1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "assembler_x86.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_solaris.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_solaris.inline.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "os_share_solaris.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/hpi.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "thread_solaris.inline.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Runtime1.hpp"
  58 #endif
  59 #ifdef COMPILER2
  60 #include "opto/runtime.hpp"
  61 #endif
  62 
  63 // put OS-includes here
  64 # include <sys/types.h>
  65 # include <sys/mman.h>
  66 # include <pthread.h>
  67 # include <signal.h>
  68 # include <setjmp.h>
  69 # include <errno.h>
  70 # include <dlfcn.h>
  71 # include <stdio.h>
  72 # include <unistd.h>
  73 # include <sys/resource.h>
  74 # include <thread.h>
  75 # include <sys/stat.h>
  76 # include <sys/time.h>
  77 # include <sys/filio.h>
  78 # include <sys/utsname.h>
  79 # include <sys/systeminfo.h>
  80 # include <sys/socket.h>
  81 # include <sys/trap.h>
  82 # include <sys/lwp.h>
  83 # include <pwd.h>
  84 # include <poll.h>
  85 # include <sys/lwp.h>
  86 # include <procfs.h>     //  see comment in <sys/procfs.h>
  87 
  88 #ifndef AMD64
  89 // QQQ seems useless at this point
  90 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  91 #endif // AMD64
  92 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  93 
  94 
  95 #define MAX_PATH (2 * K)
  96 
  97 // Minimum stack size for the VM.  It's easier to document a constant value
  98 // but it's different for x86 and sparc because the page sizes are different.
  99 #ifdef AMD64
 100 size_t os::Solaris::min_stack_allowed = 224*K;
 101 #define REG_SP REG_RSP
 102 #define REG_PC REG_RIP
 103 #define REG_FP REG_RBP
 104 #else
 105 size_t os::Solaris::min_stack_allowed = 64*K;
 106 #define REG_SP UESP
 107 #define REG_PC EIP
 108 #define REG_FP EBP
 109 // 4900493 counter to prevent runaway LDTR refresh attempt
 110 
 111 static volatile int ldtr_refresh = 0;
 112 // the libthread instruction that faults because of the stale LDTR
 113 
 114 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 115                        };
 116 #endif // AMD64
 117 
 118 char* os::non_memory_address_word() {
 119   // Must never look like an address returned by reserve_memory,
 120   // even in its subfields (as defined by the CPU immediate fields,
 121   // if the CPU splits constants across multiple instructions).
 122   return (char*) -1;
 123 }
 124 
 125 //
 126 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 127 // There are issues with libthread giving out uc_links for different threads
 128 // on the same uc_link chain and bad or circular links.
 129 //
 130 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
 131   if (valid >= suspect ||
 132       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 133       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 134       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 135     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 136     return false;
 137   }
 138 
 139   if (thread->is_Java_thread()) {
 140     if (!valid_stack_address(thread, (address)suspect)) {
 141       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 142       return false;
 143     }
 144     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 145       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 146       return false;
 147     }
 148   }
 149   return true;
 150 }
 151 
 152 // We will only follow one level of uc_link since there are libthread
 153 // issues with ucontext linking and it is better to be safe and just
 154 // let caller retry later.
 155 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 156   ucontext_t *uc) {
 157 
 158   ucontext_t *retuc = NULL;
 159 
 160   if (uc != NULL) {
 161     if (uc->uc_link == NULL) {
 162       // cannot validate without uc_link so accept current ucontext
 163       retuc = uc;
 164     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 165       // first ucontext is valid so try the next one
 166       uc = uc->uc_link;
 167       if (uc->uc_link == NULL) {
 168         // cannot validate without uc_link so accept current ucontext
 169         retuc = uc;
 170       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 171         // the ucontext one level down is also valid so return it
 172         retuc = uc;
 173       }
 174     }
 175   }
 176   return retuc;
 177 }
 178 
 179 // Assumes ucontext is valid
 180 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
 181   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 182 }
 183 
 184 // Assumes ucontext is valid
 185 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
 186   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 187 }
 188 
 189 // Assumes ucontext is valid
 190 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
 191   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 192 }
 193 
 194 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 195 // is currently interrupted by SIGPROF.
