1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "utilities/copy.hpp"
  29 
  30 // The structure of a CodeSection:
  31 //
  32 //    _start ->           +----------------+
  33 //                        | machine code...|
  34 //    _end ->             |----------------|
  35 //                        |                |
  36 //                        |    (empty)     |
  37 //                        |                |
  38 //                        |                |
  39 //                        +----------------+
  40 //    _limit ->           |                |
  41 //
  42 //    _locs_start ->      +----------------+
  43 //                        |reloc records...|
  44 //                        |----------------|
  45 //    _locs_end ->        |                |
  46 //                        |                |
  47 //                        |    (empty)     |
  48 //                        |                |
  49 //                        |                |
  50 //                        +----------------+
  51 //    _locs_limit ->      |                |
  52 // The _end (resp. _limit) pointer refers to the first
  53 // unused (resp. unallocated) byte.
  54 
  55 // The structure of the CodeBuffer while code is being accumulated:
  56 //
  57 //    _total_start ->    \
  58 //    _insts._start ->              +----------------+
  59 //                                  |                |
  60 //                                  |     Code       |
  61 //                                  |                |
  62 //    _stubs._start ->              |----------------|
  63 //                                  |                |
  64 //                                  |    Stubs       | (also handlers for deopt/exception)
  65 //                                  |                |
  66 //    _consts._start ->             |----------------|
  67 //                                  |                |
  68 //                                  |   Constants    |
  69 //                                  |                |
  70 //                                  +----------------+
  71 //    + _total_size ->              |                |
  72 //
  73 // When the code and relocations are copied to the code cache,
  74 // the empty parts of each section are removed, and everything
  75 // is copied into contiguous locations.
  76 
  77 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  78 
  79 // External buffer, in a predefined CodeBlob.
  80 // Important: The code_start must be taken exactly, and not realigned.
  81 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  82   initialize_misc("static buffer");
  83   initialize(blob->content_begin(), blob->content_size());
  84   assert(verify_section_allocation(), "initial use of buffer OK");
  85 }
  86 
  87 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  88   // Compute maximal alignment.
  89   int align = _insts.alignment();
  90   // Always allow for empty slop around each section.
  91   int slop = (int) CodeSection::end_slop();
  92 
  93   assert(blob() == NULL, "only once");
  94   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
  95   if (blob() == NULL) {
  96     // The assembler constructor will throw a fatal on an empty CodeBuffer.
  97     return;  // caller must test this
  98   }
  99 
 100   // Set up various pointers into the blob.
 101   initialize(_total_start, _total_size);
 102 
 103   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 104 
 105   pd_initialize();
 106 
 107   if (locs_size != 0) {
 108     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 109   }
 110 
 111   assert(verify_section_allocation(), "initial use of blob is OK");
 112 }
 113 
 114 
 115 CodeBuffer::~CodeBuffer() {
 116   // If we allocate our code buffer from the CodeCache
 117   // via a BufferBlob, and it's not permanent, then
 118   // free the BufferBlob.
 119   // The rest of the memory will be freed when the ResourceObj
 120   // is released.
 121   assert(verify_section_allocation(), "final storage configuration still OK");
 122   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 123     // Previous incarnations of this buffer are held live, so that internal
 124     // addresses constructed before expansions will not be confused.
 125     cb->free_blob();
 126   }
 127 
 128   // free any overflow storage
 129   delete _overflow_arena;
 130 
 131 #ifdef ASSERT
 132   // Save allocation type to execute assert in ~ResourceObj()
 133   // which is called after this destructor.
