1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 
  45 
  46 #ifndef PRODUCT
  47 
  48   static LinearScanStatistic _stat_before_alloc;
  49   static LinearScanStatistic _stat_after_asign;
  50   static LinearScanStatistic _stat_final;
  51 
  52   static LinearScanTimers _total_timer;
  53 
  54   // helper macro for short definition of timer
  55   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  56 
  57   // helper macro for short definition of trace-output inside code
  58   #define TRACE_LINEAR_SCAN(level, code)       \
  59     if (TraceLinearScanLevel >= level) {       \
  60       code;                                    \
  61     }
  62 
  63 #else
  64 
  65   #define TIME_LINEAR_SCAN(timer_name)
  66   #define TRACE_LINEAR_SCAN(level, code)
  67 
  68 #endif
  69 
  70 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  71 #ifdef _LP64
  72 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
  73 #else
  74 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
  75 #endif
  76 
  77 
  78 // Implementation of LinearScan
  79 
  80 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  81  : _compilation(ir->compilation())
  82  , _ir(ir)
  83  , _gen(gen)
  84  , _frame_map(frame_map)
  85  , _num_virtual_regs(gen->max_virtual_register_number())
  86  , _has_fpu_registers(false)
  87  , _num_calls(-1)
  88  , _max_spills(0)
  89  , _unused_spill_slot(-1)
  90  , _intervals(0)   // initialized later with correct length
  91  , _new_intervals_from_allocation(new IntervalList())
  92  , _sorted_intervals(NULL)
  93  , _lir_ops(0)     // initialized later with correct length
  94  , _block_of_op(0) // initialized later with correct length
  95  , _has_info(0)
  96  , _has_call(0)
  97  , _scope_value_cache(0) // initialized later with correct length
  98  , _interval_in_loop(0, 0) // initialized later with correct length
  99  , _cached_blocks(*ir->linear_scan_order())
 100 #ifdef X86
 101  , _fpu_stack_allocator(NULL)
 102 #endif
 103 {
 104   assert(this->ir() != NULL,          "check if valid");
 105   assert(this->compilation() != NULL, "check if valid");
 106   assert(this->gen() != NULL,         "check if valid");
 107   assert(this->frame_map() != NULL,   "check if valid");
 108 }
 109 
 110 
 111 // ********** functions for converting LIR-Operands to register numbers
 112 //
 113 // Emulate a flat register file comprising physical integer registers,
 114 // physical floating-point registers and virtual registers, in that order.
 115 // Virtual registers already have appropriate numbers, since V0 is
 116 // the number of physical registers.
 117 // Returns -1 for hi word if opr is a single word operand.
 118 //
 119 // Note: the inverse operation (calculating an operand for register numbers)
 120 //       is done in calc_operand_for_interval()
 121 
 122 int LinearScan::reg_num(LIR_Opr opr) {
 123   assert(opr->is_register(), "should not call this otherwise");
 124 
 125   if (opr->is_virtual_register()) {
 126     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 127     return opr->vreg_number();
 128   } else if (opr->is_single_cpu()) {
 129     return opr->cpu_regnr();
 130   } else if (opr->is_double_cpu()) {
 131     return opr->cpu_regnrLo();
 132 #ifdef X86
 133   } else if (opr->is_single_xmm()) {
 134     return opr->fpu_regnr() + pd_first_xmm_reg;
 135   } else if (opr->is_double_xmm()) {
 136     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 137 #endif
 138   } else if (opr->is_single_fpu()) {
 139     return opr->fpu_regnr() + pd_first_fpu_reg;
 140   } else if (opr->is_double_fpu()) {
 141     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 142   } else {
 143     ShouldNotReachHere();
 144     return -1;
 145   }
 146 }
 147 
 148 int LinearScan::reg_numHi(LIR_Opr opr) {
 149   assert(opr->is_register(), "should not call this otherwise");
 150 
 151   if (opr->is_virtual_register()) {
 152     return -1;
 153   } else if (opr->is_single_cpu()) {
 154     return -1;
 155   } else if (opr->is_double_cpu()) {
 156     return opr->cpu_regnrHi();
 157 #ifdef X86
 158   } else if (opr->is_single_xmm()) {
 159     return -1;
 160   } else if (opr->is_double_xmm()) {
 161     return -1;
 162 #endif
 163   } else if (opr->is_single_fpu()) {
 164     return -1;
 165   } else if (opr->is_double_fpu()) {
 166     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 167   } else {
 168     ShouldNotReachHere();
 169     return -1;
 170   }
 171 }
 172 
 173 
 174 // ********** functions for classification of intervals
 175 
 176 bool LinearScan::is_precolored_interval(const Interval* i) {
 177   return i->reg_num() < LinearScan::nof_regs;
 178 }
 179 
 180 bool LinearScan::is_virtual_interval(const Interval* i) {
 181   return i->reg_num() >= LIR_OprDesc::vreg_base;
