1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // do not include  precompiled  header file
  26 # include "incls/_os_linux_x86.cpp.incl"
  27 
  28 // put OS-includes here
  29 # include <sys/types.h>
  30 # include <sys/mman.h>
  31 # include <pthread.h>
  32 # include <signal.h>
  33 # include <errno.h>
  34 # include <dlfcn.h>
  35 # include <stdlib.h>
  36 # include <stdio.h>
  37 # include <unistd.h>
  38 # include <sys/resource.h>
  39 # include <pthread.h>
  40 # include <sys/stat.h>
  41 # include <sys/time.h>
  42 # include <sys/utsname.h>
  43 # include <sys/socket.h>
  44 # include <sys/wait.h>
  45 # include <pwd.h>
  46 # include <poll.h>
  47 # include <ucontext.h>
  48 # include <fpu_control.h>
  49 
  50 #ifdef AMD64
  51 #define REG_SP REG_RSP
  52 #define REG_PC REG_RIP
  53 #define REG_FP REG_RBP
  54 #define SPELL_REG_SP "rsp"
  55 #define SPELL_REG_FP "rbp"
  56 #else
  57 #define REG_SP REG_UESP
  58 #define REG_PC REG_EIP
  59 #define REG_FP REG_EBP
  60 #define SPELL_REG_SP "esp"
  61 #define SPELL_REG_FP "ebp"
  62 #endif // AMD64
  63 
  64 address os::current_stack_pointer() {
  65 #ifdef SPARC_WORKS
  66   register void *esp;
  67   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  68   return (address) ((char*)esp + sizeof(long)*2);
  69 #else
  70   register void *esp __asm__ (SPELL_REG_SP);
  71   return (address) esp;
  72 #endif
  73 }
  74 
  75 char* os::non_memory_address_word() {
  76   // Must never look like an address returned by reserve_memory,
  77   // even in its subfields (as defined by the CPU immediate fields,
  78   // if the CPU splits constants across multiple instructions).
  79 
  80   return (char*) -1;
  81 }
  82 
  83 void os::initialize_thread() {
  84 // Nothing to do.
  85 }
  86 
  87 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
  88   return (address)uc->uc_mcontext.gregs[REG_PC];
  89 }
  90 
  91 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
  92   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
  93 }
  94 
  95 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
  96   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
  97 }
  98 
  99 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 100 // is currently interrupted by SIGPROF.
 101 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 102 // frames. Currently we don't do that on Linux, so it's the same as
 103 // os::fetch_frame_from_context().
 104 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 105   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 106 
 107   assert(thread != NULL, "just checking");
 108   assert(ret_sp != NULL, "just checking");
 109   assert(ret_fp != NULL, "just checking");
 110 
 111   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 112 }
 113 
 114 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 115                     intptr_t** ret_sp, intptr_t** ret_fp) {
 116 
 117   ExtendedPC  epc;
 118   ucontext_t* uc = (ucontext_t*)ucVoid;
 119 
 120   if (uc != NULL) {
 121     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 122     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 123     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 124   } else {
 125     // construct empty ExtendedPC for return value checking
 126     epc = ExtendedPC(NULL);
 127     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 128     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 129   }
 130 
 131   return epc;
 132 }
 133 
 134 frame os::fetch_frame_from_context(void* ucVoid) {
 135   intptr_t* sp;
 136   intptr_t* fp;
 137   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 138   return frame(sp, fp, epc.pc());
 139 }
 140 
 141 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 142 // turned off by -fomit-frame-pointer,
 143 frame os::get_sender_for_C_frame(frame* fr) {
 144   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 145 }
 146 
 147 intptr_t* _get_previous_fp() {
 148 #ifdef SPARC_WORKS
 149   register intptr_t **ebp;
 150   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 151 #else
 152   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 153 #endif
 154   return (intptr_t*) *ebp;   // we want what it points to.
