1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "assembler_x86.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/hpi.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "thread_linux.inline.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Runtime1.hpp"
  58 #endif
  59 #ifdef COMPILER2
  60 #include "opto/runtime.hpp"
  61 #endif
  62 
  63 // put OS-includes here
  64 # include <sys/types.h>
  65 # include <sys/mman.h>
  66 # include <pthread.h>
  67 # include <signal.h>
  68 # include <errno.h>
  69 # include <dlfcn.h>
  70 # include <stdlib.h>
  71 # include <stdio.h>
  72 # include <unistd.h>
  73 # include <sys/resource.h>
  74 # include <pthread.h>
  75 # include <sys/stat.h>
  76 # include <sys/time.h>
  77 # include <sys/utsname.h>
  78 # include <sys/socket.h>
  79 # include <sys/wait.h>
  80 # include <pwd.h>
  81 # include <poll.h>
  82 # include <ucontext.h>
  83 # include <fpu_control.h>
  84 
  85 #ifdef AMD64
  86 #define REG_SP REG_RSP
  87 #define REG_PC REG_RIP
  88 #define REG_FP REG_RBP
  89 #define SPELL_REG_SP "rsp"
  90 #define SPELL_REG_FP "rbp"
  91 #else
  92 #define REG_SP REG_UESP
  93 #define REG_PC REG_EIP
  94 #define REG_FP REG_EBP
  95 #define SPELL_REG_SP "esp"
  96 #define SPELL_REG_FP "ebp"
  97 #endif // AMD64
  98 
  99 address os::current_stack_pointer() {
 100 #ifdef SPARC_WORKS
 101   register void *esp;
 102   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 103   return (address) ((char*)esp + sizeof(long)*2);
 104 #else
 105   register void *esp __asm__ (SPELL_REG_SP);
 106   return (address) esp;
 107 #endif
 108 }
 109 
 110 char* os::non_memory_address_word() {
 111   // Must never look like an address returned by reserve_memory,
 112   // even in its subfields (as defined by the CPU immediate fields,
 113   // if the CPU splits constants across multiple instructions).
 114 
 115   return (char*) -1;
 116 }
 117 
 118 void os::initialize_thread() {
 119 // Nothing to do.
 120 }
 121 
 122 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 123   return (address)uc->uc_mcontext.gregs[REG_PC];
 124 }
 125 
 126 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 127   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 128 }
 129 
 130 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 131   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 132 }
 133 
 134 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 135 // is currently interrupted by SIGPROF.
 136 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 137 // frames. Currently we don't do that on Linux, so it's the same as
 138 // os::fetch_frame_from_context().
 139 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 140   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 141 
 142   assert(thread != NULL, "just checking");
 143   assert(ret_sp != NULL, "just checking");
 144   assert(ret_fp != NULL, "just checking");
 145 
 146   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 147 }
 148 
 149 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 150                     intptr_t** ret_sp, intptr_t** ret_fp) {
 151 
 152   ExtendedPC  epc;
 153   ucontext_t* uc = (ucontext_t*)ucVoid;
 154 
 155   if (uc != NULL) {
 156     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 157     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 158     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 159   } else {
 160     // construct empty ExtendedPC for return value checking
 161     epc = ExtendedPC(NULL);
 162     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 163     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 164   }
 165 
 166   return epc;
 167 }
 168 
 169 frame os::fetch_frame_from_context(void* ucVoid) {
 170   intptr_t* sp;
 171   intptr_t* fp;
 172   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 173   return frame(sp, fp, epc.pc());
 174 }
 175 
 176 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 177 // turned off by -fomit-frame-pointer,
 178 frame os::get_sender_for_C_frame(frame* fr) {
 179   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 180 }
 181 
 182 intptr_t* _get_previous_fp() {
 183 #ifdef SPARC_WORKS
 184   register intptr_t **ebp;
 185   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 186 #else
 187   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 188 #endif
 189   return (intptr_t*) *ebp;   // we want what it points to.