 182 }
 183 
 184 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 185   return i->reg_num() < LinearScan::nof_cpu_regs;
 186 }
 187 
 188 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 189 #if defined(__SOFTFP__) || defined(E500V2)
 190   return i->reg_num() >= LIR_OprDesc::vreg_base;
 191 #else
 192   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 193 #endif // __SOFTFP__ or E500V2
 194 }
 195 
 196 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 197   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 198 }
 199 
 200 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 201 #if defined(__SOFTFP__) || defined(E500V2)
 202   return false;
 203 #else
 204   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 205 #endif // __SOFTFP__ or E500V2
 206 }
 207 
 208 bool LinearScan::is_in_fpu_register(const Interval* i) {
 209   // fixed intervals not needed for FPU stack allocation
 210   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 211 }
 212 
 213 bool LinearScan::is_oop_interval(const Interval* i) {
 214   // fixed intervals never contain oops
 215   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 216 }
 217 
 218 
 219 // ********** General helper functions
 220 
 221 // compute next unused stack index that can be used for spilling
 222 int LinearScan::allocate_spill_slot(bool double_word) {
 223   int spill_slot;
 224   if (double_word) {
 225     if ((_max_spills & 1) == 1) {
 226       // alignment of double-word values
 227       // the hole because of the alignment is filled with the next single-word value
 228       assert(_unused_spill_slot == -1, "wasting a spill slot");
 229       _unused_spill_slot = _max_spills;
 230       _max_spills++;
 231     }
 232     spill_slot = _max_spills;
 233     _max_spills += 2;
 234 
 235   } else if (_unused_spill_slot != -1) {
 236     // re-use hole that was the result of a previous double-word alignment
 237     spill_slot = _unused_spill_slot;
 238     _unused_spill_slot = -1;
 239 
 240   } else {
 241     spill_slot = _max_spills;
 242     _max_spills++;
 243   }
 244 
 245   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 246 
 247   // the class OopMapValue uses only 11 bits for storing the name of the
 248   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 249   // that is not reported in product builds. Prevent this by checking the
 250   // spill slot here (altough this value and the later used location name
 251   // are slightly different)
 252   if (result > 2000) {
 253     bailout("too many stack slots used");
 254   }
 255 
 256   return result;
 257 }
 258 
 259 void LinearScan::assign_spill_slot(Interval* it) {
 260   // assign the canonical spill slot of the parent (if a part of the interval
 261   // is already spilled) or allocate a new spill slot
 262   if (it->canonical_spill_slot() >= 0) {
 263     it->assign_reg(it->canonical_spill_slot());
 264   } else {
 265     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 266     it->set_canonical_spill_slot(spill);
 267     it->assign_reg(spill);
 268   }
 269 }
 270 
 271 void LinearScan::propagate_spill_slots() {
 272   if (!frame_map()->finalize_frame(max_spills())) {
 273     bailout("frame too large");
 274   }
 275 }
 276 
 277 // create a new interval with a predefined reg_num
 278 // (only used for parent intervals that are created during the building phase)
 279 Interval* LinearScan::create_interval(int reg_num) {
 280   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 281 
 282   Interval* interval = new Interval(reg_num);
 283   _intervals.at_put(reg_num, interval);
 284 
 285   // assign register number for precolored intervals
 286   if (reg_num < LIR_OprDesc::vreg_base) {
 287     interval->assign_reg(reg_num);
 288   }
 289   return interval;
 290 }
 291 
 292 // assign a new reg_num to the interval and append it to the list of intervals
 293 // (only used for child intervals that are created during register allocation)
 294 void LinearScan::append_interval(Interval* it) {
 295   it->set_reg_num(_intervals.length());
 296   _intervals.append(it);
 297   _new_intervals_from_allocation->append(it);
 298 }
 299 
 300 // copy the vreg-flags if an interval is split
 301 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 302   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 303     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 304   }
 305   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 306     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 307   }
 308 
 309   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 310   //       intervals (only the very beginning of the interval must be in memory)
 311 }
 312 
 313 
 314 // ********** spill move optimization