 155 }
 156 
 157 
 158 frame os::current_frame() {
 159   intptr_t* fp = _get_previous_fp();
 160   frame myframe((intptr_t*)os::current_stack_pointer(),
 161                 (intptr_t*)fp,
 162                 CAST_FROM_FN_PTR(address, os::current_frame));
 163   if (os::is_first_C_frame(&myframe)) {
 164     // stack is not walkable
 165     return frame(NULL, NULL, NULL);
 166   } else {
 167     return os::get_sender_for_C_frame(&myframe);
 168   }
 169 }
 170 
 171 // Utility functions
 172 
 173 // From IA32 System Programming Guide
 174 enum {
 175   trap_page_fault = 0xE
 176 };
 177 
 178 extern "C" void Fetch32PFI () ;
 179 extern "C" void Fetch32Resume () ;
 180 #ifdef AMD64
 181 extern "C" void FetchNPFI () ;
 182 extern "C" void FetchNResume () ;
 183 #endif // AMD64
 184 
 185 extern "C" int
 186 JVM_handle_linux_signal(int sig,
 187                         siginfo_t* info,
 188                         void* ucVoid,
 189                         int abort_if_unrecognized) {
 190   ucontext_t* uc = (ucontext_t*) ucVoid;
 191 
 192   Thread* t = ThreadLocalStorage::get_thread_slow();
 193 
 194   SignalHandlerMark shm(t);
 195 
 196   // Note: it's not uncommon that JNI code uses signal/sigset to install
 197   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 198   // or have a SIGILL handler when detecting CPU type). When that happens,
 199   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 200   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 201   // that do not require siginfo/ucontext first.
 202 
 203   if (sig == SIGPIPE || sig == SIGXFSZ) {
 204     // allow chained handler to go first
 205     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 206       return true;
 207     } else {
 208       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 209         char buf[64];
 210         warning("Ignoring %s - see bugs 4229104 or 646499219",
 211                 os::exception_name(sig, buf, sizeof(buf)));
 212       }
 213       return true;
 214     }
 215   }
 216 
 217   JavaThread* thread = NULL;
 218   VMThread* vmthread = NULL;
 219   if (os::Linux::signal_handlers_are_installed) {
 220     if (t != NULL ){
 221       if(t->is_Java_thread()) {
 222         thread = (JavaThread*)t;
 223       }
 224       else if(t->is_VM_thread()){
 225         vmthread = (VMThread *)t;
 226       }
 227     }
 228   }
 229 /*
 230   NOTE: does not seem to work on linux.
 231   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 232     // can't decode this kind of signal
 233     info = NULL;
 234   } else {
 235     assert(sig == info->si_signo, "bad siginfo");
 236   }
 237 */
 238   // decide if this trap can be handled by a stub
 239   address stub = NULL;
 240 
 241   address pc          = NULL;
 242 
 243   //%note os_trap_1
 244   if (info != NULL && uc != NULL && thread != NULL) {
 245     pc = (address) os::Linux::ucontext_get_pc(uc);
 246 
 247     if (pc == (address) Fetch32PFI) {
 248        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 249        return 1 ;
 250     }
 251 #ifdef AMD64
 252     if (pc == (address) FetchNPFI) {
 253        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
 254        return 1 ;
 255     }
 256 #endif // AMD64
 257 
 258     // Handle ALL stack overflow variations here
 259     if (sig == SIGSEGV) {
 260       address addr = (address) info->si_addr;
 261 
 262       // check if fault address is within thread stack
 263       if (addr < thread->stack_base() &&
 264           addr >= thread->stack_base() - thread->stack_size()) {
 265         // stack overflow
 266         if (thread->in_stack_yellow_zone(addr)) {
 267           thread->disable_stack_yellow_zone();
 268           if (thread->thread_state() == _thread_in_Java) {
 269             // Throw a stack overflow exception.  Guard pages will be reenabled
 270             // while unwinding the stack.
 271             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 272           } else {
 273             // Thread was in the vm or native code.  Return and try to finish.
 274             return 1;
 275           }
 276         } else if (thread->in_stack_red_zone(addr)) {
 277           // Fatal red zone violation.  Disable the guard pages and fall through
 278           // to handle_unexpected_exception way down below.
 279           thread->disable_stack_red_zone();
 280           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 281         } else {
 282           // Accessing stack address below sp may cause SEGV if current
 283           // thread has MAP_GROWSDOWN stack. This should only happen when
 284           // current thread was created by user code with MAP_GROWSDOWN flag
 285           // and then attached to VM. See notes in os_linux.cpp.