 196 //
 197 // The difference between this and os::fetch_frame_from_context() is that
 198 // here we try to skip nested signal frames.
 199 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 200   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 201 
 202   assert(thread != NULL, "just checking");
 203   assert(ret_sp != NULL, "just checking");
 204   assert(ret_fp != NULL, "just checking");
 205 
 206   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 207   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 208 }
 209 
 210 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 211                     intptr_t** ret_sp, intptr_t** ret_fp) {
 212 
 213   ExtendedPC  epc;
 214   ucontext_t *uc = (ucontext_t*)ucVoid;
 215 
 216   if (uc != NULL) {
 217     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 218     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 219     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 220   } else {
 221     // construct empty ExtendedPC for return value checking
 222     epc = ExtendedPC(NULL);
 223     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 224     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 225   }
 226 
 227   return epc;
 228 }
 229 
 230 frame os::fetch_frame_from_context(void* ucVoid) {
 231   intptr_t* sp;
 232   intptr_t* fp;
 233   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 234   return frame(sp, fp, epc.pc());
 235 }
 236 
 237 frame os::get_sender_for_C_frame(frame* fr) {
 238   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 239 }
 240 
 241 extern "C" intptr_t *_get_current_fp();  // in .il file
 242 
 243 frame os::current_frame() {
 244   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 245   frame myframe((intptr_t*)os::current_stack_pointer(),
 246                 (intptr_t*)fp,
 247                 CAST_FROM_FN_PTR(address, os::current_frame));
 248   if (os::is_first_C_frame(&myframe)) {
 249     // stack is not walkable
 250     frame ret; // This will be a null useless frame
 251     return ret;
 252   } else {
 253     return os::get_sender_for_C_frame(&myframe);
 254   }
 255 }
 256 
 257 // This is a simple callback that just fetches a PC for an interrupted thread.
 258 // The thread need not be suspended and the fetched PC is just a hint.
 259 // This one is currently used for profiling the VMThread ONLY!
 260 
 261 // Must be synchronous
 262 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
 263   Thread*     thread = args->thread();
 264   ucontext_t* uc     = args->ucontext();
 265   intptr_t* sp;
 266 
 267   assert(ProfileVM && thread->is_VM_thread(), "just checking");
 268 
 269   ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
 270   _addr = new_addr;
 271 }
 272 
 273 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
 274   char lwpstatusfile[PROCFILE_LENGTH];
 275   int lwpfd, err;
 276 
 277   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
 278     return (err);
 279   if (*flags == TRS_LWPID) {
 280     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
 281             *lwp);
 282     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
 283       perror("thr_mutator_status: open lwpstatus");
 284       return (EINVAL);
 285     }
 286     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
 287         sizeof (lwpstatus_t)) {
 288       perror("thr_mutator_status: read lwpstatus");
 289       (void) close(lwpfd);
 290       return (EINVAL);
 291     }
 292     (void) close(lwpfd);
 293   }
 294   return (0);
 295 }
 296 
 297 #ifndef AMD64
 298 
 299 // Detecting SSE support by OS
 300 // From solaris_i486.s
 301 extern "C" bool sse_check();
 302 extern "C" bool sse_unavailable();
 303 
 304 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 305 static int sse_status = SSE_UNKNOWN;
 306 
 307 
 308 static void  check_for_sse_support() {
 309   if (!VM_Version::supports_sse()) {
 310     sse_status = SSE_NOT_SUPPORTED;
 311     return;
 312   }
 313   // looking for _sse_hw in libc.so, if it does not exist or
 314   // the value (int) is 0, OS has no support for SSE
 315   int *sse_hwp;
 316   void *h;
 317 
 318   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 319     //open failed, presume no support for SSE
 320     sse_status = SSE_NOT_SUPPORTED;
 321     return;
 322   }
 323   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 324     sse_status = SSE_NOT_SUPPORTED;
 325   } else if (*sse_hwp == 0) {
 326     sse_status = SSE_NOT_SUPPORTED;