 134   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 135   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 136   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 137 #endif
 138 }
 139 
 140 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 141   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 142   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
 143   _oop_recorder = r;
 144 }
 145 
 146 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 147   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 148   csize_t slop = CodeSection::end_slop();  // margin between sections
 149   int align = cs->alignment();
 150   assert(is_power_of_2(align), "sanity");
 151   address start  = _insts._start;
 152   address limit  = _insts._limit;
 153   address middle = limit - size;
 154   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 155   guarantee(middle - slop > start, "need enough space to divide up");
 156   _insts._limit = middle - slop;  // subtract desired space, plus slop
 157   cs->initialize(middle, limit - middle);
 158   assert(cs->start() == middle, "sanity");
 159   assert(cs->limit() == limit,  "sanity");
 160   // give it some relocations to start with, if the main section has them
 161   if (_insts.has_locs())  cs->initialize_locs(1);
 162 }
 163 
 164 void CodeBuffer::freeze_section(CodeSection* cs) {
 165   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 166   csize_t frozen_size = cs->size();
 167   if (next_cs != NULL) {
 168     frozen_size = next_cs->align_at_start(frozen_size);
 169   }
 170   address old_limit = cs->limit();
 171   address new_limit = cs->start() + frozen_size;
 172   relocInfo* old_locs_limit = cs->locs_limit();
 173   relocInfo* new_locs_limit = cs->locs_end();
 174   // Patch the limits.
 175   cs->_limit = new_limit;
 176   cs->_locs_limit = new_locs_limit;
 177   cs->_frozen = true;
 178   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 179     // Give remaining buffer space to the following section.
 180     next_cs->initialize(new_limit, old_limit - new_limit);
 181     next_cs->initialize_shared_locs(new_locs_limit,
 182                                     old_locs_limit - new_locs_limit);
 183   }
 184 }
 185 
 186 void CodeBuffer::set_blob(BufferBlob* blob) {
 187   _blob = blob;
 188   if (blob != NULL) {
 189     address start = blob->content_begin();
 190     address end   = blob->content_end();
 191     // Round up the starting address.
 192     int align = _insts.alignment();
 193     start += (-(intptr_t)start) & (align-1);
 194     _total_start = start;
 195     _total_size  = end - start;
 196   } else {
 197 #ifdef ASSERT
 198     // Clean out dangling pointers.
 199     _total_start    = badAddress;
 200     _consts._start  = _consts._end  = badAddress;
 201     _insts._start   = _insts._end   = badAddress;
 202     _stubs._start   = _stubs._end   = badAddress;
 203 #endif //ASSERT
 204   }
 205 }
 206 
 207 void CodeBuffer::free_blob() {
 208   if (_blob != NULL) {
 209     BufferBlob::free(_blob);
 210     set_blob(NULL);
 211   }
 212 }
 213 
 214 const char* CodeBuffer::code_section_name(int n) {
 215 #ifdef PRODUCT
 216   return NULL;
 217 #else //PRODUCT
 218   switch (n) {
 219   case SECT_CONSTS:            return "consts";
 220   case SECT_INSTS:             return "insts";
 221   case SECT_STUBS:             return "stubs";
 222   default:                     return NULL;
 223   }
 224 #endif //PRODUCT
 225 }
 226 
 227 int CodeBuffer::section_index_of(address addr) const {
 228   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 229     const CodeSection* cs = code_section(n);
 230     if (cs->allocates(addr))  return n;
 231   }
 232   return SECT_NONE;
 233 }
 234 
 235 int CodeBuffer::locator(address addr) const {
 236   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 237     const CodeSection* cs = code_section(n);
 238     if (cs->allocates(addr)) {
 239       return locator(addr - cs->start(), n);
 240     }
 241   }
 242   return -1;
 243 }
 244 
 245 address CodeBuffer::locator_address(int locator) const {
 246   if (locator < 0)  return NULL;
 247   address start = code_section(locator_sect(locator))->start();
 248   return start + locator_pos(locator);
 249 }
 250 
 251 address CodeBuffer::decode_begin() {
 252   address begin = _insts.start();
 253   if (_decode_begin != NULL && _decode_begin > begin)
 254     begin = _decode_begin;
 255   return begin;
 256 }
 257 
 258 
 259 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 260   if (_overflow_arena == NULL) {
 261     _overflow_arena = new Arena();
 262   }
 263   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 264 }
 265 
 266 
 267 // Helper function for managing labels and their target addresses.
 268 // Returns a sensible address, and if it is not the label's final
 269 // address, notes the dependency (at 'branch_pc') on the label.
 270 address CodeSection::target(Label& L, address branch_pc) {
 271   if (L.is_bound()) {
 272     int loc = L.loc();
 273     if (index() == CodeBuffer::locator_sect(loc)) {
 274       return start() + CodeBuffer::locator_pos(loc);
 275     } else {
 276       return outer()->locator_address(loc);
 277     }
 278   } else {
 279     assert(allocates2(branch_pc), "sanity");
 280     address base = start();
 281     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 282     L.add_patch_at(outer(), patch_loc);
 283 
 284     // Need to return a pc, doesn't matter what it is since it will be
 285     // replaced during resolution later.
