1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_codeBuffer.cpp.incl"
  27 
  28 // The structure of a CodeSection:
  29 //
  30 //    _start ->           +----------------+
  31 //                        | machine code...|
  32 //    _end ->             |----------------|
  33 //                        |                |
  34 //                        |    (empty)     |
  35 //                        |                |
  36 //                        |                |
  37 //                        +----------------+
  38 //    _limit ->           |                |
  39 //
  40 //    _locs_start ->      +----------------+
  41 //                        |reloc records...|
  42 //                        |----------------|
  43 //    _locs_end ->        |                |
  44 //                        |                |
  45 //                        |    (empty)     |
  46 //                        |                |
  47 //                        |                |
  48 //                        +----------------+
  49 //    _locs_limit ->      |                |
  50 // The _end (resp. _limit) pointer refers to the first
  51 // unused (resp. unallocated) byte.
  52 
  53 // The structure of the CodeBuffer while code is being accumulated:
  54 //
  55 //    _total_start ->    \
  56 //    _insts._start ->              +----------------+
  57 //                                  |                |
  58 //                                  |     Code       |
  59 //                                  |                |
  60 //    _stubs._start ->              |----------------|
  61 //                                  |                |
  62 //                                  |    Stubs       | (also handlers for deopt/exception)
  63 //                                  |                |
  64 //    _consts._start ->             |----------------|
  65 //                                  |                |
  66 //                                  |   Constants    |
  67 //                                  |                |
  68 //                                  +----------------+
  69 //    + _total_size ->              |                |
  70 //
  71 // When the code and relocations are copied to the code cache,
  72 // the empty parts of each section are removed, and everything
  73 // is copied into contiguous locations.
  74 
  75 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  76 
  77 // External buffer, in a predefined CodeBlob.
  78 // Important: The code_start must be taken exactly, and not realigned.
  79 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  80   initialize_misc("static buffer");
  81   initialize(blob->content_begin(), blob->content_size());
  82   assert(verify_section_allocation(), "initial use of buffer OK");
  83 }
  84 
  85 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  86   // Compute maximal alignment.
  87   int align = _insts.alignment();
  88   // Always allow for empty slop around each section.
  89   int slop = (int) CodeSection::end_slop();
  90 
  91   assert(blob() == NULL, "only once");
  92   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
  93   if (blob() == NULL) {
  94     // The assembler constructor will throw a fatal on an empty CodeBuffer.
  95     return;  // caller must test this
  96   }
  97 
  98   // Set up various pointers into the blob.
  99   initialize(_total_start, _total_size);
 100 
 101   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 102 
 103   pd_initialize();
 104 
 105   if (locs_size != 0) {
 106     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 107   }
 108 
 109   assert(verify_section_allocation(), "initial use of blob is OK");
 110 }
 111 
 112 
 113 CodeBuffer::~CodeBuffer() {
 114   // If we allocate our code buffer from the CodeCache
 115   // via a BufferBlob, and it's not permanent, then
 116   // free the BufferBlob.
 117   // The rest of the memory will be freed when the ResourceObj
 118   // is released.
 119   assert(verify_section_allocation(), "final storage configuration still OK");
 120   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 121     // Previous incarnations of this buffer are held live, so that internal
 122     // addresses constructed before expansions will not be confused.
 123     cb->free_blob();
 124   }
 125 
 126   // free any overflow storage
 127   delete _overflow_arena;
 128 
 129 #ifdef ASSERT
 130   // Save allocation type to execute assert in ~ResourceObj()
 131   // which is called after this destructor.