 327   }
 328   dlclose(h);
 329 
 330   if (sse_status == SSE_UNKNOWN) {
 331     bool (*try_sse)() = (bool (*)())sse_check;
 332     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 333   }
 334 
 335 }
 336 
 337 #endif // AMD64
 338 
 339 bool os::supports_sse() {
 340 #ifdef AMD64
 341   return true;
 342 #else
 343   if (sse_status == SSE_UNKNOWN)
 344     check_for_sse_support();
 345   return sse_status == SSE_SUPPORTED;
 346 #endif // AMD64
 347 }
 348 
 349 bool os::is_allocatable(size_t bytes) {
 350 #ifdef AMD64
 351   return true;
 352 #else
 353 
 354   if (bytes < 2 * G) {
 355     return true;
 356   }
 357 
 358   char* addr = reserve_memory(bytes, NULL);
 359 
 360   if (addr != NULL) {
 361     release_memory(addr, bytes);
 362   }
 363 
 364   return addr != NULL;
 365 #endif // AMD64
 366 
 367 }
 368 
 369 extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
 370 
 371 extern "C" void Fetch32PFI () ;
 372 extern "C" void Fetch32Resume () ;
 373 #ifdef AMD64
 374 extern "C" void FetchNPFI () ;
 375 extern "C" void FetchNResume () ;
 376 #endif // AMD64
 377 
 378 int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
 379   ucontext_t* uc = (ucontext_t*) ucVoid;
 380 
 381 #ifndef AMD64
 382   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 383     // the SSE instruction faulted. supports_sse() need return false.
 384     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 385     return true;
 386   }
 387 #endif // !AMD64
 388 
 389   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
 390 
 391   SignalHandlerMark shm(t);
 392 
 393   if(sig == SIGPIPE || sig == SIGXFSZ) {
 394     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 395       return true;
 396     } else {
 397       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 398         char buf[64];
 399         warning("Ignoring %s - see 4229104 or 6499219",
 400                 os::exception_name(sig, buf, sizeof(buf)));
 401 
 402       }
 403       return true;
 404     }
 405   }
 406 
 407   JavaThread* thread = NULL;
 408   VMThread* vmthread = NULL;
 409 
 410   if (os::Solaris::signal_handlers_are_installed) {
 411     if (t != NULL ){
 412       if(t->is_Java_thread()) {
 413         thread = (JavaThread*)t;
 414       }
 415       else if(t->is_VM_thread()){
 416         vmthread = (VMThread *)t;
 417       }
 418     }
 419   }
 420 
 421   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
 422 
 423   if (sig == os::Solaris::SIGasync()) {
 424     if(thread){
 425       OSThread::InterruptArguments args(thread, uc);
 426       thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
 427       return true;
 428     }
 429     else if(vmthread){
 430       OSThread::InterruptArguments args(vmthread, uc);
 431       vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
 432       return true;
 433     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 434       return true;
 435     } else {
 436       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 437       // non-java thread
 438       return true;
 439     }
 440   }
 441 
 442   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 443     // can't decode this kind of signal
 444     info = NULL;
 445   } else {
 446     assert(sig == info->si_signo, "bad siginfo");
 447   }
 448 
 449   // decide if this trap can be handled by a stub
 450   address stub = NULL;
 451 
 452   address pc          = NULL;
 453 
 454   //%note os_trap_1
 455   if (info != NULL && uc != NULL && thread != NULL) {
 456     // factor me: getPCfromContext
 457     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 458 
 459     // SafeFetch32() support
 460     if (pc == (address) Fetch32PFI) {
 461       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 462       return true ;
 463     }
 464 #ifdef AMD64
 465     if (pc == (address) FetchNPFI) {
 466        uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
 467        return true ;
 468     }
 469 #endif // AMD64
 470 
 471     // Handle ALL stack overflow variations here
 472     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 473       address addr = (address) info->si_addr;
 474       if (thread->in_stack_yellow_zone(addr)) {
 475         thread->disable_stack_yellow_zone();
 476         if (thread->thread_state() == _thread_in_Java) {
 477           // Throw a stack overflow exception.  Guard pages will be reenabled
 478           // while unwinding the stack.