 286           if (thread->osthread()->expanding_stack() == 0) {
 287              thread->osthread()->set_expanding_stack();
 288              if (os::Linux::manually_expand_stack(thread, addr)) {
 289                thread->osthread()->clear_expanding_stack();
 290                return 1;
 291              }
 292              thread->osthread()->clear_expanding_stack();
 293           } else {
 294              fatal("recursive segv. expanding stack.");
 295           }
 296         }
 297       }
 298     }
 299 
 300     if (thread->thread_state() == _thread_in_Java) {
 301       // Java thread running in Java code => find exception handler if any
 302       // a fault inside compiled code, the interpreter, or a stub
 303 
 304       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 305         stub = SharedRuntime::get_poll_stub(pc);
 306       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 307         // BugId 4454115: A read from a MappedByteBuffer can fault
 308         // here if the underlying file has been truncated.
 309         // Do not crash the VM in such a case.
 310         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 311         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 312         if (nm != NULL && nm->has_unsafe_access()) {
 313           stub = StubRoutines::handler_for_unsafe_access();
 314         }
 315       }
 316       else
 317 
 318 #ifdef AMD64
 319       if (sig == SIGFPE  &&
 320           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 321         stub =
 322           SharedRuntime::
 323           continuation_for_implicit_exception(thread,
 324                                               pc,
 325                                               SharedRuntime::
 326                                               IMPLICIT_DIVIDE_BY_ZERO);
 327 #else
 328       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 329         // HACK: si_code does not work on linux 2.2.12-20!!!
 330         int op = pc[0];
 331         if (op == 0xDB) {
 332           // FIST
 333           // TODO: The encoding of D2I in i486.ad can cause an exception
 334           // prior to the fist instruction if there was an invalid operation
 335           // pending. We want to dismiss that exception. From the win_32
 336           // side it also seems that if it really was the fist causing
 337           // the exception that we do the d2i by hand with different
 338           // rounding. Seems kind of weird.
 339           // NOTE: that we take the exception at the NEXT floating point instruction.
 340           assert(pc[0] == 0xDB, "not a FIST opcode");
 341           assert(pc[1] == 0x14, "not a FIST opcode");
 342           assert(pc[2] == 0x24, "not a FIST opcode");
 343           return true;
 344         } else if (op == 0xF7) {
 345           // IDIV
 346           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 347         } else {
 348           // TODO: handle more cases if we are using other x86 instructions
 349           //   that can generate SIGFPE signal on linux.
 350           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 351           fatal("please update this code.");
 352         }
 353 #endif // AMD64
 354       } else if (sig == SIGSEGV &&
 355                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 356           // Determination of interpreter/vtable stub/compiled code null exception
 357           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 358       }
 359     } else if (thread->thread_state() == _thread_in_vm &&
 360                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 361                thread->doing_unsafe_access()) {
 362         stub = StubRoutines::handler_for_unsafe_access();
 363     }
 364 
 365     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 366     // and the heap gets shrunk before the field access.
 367     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 368       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 369       if (addr != (address)-1) {
 370         stub = addr;
 371       }
 372     }
 373 
 374     // Check to see if we caught the safepoint code in the
 375     // process of write protecting the memory serialization page.
 376     // It write enables the page immediately after protecting it
 377     // so we can just return to retry the write.
 378     if ((sig == SIGSEGV) &&
 379         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 380       // Block current thread until the memory serialize page permission restored.
 381       os::block_on_serialize_page_trap();
 382       return true;
 383     }
 384   }
 385 
 386 #ifndef AMD64
 387   // Execution protection violation
 388   //
 389   // This should be kept as the last step in the triage.  We don't
 390   // have a dedicated trap number for a no-execute fault, so be
 391   // conservative and allow other handlers the first shot.
 392   //
 393   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 394   // this si_code is so generic that it is almost meaningless; and
 395   // the si_code for this condition may change in the future.
 396   // Furthermore, a false-positive should be harmless.
 397   if (UnguardOnExecutionViolation > 0 &&
 398       (sig == SIGSEGV || sig == SIGBUS) &&
 399       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 400     int page_size = os::vm_page_size();
 401     address addr = (address) info->si_addr;
 402     address pc = os::Linux::ucontext_get_pc(uc);
 403     // Make sure the pc and the faulting address are sane.
 404     //
 405     // If an instruction spans a page boundary, and the page containing
 406     // the beginning of the instruction is executable but the following
 407     // page is not, the pc and the faulting address might be slightly
 408     // different - we still want to unguard the 2nd page in this case.
 409     //
 410     // 15 bytes seems to be a (very) safe value for max instruction size.