 132   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 133   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 134   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 135 #endif
 136 }
 137 
 138 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 139   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 140   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
 141   _oop_recorder = r;
 142 }
 143 
 144 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 145   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 146   csize_t slop = CodeSection::end_slop();  // margin between sections
 147   int align = cs->alignment();
 148   assert(is_power_of_2(align), "sanity");
 149   address start  = _insts._start;
 150   address limit  = _insts._limit;
 151   address middle = limit - size;
 152   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 153   guarantee(middle - slop > start, "need enough space to divide up");
 154   _insts._limit = middle - slop;  // subtract desired space, plus slop
 155   cs->initialize(middle, limit - middle);
 156   assert(cs->start() == middle, "sanity");
 157   assert(cs->limit() == limit,  "sanity");
 158   // give it some relocations to start with, if the main section has them
 159   if (_insts.has_locs())  cs->initialize_locs(1);
 160 }
 161 
 162 void CodeBuffer::freeze_section(CodeSection* cs) {
 163   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 164   csize_t frozen_size = cs->size();
 165   if (next_cs != NULL) {
 166     frozen_size = next_cs->align_at_start(frozen_size);
 167   }
 168   address old_limit = cs->limit();
 169   address new_limit = cs->start() + frozen_size;
 170   relocInfo* old_locs_limit = cs->locs_limit();
 171   relocInfo* new_locs_limit = cs->locs_end();
 172   // Patch the limits.
 173   cs->_limit = new_limit;
 174   cs->_locs_limit = new_locs_limit;
 175   cs->_frozen = true;
 176   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 177     // Give remaining buffer space to the following section.
 178     next_cs->initialize(new_limit, old_limit - new_limit);
 179     next_cs->initialize_shared_locs(new_locs_limit,
 180                                     old_locs_limit - new_locs_limit);
 181   }
 182 }
 183 
 184 void CodeBuffer::set_blob(BufferBlob* blob) {
 185   _blob = blob;
 186   if (blob != NULL) {
 187     address start = blob->content_begin();
 188     address end   = blob->content_end();
 189     // Round up the starting address.
 190     int align = _insts.alignment();
 191     start += (-(intptr_t)start) & (align-1);
 192     _total_start = start;
 193     _total_size  = end - start;
 194   } else {
 195 #ifdef ASSERT
 196     // Clean out dangling pointers.
 197     _total_start    = badAddress;
 198     _consts._start  = _consts._end  = badAddress;
 199     _insts._start   = _insts._end   = badAddress;
 200     _stubs._start   = _stubs._end   = badAddress;
 201 #endif //ASSERT
 202   }
 203 }
 204 
 205 void CodeBuffer::free_blob() {
 206   if (_blob != NULL) {
 207     BufferBlob::free(_blob);
 208     set_blob(NULL);
 209   }
 210 }
 211 
 212 const char* CodeBuffer::code_section_name(int n) {
 213 #ifdef PRODUCT
 214   return NULL;
 215 #else //PRODUCT
 216   switch (n) {
 217   case SECT_CONSTS:            return "consts";
 218   case SECT_INSTS:             return "insts";
 219   case SECT_STUBS:             return "stubs";
 220   default:                     return NULL;
 221   }
 222 #endif //PRODUCT
 223 }
 224 
 225 int CodeBuffer::section_index_of(address addr) const {
 226   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 227     const CodeSection* cs = code_section(n);
 228     if (cs->allocates(addr))  return n;
 229   }
 230   return SECT_NONE;
 231 }
 232 
 233 int CodeBuffer::locator(address addr) const {
 234   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 235     const CodeSection* cs = code_section(n);
 236     if (cs->allocates(addr)) {
 237       return locator(addr - cs->start(), n);
 238     }
 239   }
 240   return -1;
 241 }
 242 
 243 address CodeBuffer::locator_address(int locator) const {
 244   if (locator < 0)  return NULL;
 245   address start = code_section(locator_sect(locator))->start();
 246   return start + locator_pos(locator);
 247 }
 248 
 249 address CodeBuffer::decode_begin() {
 250   address begin = _insts.start();
 251   if (_decode_begin != NULL && _decode_begin > begin)
 252     begin = _decode_begin;
 253   return begin;
 254 }
 255 
 256 
 257 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 258   if (_overflow_arena == NULL) {
 259     _overflow_arena = new Arena();
 260   }
 261   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 262 }
 263 
 264 
 265 // Helper function for managing labels and their target addresses.
 266 // Returns a sensible address, and if it is not the label's final
 267 // address, notes the dependency (at 'branch_pc') on the label.
