1 /*
   2  * Copyright (c) 2001, 2007, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_perfMemory_windows.cpp.incl"
  27 
  28 #include <windows.h>
  29 #include <sys/types.h>
  30 #include <sys/stat.h>
  31 #include <errno.h>
  32 #include <lmcons.h>
  33 
  34 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
  35    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
  36    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
  37    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
  38 
  39 // Standard Memory Implementation Details
  40 
  41 // create the PerfData memory region in standard memory.
  42 //
  43 static char* create_standard_memory(size_t size) {
  44 
  45   // allocate an aligned chuck of memory
  46   char* mapAddress = os::reserve_memory(size);
  47 
  48   if (mapAddress == NULL) {
  49     return NULL;
  50   }
  51 
  52   // commit memory
  53   if (!os::commit_memory(mapAddress, size)) {
  54     if (PrintMiscellaneous && Verbose) {
  55       warning("Could not commit PerfData memory\n");
  56     }
  57     os::release_memory(mapAddress, size);
  58     return NULL;
  59   }
  60 
  61   return mapAddress;
  62 }
  63 
  64 // delete the PerfData memory region
  65 //
  66 static void delete_standard_memory(char* addr, size_t size) {
  67 
  68   // there are no persistent external resources to cleanup for standard
  69   // memory. since DestroyJavaVM does not support unloading of the JVM,
  70   // cleanup of the memory resource is not performed. The memory will be
  71   // reclaimed by the OS upon termination of the process.
  72   //
  73   return;
  74 
  75 }
  76 
  77 // save the specified memory region to the given file
  78 //
  79 static void save_memory_to_file(char* addr, size_t size) {
  80 
  81   const char* destfile = PerfMemory::get_perfdata_file_path();
  82   assert(destfile[0] != '\0', "invalid Perfdata file path");
  83 
  84   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
  85                    _S_IREAD|_S_IWRITE);
  86 
  87   if (fd == OS_ERR) {
  88     if (PrintMiscellaneous && Verbose) {
  89       warning("Could not create Perfdata save file: %s: %s\n",
  90               destfile, strerror(errno));
  91     }
  92   } else {
  93     for (size_t remaining = size; remaining > 0;) {
  94 
  95       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
  96       if (nbytes == OS_ERR) {
  97         if (PrintMiscellaneous && Verbose) {
  98           warning("Could not write Perfdata save file: %s: %s\n",
  99                   destfile, strerror(errno));
 100         }
 101         break;
 102       }
 103 
 104       remaining -= (size_t)nbytes;
 105       addr += nbytes;
 106     }
 107 
 108     int result = ::_close(fd);
 109     if (PrintMiscellaneous && Verbose) {
 110       if (result == OS_ERR) {
 111         warning("Could not close %s: %s\n", destfile, strerror(errno));
 112       }
 113     }
 114   }
 115 
 116   FREE_C_HEAP_ARRAY(char, destfile);
 117 }
 118 
 119 // Shared Memory Implementation Details
 120 
 121 // Note: the win32 shared memory implementation uses two objects to represent
 122 // the shared memory: a windows kernel based file mapping object and a backing
 123 // store file. On windows, the name space for shared memory is a kernel
 124 // based name space that is disjoint from other win32 name spaces. Since Java
 125 // is unaware of this name space, a parallel file system based name space is
 126 // maintained, which provides a common file system based shared memory name
 127 // space across the supported platforms and one that Java apps can deal with
 128 // through simple file apis.
 129 //
 130 // For performance and resource cleanup reasons, it is recommended that the
 131 // user specific directory and the backing store file be stored in either a
 132 // RAM based file system or a local disk based file system. Network based
 133 // file systems are not recommended for performance reasons. In addition,
 134 // use of SMB network based file systems may result in unsuccesful cleanup
 135 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
 136 // environement variables, as used by the GetTempPath() Win32 API (see
 137 // os::get_temp_directory() in os_win32.cpp), control the location of the
 138 // user specific directory and the shared memory backing store file.
 139 
 140 static HANDLE sharedmem_fileMapHandle = NULL;
 141 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
 142 static char*  sharedmem_fileName = NULL;
 143 
 144 // return the user specific temporary directory name.
 145 //
 146 // the caller is expected to free the allocated memory.
 147 //
 148 static char* get_user_tmp_dir(const char* user) {
 149 
 150   const char* tmpdir = os::get_temp_directory();
 151   const char* perfdir = PERFDATA_NAME;
 152   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 153   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
 154 
 155   // construct the path name to user specific tmp directory
 156   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
 157 
 158   return dirname;
 159 }
 160 
 161 // convert the given file name into a process id. if the file
 162 // does not meet the file naming constraints, return 0.
 163 //
 164 static int filename_to_pid(const char* filename) {
 165 
 166   // a filename that doesn't begin with a digit is not a
 167   // candidate for conversion.
 168   //
 169   if (!isdigit(*filename)) {
 170     return 0;
 171   }
 172 
 173   // check if file name can be converted to an integer without
 174   // any leftover characters.
 175   //
 176   char* remainder = NULL;
 177   errno = 0;
 178   int pid = (int)strtol(filename, &remainder, 10);
 179 
 180   if (errno != 0) {
 181     return 0;
 182   }
 183 
 184   // check for left over characters. If any, then the filename is
 185   // not a candidate for conversion.
 186   //
 187   if (remainder != NULL && *remainder != '\0') {
 188     return 0;
 189   }
 190 
 191   // successful conversion, return the pid
 192   return pid;
 193 }
 194 
 195 // check if the given path is considered a secure directory for
 196 // the backing store files. Returns true if the directory exists
 197 // and is considered a secure location. Returns false if the path
 198 // is a symbolic link or if an error occurred.
 199 //
 200 static bool is_directory_secure(const char* path) {
 201 
 202   DWORD fa;
 203 
 204   fa = GetFileAttributes(path);
 205   if (fa == 0xFFFFFFFF) {
 206     DWORD lasterror = GetLastError();
 207     if (lasterror == ERROR_FILE_NOT_FOUND) {
 208       return false;
 209     }
 210     else {
 211       // unexpected error, declare the path insecure
 212       if (PrintMiscellaneous && Verbose) {
 213         warning("could not get attributes for file %s: ",
 214                 " lasterror = %d\n", path, lasterror);
 215       }
 216       return false;
 217     }
 218   }
 219 
 220   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
 221     // we don't accept any redirection for the user specific directory
 222     // so declare the path insecure. This may be too conservative,
 223     // as some types of reparse points might be acceptable, but it
 224     // is probably more secure to avoid these conditions.
 225     //
 226     if (PrintMiscellaneous && Verbose) {
 227       warning("%s is a reparse point\n", path);
 228     }
 229     return false;
 230   }
 231 
 232   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
 233     // this is the expected case. Since windows supports symbolic
 234     // links to directories only, not to files, there is no need
 235     // to check for open write permissions on the directory. If the
 236     // directory has open write permissions, any files deposited that
 237     // are not expected will be removed by the cleanup code.
 238     //
 239     return true;
 240   }
 241   else {
 242     // this is either a regular file or some other type of file,
 243     // any of which are unexpected and therefore insecure.