 315 // eliminate moves from register to stack if stack slot is known to be correct
 316 
 317 // called during building of intervals
 318 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 319   assert(interval->is_split_parent(), "can only be called for split parents");
 320 
 321   switch (interval->spill_state()) {
 322     case noDefinitionFound:
 323       assert(interval->spill_definition_pos() == -1, "must no be set before");
 324       interval->set_spill_definition_pos(def_pos);
 325       interval->set_spill_state(oneDefinitionFound);
 326       break;
 327 
 328     case oneDefinitionFound:
 329       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 330       if (def_pos < interval->spill_definition_pos() - 2) {
 331         // second definition found, so no spill optimization possible for this interval
 332         interval->set_spill_state(noOptimization);
 333       } else {
 334         // two consecutive definitions (because of two-operand LIR form)
 335         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 336       }
 337       break;
 338 
 339     case noOptimization:
 340       // nothing to do
 341       break;
 342 
 343     default:
 344       assert(false, "other states not allowed at this time");
 345   }
 346 }
 347 
 348 // called during register allocation
 349 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 350   switch (interval->spill_state()) {
 351     case oneDefinitionFound: {
 352       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 353       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 354 
 355       if (def_loop_depth < spill_loop_depth) {
 356         // the loop depth of the spilling position is higher then the loop depth
 357         // at the definition of the interval -> move write to memory out of loop
 358         // by storing at definitin of the interval
 359         interval->set_spill_state(storeAtDefinition);
 360       } else {
 361         // the interval is currently spilled only once, so for now there is no
 362         // reason to store the interval at the definition
 363         interval->set_spill_state(oneMoveInserted);
 364       }
 365       break;
 366     }
 367 
 368     case oneMoveInserted: {
 369       // the interval is spilled more then once, so it is better to store it to
 370       // memory at the definition
 371       interval->set_spill_state(storeAtDefinition);
 372       break;
 373     }
 374 
 375     case storeAtDefinition:
 376     case startInMemory:
 377     case noOptimization:
 378     case noDefinitionFound:
 379       // nothing to do
 380       break;
 381 
 382     default:
 383       assert(false, "other states not allowed at this time");
 384   }
 385 }
 386 
 387 
 388 bool LinearScan::must_store_at_definition(const Interval* i) {
 389   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 390 }
 391 
 392 // called once before asignment of register numbers
 393 void LinearScan::eliminate_spill_moves() {
 394   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 395   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 396 
 397   // collect all intervals that must be stored after their definion.
 398   // the list is sorted by Interval::spill_definition_pos
 399   Interval* interval;
 400   Interval* temp_list;
 401   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 402 
 403 #ifdef ASSERT
 404   Interval* prev = NULL;
 405   Interval* temp = interval;
 406   while (temp != Interval::end()) {
 407     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 408     if (prev != NULL) {
 409       assert(temp->from() >= prev->from(), "intervals not sorted");
 410       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 411     }
 412 
 413     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 414     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 415     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 416 
 417     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 418 
 419     temp = temp->next();
 420   }
 421 #endif
 422 
 423   LIR_InsertionBuffer insertion_buffer;
 424   int num_blocks = block_count();
 425   for (int i = 0; i < num_blocks; i++) {
 426     BlockBegin* block = block_at(i);
 427     LIR_OpList* instructions = block->lir()->instructions_list();
 428     int         num_inst = instructions->length();
 429     bool        has_new = false;
 430 
 431     // iterate all instructions of the block. skip the first because it is always a label
 432     for (int j = 1; j < num_inst; j++) {
 433       LIR_Op* op = instructions->at(j);
 434       int op_id = op->id();
 435 
 436       if (op_id == -1) {
 437         // remove move from register to stack if the stack slot is guaranteed to be correct.
 438         // only moves that have been inserted by LinearScan can be removed.