 268 address CodeSection::target(Label& L, address branch_pc) {
 269   if (L.is_bound()) {
 270     int loc = L.loc();
 271     if (index() == CodeBuffer::locator_sect(loc)) {
 272       return start() + CodeBuffer::locator_pos(loc);
 273     } else {
 274       return outer()->locator_address(loc);
 275     }
 276   } else {
 277     assert(allocates2(branch_pc), "sanity");
 278     address base = start();
 279     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 280     L.add_patch_at(outer(), patch_loc);
 281 
 282     // Need to return a pc, doesn't matter what it is since it will be
 283     // replaced during resolution later.
 284     // Don't return NULL or badAddress, since branches shouldn't overflow.
 285     // Don't return base either because that could overflow displacements
 286     // for shorter branches.  It will get checked when bound.
 287     return branch_pc;
 288   }
 289 }
 290 
 291 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 292   Relocation* reloc = spec.reloc();
 293   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 294   if (rtype == relocInfo::none)  return;
 295 
 296   // The assertion below has been adjusted, to also work for
 297   // relocation for fixup.  Sometimes we want to put relocation
 298   // information for the next instruction, since it will be patched
 299   // with a call.
 300   assert(start() <= at && at <= end()+1,
 301          "cannot relocate data outside code boundaries");
 302 
 303   if (!has_locs()) {
 304     // no space for relocation information provided => code cannot be
 305     // relocated.  Make sure that relocate is only called with rtypes
 306     // that can be ignored for this kind of code.
 307     assert(rtype == relocInfo::none              ||
 308            rtype == relocInfo::runtime_call_type ||
 309            rtype == relocInfo::internal_word_type||
 310            rtype == relocInfo::section_word_type ||
 311            rtype == relocInfo::external_word_type,
 312            "code needs relocation information");
 313     // leave behind an indication that we attempted a relocation
 314     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 315     return;
 316   }
 317 
 318   // Advance the point, noting the offset we'll have to record.
 319   csize_t offset = at - locs_point();
 320   set_locs_point(at);
 321 
 322   // Test for a couple of overflow conditions; maybe expand the buffer.
 323   relocInfo* end = locs_end();
 324   relocInfo* req = end + relocInfo::length_limit;
 325   // Check for (potential) overflow
 326   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 327     req += (uint)offset / (uint)relocInfo::offset_limit();
 328     if (req >= locs_limit()) {
 329       // Allocate or reallocate.
 330       expand_locs(locs_count() + (req - end));
 331       // reload pointer
 332       end = locs_end();
 333     }
 334   }
 335 
 336   // If the offset is giant, emit filler relocs, of type 'none', but
 337   // each carrying the largest possible offset, to advance the locs_point.
 338   while (offset >= relocInfo::offset_limit()) {
 339     assert(end < locs_limit(), "adjust previous paragraph of code");
 340     *end++ = filler_relocInfo();
 341     offset -= filler_relocInfo().addr_offset();
 342   }
 343 
 344   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 345   (*end) = relocInfo(rtype, offset, format);
 346 
 347   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 348   end->initialize(this, reloc);
 349 }
 350 
 351 void CodeSection::initialize_locs(int locs_capacity) {
 352   assert(_locs_start == NULL, "only one locs init step, please");
 353   // Apply a priori lower limits to relocation size:
 354   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 355   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 356   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 357   _locs_start    = locs_start;
 358   _locs_end      = locs_start;
 359   _locs_limit    = locs_start + locs_capacity;
 360   _locs_own      = true;
 361 }
 362 
 363 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 364   assert(_locs_start == NULL, "do this before locs are allocated");
 365   // Internal invariant:  locs buf must be fully aligned.
 366   // See copy_relocations_to() below.
 367   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 368     ++buf; --length;
 369   }
 370   if (length > 0) {
 371     _locs_start = buf;
 372     _locs_end   = buf;
 373     _locs_limit = buf + length;
 374     _locs_own   = false;
 375   }
 376 }
 377 
 378 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 379   int lcount = source_cs->locs_count();
 380   if (lcount != 0) {
 381     initialize_shared_locs(source_cs->locs_start(), lcount);
 382     _locs_end = _locs_limit = _locs_start + lcount;
 383     assert(is_allocated(), "must have copied code already");
 384     set_locs_point(start() + source_cs->locs_point_off());
 385   }
 386   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 387 }
 388 
 389 void CodeSection::expand_locs(int new_capacity) {
 390   if (_locs_start == NULL) {
 391     initialize_locs(new_capacity);
 392     return;
 393   } else {
 394     int old_count    = locs_count();
 395     int old_capacity = locs_capacity();
 396     if (new_capacity < old_capacity * 2)
 397       new_capacity = old_capacity * 2;
 398     relocInfo* locs_start;
 399     if (_locs_own) {
 400       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 401     } else {
 402       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 403       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 404       _locs_own = true;
 405     }
 406     _locs_start    = locs_start;
 407     _locs_end      = locs_start + old_count;
 408     _locs_limit    = locs_start + new_capacity;
 409   }
 410 }
 411 
 412 
 413 /// Support for emitting the code to its final location.