 190 }
 191 
 192 
 193 frame os::current_frame() {
 194   intptr_t* fp = _get_previous_fp();
 195   frame myframe((intptr_t*)os::current_stack_pointer(),
 196                 (intptr_t*)fp,
 197                 CAST_FROM_FN_PTR(address, os::current_frame));
 198   if (os::is_first_C_frame(&myframe)) {
 199     // stack is not walkable
 200     return frame(NULL, NULL, NULL);
 201   } else {
 202     return os::get_sender_for_C_frame(&myframe);
 203   }
 204 }
 205 
 206 // Utility functions
 207 
 208 // From IA32 System Programming Guide
 209 enum {
 210   trap_page_fault = 0xE
 211 };
 212 
 213 extern "C" void Fetch32PFI () ;
 214 extern "C" void Fetch32Resume () ;
 215 #ifdef AMD64
 216 extern "C" void FetchNPFI () ;
 217 extern "C" void FetchNResume () ;
 218 #endif // AMD64
 219 
 220 extern "C" int
 221 JVM_handle_linux_signal(int sig,
 222                         siginfo_t* info,
 223                         void* ucVoid,
 224                         int abort_if_unrecognized) {
 225   ucontext_t* uc = (ucontext_t*) ucVoid;
 226 
 227   Thread* t = ThreadLocalStorage::get_thread_slow();
 228 
 229   SignalHandlerMark shm(t);
 230 
 231   // Note: it's not uncommon that JNI code uses signal/sigset to install
 232   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 233   // or have a SIGILL handler when detecting CPU type). When that happens,
 234   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 235   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 236   // that do not require siginfo/ucontext first.
 237 
 238   if (sig == SIGPIPE || sig == SIGXFSZ) {
 239     // allow chained handler to go first
 240     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 241       return true;
 242     } else {
 243       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 244         char buf[64];
 245         warning("Ignoring %s - see bugs 4229104 or 646499219",
 246                 os::exception_name(sig, buf, sizeof(buf)));
 247       }
 248       return true;
 249     }
 250   }
 251 
 252   JavaThread* thread = NULL;
 253   VMThread* vmthread = NULL;
 254   if (os::Linux::signal_handlers_are_installed) {
 255     if (t != NULL ){
 256       if(t->is_Java_thread()) {
 257         thread = (JavaThread*)t;
 258       }
 259       else if(t->is_VM_thread()){
 260         vmthread = (VMThread *)t;
 261       }
 262     }
 263   }
 264 /*
 265   NOTE: does not seem to work on linux.
 266   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 267     // can't decode this kind of signal
 268     info = NULL;
 269   } else {
 270     assert(sig == info->si_signo, "bad siginfo");
 271   }
 272 */
 273   // decide if this trap can be handled by a stub
 274   address stub = NULL;
 275 
 276   address pc          = NULL;
 277 
 278   //%note os_trap_1
 279   if (info != NULL && uc != NULL && thread != NULL) {
 280     pc = (address) os::Linux::ucontext_get_pc(uc);
 281 
 282     if (pc == (address) Fetch32PFI) {
 283        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 284        return 1 ;
 285     }
 286 #ifdef AMD64
 287     if (pc == (address) FetchNPFI) {
 288        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
 289        return 1 ;
 290     }
 291 #endif // AMD64
 292 
 293     // Handle ALL stack overflow variations here
 294     if (sig == SIGSEGV) {
 295       address addr = (address) info->si_addr;
 296 
 297       // check if fault address is within thread stack
 298       if (addr < thread->stack_base() &&
 299           addr >= thread->stack_base() - thread->stack_size()) {
 300         // stack overflow
 301         if (thread->in_stack_yellow_zone(addr)) {
 302           thread->disable_stack_yellow_zone();
 303           if (thread->thread_state() == _thread_in_Java) {
 304             // Throw a stack overflow exception.  Guard pages will be reenabled
 305             // while unwinding the stack.
 306             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 307           } else {
 308             // Thread was in the vm or native code.  Return and try to finish.
 309             return 1;
 310           }
 311         } else if (thread->in_stack_red_zone(addr)) {
 312           // Fatal red zone violation.  Disable the guard pages and fall through
 313           // to handle_unexpected_exception way down below.
 314           thread->disable_stack_red_zone();
 315           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 316         } else {
 317           // Accessing stack address below sp may cause SEGV if current
 318           // thread has MAP_GROWSDOWN stack. This should only happen when
 319           // current thread was created by user code with MAP_GROWSDOWN flag
 320           // and then attached to VM. See notes in os_linux.cpp.