 479           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 480         } else {
 481           // Thread was in the vm or native code.  Return and try to finish.
 482           return true;
 483         }
 484       } else if (thread->in_stack_red_zone(addr)) {
 485         // Fatal red zone violation.  Disable the guard pages and fall through
 486         // to handle_unexpected_exception way down below.
 487         thread->disable_stack_red_zone();
 488         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 489       }
 490     }
 491 
 492     if (thread->thread_state() == _thread_in_vm) {
 493       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 494         stub = StubRoutines::handler_for_unsafe_access();
 495       }
 496     }
 497 
 498     if (thread->thread_state() == _thread_in_Java) {
 499       // Support Safepoint Polling
 500       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 501         stub = SharedRuntime::get_poll_stub(pc);
 502       }
 503       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 504         // BugId 4454115: A read from a MappedByteBuffer can fault
 505         // here if the underlying file has been truncated.
 506         // Do not crash the VM in such a case.
 507         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 508         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 509         if (nm != NULL && nm->has_unsafe_access()) {
 510           stub = StubRoutines::handler_for_unsafe_access();
 511         }
 512       }
 513       else
 514       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 515         // integer divide by zero
 516         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 517       }
 518 #ifndef AMD64
 519       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 520         // floating-point divide by zero
 521         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 522       }
 523       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 524         // The encoding of D2I in i486.ad can cause an exception prior
 525         // to the fist instruction if there was an invalid operation
 526         // pending. We want to dismiss that exception. From the win_32
 527         // side it also seems that if it really was the fist causing
 528         // the exception that we do the d2i by hand with different
 529         // rounding. Seems kind of weird. QQQ TODO
 530         // Note that we take the exception at the NEXT floating point instruction.
 531         if (pc[0] == 0xDB) {
 532             assert(pc[0] == 0xDB, "not a FIST opcode");
 533             assert(pc[1] == 0x14, "not a FIST opcode");
 534             assert(pc[2] == 0x24, "not a FIST opcode");
 535             return true;
 536         } else {
 537             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 538             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 539             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 540         }
 541       }
 542       else if (sig == SIGFPE ) {
 543         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 544       }
 545 #endif // !AMD64
 546 
 547         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 548         // to return properly from the handler without this extra stuff on the back side.
 549 
 550       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 551         // Determination of interpreter/vtable stub/compiled code null exception
 552         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 553       }
 554     }
 555 
 556     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 557     // and the heap gets shrunk before the field access.
 558     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 559       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 560       if (addr != (address)-1) {
 561         stub = addr;
 562       }
 563     }
 564 
 565     // Check to see if we caught the safepoint code in the
 566     // process of write protecting the memory serialization page.
 567     // It write enables the page immediately after protecting it
 568     // so we can just return to retry the write.
 569     if ((sig == SIGSEGV) &&
 570         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 571       // Block current thread until the memory serialize page permission restored.
 572       os::block_on_serialize_page_trap();
 573       return true;
 574     }
 575   }
 576 
 577   // Execution protection violation
 578   //
 579   // Preventative code for future versions of Solaris which may
 580   // enable execution protection when running the 32-bit VM on AMD64.
 581   //
 582   // This should be kept as the last step in the triage.  We don't
 583   // have a dedicated trap number for a no-execute fault, so be
 584   // conservative and allow other handlers the first shot.