 439         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 440         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 441         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 442 
 443         LIR_Op1* op1 = (LIR_Op1*)op;
 444         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 445 
 446         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 447           // move target is a stack slot that is always correct, so eliminate instruction
 448           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 449           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 450         }
 451 
 452       } else {
 453         // insert move from register to stack just after the beginning of the interval
 454         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 455         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 456 
 457         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 458           if (!has_new) {
 459             // prepare insertion buffer (appended when all instructions of the block are processed)
 460             insertion_buffer.init(block->lir());
 461             has_new = true;
 462           }
 463 
 464           LIR_Opr from_opr = operand_for_interval(interval);
 465           LIR_Opr to_opr = canonical_spill_opr(interval);
 466           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 467           assert(to_opr->is_stack(), "to operand must be a stack slot");
 468 
 469           insertion_buffer.move(j, from_opr, to_opr);
 470           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 471 
 472           interval = interval->next();
 473         }
 474       }
 475     } // end of instruction iteration
 476 
 477     if (has_new) {
 478       block->lir()->append(&insertion_buffer);
 479     }
 480   } // end of block iteration
 481 
 482   assert(interval == Interval::end(), "missed an interval");
 483 }
 484 
 485 
 486 // ********** Phase 1: number all instructions in all blocks
 487 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 488 
 489 void LinearScan::number_instructions() {
 490   {
 491     // dummy-timer to measure the cost of the timer itself
 492     // (this time is then subtracted from all other timers to get the real value)
 493     TIME_LINEAR_SCAN(timer_do_nothing);
 494   }
 495   TIME_LINEAR_SCAN(timer_number_instructions);
 496 
 497   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 498   int num_blocks = block_count();
 499   int num_instructions = 0;
 500   int i;
 501   for (i = 0; i < num_blocks; i++) {
 502     num_instructions += block_at(i)->lir()->instructions_list()->length();
 503   }
 504 
 505   // initialize with correct length
 506   _lir_ops = LIR_OpArray(num_instructions);
 507   _block_of_op = BlockBeginArray(num_instructions);
 508 
 509   int op_id = 0;
 510   int idx = 0;
 511 
 512   for (i = 0; i < num_blocks; i++) {
 513     BlockBegin* block = block_at(i);
 514     block->set_first_lir_instruction_id(op_id);
 515     LIR_OpList* instructions = block->lir()->instructions_list();
 516 
 517     int num_inst = instructions->length();
 518     for (int j = 0; j < num_inst; j++) {
 519       LIR_Op* op = instructions->at(j);
 520       op->set_id(op_id);
 521 
 522       _lir_ops.at_put(idx, op);
 523       _block_of_op.at_put(idx, block);
 524       assert(lir_op_with_id(op_id) == op, "must match");
 525 
 526       idx++;
 527       op_id += 2; // numbering of lir_ops by two
 528     }
 529     block->set_last_lir_instruction_id(op_id - 2);
 530   }
 531   assert(idx == num_instructions, "must match");
 532   assert(idx * 2 == op_id, "must match");
 533 
 534   _has_call = BitMap(num_instructions); _has_call.clear();
 535   _has_info = BitMap(num_instructions); _has_info.clear();
 536 }
 537 
 538 
 539 // ********** Phase 2: compute local live sets separately for each block
 540 // (sets live_gen and live_kill for each block)
 541 
 542 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 543   LIR_Opr opr = value->operand();
 544   Constant* con = value->as_Constant();
 545 
 546   // check some asumptions about debug information
 547   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 548   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 549   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 550 
 551   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 552     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 553     int reg = opr->vreg_number();
 554     if (!live_kill.at(reg)) {
 555       live_gen.set_bit(reg);
 556       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 557     }
 558   }
 559 }
 560 
 561 
 562 void LinearScan::compute_local_live_sets() {
 563   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 564 
 565   int  num_blocks = block_count();
 566   int  live_size = live_set_size();
 567   bool local_has_fpu_registers = false;
 568   int  local_num_calls = 0;
 569   LIR_OpVisitState visitor;
 570 
 571   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 572   local_interval_in_loop.clear();
 573 
 574   // iterate all blocks
 575   for (int i = 0; i < num_blocks; i++) {
 576     BlockBegin* block = block_at(i);
 577 
 578     BitMap live_gen(live_size);  live_gen.clear();
 579     BitMap live_kill(live_size); live_kill.clear();
 580 
 581     if (block->is_set(BlockBegin::exception_entry_flag)) {
 582       // Phi functions at the begin of an exception handler are
 583       // implicitly defined (= killed) at the beginning of the block.