 414 /// The pattern is the same for all functions.
 415 /// We iterate over all the sections, padding each to alignment.
 416 
 417 csize_t CodeBuffer::total_content_size() const {
 418   csize_t size_so_far = 0;
 419   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 420     const CodeSection* cs = code_section(n);
 421     if (cs->is_empty())  continue;  // skip trivial section
 422     size_so_far = cs->align_at_start(size_so_far);
 423     size_so_far += cs->size();
 424   }
 425   return size_so_far;
 426 }
 427 
 428 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 429   address buf = dest->_total_start;
 430   csize_t buf_offset = 0;
 431   assert(dest->_total_size >= total_content_size(), "must be big enough");
 432 
 433   {
 434     // not sure why this is here, but why not...
 435     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 436     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 437   }
 438 
 439   const CodeSection* prev_cs      = NULL;
 440   CodeSection*       prev_dest_cs = NULL;
 441 
 442   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 443     // figure compact layout of each section
 444     const CodeSection* cs = code_section(n);
 445     csize_t csize = cs->size();
 446 
 447     CodeSection* dest_cs = dest->code_section(n);
 448     if (!cs->is_empty()) {
 449       // Compute initial padding; assign it to the previous non-empty guy.
 450       // Cf. figure_expanded_capacities.
 451       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 452       if (padding != 0) {
 453         buf_offset += padding;
 454         assert(prev_dest_cs != NULL, "sanity");
 455         prev_dest_cs->_limit += padding;
 456       }
 457       #ifdef ASSERT
 458       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 459         // Make sure the ends still match up.
 460         // This is important because a branch in a frozen section
 461         // might target code in a following section, via a Label,
 462         // and without a relocation record.  See Label::patch_instructions.
 463         address dest_start = buf+buf_offset;
 464         csize_t start2start = cs->start() - prev_cs->start();
 465         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 466         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 467       }
 468       #endif //ASSERT
 469       prev_dest_cs = dest_cs;
 470       prev_cs      = cs;
 471     }
 472 
 473     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 474     dest_cs->initialize(buf+buf_offset, csize);
 475     dest_cs->set_end(buf+buf_offset+csize);
 476     assert(dest_cs->is_allocated(), "must always be allocated");
 477     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 478 
 479     buf_offset += csize;
 480   }
 481 
 482   // Done calculating sections; did it come out to the right end?
 483   assert(buf_offset == total_content_size(), "sanity");
 484   assert(dest->verify_section_allocation(), "final configuration works");
 485 }
 486 
 487 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
 488   csize_t size_so_far = 0;
 489   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 490     const CodeSection* cur_cs = code_section(n);
 491     if (!cur_cs->is_empty()) {
 492       size_so_far = cur_cs->align_at_start(size_so_far);
 493     }
 494     if (cur_cs->index() == cs->index()) {
 495       return size_so_far;
 496     }
 497     size_so_far += cur_cs->size();
 498   }
 499   ShouldNotReachHere();
 500   return -1;
 501 }
 502 
 503 csize_t CodeBuffer::total_relocation_size() const {
 504   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 505   csize_t csize = total_content_size();
 506   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 507   return (csize_t) align_size_up(total, HeapWordSize);
 508 }
 509 
 510 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 511   address buf = NULL;
 512   csize_t buf_offset = 0;
 513   csize_t buf_limit = 0;
 514   if (dest != NULL) {
 515     buf = (address)dest->relocation_begin();
 516     buf_limit = (address)dest->relocation_end() - buf;
 517     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 518     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 519   }
 520   // if dest == NULL, this is just the sizing pass
 521 
 522   csize_t code_end_so_far = 0;
 523   csize_t code_point_so_far = 0;
 524   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 525     // pull relocs out of each section
 526     const CodeSection* cs = code_section(n);
 527     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 528     if (cs->is_empty())  continue;  // skip trivial section
 529     relocInfo* lstart = cs->locs_start();
 530     relocInfo* lend   = cs->locs_end();
 531     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 532     csize_t    csize  = cs->size();
 533     code_end_so_far = cs->align_at_start(code_end_so_far);
 534 
 535     if (lsize > 0) {
 536       // Figure out how to advance the combined relocation point
 537       // first to the beginning of this section.