 321           if (thread->osthread()->expanding_stack() == 0) {
 322              thread->osthread()->set_expanding_stack();
 323              if (os::Linux::manually_expand_stack(thread, addr)) {
 324                thread->osthread()->clear_expanding_stack();
 325                return 1;
 326              }
 327              thread->osthread()->clear_expanding_stack();
 328           } else {
 329              fatal("recursive segv. expanding stack.");
 330           }
 331         }
 332       }
 333     }
 334 
 335     if (thread->thread_state() == _thread_in_Java) {
 336       // Java thread running in Java code => find exception handler if any
 337       // a fault inside compiled code, the interpreter, or a stub
 338 
 339       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 340         stub = SharedRuntime::get_poll_stub(pc);
 341       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 342         // BugId 4454115: A read from a MappedByteBuffer can fault
 343         // here if the underlying file has been truncated.
 344         // Do not crash the VM in such a case.
 345         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 346         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 347         if (nm != NULL && nm->has_unsafe_access()) {
 348           stub = StubRoutines::handler_for_unsafe_access();
 349         }
 350       }
 351       else
 352 
 353 #ifdef AMD64
 354       if (sig == SIGFPE  &&
 355           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 356         stub =
 357           SharedRuntime::
 358           continuation_for_implicit_exception(thread,
 359                                               pc,
 360                                               SharedRuntime::
 361                                               IMPLICIT_DIVIDE_BY_ZERO);
 362 #else
 363       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 364         // HACK: si_code does not work on linux 2.2.12-20!!!
 365         int op = pc[0];
 366         if (op == 0xDB) {
 367           // FIST
 368           // TODO: The encoding of D2I in i486.ad can cause an exception
 369           // prior to the fist instruction if there was an invalid operation
 370           // pending. We want to dismiss that exception. From the win_32
 371           // side it also seems that if it really was the fist causing
 372           // the exception that we do the d2i by hand with different
 373           // rounding. Seems kind of weird.
 374           // NOTE: that we take the exception at the NEXT floating point instruction.
 375           assert(pc[0] == 0xDB, "not a FIST opcode");
 376           assert(pc[1] == 0x14, "not a FIST opcode");
 377           assert(pc[2] == 0x24, "not a FIST opcode");
 378           return true;
 379         } else if (op == 0xF7) {
 380           // IDIV
 381           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 382         } else {
 383           // TODO: handle more cases if we are using other x86 instructions
 384           //   that can generate SIGFPE signal on linux.
 385           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 386           fatal("please update this code.");
 387         }
 388 #endif // AMD64
 389       } else if (sig == SIGSEGV &&
 390                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 391           // Determination of interpreter/vtable stub/compiled code null exception
 392           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 393       }
 394     } else if (thread->thread_state() == _thread_in_vm &&
 395                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 396                thread->doing_unsafe_access()) {
 397         stub = StubRoutines::handler_for_unsafe_access();
 398     }
 399 
 400     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 401     // and the heap gets shrunk before the field access.
 402     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 403       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 404       if (addr != (address)-1) {
 405         stub = addr;
 406       }
 407     }
 408 
 409     // Check to see if we caught the safepoint code in the
 410     // process of write protecting the memory serialization page.
 411     // It write enables the page immediately after protecting it
 412     // so we can just return to retry the write.
 413     if ((sig == SIGSEGV) &&
 414         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 415       // Block current thread until the memory serialize page permission restored.
 416       os::block_on_serialize_page_trap();
 417       return true;
 418     }
 419   }
 420 
 421 #ifndef AMD64
 422   // Execution protection violation
 423   //
 424   // This should be kept as the last step in the triage.  We don't
 425   // have a dedicated trap number for a no-execute fault, so be
 426   // conservative and allow other handlers the first shot.
 427   //
 428   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 429   // this si_code is so generic that it is almost meaningless; and
 430   // the si_code for this condition may change in the future.
 431   // Furthermore, a false-positive should be harmless.
 432   if (UnguardOnExecutionViolation > 0 &&
 433       (sig == SIGSEGV || sig == SIGBUS) &&
 434       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 435     int page_size = os::vm_page_size();
 436     address addr = (address) info->si_addr;
 437     address pc = os::Linux::ucontext_get_pc(uc);
 438     // Make sure the pc and the faulting address are sane.
 439     //
 440     // If an instruction spans a page boundary, and the page containing
 441     // the beginning of the instruction is executable but the following
 442     // page is not, the pc and the faulting address might be slightly
 443     // different - we still want to unguard the 2nd page in this case.
 444     //
 445     // 15 bytes seems to be a (very) safe value for max instruction size.
