1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_assembler.cpp.incl"
  27 
  28 
  29 // Implementation of AbstractAssembler
  30 //
  31 // The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
  32 // the assembler keeps a copy of the code buffers boundaries & modifies them when
  33 // emitting bytes rather than using the code buffers accessor functions all the time.
  34 // The code buffer is updated via set_code_end(...) after emitting a whole instruction.
  35 
  36 AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
  37   if (code == NULL)  return;
  38   CodeSection* cs = code->insts();
  39   cs->clear_mark();   // new assembler kills old mark
  40   _code_section = cs;
  41   _code_begin  = cs->start();
  42   _code_limit  = cs->limit();
  43   _code_pos    = cs->end();
  44   _oop_recorder= code->oop_recorder();
  45   if (_code_begin == NULL)  {
  46     vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
  47                                      code->name()));
  48   }
  49 }
  50 
  51 void AbstractAssembler::set_code_section(CodeSection* cs) {
  52   assert(cs->outer() == code_section()->outer(), "sanity");
  53   assert(cs->is_allocated(), "need to pre-allocate this section");
  54   cs->clear_mark();  // new assembly into this section kills old mark
  55   _code_section = cs;
  56   _code_begin  = cs->start();
  57   _code_limit  = cs->limit();
  58   _code_pos    = cs->end();
  59 }
  60 
  61 // Inform CodeBuffer that incoming code and relocation will be for stubs
  62 address AbstractAssembler::start_a_stub(int required_space) {
  63   CodeBuffer*  cb = code();
  64   CodeSection* cs = cb->stubs();
  65   assert(_code_section == cb->insts(), "not in insts?");
  66   sync();
  67   if (cs->maybe_expand_to_ensure_remaining(required_space)
  68       && cb->blob() == NULL) {
  69     return NULL;
  70   }
  71   set_code_section(cs);
  72   return pc();
  73 }
  74 
  75 // Inform CodeBuffer that incoming code and relocation will be code
  76 // Should not be called if start_a_stub() returned NULL
  77 void AbstractAssembler::end_a_stub() {
  78   assert(_code_section == code()->stubs(), "not in stubs?");
  79   sync();
  80   set_code_section(code()->insts());
  81 }
  82 
  83 // Inform CodeBuffer that incoming code and relocation will be for stubs
  84 address AbstractAssembler::start_a_const(int required_space, int required_align) {
  85   CodeBuffer*  cb = code();
  86   CodeSection* cs = cb->consts();
  87   assert(_code_section == cb->insts(), "not in insts?");
  88   sync();
  89   address end = cs->end();
  90   int pad = -(intptr_t)end & (required_align-1);
  91   if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
  92     if (cb->blob() == NULL)  return NULL;
  93     end = cs->end();  // refresh pointer
  94   }
  95   if (pad > 0) {
  96     while (--pad >= 0) { *end++ = 0; }
  97     cs->set_end(end);
  98   }
  99   set_code_section(cs);
 100   return end;
 101 }
 102 
 103 // Inform CodeBuffer that incoming code and relocation will be code
 104 // Should not be called if start_a_const() returned NULL
 105 void AbstractAssembler::end_a_const() {
 106   assert(_code_section == code()->consts(), "not in consts?");
 107   sync();
 108   set_code_section(code()->insts());
 109 }
 110 
 111 
 112 void AbstractAssembler::flush() {
 113   sync();
 114   ICache::invalidate_range(addr_at(0), offset());
 115 }
 116 
 117 
 118 void AbstractAssembler::a_byte(int x) {
 119   emit_byte(x);
 120 }
 121 
 122 
 123 void AbstractAssembler::a_long(jint x) {
 124   emit_long(x);
 125 }
 126 
 127 // Labels refer to positions in the (to be) generated code.  There are bound
 128 // and unbound
 129 //
 130 // Bound labels refer to known positions in the already generated code.
 131 // offset() is the position the label refers to.