 584       for_each_phi_fun(block, phi,
 585         live_kill.set_bit(phi->operand()->vreg_number())
 586       );
 587     }
 588 
 589     LIR_OpList* instructions = block->lir()->instructions_list();
 590     int num_inst = instructions->length();
 591 
 592     // iterate all instructions of the block. skip the first because it is always a label
 593     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 594     for (int j = 1; j < num_inst; j++) {
 595       LIR_Op* op = instructions->at(j);
 596 
 597       // visit operation to collect all operands
 598       visitor.visit(op);
 599 
 600       if (visitor.has_call()) {
 601         _has_call.set_bit(op->id() >> 1);
 602         local_num_calls++;
 603       }
 604       if (visitor.info_count() > 0) {
 605         _has_info.set_bit(op->id() >> 1);
 606       }
 607 
 608       // iterate input operands of instruction
 609       int k, n, reg;
 610       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 611       for (k = 0; k < n; k++) {
 612         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 613         assert(opr->is_register(), "visitor should only return register operands");
 614 
 615         if (opr->is_virtual_register()) {
 616           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 617           reg = opr->vreg_number();
 618           if (!live_kill.at(reg)) {
 619             live_gen.set_bit(reg);
 620             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 621           }
 622           if (block->loop_index() >= 0) {
 623             local_interval_in_loop.set_bit(reg, block->loop_index());
 624           }
 625           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 626         }
 627 
 628 #ifdef ASSERT
 629         // fixed intervals are never live at block boundaries, so
 630         // they need not be processed in live sets.
 631         // this is checked by these assertions to be sure about it.
 632         // the entry block may have incoming values in registers, which is ok.
 633         if (!opr->is_virtual_register() && block != ir()->start()) {
 634           reg = reg_num(opr);
 635           if (is_processed_reg_num(reg)) {
 636             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 637           }
 638           reg = reg_numHi(opr);
 639           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 640             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 641           }
 642         }
 643 #endif
 644       }
 645 
 646       // Add uses of live locals from interpreter's point of view for proper debug information generation
 647       n = visitor.info_count();
 648       for (k = 0; k < n; k++) {
 649         CodeEmitInfo* info = visitor.info_at(k);
 650         ValueStack* stack = info->stack();
 651         for_each_state_value(stack, value,
 652           set_live_gen_kill(value, op, live_gen, live_kill)
 653         );
 654       }
 655 
 656       // iterate temp operands of instruction
 657       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 658       for (k = 0; k < n; k++) {
 659         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 660         assert(opr->is_register(), "visitor should only return register operands");
 661 
 662         if (opr->is_virtual_register()) {
 663           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 664           reg = opr->vreg_number();
 665           live_kill.set_bit(reg);
 666           if (block->loop_index() >= 0) {
 667             local_interval_in_loop.set_bit(reg, block->loop_index());
 668           }
 669           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 670         }
 671 
 672 #ifdef ASSERT
 673         // fixed intervals are never live at block boundaries, so
 674         // they need not be processed in live sets
 675         // process them only in debug mode so that this can be checked
 676         if (!opr->is_virtual_register()) {
 677           reg = reg_num(opr);
 678           if (is_processed_reg_num(reg)) {
 679             live_kill.set_bit(reg_num(opr));
 680           }
 681           reg = reg_numHi(opr);
 682           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 683             live_kill.set_bit(reg);
 684           }
 685         }
 686 #endif
 687       }
 688 
 689       // iterate output operands of instruction
 690       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 691       for (k = 0; k < n; k++) {
 692         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 693         assert(opr->is_register(), "visitor should only return register operands");
 694 
 695         if (opr->is_virtual_register()) {
 696           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 697           reg = opr->vreg_number();
 698           live_kill.set_bit(reg);
 699           if (block->loop_index() >= 0) {
 700             local_interval_in_loop.set_bit(reg, block->loop_index());
 701           }
 702           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 703         }
 704 
 705 #ifdef ASSERT
 706         // fixed intervals are never live at block boundaries, so
 707         // they need not be processed in live sets
 708         // process them only in debug mode so that this can be checked
 709         if (!opr->is_virtual_register()) {
 710           reg = reg_num(opr);
 711           if (is_processed_reg_num(reg)) {
 712             live_kill.set_bit(reg_num(opr));
 713           }
 714           reg = reg_numHi(opr);
 715           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 716             live_kill.set_bit(reg);
 717           }
 718         }
 719 #endif
 720       }