 538       // We'll insert one or more filler relocs to span that gap.
 539       // (Don't bother to improve this by editing the first reloc's offset.)
 540       csize_t new_code_point = code_end_so_far;
 541       for (csize_t jump;
 542            code_point_so_far < new_code_point;
 543            code_point_so_far += jump) {
 544         jump = new_code_point - code_point_so_far;
 545         relocInfo filler = filler_relocInfo();
 546         if (jump >= filler.addr_offset()) {
 547           jump = filler.addr_offset();
 548         } else {  // else shrink the filler to fit
 549           filler = relocInfo(relocInfo::none, jump);
 550         }
 551         if (buf != NULL) {
 552           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 553           *(relocInfo*)(buf+buf_offset) = filler;
 554         }
 555         buf_offset += sizeof(filler);
 556       }
 557 
 558       // Update code point and end to skip past this section:
 559       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 560       assert(code_point_so_far <= last_code_point, "sanity");
 561       code_point_so_far = last_code_point; // advance past this guy's relocs
 562     }
 563     code_end_so_far += csize;  // advance past this guy's instructions too
 564 
 565     // Done with filler; emit the real relocations:
 566     if (buf != NULL && lsize != 0) {
 567       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 568       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 569       if (buf_offset % HeapWordSize == 0) {
 570         // Use wordwise copies if possible:
 571         Copy::disjoint_words((HeapWord*)lstart,
 572                              (HeapWord*)(buf+buf_offset),
 573                              (lsize + HeapWordSize-1) / HeapWordSize);
 574       } else {
 575         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 576       }
 577     }
 578     buf_offset += lsize;
 579   }
 580 
 581   // Align end of relocation info in target.
 582   while (buf_offset % HeapWordSize != 0) {
 583     if (buf != NULL) {
 584       relocInfo padding = relocInfo(relocInfo::none, 0);
 585       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 586       *(relocInfo*)(buf+buf_offset) = padding;
 587     }
 588     buf_offset += sizeof(relocInfo);
 589   }
 590 
 591   assert(code_end_so_far == total_content_size(), "sanity");
 592 
 593   // Account for index:
 594   if (buf != NULL) {
 595     RelocIterator::create_index(dest->relocation_begin(),
 596                                 buf_offset / sizeof(relocInfo),
 597                                 dest->relocation_end());
 598   }
 599 
 600   return buf_offset;
 601 }
 602 
 603 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 604 #ifndef PRODUCT
 605   if (PrintNMethods && (WizardMode || Verbose)) {
 606     tty->print("done with CodeBuffer:");
 607     ((CodeBuffer*)this)->print();
 608   }
 609 #endif //PRODUCT
 610 
 611   CodeBuffer dest(dest_blob);
 612   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 613   this->compute_final_layout(&dest);
 614   relocate_code_to(&dest);
 615 
 616   // transfer comments from buffer to blob
 617   dest_blob->set_comments(_comments);
 618 
 619   // Done moving code bytes; were they the right size?
 620   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 621 
 622   // Flush generated code
 623   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 624 }
 625 
 626 // Move all my code into another code buffer.  Consult applicable
 627 // relocs to repair embedded addresses.  The layout in the destination
 628 // CodeBuffer is different to the source CodeBuffer: the destination
 629 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 630 // ascending address).
 631 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 632   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
 633   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 634     // pull code out of each section
 635     const CodeSection* cs = code_section(n);
 636     if (cs->is_empty())  continue;  // skip trivial section
 637     CodeSection* dest_cs = dest->code_section(n);
 638     assert(cs->size() == dest_cs->size(), "sanity");
 639     csize_t usize = dest_cs->size();
 640     csize_t wsize = align_size_up(usize, HeapWordSize);
 641     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 642     // Copy the code as aligned machine words.