 244     //
 245     if (PrintMiscellaneous && Verbose) {
 246       warning("%s is not a directory, file attributes = "
 247               INTPTR_FORMAT "\n", path, fa);
 248     }
 249     return false;
 250   }
 251 }
 252 
 253 // return the user name for the owner of this process
 254 //
 255 // the caller is expected to free the allocated memory.
 256 //
 257 static char* get_user_name() {
 258 
 259   /* get the user name. This code is adapted from code found in
 260    * the jdk in src/windows/native/java/lang/java_props_md.c
 261    * java_props_md.c  1.29 02/02/06. According to the original
 262    * source, the call to GetUserName is avoided because of a resulting
 263    * increase in footprint of 100K.
 264    */
 265   char* user = getenv("USERNAME");
 266   char buf[UNLEN+1];
 267   DWORD buflen = sizeof(buf);
 268   if (user == NULL || strlen(user) == 0) {
 269     if (GetUserName(buf, &buflen)) {
 270       user = buf;
 271     }
 272     else {
 273       return NULL;
 274     }
 275   }
 276 
 277   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
 278   strcpy(user_name, user);
 279 
 280   return user_name;
 281 }
 282 
 283 // return the name of the user that owns the process identified by vmid.
 284 //
 285 // This method uses a slow directory search algorithm to find the backing
 286 // store file for the specified vmid and returns the user name, as determined
 287 // by the user name suffix of the hsperfdata_<username> directory name.
 288 //
 289 // the caller is expected to free the allocated memory.
 290 //
 291 static char* get_user_name_slow(int vmid) {
 292 
 293   // directory search
 294   char* oldest_user = NULL;
 295   time_t oldest_ctime = 0;
 296 
 297   const char* tmpdirname = os::get_temp_directory();
 298 
 299   DIR* tmpdirp = os::opendir(tmpdirname);
 300 
 301   if (tmpdirp == NULL) {
 302     return NULL;
 303   }
 304 
 305   // for each entry in the directory that matches the pattern hsperfdata_*,
 306   // open the directory and check if the file for the given vmid exists.
 307   // The file with the expected name and the latest creation date is used
 308   // to determine the user name for the process id.
 309   //
 310   struct dirent* dentry;
 311   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
 312   errno = 0;
 313   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 314 
 315     // check if the directory entry is a hsperfdata file
 316     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 317       continue;
 318     }
 319 
 320     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 321                               strlen(tmpdirname) + strlen(dentry->d_name) + 2);
 322     strcpy(usrdir_name, tmpdirname);
 323     strcat(usrdir_name, "\\");
 324     strcat(usrdir_name, dentry->d_name);
 325 
 326     DIR* subdirp = os::opendir(usrdir_name);
 327 
 328     if (subdirp == NULL) {
 329       FREE_C_HEAP_ARRAY(char, usrdir_name);
 330       continue;
 331     }
 332 
 333     // Since we don't create the backing store files in directories
 334     // pointed to by symbolic links, we also don't follow them when
 335     // looking for the files. We check for a symbolic link after the
 336     // call to opendir in order to eliminate a small window where the
 337     // symlink can be exploited.
 338     //
 339     if (!is_directory_secure(usrdir_name)) {
 340       FREE_C_HEAP_ARRAY(char, usrdir_name);
 341       os::closedir(subdirp);
 342       continue;
 343     }
 344 
 345     struct dirent* udentry;
 346     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
 347     errno = 0;
 348     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 349 
 350       if (filename_to_pid(udentry->d_name) == vmid) {
 351         struct stat statbuf;
 352 
 353         char* filename = NEW_C_HEAP_ARRAY(char,
 354                             strlen(usrdir_name) + strlen(udentry->d_name) + 2);
 355 
 356         strcpy(filename, usrdir_name);
 357         strcat(filename, "\\");
 358         strcat(filename, udentry->d_name);
 359 
 360         if (::stat(filename, &statbuf) == OS_ERR) {
 361            FREE_C_HEAP_ARRAY(char, filename);
 362            continue;
 363         }
 364 
 365         // skip over files that are not regular files.
 366         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
 367           FREE_C_HEAP_ARRAY(char, filename);
 368           continue;
 369         }
 370 
 371         // compare and save filename with latest creation time
 372         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 373 
 374           if (statbuf.st_ctime > oldest_ctime) {
 375             char* user = strchr(dentry->d_name, '_') + 1;
 376 
 377             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
 378             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
 379 
 380             strcpy(oldest_user, user);
 381             oldest_ctime = statbuf.st_ctime;
 382           }
 383         }
 384 
 385         FREE_C_HEAP_ARRAY(char, filename);
 386       }
 387     }
 388     os::closedir(subdirp);
 389     FREE_C_HEAP_ARRAY(char, udbuf);
 390     FREE_C_HEAP_ARRAY(char, usrdir_name);
 391   }
 392   os::closedir(tmpdirp);
 393   FREE_C_HEAP_ARRAY(char, tdbuf);
 394 
 395   return(oldest_user);
 396 }
 397 
 398 // return the name of the user that owns the process identified by vmid.
 399 //
 400 // note: this method should only be used via the Perf native methods.
 401 // There are various costs to this method and limiting its use to the
 402 // Perf native methods limits the impact to monitoring applications only.
 403 //
 404 static char* get_user_name(int vmid) {
 405 
 406   // A fast implementation is not provided at this time. It's possible
 407   // to provide a fast process id to user name mapping function using
 408   // the win32 apis, but the default ACL for the process object only
 409   // allows processes with the same owner SID to acquire the process
 410   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
 411   // to have the JVM change the ACL for the process object to allow arbitrary
 412   // users to access the process handle and the process security token.
 413   // The security ramifications need to be studied before providing this
 414   // mechanism.
 415   //
 416   return get_user_name_slow(vmid);
 417 }
 418 
 419 // return the name of the shared memory file mapping object for the
 420 // named shared memory region for the given user name and vmid.
 421 //
 422 // The file mapping object's name is not the file name. It is a name
 423 // in a separate name space.
 424 //
 425 // the caller is expected to free the allocated memory.
 426 //
 427 static char *get_sharedmem_objectname(const char* user, int vmid) {
 428 
 429   // construct file mapping object's name, add 3 for two '_' and a
 430   // null terminator.
 431   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
 432 
 433   // the id is converted to an unsigned value here because win32 allows
 434   // negative process ids. However, OpenFileMapping API complains
 435   // about a name containing a '-' characters.
 436   //
 437   nbytes += UINT_CHARS;
 438   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
 439   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
 440 
 441   return name;
 442 }
 443 
 444 // return the file name of the backing store file for the named
 445 // shared memory region for the given user name and vmid.
 446 //
 447 // the caller is expected to free the allocated memory.
 448 //
 449 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 450 
 451   // add 2 for the file separator and a null terminator.
 452   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 453 
 454   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
 455   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
 456 
 457   return name;
 458 }
 459 
 460 // remove file
 461 //
 462 // this method removes the file with the given file name.