 721     } // end of instruction iteration
 722 
 723     block->set_live_gen (live_gen);
 724     block->set_live_kill(live_kill);
 725     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 726     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 727 
 728     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 729     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 730   } // end of block iteration
 731 
 732   // propagate local calculated information into LinearScan object
 733   _has_fpu_registers = local_has_fpu_registers;
 734   compilation()->set_has_fpu_code(local_has_fpu_registers);
 735 
 736   _num_calls = local_num_calls;
 737   _interval_in_loop = local_interval_in_loop;
 738 }
 739 
 740 
 741 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 742 // (sets live_in and live_out for each block)
 743 
 744 void LinearScan::compute_global_live_sets() {
 745   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 746 
 747   int  num_blocks = block_count();
 748   bool change_occurred;
 749   bool change_occurred_in_block;
 750   int  iteration_count = 0;
 751   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 752 
 753   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 754   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 755   // Exception handlers must be processed because not all live values are
 756   // present in the state array, e.g. because of global value numbering
 757   do {
 758     change_occurred = false;
 759 
 760     // iterate all blocks in reverse order
 761     for (int i = num_blocks - 1; i >= 0; i--) {
 762       BlockBegin* block = block_at(i);
 763 
 764       change_occurred_in_block = false;
 765 
 766       // live_out(block) is the union of live_in(sux), for successors sux of block
 767       int n = block->number_of_sux();
 768       int e = block->number_of_exception_handlers();
 769       if (n + e > 0) {
 770         // block has successors
 771         if (n > 0) {
 772           live_out.set_from(block->sux_at(0)->live_in());
 773           for (int j = 1; j < n; j++) {
 774             live_out.set_union(block->sux_at(j)->live_in());
 775           }
 776         } else {
 777           live_out.clear();
 778         }
 779         for (int j = 0; j < e; j++) {
 780           live_out.set_union(block->exception_handler_at(j)->live_in());
 781         }
 782 
 783         if (!block->live_out().is_same(live_out)) {
 784           // A change occurred.  Swap the old and new live out sets to avoid copying.
 785           BitMap temp = block->live_out();
 786           block->set_live_out(live_out);
 787           live_out = temp;
 788 
 789           change_occurred = true;
 790           change_occurred_in_block = true;
 791         }
 792       }
 793 
 794       if (iteration_count == 0 || change_occurred_in_block) {
 795         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 796         // note: live_in has to be computed only in first iteration or if live_out has changed!
 797         BitMap live_in = block->live_in();
 798         live_in.set_from(block->live_out());
 799         live_in.set_difference(block->live_kill());
 800         live_in.set_union(block->live_gen());
 801       }
 802 
 803 #ifndef PRODUCT
 804       if (TraceLinearScanLevel >= 4) {
 805         char c = ' ';
 806         if (iteration_count == 0 || change_occurred_in_block) {
 807           c = '*';
 808         }
 809         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 810         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 811       }
 812 #endif
 813     }
 814     iteration_count++;
 815 
 816     if (change_occurred && iteration_count > 50) {
 817       BAILOUT("too many iterations in compute_global_live_sets");
 818     }
 819   } while (change_occurred);
 820 
 821 
 822 #ifdef ASSERT
 823   // check that fixed intervals are not live at block boundaries
 824   // (live set must be empty at fixed intervals)
 825   for (int i = 0; i < num_blocks; i++) {
 826     BlockBegin* block = block_at(i);
 827     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 828       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 829       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 830       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 831     }
 832   }
 833 #endif
 834 
 835   // check that the live_in set of the first block is empty
 836   BitMap live_in_args(ir()->start()->live_in().size());
 837   live_in_args.clear();
 838   if (!ir()->start()->live_in().is_same(live_in_args)) {
 839 #ifdef ASSERT
 840     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 841     tty->print_cr("affected registers:");
 842     print_bitmap(ir()->start()->live_in());
 843 
 844     // print some additional information to simplify debugging
 845     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 846       if (ir()->start()->live_in().at(i)) {
 847         Instruction* instr = gen()->instruction_for_vreg(i);
 848         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 849 
 850         for (int j = 0; j < num_blocks; j++) {
 851           BlockBegin* block = block_at(j);
 852           if (block->live_gen().at(i)) {
 853             tty->print_cr("  used in block B%d", block->block_id());
 854           }
 855           if (block->live_kill().at(i)) {
 856             tty->print_cr("  defined in block B%d", block->block_id());
 857           }
 858         }
 859       }
 860     }
 861 
 862 #endif
 863     // when this fails, virtual registers are used before they are defined.
 864     assert(false, "live_in set of first block must be empty");
 865     // bailout of if this occurs in product mode.