 585   //
 586   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 587   // this si_code is so generic that it is almost meaningless; and
 588   // the si_code for this condition may change in the future.
 589   // Furthermore, a false-positive should be harmless.
 590   if (UnguardOnExecutionViolation > 0 &&
 591       (sig == SIGSEGV || sig == SIGBUS) &&
 592       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 593     int page_size = os::vm_page_size();
 594     address addr = (address) info->si_addr;
 595     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 596     // Make sure the pc and the faulting address are sane.
 597     //
 598     // If an instruction spans a page boundary, and the page containing
 599     // the beginning of the instruction is executable but the following
 600     // page is not, the pc and the faulting address might be slightly
 601     // different - we still want to unguard the 2nd page in this case.
 602     //
 603     // 15 bytes seems to be a (very) safe value for max instruction size.
 604     bool pc_is_near_addr =
 605       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 606     bool instr_spans_page_boundary =
 607       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 608                        (intptr_t) page_size) > 0);
 609 
 610     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 611       static volatile address last_addr =
 612         (address) os::non_memory_address_word();
 613 
 614       // In conservative mode, don't unguard unless the address is in the VM
 615       if (addr != last_addr &&
 616           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 617 
 618         // Make memory rwx and retry
 619         address page_start =
 620           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 621         bool res = os::protect_memory((char*) page_start, page_size,
 622                                       os::MEM_PROT_RWX);
 623 
 624         if (PrintMiscellaneous && Verbose) {
 625           char buf[256];
 626           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 627                        "at " INTPTR_FORMAT
 628                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 629                        page_start, (res ? "success" : "failed"), errno);
 630           tty->print_raw_cr(buf);
 631         }
 632         stub = pc;
 633 
 634         // Set last_addr so if we fault again at the same address, we don't end
 635         // up in an endless loop.
 636         //
 637         // There are two potential complications here.  Two threads trapping at
 638         // the same address at the same time could cause one of the threads to
 639         // think it already unguarded, and abort the VM.  Likely very rare.
 640         //
 641         // The other race involves two threads alternately trapping at
 642         // different addresses and failing to unguard the page, resulting in
 643         // an endless loop.  This condition is probably even more unlikely than
 644         // the first.
 645         //
 646         // Although both cases could be avoided by using locks or thread local
 647         // last_addr, these solutions are unnecessary complication: this
 648         // handler is a best-effort safety net, not a complete solution.  It is
 649         // disabled by default and should only be used as a workaround in case
 650         // we missed any no-execute-unsafe VM code.
 651 
 652         last_addr = addr;
 653       }
 654     }
 655   }
 656 
 657   if (stub != NULL) {
 658     // save all thread context in case we need to restore it
 659 
 660     if (thread != NULL) thread->set_saved_exception_pc(pc);
 661     // 12/02/99: On Sparc it appears that the full context is also saved
 662     // but as yet, no one looks at or restores that saved context
 663     // factor me: setPC
 664     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 665     return true;
 666   }
 667 
 668   // signal-chaining
 669   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 670     return true;
 671   }
 672 
 673 #ifndef AMD64
 674   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 675   // Handle an undefined selector caused by an attempt to assign
 676   // fs in libthread getipriptr(). With the current libthread design every 512
 677   // thread creations the LDT for a private thread data structure is extended
 678   // and thre is a hazard that and another thread attempting a thread creation
 679   // will use a stale LDTR that doesn't reflect the structure's growth,
 680   // causing a GP fault.
 681   // Enforce the probable limit of passes through here to guard against an
 682   // infinite loop if some other move to fs caused the GP fault. Note that
 683   // this loop counter is ultimately a heuristic as it is possible for
 684   // more than one thread to generate this fault at a time in an MP system.
 685   // In the case of the loop count being exceeded or if the poll fails
 686   // just fall through to a fatal error.