 643     // This may also include an uninitialized partial word at the end.
 644     Copy::disjoint_words((HeapWord*)cs->start(),
 645                          (HeapWord*)dest_cs->start(),
 646                          wsize / HeapWordSize);
 647 
 648     if (dest->blob() == NULL) {
 649       // Destination is a final resting place, not just another buffer.
 650       // Normalize uninitialized bytes in the final padding.
 651       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 652                           Assembler::code_fill_byte());
 653     }
 654 
 655     assert(cs->locs_start() != (relocInfo*)badAddress,
 656            "this section carries no reloc storage, but reloc was attempted");
 657 
 658     // Make the new code copy use the old copy's relocations:
 659     dest_cs->initialize_locs_from(cs);
 660 
 661     { // Repair the pc relative information in the code after the move
 662       RelocIterator iter(dest_cs);
 663       while (iter.next()) {
 664         iter.reloc()->fix_relocation_after_move(this, dest);
 665       }
 666     }
 667   }
 668 }
 669 
 670 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 671                                                csize_t amount,
 672                                                csize_t* new_capacity) {
 673   csize_t new_total_cap = 0;
 674 
 675   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 676     const CodeSection* sect = code_section(n);
 677 
 678     if (!sect->is_empty()) {
 679       // Compute initial padding; assign it to the previous section,
 680       // even if it's empty (e.g. consts section can be empty).
 681       // Cf. compute_final_layout
 682       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 683       if (padding != 0) {
 684         new_total_cap += padding;
 685         assert(n - 1 >= SECT_FIRST, "sanity");
 686         new_capacity[n - 1] += padding;
 687       }
 688     }
 689 
 690     csize_t exp = sect->size();  // 100% increase
 691     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 692     if (sect == which_cs) {
 693       if (exp < amount)  exp = amount;
 694       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 695     } else if (n == SECT_INSTS) {
 696       // scale down inst increases to a more modest 25%
 697       exp = 4*K + ((exp - 4*K) >> 2);
 698       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 699     } else if (sect->is_empty()) {
 700       // do not grow an empty secondary section
 701       exp = 0;
 702     }
 703     // Allow for inter-section slop:
 704     exp += CodeSection::end_slop();
 705     csize_t new_cap = sect->size() + exp;
 706     if (new_cap < sect->capacity()) {
 707       // No need to expand after all.
 708       new_cap = sect->capacity();
 709     }
 710     new_capacity[n] = new_cap;
 711     new_total_cap += new_cap;
 712   }
 713 
 714   return new_total_cap;
 715 }
 716 
 717 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 718 #ifndef PRODUCT
 719   if (PrintNMethods && (WizardMode || Verbose)) {
 720     tty->print("expanding CodeBuffer:");
 721     this->print();
 722   }
 723 
 724   if (StressCodeBuffers && blob() != NULL) {
 725     static int expand_count = 0;
 726     if (expand_count >= 0)  expand_count += 1;
 727     if (expand_count > 100 && is_power_of_2(expand_count)) {
 728       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 729       // simulate an occasional allocation failure:
 730       free_blob();
 731     }
 732   }
 733 #endif //PRODUCT
 734 
 735   // Resizing must be allowed
 736   {
 737     if (blob() == NULL)  return;  // caller must check for blob == NULL
 738     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 739       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 740     }
 741   }
 742 
 743   // Figure new capacity for each section.
 744   csize_t new_capacity[SECT_LIMIT];
 745   csize_t new_total_cap
 746     = figure_expanded_capacities(which_cs, amount, new_capacity);
 747 
 748   // Create a new (temporary) code buffer to hold all the new data
 749   CodeBuffer cb(name(), new_total_cap, 0);
 750   if (cb.blob() == NULL) {
 751     // Failed to allocate in code cache.
 752     free_blob();
 753     return;
 754   }
 755 
 756   // Create an old code buffer to remember which addresses used to go where.
 757   // This will be useful when we do final assembly into the code cache,
 758   // because we will need to know how to warp any internal address that
 759   // has been created at any time in this CodeBuffer's past.