 286     // Don't return NULL or badAddress, since branches shouldn't overflow.
 287     // Don't return base either because that could overflow displacements
 288     // for shorter branches.  It will get checked when bound.
 289     return branch_pc;
 290   }
 291 }
 292 
 293 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 294   Relocation* reloc = spec.reloc();
 295   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 296   if (rtype == relocInfo::none)  return;
 297 
 298   // The assertion below has been adjusted, to also work for
 299   // relocation for fixup.  Sometimes we want to put relocation
 300   // information for the next instruction, since it will be patched
 301   // with a call.
 302   assert(start() <= at && at <= end()+1,
 303          "cannot relocate data outside code boundaries");
 304 
 305   if (!has_locs()) {
 306     // no space for relocation information provided => code cannot be
 307     // relocated.  Make sure that relocate is only called with rtypes
 308     // that can be ignored for this kind of code.
 309     assert(rtype == relocInfo::none              ||
 310            rtype == relocInfo::runtime_call_type ||
 311            rtype == relocInfo::internal_word_type||
 312            rtype == relocInfo::section_word_type ||
 313            rtype == relocInfo::external_word_type,
 314            "code needs relocation information");
 315     // leave behind an indication that we attempted a relocation
 316     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 317     return;
 318   }
 319 
 320   // Advance the point, noting the offset we'll have to record.
 321   csize_t offset = at - locs_point();
 322   set_locs_point(at);
 323 
 324   // Test for a couple of overflow conditions; maybe expand the buffer.
 325   relocInfo* end = locs_end();
 326   relocInfo* req = end + relocInfo::length_limit;
 327   // Check for (potential) overflow
 328   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 329     req += (uint)offset / (uint)relocInfo::offset_limit();
 330     if (req >= locs_limit()) {
 331       // Allocate or reallocate.
 332       expand_locs(locs_count() + (req - end));
 333       // reload pointer
 334       end = locs_end();
 335     }
 336   }
 337 
 338   // If the offset is giant, emit filler relocs, of type 'none', but
 339   // each carrying the largest possible offset, to advance the locs_point.
 340   while (offset >= relocInfo::offset_limit()) {
 341     assert(end < locs_limit(), "adjust previous paragraph of code");
 342     *end++ = filler_relocInfo();
 343     offset -= filler_relocInfo().addr_offset();
 344   }
 345 
 346   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 347   (*end) = relocInfo(rtype, offset, format);
 348 
 349   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 350   end->initialize(this, reloc);
 351 }
 352 
 353 void CodeSection::initialize_locs(int locs_capacity) {
 354   assert(_locs_start == NULL, "only one locs init step, please");
 355   // Apply a priori lower limits to relocation size:
 356   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 357   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 358   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 359   _locs_start    = locs_start;
 360   _locs_end      = locs_start;
 361   _locs_limit    = locs_start + locs_capacity;
 362   _locs_own      = true;
 363 }
 364 
 365 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 366   assert(_locs_start == NULL, "do this before locs are allocated");
 367   // Internal invariant:  locs buf must be fully aligned.
 368   // See copy_relocations_to() below.
 369   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 370     ++buf; --length;
 371   }
 372   if (length > 0) {
 373     _locs_start = buf;
 374     _locs_end   = buf;
 375     _locs_limit = buf + length;
 376     _locs_own   = false;
 377   }
 378 }
 379 
 380 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 381   int lcount = source_cs->locs_count();
 382   if (lcount != 0) {
 383     initialize_shared_locs(source_cs->locs_start(), lcount);
 384     _locs_end = _locs_limit = _locs_start + lcount;
 385     assert(is_allocated(), "must have copied code already");
 386     set_locs_point(start() + source_cs->locs_point_off());
 387   }
 388   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 389 }
 390 
 391 void CodeSection::expand_locs(int new_capacity) {
 392   if (_locs_start == NULL) {
 393     initialize_locs(new_capacity);
 394     return;
 395   } else {
 396     int old_count    = locs_count();
 397     int old_capacity = locs_capacity();
 398     if (new_capacity < old_capacity * 2)
 399       new_capacity = old_capacity * 2;
 400     relocInfo* locs_start;
 401     if (_locs_own) {
 402       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 403     } else {
 404       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 405       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 406       _locs_own = true;
 407     }
 408     _locs_start    = locs_start;
 409     _locs_end      = locs_start + old_count;
 410     _locs_limit    = locs_start + new_capacity;
 411   }
 412 }
 413 
 414 
 415 /// Support for emitting the code to its final location.