 687   // If there is some other source of T_GPFLT traps and the text at EIP is
 688   // unreadable this code will loop infinitely until the stack is exausted.
 689   // The key to diagnosis in this case is to look for the bottom signal handler
 690   // frame.
 691 
 692   if(! IgnoreLibthreadGPFault) {
 693     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 694       const unsigned char *p =
 695                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 696 
 697       // Expected instruction?
 698 
 699       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 700 
 701         Atomic::inc(&ldtr_refresh);
 702 
 703         // Infinite loop?
 704 
 705         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 706 
 707           // No, force scheduling to get a fresh view of the LDTR
 708 
 709           if(poll(NULL, 0, 10) == 0) {
 710 
 711             // Retry the move
 712 
 713             return false;
 714           }
 715         }
 716       }
 717     }
 718   }
 719 #endif // !AMD64
 720 
 721   if (!abort_if_unrecognized) {
 722     // caller wants another chance, so give it to him
 723     return false;
 724   }
 725 
 726   if (!os::Solaris::libjsig_is_loaded) {
 727     struct sigaction oldAct;
 728     sigaction(sig, (struct sigaction *)0, &oldAct);
 729     if (oldAct.sa_sigaction != signalHandler) {
 730       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 731                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 732       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 733     }
 734   }
 735 
 736   if (pc == NULL && uc != NULL) {
 737     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 738   }
 739 
 740   // unmask current signal
 741   sigset_t newset;
 742   sigemptyset(&newset);
 743   sigaddset(&newset, sig);
 744   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 745 
 746   VMError err(t, sig, pc, info, ucVoid);
 747   err.report_and_die();
 748 
 749   ShouldNotReachHere();
 750 }
 751 
 752 void os::print_context(outputStream *st, void *context) {
 753   if (context == NULL) return;
 754 
 755   ucontext_t *uc = (ucontext_t*)context;
 756   st->print_cr("Registers:");
 757 
 758   // this is horrendously verbose but the layout of the registers in the
 759   // context does not match how we defined our abstract Register set, so
 760   // we can't just iterate through the gregs area
 761 
 762 #ifdef AMD64
 763   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 764   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 765   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 766   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 767   st->cr();
 768   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 769   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 770   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 771   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 772   st->cr();
 773   st->print(  "R8=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 774   st->print(", R9=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 775   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 776   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 777   st->cr();
 778   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 779   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 780   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 781   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 782   st->cr();
 783   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 784   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 785 
 786   st->cr();
 787   st->cr();
 788 
 789   st->print_cr("Register to memory mapping:");
 790   st->cr();
 791 
 792   // this is only for the "general purpose" registers
 793 
 794   st->print_cr("RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 795   print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 796   st->cr();
 797   st->print_cr("RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 798   print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 799   st->cr();
 800   st->print_cr("RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 801   print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 802   st->cr();
 803   st->print_cr("RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 804   print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 805   st->cr();
 806   st->print_cr("RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 807   print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 808   st->cr();
 809   st->print_cr("RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 810   print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 811   st->cr();
 812   st->print_cr("RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 813   print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 814   st->cr();
 815   st->print_cr("RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 816   print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 817   st->cr();
 818   st->print_cr("R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 819   print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 820   st->cr();
 821   st->print_cr("R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 822   print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 823   st->cr();
 824   st->print_cr("R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 825   print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 826   st->cr();
 827   st->print_cr("R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 828   print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 829   st->cr();
 830   st->print_cr("R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 831   print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 832   st->cr();
 833   st->print_cr("R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 834   print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 835   st->cr();