 760   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 761   bxp->take_over_code_from(this);  // remember the old undersized blob
 762   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 763   bxp->_before_expand = this->_before_expand;
 764   this->_before_expand = bxp;
 765 
 766   // Give each section its required (expanded) capacity.
 767   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 768     CodeSection* cb_sect   = cb.code_section(n);
 769     CodeSection* this_sect = code_section(n);
 770     if (new_capacity[n] == 0)  continue;  // already nulled out
 771     if (n != SECT_INSTS) {
 772       cb.initialize_section_size(cb_sect, new_capacity[n]);
 773     }
 774     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 775     address cb_start = cb_sect->start();
 776     cb_sect->set_end(cb_start + this_sect->size());
 777     if (this_sect->mark() == NULL) {
 778       cb_sect->clear_mark();
 779     } else {
 780       cb_sect->set_mark(cb_start + this_sect->mark_off());
 781     }
 782   }
 783 
 784   // Move all the code and relocations to the new blob:
 785   relocate_code_to(&cb);
 786 
 787   // Copy the temporary code buffer into the current code buffer.
 788   // Basically, do {*this = cb}, except for some control information.
 789   this->take_over_code_from(&cb);
 790   cb.set_blob(NULL);
 791 
 792   // Zap the old code buffer contents, to avoid mistakenly using them.
 793   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 794                                  badCodeHeapFreeVal));
 795 
 796   _decode_begin = NULL;  // sanity
 797 
 798   // Make certain that the new sections are all snugly inside the new blob.
 799   assert(verify_section_allocation(), "expanded allocation is ship-shape");
 800 
 801 #ifndef PRODUCT
 802   if (PrintNMethods && (WizardMode || Verbose)) {
 803     tty->print("expanded CodeBuffer:");
 804     this->print();
 805   }
 806 #endif //PRODUCT
 807 }
 808 
 809 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 810   // Must already have disposed of the old blob somehow.
 811   assert(blob() == NULL, "must be empty");
 812 #ifdef ASSERT
 813 
 814 #endif
 815   // Take the new blob away from cb.
 816   set_blob(cb->blob());
 817   // Take over all the section pointers.
 818   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 819     CodeSection* cb_sect   = cb->code_section(n);
 820     CodeSection* this_sect = code_section(n);
 821     this_sect->take_over_code_from(cb_sect);
 822   }
 823   _overflow_arena = cb->_overflow_arena;
 824   // Make sure the old cb won't try to use it or free it.
 825   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 826 }
 827 
 828 #ifdef ASSERT
 829 bool CodeBuffer::verify_section_allocation() {
 830   address tstart = _total_start;
 831   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
 832   address tend   = tstart + _total_size;
 833   if (_blob != NULL) {
 834     assert(tstart >= _blob->content_begin(), "sanity");
 835     assert(tend   <= _blob->content_end(),   "sanity");
 836   }
 837   // Verify disjointness.
 838   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 839     CodeSection* sect = code_section(n);
 840     if (!sect->is_allocated() || sect->is_empty())  continue;
 841     assert((intptr_t)sect->start() % sect->alignment() == 0
 842            || sect->is_empty() || _blob == NULL,
 843            "start is aligned");
 844     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
 845       CodeSection* other = code_section(m);
 846       if (!other->is_allocated() || other == sect)  continue;
 847       assert(!other->contains(sect->start()    ), "sanity");
 848       // limit is an exclusive address and can be the start of another
 849       // section.