 411     bool pc_is_near_addr =
 412       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 413     bool instr_spans_page_boundary =
 414       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 415                        (intptr_t) page_size) > 0);
 416 
 417     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 418       static volatile address last_addr =
 419         (address) os::non_memory_address_word();
 420 
 421       // In conservative mode, don't unguard unless the address is in the VM
 422       if (addr != last_addr &&
 423           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 424 
 425         // Set memory to RWX and retry
 426         address page_start =
 427           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 428         bool res = os::protect_memory((char*) page_start, page_size,
 429                                       os::MEM_PROT_RWX);
 430 
 431         if (PrintMiscellaneous && Verbose) {
 432           char buf[256];
 433           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 434                        "at " INTPTR_FORMAT
 435                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 436                        page_start, (res ? "success" : "failed"), errno);
 437           tty->print_raw_cr(buf);
 438         }
 439         stub = pc;
 440 
 441         // Set last_addr so if we fault again at the same address, we don't end
 442         // up in an endless loop.
 443         //
 444         // There are two potential complications here.  Two threads trapping at
 445         // the same address at the same time could cause one of the threads to
 446         // think it already unguarded, and abort the VM.  Likely very rare.
 447         //
 448         // The other race involves two threads alternately trapping at
 449         // different addresses and failing to unguard the page, resulting in
 450         // an endless loop.  This condition is probably even more unlikely than
 451         // the first.
 452         //
 453         // Although both cases could be avoided by using locks or thread local
 454         // last_addr, these solutions are unnecessary complication: this
 455         // handler is a best-effort safety net, not a complete solution.  It is
 456         // disabled by default and should only be used as a workaround in case
 457         // we missed any no-execute-unsafe VM code.
 458 
 459         last_addr = addr;
 460       }
 461     }
 462   }
 463 #endif // !AMD64
 464 
 465   if (stub != NULL) {
 466     // save all thread context in case we need to restore it
 467     if (thread != NULL) thread->set_saved_exception_pc(pc);
 468 
 469     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 470     return true;
 471   }
 472 
 473   // signal-chaining
 474   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 475      return true;
 476   }
 477 
 478   if (!abort_if_unrecognized) {
 479     // caller wants another chance, so give it to him
 480     return false;
 481   }
 482 
 483   if (pc == NULL && uc != NULL) {
 484     pc = os::Linux::ucontext_get_pc(uc);
 485   }
 486 
 487   // unmask current signal
 488   sigset_t newset;
 489   sigemptyset(&newset);
 490   sigaddset(&newset, sig);
 491   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 492 
 493   VMError err(t, sig, pc, info, ucVoid);
 494   err.report_and_die();
 495 
 496   ShouldNotReachHere();
 497 }
 498 
 499 void os::Linux::init_thread_fpu_state(void) {
 500 #ifndef AMD64
 501   // set fpu to 53 bit precision
 502   set_fpu_control_word(0x27f);
 503 #endif // !AMD64
 504 }
 505 
 506 int os::Linux::get_fpu_control_word(void) {
 507 #ifdef AMD64
 508   return 0;
 509 #else
 510   int fpu_control;
 511   _FPU_GETCW(fpu_control);
 512   return fpu_control & 0xffff;
 513 #endif // AMD64
 514 }
 515 
 516 void os::Linux::set_fpu_control_word(int fpu_control) {
 517 #ifndef AMD64
 518   _FPU_SETCW(fpu_control);
 519 #endif // !AMD64
 520 }
 521 
 522 // Check that the linux kernel version is 2.4 or higher since earlier
 523 // versions do not support SSE without patches.
 524 bool os::supports_sse() {
 525 #ifdef AMD64
 526   return true;
 527 #else
 528   struct utsname uts;
 529   if( uname(&uts) != 0 ) return false; // uname fails?
 530   char *minor_string;
 531   int major = strtol(uts.release,&minor_string,10);
 532   int minor = strtol(minor_string+1,NULL,10);
 533   bool result = (major > 2 || (major==2 && minor >= 4));
 534 #ifndef PRODUCT
 535   if (PrintMiscellaneous && Verbose) {
 536     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 537                major,minor, result ? "DOES" : "does NOT");
 538   }
 539 #endif
 540   return result;
 541 #endif // AMD64
 542 }
 543 
 544 bool os::is_allocatable(size_t bytes) {
 545 #ifdef AMD64
 546   // unused on amd64?