 836   st->print_cr("R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 837   print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 838   st->cr();
 839   st->print_cr("R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 840   print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 841 
 842 #else
 843   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 844   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 845   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 846   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 847   st->cr();
 848   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 849   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 850   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 851   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 852   st->cr();
 853   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 854   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 855 
 856   st->cr();
 857   st->cr();
 858 
 859   st->print_cr("Register to memory mapping:");
 860   st->cr();
 861 
 862   // this is only for the "general purpose" registers
 863 
 864   st->print_cr("EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 865   print_location(st, uc->uc_mcontext.gregs[EAX]);
 866   st->cr();
 867   st->print_cr("EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 868   print_location(st, uc->uc_mcontext.gregs[EBX]);
 869   st->cr();
 870   st->print_cr("ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 871   print_location(st, uc->uc_mcontext.gregs[ECX]);
 872   st->cr();
 873   st->print_cr("EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 874   print_location(st, uc->uc_mcontext.gregs[EDX]);
 875   st->cr();
 876   st->print_cr("ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 877   print_location(st, uc->uc_mcontext.gregs[UESP]);
 878   st->cr();
 879   st->print_cr("EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 880   print_location(st, uc->uc_mcontext.gregs[EBP]);
 881   st->cr();
 882   st->print_cr("ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 883   print_location(st, uc->uc_mcontext.gregs[ESI]);
 884   st->cr();
 885   st->print_cr("EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 886   print_location(st, uc->uc_mcontext.gregs[EDI]);
 887 
 888 #endif // AMD64
 889   st->cr();
 890   st->cr();
 891 
 892   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 893   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 894   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 895   st->cr();
 896 
 897   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 898   // point to garbage if entry point in an nmethod is corrupted. Leave
 899   // this at the end, and hope for the best.
 900   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 901   address pc = epc.pc();
 902   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 903   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
 904 }
 905 
 906 
 907 #ifdef AMD64
 908 void os::Solaris::init_thread_fpu_state(void) {
 909   // Nothing to do
 910 }
 911 #else
 912 // From solaris_i486.s
 913 extern "C" void fixcw();
 914 
 915 void os::Solaris::init_thread_fpu_state(void) {
 916   // Set fpu to 53 bit precision. This happens too early to use a stub.
 917   fixcw();
 918 }
 919 
 920 // These routines are the initial value of atomic_xchg_entry(),
 921 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 922 // until initialization is complete.
 923 // TODO - replace with .il implementation when compiler supports it.
 924 
 925 typedef jint  xchg_func_t        (jint,  volatile jint*);
 926 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 927 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 928 typedef jint  add_func_t         (jint,  volatile jint*);
 929 
 930 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 931   // try to use the stub:
 932   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 933 
 934   if (func != NULL) {
 935     os::atomic_xchg_func = func;
 936     return (*func)(exchange_value, dest);
 937   }
 938   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 939 
 940   jint old_value = *dest;
 941   *dest = exchange_value;
 942   return old_value;
 943 }
 944 
 945 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 946   // try to use the stub:
 947   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 948 
 949   if (func != NULL) {
 950     os::atomic_cmpxchg_func = func;
 951     return (*func)(exchange_value, dest, compare_value);
 952   }
 953   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 954 
 955   jint old_value = *dest;
 956   if (old_value == compare_value)
 957     *dest = exchange_value;
 958   return old_value;
 959 }
 960 
 961 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 962   // try to use the stub:
 963   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 964 
 965   if (func != NULL) {
 966     os::atomic_cmpxchg_long_func = func;
 967     return (*func)(exchange_value, dest, compare_value);
 968   }
 969   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 970 
 971   jlong old_value = *dest;
 972   if (old_value == compare_value)
 973     *dest = exchange_value;
 974   return old_value;
 975 }
 976 
 977 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 978   // try to use the stub:
 979   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 980 
 981   if (func != NULL) {
 982     os::atomic_add_func = func;
 983     return (*func)(add_value, dest);
 984   }
 985   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 986 
 987   return (*dest) += add_value;
 988 }
 989 
 990 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 991 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 992 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 993 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 994 
 995 extern "C" void _solaris_raw_setup_fpu(address ptr);
 996 void os::setup_fpu() {
 997   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 998   _solaris_raw_setup_fpu(fpu_cntrl);
 999 }
1000 #endif // AMD64