 416 /// The pattern is the same for all functions.
 417 /// We iterate over all the sections, padding each to alignment.
 418 
 419 csize_t CodeBuffer::total_content_size() const {
 420   csize_t size_so_far = 0;
 421   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 422     const CodeSection* cs = code_section(n);
 423     if (cs->is_empty())  continue;  // skip trivial section
 424     size_so_far = cs->align_at_start(size_so_far);
 425     size_so_far += cs->size();
 426   }
 427   return size_so_far;
 428 }
 429 
 430 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 431   address buf = dest->_total_start;
 432   csize_t buf_offset = 0;
 433   assert(dest->_total_size >= total_content_size(), "must be big enough");
 434 
 435   {
 436     // not sure why this is here, but why not...
 437     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 438     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 439   }
 440 
 441   const CodeSection* prev_cs      = NULL;
 442   CodeSection*       prev_dest_cs = NULL;
 443 
 444   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 445     // figure compact layout of each section
 446     const CodeSection* cs = code_section(n);
 447     csize_t csize = cs->size();
 448 
 449     CodeSection* dest_cs = dest->code_section(n);
 450     if (!cs->is_empty()) {
 451       // Compute initial padding; assign it to the previous non-empty guy.
 452       // Cf. figure_expanded_capacities.
 453       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 454       if (padding != 0) {
 455         buf_offset += padding;
 456         assert(prev_dest_cs != NULL, "sanity");
 457         prev_dest_cs->_limit += padding;
 458       }
 459       #ifdef ASSERT
 460       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 461         // Make sure the ends still match up.
 462         // This is important because a branch in a frozen section
 463         // might target code in a following section, via a Label,
 464         // and without a relocation record.  See Label::patch_instructions.
 465         address dest_start = buf+buf_offset;
 466         csize_t start2start = cs->start() - prev_cs->start();
 467         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 468         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 469       }
 470       #endif //ASSERT
 471       prev_dest_cs = dest_cs;
 472       prev_cs      = cs;
 473     }
 474 
 475     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 476     dest_cs->initialize(buf+buf_offset, csize);
 477     dest_cs->set_end(buf+buf_offset+csize);
 478     assert(dest_cs->is_allocated(), "must always be allocated");
 479     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 480 
 481     buf_offset += csize;
 482   }
 483 
 484   // Done calculating sections; did it come out to the right end?
 485   assert(buf_offset == total_content_size(), "sanity");
 486   assert(dest->verify_section_allocation(), "final configuration works");
 487 }
 488 
 489 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
 490   csize_t size_so_far = 0;
 491   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 492     const CodeSection* cur_cs = code_section(n);
 493     if (!cur_cs->is_empty()) {
 494       size_so_far = cur_cs->align_at_start(size_so_far);
 495     }
 496     if (cur_cs->index() == cs->index()) {
 497       return size_so_far;
 498     }
 499     size_so_far += cur_cs->size();
 500   }
 501   ShouldNotReachHere();
 502   return -1;
 503 }
 504 
 505 csize_t CodeBuffer::total_relocation_size() const {
 506   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 507   csize_t csize = total_content_size();
 508   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 509   return (csize_t) align_size_up(total, HeapWordSize);
 510 }
 511 
 512 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 513   address buf = NULL;
 514   csize_t buf_offset = 0;
 515   csize_t buf_limit = 0;
 516   if (dest != NULL) {
 517     buf = (address)dest->relocation_begin();
 518     buf_limit = (address)dest->relocation_end() - buf;
 519     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 520     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 521   }
 522   // if dest == NULL, this is just the sizing pass
 523 
 524   csize_t code_end_so_far = 0;
 525   csize_t code_point_so_far = 0;
 526   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 527     // pull relocs out of each section
 528     const CodeSection* cs = code_section(n);
 529     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 530     if (cs->is_empty())  continue;  // skip trivial section
 531     relocInfo* lstart = cs->locs_start();
 532     relocInfo* lend   = cs->locs_end();
 533     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 534     csize_t    csize  = cs->size();
 535     code_end_so_far = cs->align_at_start(code_end_so_far);
 536 
 537     if (lsize > 0) {
 538       // Figure out how to advance the combined relocation point
 539       // first to the beginning of this section.