 547   return true;
 548 #else
 549 
 550   if (bytes < 2 * G) {
 551     return true;
 552   }
 553 
 554   char* addr = reserve_memory(bytes, NULL);
 555 
 556   if (addr != NULL) {
 557     release_memory(addr, bytes);
 558   }
 559 
 560   return addr != NULL;
 561 #endif // AMD64
 562 }
 563 
 564 ////////////////////////////////////////////////////////////////////////////////
 565 // thread stack
 566 
 567 #ifdef AMD64
 568 size_t os::Linux::min_stack_allowed  = 64 * K;
 569 
 570 // amd64: pthread on amd64 is always in floating stack mode
 571 bool os::Linux::supports_variable_stack_size() {  return true; }
 572 #else
 573 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 574 
 575 #ifdef __GNUC__
 576 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 577 #endif
 578 
 579 // Test if pthread library can support variable thread stack size. LinuxThreads
 580 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 581 // in floating stack mode and NPTL support variable stack size.
 582 bool os::Linux::supports_variable_stack_size() {
 583   if (os::Linux::is_NPTL()) {
 584      // NPTL, yes
 585      return true;
 586 
 587   } else {
 588     // Note: We can't control default stack size when creating a thread.
 589     // If we use non-default stack size (pthread_attr_setstacksize), both
 590     // floating stack and non-floating stack LinuxThreads will return the
 591     // same value. This makes it impossible to implement this function by
 592     // detecting thread stack size directly.
 593     //
 594     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 595     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 596     // %gs (either as LDT selector or GDT selector, depending on kernel)
 597     // to access thread specific data.
 598     //
 599     // Note that %gs is a reserved glibc register since early 2001, so
 600     // applications are not allowed to change its value (Ulrich Drepper from
 601     // Redhat confirmed that all known offenders have been modified to use
 602     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 603     // a native application that plays with %gs, we might see non-zero %gs
 604     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 605     // return true and skip _thread_safety_check(), so we may not be able to
 606     // detect stack-heap collisions. But otherwise it's harmless.
 607     //
 608 #ifdef __GNUC__
 609     return (GET_GS() != 0);
 610 #else
 611     return false;
 612 #endif
 613   }
 614 }
 615 #endif // AMD64
 616 
 617 // return default stack size for thr_type
 618 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 619   // default stack size (compiler thread needs larger stack)
 620 #ifdef AMD64
 621   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 622 #else
 623   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 624 #endif // AMD64
 625   return s;
 626 }
 627 
 628 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 629   // Creating guard page is very expensive. Java thread has HotSpot
 630   // guard page, only enable glibc guard page for non-Java threads.
 631   return (thr_type == java_thread ? 0 : page_size());
 632 }
 633 
 634 // Java thread:
 635 //
 636 //   Low memory addresses
 637 //    +------------------------+
 638 //    |                        |\  JavaThread created by VM does not have glibc
 639 //    |    glibc guard page    | - guard, attached Java thread usually has
 640 //    |                        |/  1 page glibc guard.
 641 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 642 //    |                        |\
 643 //    |  HotSpot Guard Pages   | - red and yellow pages
 644 //    |                        |/
 645 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 646 //    |                        |\
 647 //    |      Normal Stack      | -
 648 //    |                        |/
 649 // P2 +------------------------+ Thread::stack_base()
 650 //
 651 // Non-Java thread:
 652 //
 653 //   Low memory addresses
 654 //    +------------------------+
 655 //    |                        |\
 656 //    |  glibc guard page      | - usually 1 page
 657 //    |                        |/
 658 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 659 //    |                        |\
 660 //    |      Normal Stack      | -
 661 //    |                        |/
 662 // P2 +------------------------+ Thread::stack_base()
 663 //
 664 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 665 //    pthread_attr_getstack()
 666 
 667 static void current_stack_region(address * bottom, size_t * size) {
 668   if (os::Linux::is_initial_thread()) {
 669      // initial thread needs special handling because pthread_getattr_np()
 670      // may return bogus value.