 463 //
 464 // Note: if the indicated file is on an SMB network file system, this
 465 // method may be unsuccessful in removing the file.
 466 //
 467 static void remove_file(const char* dirname, const char* filename) {
 468 
 469   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
 470   char* path = NEW_C_HEAP_ARRAY(char, nbytes);
 471 
 472   strcpy(path, dirname);
 473   strcat(path, "\\");
 474   strcat(path, filename);
 475 
 476   if (::unlink(path) == OS_ERR) {
 477     if (PrintMiscellaneous && Verbose) {
 478       if (errno != ENOENT) {
 479         warning("Could not unlink shared memory backing"
 480                 " store file %s : %s\n", path, strerror(errno));
 481       }
 482     }
 483   }
 484 
 485   FREE_C_HEAP_ARRAY(char, path);
 486 }
 487 
 488 // returns true if the process represented by pid is alive, otherwise
 489 // returns false. the validity of the result is only accurate if the
 490 // target process is owned by the same principal that owns this process.
 491 // this method should not be used if to test the status of an otherwise
 492 // arbitrary process unless it is know that this process has the appropriate
 493 // privileges to guarantee a result valid.
 494 //
 495 static bool is_alive(int pid) {
 496 
 497   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
 498   if (ph == NULL) {
 499     // the process does not exist.
 500     if (PrintMiscellaneous && Verbose) {
 501       DWORD lastError = GetLastError();
 502       if (lastError != ERROR_INVALID_PARAMETER) {
 503         warning("OpenProcess failed: %d\n", GetLastError());
 504       }
 505     }
 506     return false;
 507   }
 508 
 509   DWORD exit_status;
 510   if (!GetExitCodeProcess(ph, &exit_status)) {
 511     if (PrintMiscellaneous && Verbose) {
 512       warning("GetExitCodeProcess failed: %d\n", GetLastError());
 513     }
 514     CloseHandle(ph);
 515     return false;
 516   }
 517 
 518   CloseHandle(ph);
 519   return (exit_status == STILL_ACTIVE) ? true : false;
 520 }
 521 
 522 // check if the file system is considered secure for the backing store files
 523 //
 524 static bool is_filesystem_secure(const char* path) {
 525 
 526   char root_path[MAX_PATH];
 527   char fs_type[MAX_PATH];
 528 
 529   if (PerfBypassFileSystemCheck) {
 530     if (PrintMiscellaneous && Verbose) {
 531       warning("bypassing file system criteria checks for %s\n", path);
 532     }
 533     return true;
 534   }
 535 
 536   char* first_colon = strchr((char *)path, ':');
 537   if (first_colon == NULL) {
 538     if (PrintMiscellaneous && Verbose) {
 539       warning("expected device specifier in path: %s\n", path);
 540     }
 541     return false;
 542   }
 543 
 544   size_t len = (size_t)(first_colon - path);
 545   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
 546   strncpy(root_path, path, len + 1);
 547   root_path[len + 1] = '\\';
 548   root_path[len + 2] = '\0';
 549 
 550   // check that we have something like "C:\" or "AA:\"
 551   assert(strlen(root_path) >= 3, "device specifier too short");
 552   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
 553   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
 554 
 555   DWORD maxpath;
 556   DWORD flags;
 557 
 558   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
 559                             &flags, fs_type, MAX_PATH)) {
 560     // we can't get information about the volume, so assume unsafe.
 561     if (PrintMiscellaneous && Verbose) {
 562       warning("could not get device information for %s: "
 563               " path = %s: lasterror = %d\n",
 564               root_path, path, GetLastError());
 565     }
 566     return false;
 567   }
 568 
 569   if ((flags & FS_PERSISTENT_ACLS) == 0) {
 570     // file system doesn't support ACLs, declare file system unsafe
 571     if (PrintMiscellaneous && Verbose) {
 572       warning("file system type %s on device %s does not support"
 573               " ACLs\n", fs_type, root_path);
 574     }
 575     return false;
 576   }
 577 
 578   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
 579     // file system is compressed, declare file system unsafe
 580     if (PrintMiscellaneous && Verbose) {
 581       warning("file system type %s on device %s is compressed\n",
 582               fs_type, root_path);
 583     }
 584     return false;
 585   }
 586 
 587   return true;
 588 }
 589 
 590 // cleanup stale shared memory resources
 591 //
 592 // This method attempts to remove all stale shared memory files in
 593 // the named user temporary directory. It scans the named directory
 594 // for files matching the pattern ^$[0-9]*$. For each file found, the
 595 // process id is extracted from the file name and a test is run to
 596 // determine if the process is alive. If the process is not alive,
 597 // any stale file resources are removed.
 598 //
 599 static void cleanup_sharedmem_resources(const char* dirname) {
 600 
 601   // open the user temp directory
 602   DIR* dirp = os::opendir(dirname);
 603 
 604   if (dirp == NULL) {
 605     // directory doesn't exist, so there is nothing to cleanup
 606     return;
 607   }
 608 
 609   if (!is_directory_secure(dirname)) {
 610     // the directory is not secure, don't attempt any cleanup
 611     return;
 612   }
 613 
 614   // for each entry in the directory that matches the expected file
 615   // name pattern, determine if the file resources are stale and if
 616   // so, remove the file resources. Note, instrumented HotSpot processes
 617   // for this user may start and/or terminate during this search and
 618   // remove or create new files in this directory. The behavior of this
 619   // loop under these conditions is dependent upon the implementation of
 620   // opendir/readdir.
 621   //
 622   struct dirent* entry;
 623   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
 624   errno = 0;
 625   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 626 
 627     int pid = filename_to_pid(entry->d_name);
 628 
 629     if (pid == 0) {
 630 
 631       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 632 
 633         // attempt to remove all unexpected files, except "." and ".."
 634         remove_file(dirname, entry->d_name);
 635       }
 636 
 637       errno = 0;
 638       continue;
 639     }
 640 
 641     // we now have a file name that converts to a valid integer
 642     // that could represent a process id . if this process id
 643     // matches the current process id or the process is not running,
 644     // then remove the stale file resources.
 645     //
 646     // process liveness is detected by checking the exit status
 647     // of the process. if the process id is valid and the exit status
 648     // indicates that it is still running, the file file resources
 649     // are not removed. If the process id is invalid, or if we don't
 650     // have permissions to check the process status, or if the process
 651     // id is valid and the process has terminated, the the file resources
 652     // are assumed to be stale and are removed.
 653     //
 654     if (pid == os::current_process_id() || !is_alive(pid)) {
 655 
 656       // we can only remove the file resources. Any mapped views
 657       // of the file can only be unmapped by the processes that
 658       // opened those views and the file mapping object will not
 659       // get removed until all views are unmapped.
 660       //
 661       remove_file(dirname, entry->d_name);
 662     }
 663     errno = 0;
 664   }
 665   os::closedir(dirp);
 666   FREE_C_HEAP_ARRAY(char, dbuf);
 667 }
 668 
 669 // create a file mapping object with the requested name, and size
 670 // from the file represented by the given Handle object
 671 //
 672 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
 673 
 674   DWORD lowSize = (DWORD)size;
 675   DWORD highSize = 0;
 676   HANDLE fmh = NULL;
 677 
 678   // Create a file mapping object with the given name. This function
 679   // will grow the file to the specified size.