 540       // We'll insert one or more filler relocs to span that gap.
 541       // (Don't bother to improve this by editing the first reloc's offset.)
 542       csize_t new_code_point = code_end_so_far;
 543       for (csize_t jump;
 544            code_point_so_far < new_code_point;
 545            code_point_so_far += jump) {
 546         jump = new_code_point - code_point_so_far;
 547         relocInfo filler = filler_relocInfo();
 548         if (jump >= filler.addr_offset()) {
 549           jump = filler.addr_offset();
 550         } else {  // else shrink the filler to fit
 551           filler = relocInfo(relocInfo::none, jump);
 552         }
 553         if (buf != NULL) {
 554           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 555           *(relocInfo*)(buf+buf_offset) = filler;
 556         }
 557         buf_offset += sizeof(filler);
 558       }
 559 
 560       // Update code point and end to skip past this section:
 561       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 562       assert(code_point_so_far <= last_code_point, "sanity");
 563       code_point_so_far = last_code_point; // advance past this guy's relocs
 564     }
 565     code_end_so_far += csize;  // advance past this guy's instructions too
 566 
 567     // Done with filler; emit the real relocations:
 568     if (buf != NULL && lsize != 0) {
 569       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 570       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 571       if (buf_offset % HeapWordSize == 0) {
 572         // Use wordwise copies if possible:
 573         Copy::disjoint_words((HeapWord*)lstart,
 574                              (HeapWord*)(buf+buf_offset),
 575                              (lsize + HeapWordSize-1) / HeapWordSize);
 576       } else {
 577         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 578       }
 579     }
 580     buf_offset += lsize;
 581   }
 582 
 583   // Align end of relocation info in target.
 584   while (buf_offset % HeapWordSize != 0) {
 585     if (buf != NULL) {
 586       relocInfo padding = relocInfo(relocInfo::none, 0);
 587       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 588       *(relocInfo*)(buf+buf_offset) = padding;
 589     }
 590     buf_offset += sizeof(relocInfo);
 591   }
 592 
 593   assert(code_end_so_far == total_content_size(), "sanity");
 594 
 595   // Account for index:
 596   if (buf != NULL) {
 597     RelocIterator::create_index(dest->relocation_begin(),
 598                                 buf_offset / sizeof(relocInfo),
 599                                 dest->relocation_end());
 600   }
 601 
 602   return buf_offset;
 603 }
 604 
 605 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 606 #ifndef PRODUCT
 607   if (PrintNMethods && (WizardMode || Verbose)) {
 608     tty->print("done with CodeBuffer:");
 609     ((CodeBuffer*)this)->print();
 610   }
 611 #endif //PRODUCT
 612 
 613   CodeBuffer dest(dest_blob);
 614   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 615   this->compute_final_layout(&dest);
 616   relocate_code_to(&dest);
 617 
 618   // transfer comments from buffer to blob
 619   dest_blob->set_comments(_comments);
 620 
 621   // Done moving code bytes; were they the right size?
 622   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 623 
 624   // Flush generated code
 625   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 626 }
 627 
 628 // Move all my code into another code buffer.  Consult applicable
 629 // relocs to repair embedded addresses.  The layout in the destination
 630 // CodeBuffer is different to the source CodeBuffer: the destination
 631 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 632 // ascending address).
 633 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 634   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
 635   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 636     // pull code out of each section
 637     const CodeSection* cs = code_section(n);
 638     if (cs->is_empty())  continue;  // skip trivial section
 639     CodeSection* dest_cs = dest->code_section(n);
 640     assert(cs->size() == dest_cs->size(), "sanity");
 641     csize_t usize = dest_cs->size();
 642     csize_t wsize = align_size_up(usize, HeapWordSize);
 643     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 644     // Copy the code as aligned machine words.