 671      *bottom = os::Linux::initial_thread_stack_bottom();
 672      *size   = os::Linux::initial_thread_stack_size();
 673   } else {
 674      pthread_attr_t attr;
 675 
 676      int rslt = pthread_getattr_np(pthread_self(), &attr);
 677 
 678      // JVM needs to know exact stack location, abort if it fails
 679      if (rslt != 0) {
 680        if (rslt == ENOMEM) {
 681          vm_exit_out_of_memory(0, "pthread_getattr_np");
 682        } else {
 683          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 684        }
 685      }
 686 
 687      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 688          fatal("Can not locate current stack attributes!");
 689      }
 690 
 691      pthread_attr_destroy(&attr);
 692 
 693   }
 694   assert(os::current_stack_pointer() >= *bottom &&
 695          os::current_stack_pointer() < *bottom + *size, "just checking");
 696 }
 697 
 698 address os::current_stack_base() {
 699   address bottom;
 700   size_t size;
 701   current_stack_region(&bottom, &size);
 702   return (bottom + size);
 703 }
 704 
 705 size_t os::current_stack_size() {
 706   // stack size includes normal stack and HotSpot guard pages
 707   address bottom;
 708   size_t size;
 709   current_stack_region(&bottom, &size);
 710   return size;
 711 }
 712 
 713 /////////////////////////////////////////////////////////////////////////////
 714 // helper functions for fatal error handler
 715 
 716 void os::print_context(outputStream *st, void *context) {
 717   if (context == NULL) return;
 718 
 719   ucontext_t *uc = (ucontext_t*)context;
 720   st->print_cr("Registers:");
 721 
 722   // this is horrendously verbose but the layout of the registers in the
 723   // context does not match how we defined our abstract Register set, so
 724   // we can't just iterate through the gregs area
 725 
 726 #ifdef AMD64
 727   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 728   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 729   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 730   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 731   st->cr();
 732   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 733   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 734   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 735   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 736   st->cr();
 737   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 738   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 739   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 740   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 741   st->cr();
 742   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 743   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 744   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 745   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 746   st->cr();
 747   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 748   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 749   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 750   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 751   st->cr();
 752   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 753 
 754   st->cr();
 755   st->cr();
 756 
 757   st->print_cr("Register to memory mapping:");
 758   st->cr();
 759 
 760   // this is only for the "general purpose" registers
 761 
 762   st->print_cr("RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 763   print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 764   st->cr();
 765   st->print_cr("RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 766   print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 767   st->cr();
 768   st->print_cr("RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 769   print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 770   st->cr();
 771   st->print_cr("RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 772   print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 773   st->cr();
 774   st->print_cr("RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 775   print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 776   st->cr();
 777   st->print_cr("RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 778   print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 779   st->cr();
 780   st->print_cr("RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 781   print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 782   st->cr();
 783   st->print_cr("RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 784   print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 785   st->cr();
 786   st->print_cr("R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 787   print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 788   st->cr();
 789   st->print_cr("R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 790   print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 791   st->cr();
 792   st->print_cr("R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 793   print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 794   st->cr();
 795   st->print_cr("R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 796   print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 797   st->cr();
 798   st->print_cr("R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 799   print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 800   st->cr();
 801   st->print_cr("R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 802   print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 803   st->cr();
 804   st->print_cr("R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 805   print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 806   st->cr();
 807   st->print_cr("R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 808   print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 809 
 810 #else
 811   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 812   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 813   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 814   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 815   st->cr();
 816   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 817   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 818   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 819   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 820   st->cr();
 821   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 822   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 823   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 824 
 825   st->cr();
 826   st->cr();
 827 
 828   st->print_cr("Register to memory mapping:");
 829   st->cr();
 830 
 831   // this is only for the "general purpose" registers
 832 
 833   st->print_cr("EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 834   print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 835   st->cr();
 836   st->print_cr("EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 837   print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 838   st->cr();
 839   st->print_cr("ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 840   print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 841   st->cr();
 842   st->print_cr("EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 843   print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 844   st->cr();
 845   st->print_cr("ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESP]);
 846   print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 847   st->cr();
 848   st->print_cr("EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 849   print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 850   st->cr();
 851   st->print_cr("ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 852   print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 853   st->cr();
 854   st->print_cr("EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 855   print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 856 
 857 #endif // AMD64
 858   st->cr();
 859   st->cr();
 860 
 861   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 862   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 863   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 864   st->cr();
 865 
 866   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 867   // point to garbage if entry point in an nmethod is corrupted. Leave
 868   // this at the end, and hope for the best.
 869   address pc = os::Linux::ucontext_get_pc(uc);
 870   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 871   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
 872 }
 873 
 874 void os::setup_fpu() {
 875 #ifndef AMD64
 876   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 877   __asm__ volatile (  "fldcw (%0)" :
 878                       : "r" (fpu_cntrl) : "memory");
 879 #endif // !AMD64
 880 }