 680   //
 681   fmh = CreateFileMapping(
 682                fh,                 /* HANDLE file handle for backing store */
 683                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
 684                PAGE_READWRITE,     /* DWORD protections */
 685                highSize,           /* DWORD High word of max size */
 686                lowSize,            /* DWORD Low word of max size */
 687                name);              /* LPCTSTR name for object */
 688 
 689   if (fmh == NULL) {
 690     if (PrintMiscellaneous && Verbose) {
 691       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
 692     }
 693     return NULL;
 694   }
 695 
 696   if (GetLastError() == ERROR_ALREADY_EXISTS) {
 697 
 698     // a stale file mapping object was encountered. This object may be
 699     // owned by this or some other user and cannot be removed until
 700     // the other processes either exit or close their mapping objects
 701     // and/or mapped views of this mapping object.
 702     //
 703     if (PrintMiscellaneous && Verbose) {
 704       warning("file mapping already exists, lasterror = %d\n", GetLastError());
 705     }
 706 
 707     CloseHandle(fmh);
 708     return NULL;
 709   }
 710 
 711   return fmh;
 712 }
 713 
 714 
 715 // method to free the given security descriptor and the contained
 716 // access control list.
 717 //
 718 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
 719 
 720   BOOL success, exists, isdefault;
 721   PACL pACL;
 722 
 723   if (pSD != NULL) {
 724 
 725     // get the access control list from the security descriptor
 726     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
 727 
 728     // if an ACL existed and it was not a default acl, then it must
 729     // be an ACL we enlisted. free the resources.
 730     //
 731     if (success && exists && pACL != NULL && !isdefault) {
 732       FREE_C_HEAP_ARRAY(char, pACL);
 733     }
 734 
 735     // free the security descriptor
 736     FREE_C_HEAP_ARRAY(char, pSD);
 737   }
 738 }
 739 
 740 // method to free up a security attributes structure and any
 741 // contained security descriptors and ACL
 742 //
 743 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
 744 
 745   if (lpSA != NULL) {
 746     // free the contained security descriptor and the ACL
 747     free_security_desc(lpSA->lpSecurityDescriptor);
 748     lpSA->lpSecurityDescriptor = NULL;
 749 
 750     // free the security attributes structure
 751     FREE_C_HEAP_ARRAY(char, lpSA);
 752   }
 753 }
 754 
 755 // get the user SID for the process indicated by the process handle
 756 //
 757 static PSID get_user_sid(HANDLE hProcess) {
 758 
 759   HANDLE hAccessToken;
 760   PTOKEN_USER token_buf = NULL;
 761   DWORD rsize = 0;
 762 
 763   if (hProcess == NULL) {
 764     return NULL;
 765   }
 766 
 767   // get the process token
 768   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
 769     if (PrintMiscellaneous && Verbose) {
 770       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
 771     }
 772     return NULL;
 773   }
 774 
 775   // determine the size of the token structured needed to retrieve
 776   // the user token information from the access token.
 777   //
 778   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
 779     DWORD lasterror = GetLastError();
 780     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
 781       if (PrintMiscellaneous && Verbose) {
 782         warning("GetTokenInformation failure: lasterror = %d,"
 783                 " rsize = %d\n", lasterror, rsize);
 784       }
 785       CloseHandle(hAccessToken);
 786       return NULL;
 787     }
 788   }
 789 
 790   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
 791 
 792   // get the user token information
 793   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
 794     if (PrintMiscellaneous && Verbose) {
 795       warning("GetTokenInformation failure: lasterror = %d,"
 796               " rsize = %d\n", GetLastError(), rsize);
 797     }
 798     FREE_C_HEAP_ARRAY(char, token_buf);
 799     CloseHandle(hAccessToken);
 800     return NULL;
 801   }
 802 
 803   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
 804   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
 805 
 806   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
 807     if (PrintMiscellaneous && Verbose) {
 808       warning("GetTokenInformation failure: lasterror = %d,"
 809               " rsize = %d\n", GetLastError(), rsize);
 810     }
 811     FREE_C_HEAP_ARRAY(char, token_buf);
 812     FREE_C_HEAP_ARRAY(char, pSID);
 813     CloseHandle(hAccessToken);
 814     return NULL;
 815   }
 816 
 817   // close the access token.
 818   CloseHandle(hAccessToken);
 819   FREE_C_HEAP_ARRAY(char, token_buf);
 820 
 821   return pSID;
 822 }
 823 
 824 // structure used to consolidate access control entry information
 825 //
 826 typedef struct ace_data {
 827   PSID pSid;      // SID of the ACE
 828   DWORD mask;     // mask for the ACE
 829 } ace_data_t;
 830 
 831 
 832 // method to add an allow access control entry with the access rights
 833 // indicated in mask for the principal indicated in SID to the given
 834 // security descriptor. Much of the DACL handling was adapted from
 835 // the example provided here:
 836 //      http://support.microsoft.com/kb/102102/EN-US/
 837 //
 838 
 839 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
 840                            ace_data_t aces[], int ace_count) {
 841   PACL newACL = NULL;
 842   PACL oldACL = NULL;
 843 
 844   if (pSD == NULL) {
 845     return false;
 846   }
 847 
 848   BOOL exists, isdefault;
 849 
 850   // retrieve any existing access control list.
 851   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
 852     if (PrintMiscellaneous && Verbose) {
 853       warning("GetSecurityDescriptor failure: lasterror = %d \n",
 854               GetLastError());
 855     }
 856     return false;
 857   }
 858 
 859   // get the size of the DACL
 860   ACL_SIZE_INFORMATION aclinfo;
 861 
 862   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
 863   // while oldACL is NULL for some case.
 864   if (oldACL == NULL) {
 865     exists = FALSE;
 866   }
 867 
 868   if (exists) {
 869     if (!GetAclInformation(oldACL, &aclinfo,
 870                            sizeof(ACL_SIZE_INFORMATION),
 871                            AclSizeInformation)) {
 872       if (PrintMiscellaneous && Verbose) {
 873         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
 874         return false;
 875       }
 876     }
 877   } else {
 878     aclinfo.AceCount = 0; // assume NULL DACL
 879     aclinfo.AclBytesFree = 0;
 880     aclinfo.AclBytesInUse = sizeof(ACL);
 881   }
 882 
 883   // compute the size needed for the new ACL
 884   // initial size of ACL is sum of the following:
 885   //   * size of ACL structure.
 886   //   * size of each ACE structure that ACL is to contain minus the sid
 887   //     sidStart member (DWORD) of the ACE.
 888   //   * length of the SID that each ACE is to contain.