 446     bool pc_is_near_addr =
 447       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 448     bool instr_spans_page_boundary =
 449       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 450                        (intptr_t) page_size) > 0);
 451 
 452     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 453       static volatile address last_addr =
 454         (address) os::non_memory_address_word();
 455 
 456       // In conservative mode, don't unguard unless the address is in the VM
 457       if (addr != last_addr &&
 458           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 459 
 460         // Set memory to RWX and retry
 461         address page_start =
 462           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 463         bool res = os::protect_memory((char*) page_start, page_size,
 464                                       os::MEM_PROT_RWX);
 465 
 466         if (PrintMiscellaneous && Verbose) {
 467           char buf[256];
 468           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 469                        "at " INTPTR_FORMAT
 470                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 471                        page_start, (res ? "success" : "failed"), errno);
 472           tty->print_raw_cr(buf);
 473         }
 474         stub = pc;
 475 
 476         // Set last_addr so if we fault again at the same address, we don't end
 477         // up in an endless loop.
 478         //
 479         // There are two potential complications here.  Two threads trapping at
 480         // the same address at the same time could cause one of the threads to
 481         // think it already unguarded, and abort the VM.  Likely very rare.
 482         //
 483         // The other race involves two threads alternately trapping at
 484         // different addresses and failing to unguard the page, resulting in
 485         // an endless loop.  This condition is probably even more unlikely than
 486         // the first.
 487         //
 488         // Although both cases could be avoided by using locks or thread local
 489         // last_addr, these solutions are unnecessary complication: this
 490         // handler is a best-effort safety net, not a complete solution.  It is
 491         // disabled by default and should only be used as a workaround in case
 492         // we missed any no-execute-unsafe VM code.
 493 
 494         last_addr = addr;
 495       }
 496     }
 497   }
 498 #endif // !AMD64
 499 
 500   if (stub != NULL) {
 501     // save all thread context in case we need to restore it
 502     if (thread != NULL) thread->set_saved_exception_pc(pc);
 503 
 504     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 505     return true;
 506   }
 507 
 508   // signal-chaining
 509   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 510      return true;
 511   }
 512 
 513   if (!abort_if_unrecognized) {
 514     // caller wants another chance, so give it to him
 515     return false;
 516   }
 517 
 518   if (pc == NULL && uc != NULL) {
 519     pc = os::Linux::ucontext_get_pc(uc);
 520   }
 521 
 522   // unmask current signal
 523   sigset_t newset;
 524   sigemptyset(&newset);
 525   sigaddset(&newset, sig);
 526   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 527 
 528   VMError err(t, sig, pc, info, ucVoid);
 529   err.report_and_die();
 530 
 531   ShouldNotReachHere();
 532 }
 533 
 534 void os::Linux::init_thread_fpu_state(void) {
 535 #ifndef AMD64
 536   // set fpu to 53 bit precision
 537   set_fpu_control_word(0x27f);
 538 #endif // !AMD64
 539 }
 540 
 541 int os::Linux::get_fpu_control_word(void) {
 542 #ifdef AMD64
 543   return 0;
 544 #else
 545   int fpu_control;
 546   _FPU_GETCW(fpu_control);
 547   return fpu_control & 0xffff;
 548 #endif // AMD64
 549 }
 550 
 551 void os::Linux::set_fpu_control_word(int fpu_control) {
 552 #ifndef AMD64
 553   _FPU_SETCW(fpu_control);
 554 #endif // !AMD64
 555 }
 556 
 557 // Check that the linux kernel version is 2.4 or higher since earlier
 558 // versions do not support SSE without patches.
 559 bool os::supports_sse() {
 560 #ifdef AMD64
 561   return true;
 562 #else
 563   struct utsname uts;
 564   if( uname(&uts) != 0 ) return false; // uname fails?
 565   char *minor_string;
 566   int major = strtol(uts.release,&minor_string,10);
 567   int minor = strtol(minor_string+1,NULL,10);
 568   bool result = (major > 2 || (major==2 && minor >= 4));
 569 #ifndef PRODUCT
 570   if (PrintMiscellaneous && Verbose) {
 571     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 572                major,minor, result ? "DOES" : "does NOT");
 573   }
 574 #endif
 575   return result;
 576 #endif // AMD64
 577 }
 578 
 579 bool os::is_allocatable(size_t bytes) {
 580 #ifdef AMD64
 581   // unused on amd64?