 132 //
 133 // Unbound labels refer to unknown positions in the code to be generated; it
 134 // may contain a list of unresolved displacements that refer to it
 135 #ifndef PRODUCT
 136 void AbstractAssembler::print(Label& L) {
 137   if (L.is_bound()) {
 138     tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
 139   } else if (L.is_unbound()) {
 140     L.print_instructions((MacroAssembler*)this);
 141   } else {
 142     tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
 143   }
 144 }
 145 #endif // PRODUCT
 146 
 147 
 148 void AbstractAssembler::bind(Label& L) {
 149   if (L.is_bound()) {
 150     // Assembler can bind a label more than once to the same place.
 151     guarantee(L.loc() == locator(), "attempt to redefine label");
 152     return;
 153   }
 154   L.bind_loc(locator());
 155   L.patch_instructions((MacroAssembler*)this);
 156 }
 157 
 158 void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
 159   if (UseStackBanging) {
 160     // Each code entry causes one stack bang n pages down the stack where n
 161     // is configurable by StackBangPages.  The setting depends on the maximum
 162     // depth of VM call stack or native before going back into java code,
 163     // since only java code can raise a stack overflow exception using the
 164     // stack banging mechanism.  The VM and native code does not detect stack
 165     // overflow.
 166     // The code in JavaCalls::call() checks that there is at least n pages
 167     // available, so all entry code needs to do is bang once for the end of
 168     // this shadow zone.
 169     // The entry code may need to bang additional pages if the framesize
 170     // is greater than a page.
 171 
 172     const int page_size = os::vm_page_size();
 173     int bang_end = StackShadowPages*page_size;
 174 
 175     // This is how far the previous frame's stack banging extended.
 176     const int bang_end_safe = bang_end;
 177 
 178     if (frame_size_in_bytes > page_size) {
 179       bang_end += frame_size_in_bytes;
 180     }
 181 
 182     int bang_offset = bang_end_safe;
 183     while (bang_offset <= bang_end) {
 184       // Need at least one stack bang at end of shadow zone.
 185       bang_stack_with_offset(bang_offset);
 186       bang_offset += page_size;
 187     }
 188   } // end (UseStackBanging)
 189 }
 190 
 191 void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
 192   assert(_loc == -1, "Label is unbound");
 193   if (_patch_index < PatchCacheSize) {
 194     _patches[_patch_index] = branch_loc;
 195   } else {
 196     if (_patch_overflow == NULL) {
 197       _patch_overflow = cb->create_patch_overflow();
 198     }
 199     _patch_overflow->push(branch_loc);
 200   }
 201   ++_patch_index;
 202 }
 203 
 204 void Label::patch_instructions(MacroAssembler* masm) {
 205   assert(is_bound(), "Label is bound");
 206   CodeBuffer* cb = masm->code();
 207   int target_sect = CodeBuffer::locator_sect(loc());
 208   address target = cb->locator_address(loc());
 209   while (_patch_index > 0) {
 210     --_patch_index;
 211     int branch_loc;
 212     if (_patch_index >= PatchCacheSize) {
 213       branch_loc = _patch_overflow->pop();
 214     } else {
 215       branch_loc = _patches[_patch_index];
 216     }
 217     int branch_sect = CodeBuffer::locator_sect(branch_loc);
 218     address branch = cb->locator_address(branch_loc);
 219     if (branch_sect == CodeBuffer::SECT_CONSTS) {
 220       // The thing to patch is a constant word.
 221       *(address*)branch = target;
 222       continue;
 223     }
 224 
 225 #ifdef ASSERT
 226     // Cross-section branches only work if the
 227     // intermediate section boundaries are frozen.
 228     if (target_sect != branch_sect) {
 229       for (int n = MIN2(target_sect, branch_sect),
 230                nlimit = (target_sect + branch_sect) - n;
 231            n < nlimit; n++) {
 232         CodeSection* cs = cb->code_section(n);
 233         assert(cs->is_frozen(), "cross-section branch needs stable offsets");
 234       }
 235     }
 236 #endif //ASSERT
 237 
 238     // Push the target offset into the branch instruction.
 239     masm->pd_patch_instruction(branch, target);
 240   }
 241 }
 242 
 243 struct DelayedConstant {
 244   typedef void (*value_fn_t)();
 245   BasicType type;
 246   intptr_t value;
 247   value_fn_t value_fn;
 248   // This limit of 20 is generous for initial uses.
 249   // The limit needs to be large enough to store the field offsets
 250   // into classes which do not have statically fixed layouts.