 889   DWORD newACLsize = aclinfo.AclBytesInUse +
 890                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
 891   for (int i = 0; i < ace_count; i++) {
 892      newACLsize += GetLengthSid(aces[i].pSid);
 893   }
 894 
 895   // create the new ACL
 896   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
 897 
 898   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
 899     if (PrintMiscellaneous && Verbose) {
 900       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 901     }
 902     FREE_C_HEAP_ARRAY(char, newACL);
 903     return false;
 904   }
 905 
 906   unsigned int ace_index = 0;
 907   // copy any existing ACEs from the old ACL (if any) to the new ACL.
 908   if (aclinfo.AceCount != 0) {
 909     while (ace_index < aclinfo.AceCount) {
 910       LPVOID ace;
 911       if (!GetAce(oldACL, ace_index, &ace)) {
 912         if (PrintMiscellaneous && Verbose) {
 913           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 914         }
 915         FREE_C_HEAP_ARRAY(char, newACL);
 916         return false;
 917       }
 918       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
 919         // this is an inherited, allowed ACE; break from loop so we can
 920         // add the new access allowed, non-inherited ACE in the correct
 921         // position, immediately following all non-inherited ACEs.
 922         break;
 923       }
 924 
 925       // determine if the SID of this ACE matches any of the SIDs
 926       // for which we plan to set ACEs.
 927       int matches = 0;
 928       for (int i = 0; i < ace_count; i++) {
 929         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
 930           matches++;
 931           break;
 932         }
 933       }
 934 
 935       // if there are no SID matches, then add this existing ACE to the new ACL
 936       if (matches == 0) {
 937         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 938                     ((PACE_HEADER)ace)->AceSize)) {
 939           if (PrintMiscellaneous && Verbose) {
 940             warning("AddAce failure: lasterror = %d \n", GetLastError());
 941           }
 942           FREE_C_HEAP_ARRAY(char, newACL);
 943           return false;
 944         }
 945       }
 946       ace_index++;
 947     }
 948   }
 949 
 950   // add the passed-in access control entries to the new ACL
 951   for (int i = 0; i < ace_count; i++) {
 952     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
 953                              aces[i].mask, aces[i].pSid)) {
 954       if (PrintMiscellaneous && Verbose) {
 955         warning("AddAccessAllowedAce failure: lasterror = %d \n",
 956                 GetLastError());
 957       }
 958       FREE_C_HEAP_ARRAY(char, newACL);
 959       return false;
 960     }
 961   }
 962 
 963   // now copy the rest of the inherited ACEs from the old ACL
 964   if (aclinfo.AceCount != 0) {
 965     // picking up at ace_index, where we left off in the
 966     // previous ace_index loop
 967     while (ace_index < aclinfo.AceCount) {
 968       LPVOID ace;
 969       if (!GetAce(oldACL, ace_index, &ace)) {
 970         if (PrintMiscellaneous && Verbose) {
 971           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 972         }
 973         FREE_C_HEAP_ARRAY(char, newACL);
 974         return false;
 975       }
 976       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 977                   ((PACE_HEADER)ace)->AceSize)) {
 978         if (PrintMiscellaneous && Verbose) {
 979           warning("AddAce failure: lasterror = %d \n", GetLastError());
 980         }
 981         FREE_C_HEAP_ARRAY(char, newACL);
 982         return false;
 983       }
 984       ace_index++;
 985     }
 986   }
 987 
 988   // add the new ACL to the security descriptor.
 989   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
 990     if (PrintMiscellaneous && Verbose) {
 991       warning("SetSecurityDescriptorDacl failure:"
 992               " lasterror = %d \n", GetLastError());
 993     }
 994     FREE_C_HEAP_ARRAY(char, newACL);
 995     return false;
 996   }
 997 
 998   // if running on windows 2000 or later, set the automatic inheritance
 999   // control flags.
1000   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1001   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1002        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1003                       "SetSecurityDescriptorControl");
1004 
1005   if (_SetSecurityDescriptorControl != NULL) {
1006     // We do not want to further propagate inherited DACLs, so making them
1007     // protected prevents that.
1008     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1009                                             SE_DACL_PROTECTED)) {
1010       if (PrintMiscellaneous && Verbose) {
1011         warning("SetSecurityDescriptorControl failure:"
1012                 " lasterror = %d \n", GetLastError());
1013       }
1014       FREE_C_HEAP_ARRAY(char, newACL);
1015       return false;
1016     }
1017   }
1018    // Note, the security descriptor maintains a reference to the newACL, not
1019    // a copy of it. Therefore, the newACL is not freed here. It is freed when
1020    // the security descriptor containing its reference is freed.
1021    //
1022    return true;
1023 }
1024 
1025 // method to create a security attributes structure, which contains a
1026 // security descriptor and an access control list comprised of 0 or more
1027 // access control entries. The method take an array of ace_data structures
1028 // that indicate the ACE to be added to the security descriptor.
1029 //
1030 // the caller must free the resources associated with the security
1031 // attributes structure created by this method by calling the
1032 // free_security_attr() method.
1033 //
1034 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1035 
1036   // allocate space for a security descriptor
1037   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1038                          NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
1039 
1040   // initialize the security descriptor
1041   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1042     if (PrintMiscellaneous && Verbose) {
1043       warning("InitializeSecurityDescriptor failure: "
1044               "lasterror = %d \n", GetLastError());
1045     }
1046     free_security_desc(pSD);
1047     return NULL;
1048   }
1049 
1050   // add the access control entries
1051   if (!add_allow_aces(pSD, aces, count)) {
1052     free_security_desc(pSD);
1053     return NULL;
1054   }
1055 
1056   // allocate and initialize the security attributes structure and
1057   // return it to the caller.
1058   //
1059   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1060                             NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
1061   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1062   lpSA->lpSecurityDescriptor = pSD;
1063   lpSA->bInheritHandle = FALSE;
1064 
1065   return(lpSA);
1066 }
1067 
1068 // method to create a security attributes structure with a restrictive
1069 // access control list that creates a set access rights for the user/owner
1070 // of the securable object and a separate set access rights for everyone else.
1071 // also provides for full access rights for the administrator group.
1072 //
1073 // the caller must free the resources associated with the security
1074 // attributes structure created by this method by calling the
1075 // free_security_attr() method.
1076 //
1077 
1078 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1079                                 DWORD umask, DWORD emask, DWORD amask) {
1080 
1081   ace_data_t aces[3];
1082 
1083   // initialize the user ace data
1084   aces[0].pSid = get_user_sid(GetCurrentProcess());
1085   aces[0].mask = umask;
1086 
1087   // get the well known SID for BUILTIN\Administrators
1088   PSID administratorsSid = NULL;
1089   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1090 
1091   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1092            SECURITY_BUILTIN_DOMAIN_RID,
1093            DOMAIN_ALIAS_RID_ADMINS,
1094            0, 0, 0, 0, 0, 0, &administratorsSid)) {
1095 
1096     if (PrintMiscellaneous && Verbose) {
1097       warning("AllocateAndInitializeSid failure: "
1098               "lasterror = %d \n", GetLastError());
1099     }
1100     return NULL;
1101   }
1102 
1103   // initialize the ace data for administrator group
1104   aces[1].pSid = administratorsSid;
1105   aces[1].mask = amask;
1106 
1107   // get the well known SID for the universal Everybody
1108   PSID everybodySid = NULL;
1109   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1110 
1111   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1112            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1113 
1114     if (PrintMiscellaneous && Verbose) {
1115       warning("AllocateAndInitializeSid failure: "
1116               "lasterror = %d \n", GetLastError());
1117     }
1118     return NULL;
1119   }
1120 
1121   // initialize the ace data for everybody else.