 645     // This may also include an uninitialized partial word at the end.
 646     Copy::disjoint_words((HeapWord*)cs->start(),
 647                          (HeapWord*)dest_cs->start(),
 648                          wsize / HeapWordSize);
 649 
 650     if (dest->blob() == NULL) {
 651       // Destination is a final resting place, not just another buffer.
 652       // Normalize uninitialized bytes in the final padding.
 653       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 654                           Assembler::code_fill_byte());
 655     }
 656 
 657     assert(cs->locs_start() != (relocInfo*)badAddress,
 658            "this section carries no reloc storage, but reloc was attempted");
 659 
 660     // Make the new code copy use the old copy's relocations:
 661     dest_cs->initialize_locs_from(cs);
 662 
 663     { // Repair the pc relative information in the code after the move
 664       RelocIterator iter(dest_cs);
 665       while (iter.next()) {
 666         iter.reloc()->fix_relocation_after_move(this, dest);
 667       }
 668     }
 669   }
 670 }
 671 
 672 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 673                                                csize_t amount,
 674                                                csize_t* new_capacity) {
 675   csize_t new_total_cap = 0;
 676 
 677   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 678     const CodeSection* sect = code_section(n);
 679 
 680     if (!sect->is_empty()) {
 681       // Compute initial padding; assign it to the previous section,
 682       // even if it's empty (e.g. consts section can be empty).
 683       // Cf. compute_final_layout
 684       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 685       if (padding != 0) {
 686         new_total_cap += padding;
 687         assert(n - 1 >= SECT_FIRST, "sanity");
 688         new_capacity[n - 1] += padding;
 689       }
 690     }
 691 
 692     csize_t exp = sect->size();  // 100% increase
 693     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 694     if (sect == which_cs) {
 695       if (exp < amount)  exp = amount;
 696       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 697     } else if (n == SECT_INSTS) {
 698       // scale down inst increases to a more modest 25%
 699       exp = 4*K + ((exp - 4*K) >> 2);
 700       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 701     } else if (sect->is_empty()) {
 702       // do not grow an empty secondary section
 703       exp = 0;
 704     }
 705     // Allow for inter-section slop:
 706     exp += CodeSection::end_slop();
 707     csize_t new_cap = sect->size() + exp;
 708     if (new_cap < sect->capacity()) {
 709       // No need to expand after all.
 710       new_cap = sect->capacity();
 711     }
 712     new_capacity[n] = new_cap;
 713     new_total_cap += new_cap;
 714   }
 715 
 716   return new_total_cap;
 717 }
 718 
 719 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 720 #ifndef PRODUCT
 721   if (PrintNMethods && (WizardMode || Verbose)) {
 722     tty->print("expanding CodeBuffer:");
 723     this->print();
 724   }
 725 
 726   if (StressCodeBuffers && blob() != NULL) {
 727     static int expand_count = 0;
 728     if (expand_count >= 0)  expand_count += 1;
 729     if (expand_count > 100 && is_power_of_2(expand_count)) {
 730       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 731       // simulate an occasional allocation failure:
 732       free_blob();
 733     }
 734   }
 735 #endif //PRODUCT
 736 
 737   // Resizing must be allowed
 738   {
 739     if (blob() == NULL)  return;  // caller must check for blob == NULL
 740     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 741       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 742     }
 743   }
 744 
 745   // Figure new capacity for each section.
 746   csize_t new_capacity[SECT_LIMIT];
 747   csize_t new_total_cap
 748     = figure_expanded_capacities(which_cs, amount, new_capacity);
 749 
 750   // Create a new (temporary) code buffer to hold all the new data
 751   CodeBuffer cb(name(), new_total_cap, 0);
 752   if (cb.blob() == NULL) {
 753     // Failed to allocate in code cache.
 754     free_blob();
 755     return;
 756   }
 757 
 758   // Create an old code buffer to remember which addresses used to go where.
 759   // This will be useful when we do final assembly into the code cache,
 760   // because we will need to know how to warp any internal address that
 761   // has been created at any time in this CodeBuffer's past.