 582   return true;
 583 #else
 584 
 585   if (bytes < 2 * G) {
 586     return true;
 587   }
 588 
 589   char* addr = reserve_memory(bytes, NULL);
 590 
 591   if (addr != NULL) {
 592     release_memory(addr, bytes);
 593   }
 594 
 595   return addr != NULL;
 596 #endif // AMD64
 597 }
 598 
 599 ////////////////////////////////////////////////////////////////////////////////
 600 // thread stack
 601 
 602 #ifdef AMD64
 603 size_t os::Linux::min_stack_allowed  = 64 * K;
 604 
 605 // amd64: pthread on amd64 is always in floating stack mode
 606 bool os::Linux::supports_variable_stack_size() {  return true; }
 607 #else
 608 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 609 
 610 #ifdef __GNUC__
 611 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 612 #endif
 613 
 614 // Test if pthread library can support variable thread stack size. LinuxThreads
 615 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 616 // in floating stack mode and NPTL support variable stack size.
 617 bool os::Linux::supports_variable_stack_size() {
 618   if (os::Linux::is_NPTL()) {
 619      // NPTL, yes
 620      return true;
 621 
 622   } else {
 623     // Note: We can't control default stack size when creating a thread.
 624     // If we use non-default stack size (pthread_attr_setstacksize), both
 625     // floating stack and non-floating stack LinuxThreads will return the
 626     // same value. This makes it impossible to implement this function by
 627     // detecting thread stack size directly.
 628     //
 629     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 630     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 631     // %gs (either as LDT selector or GDT selector, depending on kernel)
 632     // to access thread specific data.
 633     //
 634     // Note that %gs is a reserved glibc register since early 2001, so
 635     // applications are not allowed to change its value (Ulrich Drepper from
 636     // Redhat confirmed that all known offenders have been modified to use
 637     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 638     // a native application that plays with %gs, we might see non-zero %gs
 639     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 640     // return true and skip _thread_safety_check(), so we may not be able to
 641     // detect stack-heap collisions. But otherwise it's harmless.
 642     //
 643 #ifdef __GNUC__
 644     return (GET_GS() != 0);
 645 #else
 646     return false;
 647 #endif
 648   }
 649 }
 650 #endif // AMD64
 651 
 652 // return default stack size for thr_type
 653 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 654   // default stack size (compiler thread needs larger stack)
 655 #ifdef AMD64
 656   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 657 #else
 658   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 659 #endif // AMD64
 660   return s;
 661 }
 662 
 663 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 664   // Creating guard page is very expensive. Java thread has HotSpot
 665   // guard page, only enable glibc guard page for non-Java threads.
 666   return (thr_type == java_thread ? 0 : page_size());
 667 }
 668 
 669 // Java thread:
 670 //
 671 //   Low memory addresses
 672 //    +------------------------+
 673 //    |                        |\  JavaThread created by VM does not have glibc
 674 //    |    glibc guard page    | - guard, attached Java thread usually has
 675 //    |                        |/  1 page glibc guard.
 676 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 677 //    |                        |\
 678 //    |  HotSpot Guard Pages   | - red and yellow pages
 679 //    |                        |/
 680 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 681 //    |                        |\
 682 //    |      Normal Stack      | -
 683 //    |                        |/
 684 // P2 +------------------------+ Thread::stack_base()
 685 //
 686 // Non-Java thread:
 687 //
 688 //   Low memory addresses
 689 //    +------------------------+
 690 //    |                        |\
 691 //    |  glibc guard page      | - usually 1 page
 692 //    |                        |/
 693 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 694 //    |                        |\
 695 //    |      Normal Stack      | -
 696 //    |                        |/
 697 // P2 +------------------------+ Thread::stack_base()
 698 //
 699 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 700 //    pthread_attr_getstack()
 701 
 702 static void current_stack_region(address * bottom, size_t * size) {
 703   if (os::Linux::is_initial_thread()) {
 704      // initial thread needs special handling because pthread_getattr_np()
 705      // may return bogus value.