 850       assert(!other->contains(sect->limit() - 1), "sanity");
 851     }
 852     assert(sect->end() <= tend, "sanity");
 853   }
 854   return true;
 855 }
 856 #endif //ASSERT
 857 
 858 #ifndef PRODUCT
 859 
 860 void CodeSection::dump() {
 861   address ptr = start();
 862   for (csize_t step; ptr < end(); ptr += step) {
 863     step = end() - ptr;
 864     if (step > jintSize * 4)  step = jintSize * 4;
 865     tty->print(PTR_FORMAT ": ", ptr);
 866     while (step > 0) {
 867       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
 868       ptr += jintSize;
 869     }
 870     tty->cr();
 871   }
 872 }
 873 
 874 
 875 void CodeSection::decode() {
 876   Disassembler::decode(start(), end());
 877 }
 878 
 879 
 880 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
 881   _comments.add_comment(offset, comment);
 882 }
 883 
 884 
 885 class CodeComment: public CHeapObj {
 886  private:
 887   friend class CodeComments;
 888   intptr_t     _offset;
 889   const char * _comment;
 890   CodeComment* _next;
 891 
 892   ~CodeComment() {
 893     assert(_next == NULL, "wrong interface for freeing list");
 894     os::free((void*)_comment);
 895   }
 896 
 897  public:
 898   CodeComment(intptr_t offset, const char * comment) {
 899     _offset = offset;
 900     _comment = os::strdup(comment);
 901     _next = NULL;
 902   }
 903 
 904   intptr_t     offset()  const { return _offset;  }
 905   const char * comment() const { return _comment; }
 906   CodeComment* next()          { return _next; }
 907 
 908   void set_next(CodeComment* next) { _next = next; }
 909 
 910   CodeComment* find(intptr_t offset) {
 911     CodeComment* a = this;
 912     while (a != NULL && a->_offset != offset) {
 913       a = a->_next;
 914     }
 915     return a;
 916   }
 917 };
 918 
 919 
 920 void CodeComments::add_comment(intptr_t offset, const char * comment) {
 921   CodeComment* c = new CodeComment(offset, comment);
 922   CodeComment* insert = NULL;
 923   if (_comments != NULL) {
 924     CodeComment* c = _comments->find(offset);
 925     insert = c;
 926     while (c && c->offset() == offset) {
 927       insert = c;
 928       c = c->next();
 929     }
 930   }
 931   if (insert) {
 932     // insert after comments with same offset
 933     c->set_next(insert->next());
 934     insert->set_next(c);
 935   } else {
 936     c->set_next(_comments);
 937     _comments = c;
 938   }
 939 }
 940 
 941 
 942 void CodeComments::assign(CodeComments& other) {
 943   assert(_comments == NULL, "don't overwrite old value");
 944   _comments = other._comments;
 945 }
 946 
 947 
 948 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
 949   if (_comments != NULL) {
 950     CodeComment* c = _comments->find(offset);
 951     while (c && c->offset() == offset) {
 952       stream->bol();
 953       stream->print("  ;; ");
 954       stream->print_cr(c->comment());
 955       c = c->next();
 956     }
 957   }
 958 }
 959 
 960 
 961 void CodeComments::free() {
 962   CodeComment* n = _comments;
 963   while (n) {
 964     // unlink the node from the list saving a pointer to the next
 965     CodeComment* p = n->_next;
 966     n->_next = NULL;
 967     delete n;
 968     n = p;
 969   }
 970   _comments = NULL;
 971 }
 972 
 973 
 974 
 975 void CodeBuffer::decode() {
 976   Disassembler::decode(decode_begin(), insts_end());
 977   _decode_begin = insts_end();
 978 }
 979 
 980 
 981 void CodeBuffer::skip_decode() {
 982   _decode_begin = insts_end();
 983 }
 984 
 985 
 986 void CodeBuffer::decode_all() {
 987   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 988     // dump contents of each section
 989     CodeSection* cs = code_section(n);
 990     tty->print_cr("! %s:", code_section_name(n));
 991     if (cs != consts())
 992       cs->decode();
 993     else
 994       cs->dump();
 995   }
 996 }
 997 
 998 
 999 void CodeSection::print(const char* name) {
1000   csize_t locs_size = locs_end() - locs_start();
1001   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1002                 name, start(), end(), limit(), size(), capacity(),
1003                 is_frozen()? " [frozen]": "");
1004   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1005                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1006   if (PrintRelocations) {
1007     RelocIterator iter(this);
1008     iter.print();
1009   }
1010 }
1011 
1012 void CodeBuffer::print() {
1013   if (this == NULL) {
1014     tty->print_cr("NULL CodeBuffer pointer");
1015     return;
1016   }
1017 
1018   tty->print_cr("CodeBuffer:");
1019   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1020     // print each section
1021     CodeSection* cs = code_section(n);
1022     cs->print(code_section_name(n));
1023   }
1024 }
1025 
1026 #endif // PRODUCT