee (_ParkEvent != NULL, "invariant") ;
4050   SetEvent(_ParkEvent);
4051 }
4052 
4053 // Run the specified command in a separate process. Return its exit value,
4054 // or -1 on failure (e.g. can't create a new process).
4055 int os::fork_and_exec(char* cmd) {
4056   STARTUPINFO si;
4057   PROCESS_INFORMATION pi;
4058 
4059   memset(&si, 0, sizeof(si));
4060   si.cb = sizeof(si);
4061   memset(&pi, 0, sizeof(pi));
4062   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4063                             cmd,    // command line
4064                             NULL,   // process security attribute
4065                             NULL,   // thread security attribute
4066                             TRUE,   // inherits system handles
4067                             0,      // no creation flags
4068                             NULL,   // use parent's environment block
4069                             NULL,   // use parent's starting directory
4070                             &si,    // (in) startup information
4071                             &pi);   // (out) process information
4072 
4073   if (rslt) {
4074     // Wait until child process exits.
4075     WaitForSingleObject(pi.hProcess, INFINITE);
4076 
4077     DWORD exit_code;
4078     GetExitCodeProcess(pi.hProcess, &exit_code);
4079 
4080     // Close process and thread handles.
4081     CloseHandle(pi.hProcess);
4082     CloseHandle(pi.hThread);
4083 
4084     return (int)exit_code;
4085   } else {
4086     return -1;
4087   }
4088 }
4089 
4090 //--------------------------------------------------------------------------------------------------
4091 // Non-product code
4092 
4093 static int mallocDebugIntervalCounter = 0;
4094 static int mallocDebugCounter = 0;
4095 bool os::check_heap(bool force) {
4096   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4097   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4098     // Note: HeapValidate executes two hardware breakpoints when it finds something
4099     // wrong; at these points, eax contains the address of the offending block (I think).
4100     // To get to the exlicit error message(s) below, just continue twice.
4101     HANDLE heap = GetProcessHeap();
4102     { HeapLock(heap);
4103       PROCESS_HEAP_ENTRY phe;
4104       phe.lpData = NULL;
4105       while (HeapWalk(heap, &phe) != 0) {
4106         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4107             !HeapValidate(heap, 0, phe.lpData)) {
4108           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4109           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4110           fatal("corrupted C heap");
4111         }
4112       }
4113       int err = GetLastError();
4114       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4115         fatal(err_msg("heap walk aborted with error %d", err));
4116       }
4117       HeapUnlock(heap);
4118     }
4119     mallocDebugIntervalCounter = 0;
4120   }
4121   return true;
4122 }
4123 
4124 
4125 bool os::find(address addr, outputStream* st) {
4126   // Nothing yet
4127   return false;
4128 }
4129 
4130 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4131   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4132 
4133   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4134     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4135     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4136     address addr = (address) exceptionRecord->ExceptionInformation[1];
4137 
4138     if (os::is_memory_serialize_page(thread, addr))
4139       return EXCEPTION_CONTINUE_EXECUTION;
4140   }
4141 
4142   return EXCEPTION_CONTINUE_SEARCH;
4143 }
4144 
4145 static int getLastErrorString(char *buf, size_t len)
4146 {
4147     long errval;
4148 
4149     if ((errval = GetLastError()) != 0)
4150     {
4151       /* DOS error */
4152       size_t n = (size_t)FormatMessage(
4153             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4154             NULL,
4155             errval,
4156             0,
4157             buf,
4158             (DWORD)len,
4159             NULL);
4160       if (n > 3) {
4161         /* Drop final '.', CR, LF */
4162         if (buf[n - 1] == '\n') n--;
4163         if (buf[n - 1] == '\r') n--;
4164         if (buf[n - 1] == '.') n--;
4165         buf[n] = '\0';
4166       }
4167       return (int)n;
4168     }
4169 
4170     if (errno != 0)
4171     {
4172       /* C runtime error that has no corresponding DOS error code */
4173       const char *s = strerror(errno);
4174       size_t n = strlen(s);
4175       if (n >= len) n = len - 1;
4176       strncpy(buf, s, n);
4177       buf[n] = '\0';
4178       return (int)n;
4179     }
4180     return 0;
4181 }
4182 
4183 
4184 // We don't build a headless jre for Windows
4185 bool os::is_headless_jre() { return false; }
4186