 706      *bottom = os::Linux::initial_thread_stack_bottom();
 707      *size   = os::Linux::initial_thread_stack_size();
 708   } else {
 709      pthread_attr_t attr;
 710 
 711      int rslt = pthread_getattr_np(pthread_self(), &attr);
 712 
 713      // JVM needs to know exact stack location, abort if it fails
 714      if (rslt != 0) {
 715        if (rslt == ENOMEM) {
 716          vm_exit_out_of_memory(0, "pthread_getattr_np");
 717        } else {
 718          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 719        }
 720      }
 721 
 722      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 723          fatal("Can not locate current stack attributes!");
 724      }
 725 
 726      pthread_attr_destroy(&attr);
 727 
 728   }
 729   assert(os::current_stack_pointer() >= *bottom &&
 730          os::current_stack_pointer() < *bottom + *size, "just checking");
 731 }
 732 
 733 address os::current_stack_base() {
 734   address bottom;
 735   size_t size;
 736   current_stack_region(&bottom, &size);
 737   return (bottom + size);
 738 }
 739 
 740 size_t os::current_stack_size() {
 741   // stack size includes normal stack and HotSpot guard pages
 742   address bottom;
 743   size_t size;
 744   current_stack_region(&bottom, &size);
 745   return size;
 746 }
 747 
 748 /////////////////////////////////////////////////////////////////////////////
 749 // helper functions for fatal error handler
 750 
 751 void os::print_context(outputStream *st, void *context) {
 752   if (context == NULL) return;
 753 
 754   ucontext_t *uc = (ucontext_t*)context;
 755   st->print_cr("Registers:");
 756 
 757   // this is horrendously verbose but the layout of the registers in the
 758   // context does not match how we defined our abstract Register set, so
 759   // we can't just iterate through the gregs area
 760 
 761 #ifdef AMD64
 762   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 763   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 764   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 765   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 766   st->cr();
 767   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 768   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 769   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 770   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 771   st->cr();
 772   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 773   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 774   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 775   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 776   st->cr();
 777   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 778   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 779   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 780   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 781   st->cr();
 782   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 783   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 784   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 785   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 786   st->cr();
 787   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 788 
 789   st->cr();
 790   st->cr();
 791 
 792   st->print_cr("Register to memory mapping:");
 793   st->cr();
 794 
 795   // this is only for the "general purpose" registers
 796 
 797   st->print_cr("RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 798   print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 799   st->cr();
 800   st->print_cr("RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 801   print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 802   st->cr();
 803   st->print_cr("RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 804   print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 805   st->cr();
 806   st->print_cr("RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 807   print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 808   st->cr();
 809   st->print_cr("RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 810   print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 811   st->cr();
 812   st->print_cr("RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 813   print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 814   st->cr();
 815   st->print_cr("RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 816   print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 817   st->cr();
 818   st->print_cr("RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 819   print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 820   st->cr();
 821   st->print_cr("R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 822   print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 823   st->cr();
 824   st->print_cr("R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 825   print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 826   st->cr();
 827   st->print_cr("R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 828   print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 829   st->cr();
 830   st->print_cr("R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 831   print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 832   st->cr();
 833   st->print_cr("R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 834   print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 835   st->cr();
 836   st->print_cr("R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 837   print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 838   st->cr();
 839   st->print_cr("R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 840   print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 841   st->cr();
 842   st->print_cr("R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 843   print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 844 
 845 #else
 846   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 847   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 848   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 849   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 850   st->cr();
 851   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 852   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 853   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 854   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 855   st->cr();
 856   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 857   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 858   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 859 
 860   st->cr();
 861   st->cr();
 862 
 863   st->print_cr("Register to memory mapping:");
 864   st->cr();
 865 
 866   // this is only for the "general purpose" registers
 867 
 868   st->print_cr("EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 869   print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 870   st->cr();
 871   st->print_cr("EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 872   print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 873   st->cr();
 874   st->print_cr("ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 875   print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 876   st->cr();
 877   st->print_cr("EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 878   print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 879   st->cr();
 880   st->print_cr("ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESP]);
 881   print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 882   st->cr();
 883   st->print_cr("EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 884   print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 885   st->cr();
 886   st->print_cr("ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 887   print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 888   st->cr();
 889   st->print_cr("EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 890   print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 891 
 892 #endif // AMD64
 893   st->cr();
 894   st->cr();
 895 
 896   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 897   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 898   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 899   st->cr();
 900 
 901   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 902   // point to garbage if entry point in an nmethod is corrupted. Leave
 903   // this at the end, and hope for the best.
 904   address pc = os::Linux::ucontext_get_pc(uc);
 905   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 906   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
 907 }
 908 
 909 void os::setup_fpu() {
 910 #ifndef AMD64
 911   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 912   __asm__ volatile (  "fldcw (%0)" :
 913                       : "r" (fpu_cntrl) : "memory");
 914 #endif // !AMD64
 915 }