1122   aces[2].pSid = everybodySid;
1123   aces[2].mask = emask;
1124 
1125   // create a security attributes structure with access control
1126   // entries as initialized above.
1127   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1128   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1129   FreeSid(everybodySid);
1130   FreeSid(administratorsSid);
1131   return(lpSA);
1132 }
1133 
1134 
1135 // method to create the security attributes structure for restricting
1136 // access to the user temporary directory.
1137 //
1138 // the caller must free the resources associated with the security
1139 // attributes structure created by this method by calling the
1140 // free_security_attr() method.
1141 //
1142 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1143 
1144   // create full access rights for the user/owner of the directory
1145   // and read-only access rights for everybody else. This is
1146   // effectively equivalent to UNIX 755 permissions on a directory.
1147   //
1148   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1149   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1150   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1151 
1152   return make_user_everybody_admin_security_attr(umask, emask, amask);
1153 }
1154 
1155 // method to create the security attributes structure for restricting
1156 // access to the shared memory backing store file.
1157 //
1158 // the caller must free the resources associated with the security
1159 // attributes structure created by this method by calling the
1160 // free_security_attr() method.
1161 //
1162 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1163 
1164   // create extensive access rights for the user/owner of the file
1165   // and attribute read-only access rights for everybody else. This
1166   // is effectively equivalent to UNIX 600 permissions on a file.
1167   //
1168   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1169   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1170                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1171   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1172 
1173   return make_user_everybody_admin_security_attr(umask, emask, amask);
1174 }
1175 
1176 // method to create the security attributes structure for restricting
1177 // access to the name shared memory file mapping object.
1178 //
1179 // the caller must free the resources associated with the security
1180 // attributes structure created by this method by calling the
1181 // free_security_attr() method.
1182 //
1183 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1184 
1185   // create extensive access rights for the user/owner of the shared
1186   // memory object and attribute read-only access rights for everybody
1187   // else. This is effectively equivalent to UNIX 600 permissions on
1188   // on the shared memory object.
1189   //
1190   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1191   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1192   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1193 
1194   return make_user_everybody_admin_security_attr(umask, emask, amask);
1195 }
1196 
1197 // make the user specific temporary directory
1198 //
1199 static bool make_user_tmp_dir(const char* dirname) {
1200 
1201 
1202   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1203   if (pDirSA == NULL) {
1204     return false;
1205   }
1206 
1207 
1208   // create the directory with the given security attributes
1209   if (!CreateDirectory(dirname, pDirSA)) {
1210     DWORD lasterror = GetLastError();
1211     if (lasterror == ERROR_ALREADY_EXISTS) {
1212       // The directory already exists and was probably created by another
1213       // JVM instance. However, this could also be the result of a
1214       // deliberate symlink. Verify that the existing directory is safe.
1215       //
1216       if (!is_directory_secure(dirname)) {
1217         // directory is not secure
1218         if (PrintMiscellaneous && Verbose) {
1219           warning("%s directory is insecure\n", dirname);
1220         }
1221         return false;
1222       }
1223       // The administrator should be able to delete this directory.
1224       // But the directory created by previous version of JVM may not
1225       // have permission for administrators to delete this directory.
1226       // So add full permission to the administrator. Also setting new
1227       // DACLs might fix the corrupted the DACLs.
1228       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1229       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1230         if (PrintMiscellaneous && Verbose) {
1231           lasterror = GetLastError();
1232           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1233                                                         dirname, lasterror);
1234         }
1235       }
1236     }
1237     else {
1238       if (PrintMiscellaneous && Verbose) {
1239         warning("CreateDirectory failed: %d\n", GetLastError());
1240       }
1241       return false;
1242     }
1243   }
1244 
1245   // free the security attributes structure
1246   free_security_attr(pDirSA);
1247 
1248   return true;
1249 }
1250 
1251 // create the shared memory resources
1252 //
1253 // This function creates the shared memory resources. This includes
1254 // the backing store file and the file mapping shared memory object.
1255 //
1256 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1257 
1258   HANDLE fh = INVALID_HANDLE_VALUE;
1259   HANDLE fmh = NULL;
1260 
1261 
1262   // create the security attributes for the backing store file
1263   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1264   if (lpFileSA == NULL) {
1265     return NULL;
1266   }
1267 
1268   // create the security attributes for the shared memory object
1269   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1270   if (lpSmoSA == NULL) {
1271     free_security_attr(lpFileSA);
1272     return NULL;
1273   }
1274 
1275   // create the user temporary directory
1276   if (!make_user_tmp_dir(dirname)) {
1277     // could not make/find the directory or the found directory
1278     // was not secure
1279     return NULL;
1280   }
1281 
1282   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1283   // file to be deleted by the last process that closes its handle to
1284   // the file. This is important as the apis do not allow a terminating
1285   // JVM being monitored by another process to remove the file name.
1286   //
1287   // the FILE_SHARE_DELETE share mode is valid only in winnt
1288   //
1289   fh = CreateFile(
1290              filename,                   /* LPCTSTR file name */
1291 
1292              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1293 
1294              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1295              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1296                                           * open operations allowed
1297                                           */
1298              lpFileSA,                   /* LPSECURITY security attributes */
1299              CREATE_ALWAYS,              /* DWORD creation disposition
1300                                           * create file, if it already
1301                                           * exists, overwrite it.
1302                                           */
1303              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1304 
1305              NULL);                      /* HANDLE template file access */
1306 
1307   free_security_attr(lpFileSA);
1308 
1309   if (fh == INVALID_HANDLE_VALUE) {
1310     DWORD lasterror = GetLastError();
1311     if (PrintMiscellaneous && Verbose) {
1312       warning("could not create file %s: %d\n", filename, lasterror);
1313     }
1314     return NULL;
1315   }
1316 
1317   // try to create the file mapping
1318   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1319 
1320   free_security_attr(lpSmoSA);
1321 
1322   if (fmh == NULL) {
1323     // closing the file handle here will decrement the reference count
1324     // on the file. When all processes accessing the file close their
1325     // handle to it, the reference count will decrement to 0 and the
1326     // OS will delete the file. These semantics are requested by the
1327     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1328     CloseHandle(fh);
1329     fh = NULL;
1330     return NULL;
1331   }
1332 
1333   // the file has been successfully created and the file mapping
1334   // object has been created.
1335   sharedmem_fileHandle = fh;
1336   sharedmem_fileName = strdup(filename);
1337 
1338   return fmh;
1339 }
1340 
1341 // open the shared memory object for the given vmid.