 762   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 763   bxp->take_over_code_from(this);  // remember the old undersized blob
 764   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 765   bxp->_before_expand = this->_before_expand;
 766   this->_before_expand = bxp;
 767 
 768   // Give each section its required (expanded) capacity.
 769   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 770     CodeSection* cb_sect   = cb.code_section(n);
 771     CodeSection* this_sect = code_section(n);
 772     if (new_capacity[n] == 0)  continue;  // already nulled out
 773     if (n != SECT_INSTS) {
 774       cb.initialize_section_size(cb_sect, new_capacity[n]);
 775     }
 776     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 777     address cb_start = cb_sect->start();
 778     cb_sect->set_end(cb_start + this_sect->size());
 779     if (this_sect->mark() == NULL) {
 780       cb_sect->clear_mark();
 781     } else {
 782       cb_sect->set_mark(cb_start + this_sect->mark_off());
 783     }
 784   }
 785 
 786   // Move all the code and relocations to the new blob:
 787   relocate_code_to(&cb);
 788 
 789   // Copy the temporary code buffer into the current code buffer.
 790   // Basically, do {*this = cb}, except for some control information.
 791   this->take_over_code_from(&cb);
 792   cb.set_blob(NULL);
 793 
 794   // Zap the old code buffer contents, to avoid mistakenly using them.
 795   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 796                                  badCodeHeapFreeVal));
 797 
 798   _decode_begin = NULL;  // sanity
 799 
 800   // Make certain that the new sections are all snugly inside the new blob.
 801   assert(verify_section_allocation(), "expanded allocation is ship-shape");
 802 
 803 #ifndef PRODUCT
 804   if (PrintNMethods && (WizardMode || Verbose)) {
 805     tty->print("expanded CodeBuffer:");
 806     this->print();
 807   }
 808 #endif //PRODUCT
 809 }
 810 
 811 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 812   // Must already have disposed of the old blob somehow.
 813   assert(blob() == NULL, "must be empty");
 814 #ifdef ASSERT
 815 
 816 #endif
 817   // Take the new blob away from cb.
 818   set_blob(cb->blob());
 819   // Take over all the section pointers.
 820   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 821     CodeSection* cb_sect   = cb->code_section(n);
 822     CodeSection* this_sect = code_section(n);
 823     this_sect->take_over_code_from(cb_sect);
 824   }
 825   _overflow_arena = cb->_overflow_arena;
 826   // Make sure the old cb won't try to use it or free it.
 827   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 828 }
 829 
 830 #ifdef ASSERT
 831 bool CodeBuffer::verify_section_allocation() {
 832   address tstart = _total_start;
 833   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
 834   address tend   = tstart + _total_size;
 835   if (_blob != NULL) {
 836     assert(tstart >= _blob->content_begin(), "sanity");
 837     assert(tend   <= _blob->content_end(),   "sanity");
 838   }
 839   // Verify disjointness.
 840   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 841     CodeSection* sect = code_section(n);
 842     if (!sect->is_allocated() || sect->is_empty())  continue;
 843     assert((intptr_t)sect->start() % sect->alignment() == 0
 844            || sect->is_empty() || _blob == NULL,
 845            "start is aligned");
 846     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
 847       CodeSection* other = code_section(m);
 848       if (!other->is_allocated() || other == sect)  continue;
 849       assert(!other->contains(sect->start()    ), "sanity");
 850       // limit is an exclusive address and can be the start of another
 851       // section.