 866     bailout("live_in set of first block not empty");
 867   }
 868 }
 869 
 870 
 871 // ********** Phase 4: build intervals
 872 // (fills the list _intervals)
 873 
 874 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 875   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 876   LIR_Opr opr = value->operand();
 877   Constant* con = value->as_Constant();
 878 
 879   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 880     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 881     add_use(opr, from, to, use_kind);
 882   }
 883 }
 884 
 885 
 886 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 887   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 888   assert(opr->is_register(), "should not be called otherwise");
 889 
 890   if (opr->is_virtual_register()) {
 891     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 892     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 893 
 894   } else {
 895     int reg = reg_num(opr);
 896     if (is_processed_reg_num(reg)) {
 897       add_def(reg, def_pos, use_kind, opr->type_register());
 898     }
 899     reg = reg_numHi(opr);
 900     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 901       add_def(reg, def_pos, use_kind, opr->type_register());
 902     }
 903   }
 904 }
 905 
 906 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 907   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 908   assert(opr->is_register(), "should not be called otherwise");
 909 
 910   if (opr->is_virtual_register()) {
 911     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 912     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 913 
 914   } else {
 915     int reg = reg_num(opr);
 916     if (is_processed_reg_num(reg)) {
 917       add_use(reg, from, to, use_kind, opr->type_register());
 918     }
 919     reg = reg_numHi(opr);
 920     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 921       add_use(reg, from, to, use_kind, opr->type_register());
 922     }
 923   }
 924 }
 925 
 926 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 927   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 928   assert(opr->is_register(), "should not be called otherwise");
 929 
 930   if (opr->is_virtual_register()) {
 931     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 932     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 933 
 934   } else {
 935     int reg = reg_num(opr);
 936     if (is_processed_reg_num(reg)) {
 937       add_temp(reg, temp_pos, use_kind, opr->type_register());
 938     }
 939     reg = reg_numHi(opr);
 940     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 941       add_temp(reg, temp_pos, use_kind, opr->type_register());
 942     }
 943   }
 944 }
 945 
 946 
 947 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 948   Interval* interval = interval_at(reg_num);
 949   if (interval != NULL) {
 950     assert(interval->reg_num() == reg_num, "wrong interval");
 951 
 952     if (type != T_ILLEGAL) {
 953       interval->set_type(type);
 954     }
 955 
 956     Range* r = interval->first();
 957     if (r->from() <= def_pos) {
 958       // Update the starting point (when a range is first created for a use, its
 959       // start is the beginning of the current block until a def is encountered.)
 960       r->set_from(def_pos);
 961       interval->add_use_pos(def_pos, use_kind);
 962 
 963     } else {
 964       // Dead value - make vacuous interval
 965       // also add use_kind for dead intervals
 966       interval->add_range(def_pos, def_pos + 1);
 967       interval->add_use_pos(def_pos, use_kind);
 968       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 969     }
 970 
 971   } else {
 972     // Dead value - make vacuous interval
 973     // also add use_kind for dead intervals
 974     interval = create_interval(reg_num);
 975     if (type != T_ILLEGAL) {
 976       interval->set_type(type);
 977     }
 978 
 979     interval->add_range(def_pos, def_pos + 1);
 980     interval->add_use_pos(def_pos, use_kind);
 981     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 982   }
 983 
 984   change_spill_definition_pos(interval, def_pos);
 985   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 986         // detection of method-parameters and roundfp-results
 987         // TODO: move this directly to position where use-kind is computed
 988     interval->set_spill_state(startInMemory);
 989   }
 990 }
 991 
 992 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 993   Interval* interval = interval_at(reg_num);
 994   if (interval == NULL) {
 995     interval = create_interval(reg_num);
 996   }
 997   assert(interval->reg_num() == reg_num, "wrong interval");
 998 
 999   if (type != T_ILLEGAL) {
1000     interval->set_type(type);
1001   }
1002 
1003   interval->add_range(from, to);
1004   interval->add_use_pos(to, use_kind);
1005 }
1006 
1007 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1008   Interval* interval = interval_at(reg_num);
1009   if (interval == NULL) {
1010     interval = create_interval(reg_num);
1011   }
1012   assert(interval->reg_num() == reg_num, "wrong interval");
1013 
1014   if (type != T_ILLEGAL) {
1015     interval->set_type(type);
1016   }
1017 
1018   interval->add_range(temp_pos, temp_pos + 1);
1019   interval->add_use_pos(temp_pos, use_kind);
1020 }
1021 
1022 
1023 // the results of this functions are used for optimizing spilling and reloading
1024 // if the functions return shouldHaveRegister and the interval is spilled,
1025 // it is not reloaded to a register.