1342 //
1343 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1344 
1345   HANDLE fmh;
1346 
1347   // open the file mapping with the requested mode
1348   fmh = OpenFileMapping(
1349                ofm_access,       /* DWORD access mode */
1350                FALSE,            /* BOOL inherit flag - Do not allow inherit */
1351                objectname);      /* name for object */
1352 
1353   if (fmh == NULL) {
1354     if (PrintMiscellaneous && Verbose) {
1355       warning("OpenFileMapping failed for shared memory object %s:"
1356               " lasterror = %d\n", objectname, GetLastError());
1357     }
1358     THROW_MSG_(vmSymbols::java_lang_Exception(),
1359                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1360   }
1361 
1362   return fmh;;
1363 }
1364 
1365 // create a named shared memory region
1366 //
1367 // On Win32, a named shared memory object has a name space that
1368 // is independent of the file system name space. Shared memory object,
1369 // or more precisely, file mapping objects, provide no mechanism to
1370 // inquire the size of the memory region. There is also no api to
1371 // enumerate the memory regions for various processes.
1372 //
1373 // This implementation utilizes the shared memory name space in parallel
1374 // with the file system name space. This allows us to determine the
1375 // size of the shared memory region from the size of the file and it
1376 // allows us to provide a common, file system based name space for
1377 // shared memory across platforms.
1378 //
1379 static char* mapping_create_shared(size_t size) {
1380 
1381   void *mapAddress;
1382   int vmid = os::current_process_id();
1383 
1384   // get the name of the user associated with this process
1385   char* user = get_user_name();
1386 
1387   if (user == NULL) {
1388     return NULL;
1389   }
1390 
1391   // construct the name of the user specific temporary directory
1392   char* dirname = get_user_tmp_dir(user);
1393 
1394   // check that the file system is secure - i.e. it supports ACLs.
1395   if (!is_filesystem_secure(dirname)) {
1396     return NULL;
1397   }
1398 
1399   // create the names of the backing store files and for the
1400   // share memory object.
1401   //
1402   char* filename = get_sharedmem_filename(dirname, vmid);
1403   char* objectname = get_sharedmem_objectname(user, vmid);
1404 
1405   // cleanup any stale shared memory resources
1406   cleanup_sharedmem_resources(dirname);
1407 
1408   assert(((size != 0) && (size % os::vm_page_size() == 0)),
1409          "unexpected PerfMemry region size");
1410 
1411   FREE_C_HEAP_ARRAY(char, user);
1412 
1413   // create the shared memory resources
1414   sharedmem_fileMapHandle =
1415                create_sharedmem_resources(dirname, filename, objectname, size);
1416 
1417   FREE_C_HEAP_ARRAY(char, filename);
1418   FREE_C_HEAP_ARRAY(char, objectname);
1419   FREE_C_HEAP_ARRAY(char, dirname);
1420 
1421   if (sharedmem_fileMapHandle == NULL) {
1422     return NULL;
1423   }
1424 
1425   // map the file into the address space
1426   mapAddress = MapViewOfFile(
1427                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1428                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1429                    0,                       /* DWORD High word of offset */
1430                    0,                       /* DWORD Low word of offset */
1431                    (DWORD)size);            /* DWORD Number of bytes to map */
1432 
1433   if (mapAddress == NULL) {
1434     if (PrintMiscellaneous && Verbose) {
1435       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1436     }
1437     CloseHandle(sharedmem_fileMapHandle);
1438     sharedmem_fileMapHandle = NULL;
1439     return NULL;
1440   }
1441 
1442   // clear the shared memory region
1443   (void)memset(mapAddress, '\0', size);
1444 
1445   return (char*) mapAddress;
1446 }
1447 
1448 // this method deletes the file mapping object.
1449 //
1450 static void delete_file_mapping(char* addr, size_t size) {
1451 
1452   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1453   // not support unloading of the JVM, unmapping of the memory resource is not
1454   // performed. The memory will be reclaimed by the OS upon termination of all
1455   // processes mapping the resource. The file mapping handle and the file
1456   // handle are closed here to expedite the remove of the file by the OS. The
1457   // file is not removed directly because it was created with
1458   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1459   // be unsuccessful.
1460 
1461   // close the fileMapHandle. the file mapping will still be retained
1462   // by the OS as long as any other JVM processes has an open file mapping
1463   // handle or a mapped view of the file.
1464   //
1465   if (sharedmem_fileMapHandle != NULL) {
1466     CloseHandle(sharedmem_fileMapHandle);
1467     sharedmem_fileMapHandle = NULL;
1468   }
1469 
1470   // close the file handle. This will decrement the reference count on the
1471   // backing store file. When the reference count decrements to 0, the OS
1472   // will delete the file. These semantics apply because the file was
1473   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1474   //
1475   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1476     CloseHandle(sharedmem_fileHandle);
1477     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1478   }
1479 }
1480 
1481 // this method determines the size of the shared memory file
1482 //
1483 static size_t sharedmem_filesize(const char* filename, TRAPS) {
1484 
1485   struct stat statbuf;
1486 
1487   // get the file size
1488   //
1489   // on win95/98/me, _stat returns a file size of 0 bytes, but on
1490   // winnt/2k the appropriate file size is returned. support for
1491   // the sharable aspects of performance counters was abandonded
1492   // on the non-nt win32 platforms due to this and other api
1493   // inconsistencies
1494   //
1495   if (::stat(filename, &statbuf) == OS_ERR) {
1496     if (PrintMiscellaneous && Verbose) {
1497       warning("stat %s failed: %s\n", filename, strerror(errno));
1498     }
1499     THROW_MSG_0(vmSymbols::java_io_IOException(),
1500                 "Could not determine PerfMemory size");
1501   }
1502 
1503   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1504     if (PrintMiscellaneous && Verbose) {
1505       warning("unexpected file size: size = " SIZE_FORMAT "\n",
1506               statbuf.st_size);
1507     }
1508     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1509                 "Invalid PerfMemory size");
1510   }
1511 
1512   return statbuf.st_size;
1513 }
1514 
1515 // this method opens a file mapping object and maps the object
1516 // into the address space of the process
1517 //
1518 static void open_file_mapping(const char* user, int vmid,
1519                               PerfMemory::PerfMemoryMode mode,
1520                               char** addrp, size_t* sizep, TRAPS) {
1521 
1522   ResourceMark rm;
1523 
1524   void *mapAddress = 0;
1525   size_t size;
1526   HANDLE fmh;
1527   DWORD ofm_access;
1528   DWORD mv_access;
1529   const char* luser = NULL;
1530 
1531   if (mode == PerfMemory::PERF_MODE_RO) {
1532     ofm_access = FILE_MAP_READ;
1533     mv_access = FILE_MAP_READ;
1534   }
1535   else if (mode == PerfMemory::PERF_MODE_RW) {
1536 #ifdef LATER
1537     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1538     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1539 #else
1540     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1541               "Unsupported access mode");
1542 #endif
1543   }
1544   else {
1545     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1546               "Illegal access mode");
1547   }
1548 
1549   // if a user name wasn't specified, then find the user name for
1550   // the owner of the target vm.