 251   // (Initial use is for method handle object offsets.)
 252   // Look for uses of "delayed_value" in the source code
 253   // and make sure this number is generous enough to handle all of them.
 254   enum { DC_LIMIT = 20 };
 255   static DelayedConstant delayed_constants[DC_LIMIT];
 256   static DelayedConstant* add(BasicType type, value_fn_t value_fn);
 257   bool match(BasicType t, value_fn_t cfn) {
 258     return type == t && value_fn == cfn;
 259   }
 260   static void update_all();
 261 };
 262 
 263 DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
 264 // Default C structure initialization rules have the following effect here:
 265 // = { { (BasicType)0, (intptr_t)NULL }, ... };
 266 
 267 DelayedConstant* DelayedConstant::add(BasicType type,
 268                                       DelayedConstant::value_fn_t cfn) {
 269   for (int i = 0; i < DC_LIMIT; i++) {
 270     DelayedConstant* dcon = &delayed_constants[i];
 271     if (dcon->match(type, cfn))
 272       return dcon;
 273     if (dcon->value_fn == NULL) {
 274       // (cmpxchg not because this is multi-threaded but because I'm paranoid)
 275       if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
 276         dcon->type = type;
 277         return dcon;
 278       }
 279     }
 280   }
 281   // If this assert is hit (in pre-integration testing!) then re-evaluate
 282   // the comment on the definition of DC_LIMIT.
 283   guarantee(false, "too many delayed constants");
 284   return NULL;
 285 }
 286 
 287 void DelayedConstant::update_all() {
 288   for (int i = 0; i < DC_LIMIT; i++) {
 289     DelayedConstant* dcon = &delayed_constants[i];
 290     if (dcon->value_fn != NULL && dcon->value == 0) {
 291       typedef int     (*int_fn_t)();
 292       typedef address (*address_fn_t)();
 293       switch (dcon->type) {
 294       case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
 295       case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
 296       }
 297     }
 298   }
 299 }
 300 
 301 intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
 302   DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
 303   return &dcon->value;
 304 }
 305 intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
 306   DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
 307   return &dcon->value;
 308 }
 309 void AbstractAssembler::update_delayed_values() {
 310   DelayedConstant::update_all();
 311 }
 312 
 313 
 314 
 315 
 316 void AbstractAssembler::block_comment(const char* comment) {
 317   if (sect() == CodeBuffer::SECT_INSTS) {
 318     code_section()->outer()->block_comment(offset(), comment);
 319   }
 320 }
 321 
 322 bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
 323   // Exception handler checks the nmethod's implicit null checks table
 324   // only when this method returns false.
 325 #ifdef _LP64
 326   if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
 327     assert (Universe::heap() != NULL, "java heap should be initialized");
 328     // The first page after heap_base is unmapped and
 329     // the 'offset' is equal to [heap_base + offset] for
 330     // narrow oop implicit null checks.
 331     uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
 332     if ((uintptr_t)offset >= base) {
 333       // Normalize offset for the next check.
 334       offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
 335     }
 336   }
 337 #endif
 338   return offset < 0 || os::vm_page_size() <= offset;
 339 }
 340 
 341 #ifndef PRODUCT
 342 void Label::print_instructions(MacroAssembler* masm) const {
 343   CodeBuffer* cb = masm->code();
 344   for (int i = 0; i < _patch_index; ++i) {
 345     int branch_loc;
 346     if (i >= PatchCacheSize) {
 347       branch_loc = _patch_overflow->at(i - PatchCacheSize);
 348     } else {
 349       branch_loc = _patches[i];
 350     }
 351     int branch_pos  = CodeBuffer::locator_pos(branch_loc);
 352     int branch_sect = CodeBuffer::locator_sect(branch_loc);
 353     address branch = cb->locator_address(branch_loc);
 354     tty->print_cr("unbound label");
 355     tty->print("@ %d|%d ", branch_pos, branch_sect);
 356     if (branch_sect == CodeBuffer::SECT_CONSTS) {
 357       tty->print_cr(PTR_FORMAT, *(address*)branch);
 358       continue;
 359     }
 360     masm->pd_print_patched_instruction(branch);
 361     tty->cr();
 362   }
 363 }
 364 #endif // ndef PRODUCT