 852       assert(!other->contains(sect->limit() - 1), "sanity");
 853     }
 854     assert(sect->end() <= tend, "sanity");
 855   }
 856   return true;
 857 }
 858 #endif //ASSERT
 859 
 860 #ifndef PRODUCT
 861 
 862 void CodeSection::dump() {
 863   address ptr = start();
 864   for (csize_t step; ptr < end(); ptr += step) {
 865     step = end() - ptr;
 866     if (step > jintSize * 4)  step = jintSize * 4;
 867     tty->print(PTR_FORMAT ": ", ptr);
 868     while (step > 0) {
 869       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
 870       ptr += jintSize;
 871     }
 872     tty->cr();
 873   }
 874 }
 875 
 876 
 877 void CodeSection::decode() {
 878   Disassembler::decode(start(), end());
 879 }
 880 
 881 
 882 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
 883   _comments.add_comment(offset, comment);
 884 }
 885 
 886 
 887 class CodeComment: public CHeapObj {
 888  private:
 889   friend class CodeComments;
 890   intptr_t     _offset;
 891   const char * _comment;
 892   CodeComment* _next;
 893 
 894   ~CodeComment() {
 895     assert(_next == NULL, "wrong interface for freeing list");
 896     os::free((void*)_comment);
 897   }
 898 
 899  public:
 900   CodeComment(intptr_t offset, const char * comment) {
 901     _offset = offset;
 902     _comment = os::strdup(comment);
 903     _next = NULL;
 904   }
 905 
 906   intptr_t     offset()  const { return _offset;  }
 907   const char * comment() const { return _comment; }
 908   CodeComment* next()          { return _next; }
 909 
 910   void set_next(CodeComment* next) { _next = next; }
 911 
 912   CodeComment* find(intptr_t offset) {
 913     CodeComment* a = this;
 914     while (a != NULL && a->_offset != offset) {
 915       a = a->_next;
 916     }
 917     return a;
 918   }
 919 };
 920 
 921 
 922 void CodeComments::add_comment(intptr_t offset, const char * comment) {
 923   CodeComment* c = new CodeComment(offset, comment);
 924   CodeComment* insert = NULL;
 925   if (_comments != NULL) {
 926     CodeComment* c = _comments->find(offset);
 927     insert = c;
 928     while (c && c->offset() == offset) {
 929       insert = c;
 930       c = c->next();
 931     }
 932   }
 933   if (insert) {
 934     // insert after comments with same offset
 935     c->set_next(insert->next());
 936     insert->set_next(c);
 937   } else {
 938     c->set_next(_comments);
 939     _comments = c;
 940   }
 941 }
 942 
 943 
 944 void CodeComments::assign(CodeComments& other) {
 945   assert(_comments == NULL, "don't overwrite old value");
 946   _comments = other._comments;
 947 }
 948 
 949 
 950 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
 951   if (_comments != NULL) {
 952     CodeComment* c = _comments->find(offset);
 953     while (c && c->offset() == offset) {
 954       stream->bol();
 955       stream->print("  ;; ");
 956       stream->print_cr(c->comment());
 957       c = c->next();
 958     }
 959   }
 960 }
 961 
 962 
 963 void CodeComments::free() {
 964   CodeComment* n = _comments;
 965   while (n) {
 966     // unlink the node from the list saving a pointer to the next
 967     CodeComment* p = n->_next;
 968     n->_next = NULL;
 969     delete n;
 970     n = p;
 971   }
 972   _comments = NULL;
 973 }
 974 
 975 
 976 
 977 void CodeBuffer::decode() {
 978   Disassembler::decode(decode_begin(), insts_end());
 979   _decode_begin = insts_end();
 980 }
 981 
 982 
 983 void CodeBuffer::skip_decode() {
 984   _decode_begin = insts_end();
 985 }
 986 
 987 
 988 void CodeBuffer::decode_all() {
 989   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 990     // dump contents of each section
 991     CodeSection* cs = code_section(n);
 992     tty->print_cr("! %s:", code_section_name(n));
 993     if (cs != consts())
 994       cs->decode();
 995     else
 996       cs->dump();
 997   }
 998 }
 999 
1000 
1001 void CodeSection::print(const char* name) {
1002   csize_t locs_size = locs_end() - locs_start();
1003   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1004                 name, start(), end(), limit(), size(), capacity(),
1005                 is_frozen()? " [frozen]": "");
1006   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1007                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1008   if (PrintRelocations) {
1009     RelocIterator iter(this);
1010     iter.print();
1011   }
1012 }
1013 
1014 void CodeBuffer::print() {
1015   if (this == NULL) {
1016     tty->print_cr("NULL CodeBuffer pointer");
1017     return;
1018   }
1019 
1020   tty->print_cr("CodeBuffer:");
1021   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1022     // print each section
1023     CodeSection* cs = code_section(n);
1024     cs->print(code_section_name(n));
1025   }
1026 }
1027 
1028 #endif // PRODUCT