1551   if (user == NULL || strlen(user) == 0) {
1552     luser = get_user_name(vmid);
1553   }
1554   else {
1555     luser = user;
1556   }
1557 
1558   if (luser == NULL) {
1559     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1560               "Could not map vmid to user name");
1561   }
1562 
1563   // get the names for the resources for the target vm
1564   char* dirname = get_user_tmp_dir(luser);
1565 
1566   // since we don't follow symbolic links when creating the backing
1567   // store file, we also don't following them when attaching
1568   //
1569   if (!is_directory_secure(dirname)) {
1570     FREE_C_HEAP_ARRAY(char, dirname);
1571     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1572               "Process not found");
1573   }
1574 
1575   char* filename = get_sharedmem_filename(dirname, vmid);
1576   char* objectname = get_sharedmem_objectname(luser, vmid);
1577 
1578   // copy heap memory to resource memory. the objectname and
1579   // filename are passed to methods that may throw exceptions.
1580   // using resource arrays for these names prevents the leaks
1581   // that would otherwise occur.
1582   //
1583   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1584   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1585   strcpy(rfilename, filename);
1586   strcpy(robjectname, objectname);
1587 
1588   // free the c heap resources that are no longer needed
1589   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1590   FREE_C_HEAP_ARRAY(char, dirname);
1591   FREE_C_HEAP_ARRAY(char, filename);
1592   FREE_C_HEAP_ARRAY(char, objectname);
1593 
1594   if (*sizep == 0) {
1595     size = sharedmem_filesize(rfilename, CHECK);
1596     assert(size != 0, "unexpected size");
1597   }
1598 
1599   // Open the file mapping object with the given name
1600   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1601 
1602   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1603 
1604   // map the entire file into the address space
1605   mapAddress = MapViewOfFile(
1606                  fmh,             /* HANDLE Handle of file mapping object */
1607                  mv_access,       /* DWORD access flags */
1608                  0,               /* DWORD High word of offset */
1609                  0,               /* DWORD Low word of offset */
1610                  size);           /* DWORD Number of bytes to map */
1611 
1612   if (mapAddress == NULL) {
1613     if (PrintMiscellaneous && Verbose) {
1614       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1615     }
1616     CloseHandle(fmh);
1617     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1618               "Could not map PerfMemory");
1619   }
1620 
1621   *addrp = (char*)mapAddress;
1622   *sizep = size;
1623 
1624   // File mapping object can be closed at this time without
1625   // invalidating the mapped view of the file
1626   CloseHandle(fmh);
1627 
1628   if (PerfTraceMemOps) {
1629     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1630                INTPTR_FORMAT "\n", size, vmid, mapAddress);
1631   }
1632 }
1633 
1634 // this method unmaps the the mapped view of the the
1635 // file mapping object.
1636 //
1637 static void remove_file_mapping(char* addr) {
1638 
1639   // the file mapping object was closed in open_file_mapping()
1640   // after the file map view was created. We only need to
1641   // unmap the file view here.
1642   UnmapViewOfFile(addr);
1643 }
1644 
1645 // create the PerfData memory region in shared memory.
1646 static char* create_shared_memory(size_t size) {
1647 
1648   return mapping_create_shared(size);
1649 }
1650 
1651 // release a named, shared memory region
1652 //
1653 void delete_shared_memory(char* addr, size_t size) {
1654 
1655   delete_file_mapping(addr, size);
1656 }
1657 
1658 
1659 
1660 
1661 // create the PerfData memory region
1662 //
1663 // This method creates the memory region used to store performance
1664 // data for the JVM. The memory may be created in standard or
1665 // shared memory.
1666 //
1667 void PerfMemory::create_memory_region(size_t size) {
1668 
1669   if (PerfDisableSharedMem || !os::win32::is_nt()) {
1670     // do not share the memory for the performance data.
1671     PerfDisableSharedMem = true;
1672     _start = create_standard_memory(size);
1673   }
1674   else {
1675     _start = create_shared_memory(size);
1676     if (_start == NULL) {
1677 
1678       // creation of the shared memory region failed, attempt
1679       // to create a contiguous, non-shared memory region instead.
1680       //
1681       if (PrintMiscellaneous && Verbose) {
1682         warning("Reverting to non-shared PerfMemory region.\n");
1683       }
1684       PerfDisableSharedMem = true;
1685       _start = create_standard_memory(size);
1686     }
1687   }
1688 
1689   if (_start != NULL) _capacity = size;
1690 
1691 }
1692 
1693 // delete the PerfData memory region
1694 //
1695 // This method deletes the memory region used to store performance
1696 // data for the JVM. The memory region indicated by the <address, size>
1697 // tuple will be inaccessible after a call to this method.
1698 //
1699 void PerfMemory::delete_memory_region() {
1700 
1701   assert((start() != NULL && capacity() > 0), "verify proper state");
1702 
1703   // If user specifies PerfDataSaveFile, it will save the performance data
1704   // to the specified file name no matter whether PerfDataSaveToFile is specified
1705   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1706   // -XX:+PerfDataSaveToFile.
1707   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1708     save_memory_to_file(start(), capacity());
1709   }
1710 
1711   if (PerfDisableSharedMem) {
1712     delete_standard_memory(start(), capacity());
1713   }
1714   else {
1715     delete_shared_memory(start(), capacity());
1716   }
1717 }
1718 
1719 // attach to the PerfData memory region for another JVM
1720 //
1721 // This method returns an <address, size> tuple that points to
1722 // a memory buffer that is kept reasonably synchronized with
1723 // the PerfData memory region for the indicated JVM. This
1724 // buffer may be kept in synchronization via shared memory
1725 // or some other mechanism that keeps the buffer updated.
1726 //
1727 // If the JVM chooses not to support the attachability feature,
1728 // this method should throw an UnsupportedOperation exception.
1729 //
1730 // This implementation utilizes named shared memory to map
1731 // the indicated process's PerfData memory region into this JVMs
1732 // address space.
1733 //
1734 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1735                         char** addrp, size_t* sizep, TRAPS) {
1736 
1737   if (vmid == 0 || vmid == os::current_process_id()) {
1738      *addrp = start();
1739      *sizep = capacity();
1740      return;
1741   }
1742 
1743   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1744 }
1745 
1746 // detach from the PerfData memory region of another JVM
1747 //
1748 // This method detaches the PerfData memory region of another
1749 // JVM, specified as an <address, size> tuple of a buffer
1750 // in this process's address space. This method may perform
1751 // arbitrary actions to accomplish the detachment. The memory
1752 // region specified by <address, size> will be inaccessible after
1753 // a call to this method.
1754 //
1755 // If the JVM chooses not to support the attachability feature,
1756 // this method should throw an UnsupportedOperation exception.
1757 //
1758 // This implementation utilizes named shared memory to detach
1759 // the indicated process's PerfData memory region from this
1760 // process's address space.
1761 //
1762 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1763 
1764   assert(addr != 0, "address sanity check");
1765   assert(bytes > 0, "capacity sanity check");
1766 
1767   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1768     // prevent accidental detachment of this process's PerfMemory region
1769     return;
1770   }
1771 
1772   remove_file_mapping(addr);
1773 }
1774 
1775 char* PerfMemory::backing_store_filename() {
1776   return sharedmem_fileName;
1777 }