1026 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1027   if (op->code() == lir_move) {
1028     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1029     LIR_Op1* move = (LIR_Op1*)op;
1030     LIR_Opr res = move->result_opr();
1031     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1032 
1033     if (result_in_memory) {
1034       // Begin of an interval with must_start_in_memory set.
1035       // This interval will always get a stack slot first, so return noUse.
1036       return noUse;
1037 
1038     } else if (move->in_opr()->is_stack()) {
1039       // method argument (condition must be equal to handle_method_arguments)
1040       return noUse;
1041 
1042     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1043       // Move from register to register
1044       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1045         // special handling of phi-function moves inside osr-entry blocks
1046         // input operand must have a register instead of output operand (leads to better register allocation)
1047         return shouldHaveRegister;
1048       }
1049     }
1050   }
1051 
1052   if (opr->is_virtual() &&
1053       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1054     // result is a stack-slot, so prevent immediate reloading
1055     return noUse;
1056   }
1057 
1058   // all other operands require a register
1059   return mustHaveRegister;
1060 }
1061 
1062 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1063   if (op->code() == lir_move) {
1064     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1065     LIR_Op1* move = (LIR_Op1*)op;
1066     LIR_Opr res = move->result_opr();
1067     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1068 
1069     if (result_in_memory) {
1070       // Move to an interval with must_start_in_memory set.
1071       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1072       return mustHaveRegister;
1073 
1074     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1075       // Move from register to register
1076       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1077         // special handling of phi-function moves inside osr-entry blocks
1078         // input operand must have a register instead of output operand (leads to better register allocation)
1079         return mustHaveRegister;
1080       }
1081 
1082       // The input operand is not forced to a register (moves from stack to register are allowed),
1083       // but it is faster if the input operand is in a register
1084       return shouldHaveRegister;
1085     }
1086   }
1087 
1088 
1089 #ifdef X86
1090   if (op->code() == lir_cmove) {
1091     // conditional moves can handle stack operands
1092     assert(op->result_opr()->is_register(), "result must always be in a register");
1093     return shouldHaveRegister;
1094   }
1095 
1096   // optimizations for second input operand of arithmehtic operations on Intel
1097   // this operand is allowed to be on the stack in some cases
1098   BasicType opr_type = opr->type_register();
1099   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1100     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1101       // SSE float instruction (T_DOUBLE only supported with SSE2)
1102       switch (op->code()) {
1103         case lir_cmp:
1104         case lir_add:
1105         case lir_sub:
1106         case lir_mul:
1107         case lir_div:
1108         {
1109           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1110           LIR_Op2* op2 = (LIR_Op2*)op;
1111           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1112             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1113             return shouldHaveRegister;
1114           }
1115         }
1116       }
1117     } else {
1118       // FPU stack float instruction
1119       switch (op->code()) {
1120         case lir_add:
1121         case lir_sub:
1122         case lir_mul:
1123         case lir_div:
1124         {
1125           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1126           LIR_Op2* op2 = (LIR_Op2*)op;
1127           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1128             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1129             return shouldHaveRegister;
1130           }
1131         }
1132       }
1133     }
1134 
1135   } else if (opr_type != T_LONG) {
1136     // integer instruction (note: long operands must always be in register)
1137     switch (op->code()) {
1138       case lir_cmp:
1139       case lir_add:
1140       case lir_sub:
1141       case lir_logic_and:
1142       case lir_logic_or:
1143       case lir_logic_xor:
1144       {
1145         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1146         LIR_Op2* op2 = (LIR_Op2*)op;
1147         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1148           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1149           return shouldHaveRegister;
1150         }
1151       }
1152     }
1153   }
1154 #endif // X86
1155 
1156   // all other operands require a register
1157   return mustHaveRegister;
1158 }
1159 
1160 
1161 void LinearScan::handle_method_arguments(LIR_Op* op) {
1162   // special handling for method arguments (moves from stack to virtual register):
1163   // the interval gets no register assigned, but the stack slot.
1164   // it is split before the first use by the register allocator.
1165 
1166   if (op->code() == lir_move) {
1167     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1168     LIR_Op1* move = (LIR_Op1*)op;
1169 
1170     if (move->in_opr()->is_stack()) {
1171 #ifdef ASSERT
1172       int arg_size = compilation()->method()->arg_size();
1173       LIR_Opr o = move->in_opr();
1174       if (o->is_single_stack()) {
1175         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1176       } else if (o->is_double_stack()) {
1177         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1178       } else {
1179         ShouldNotReachHere();
1180       }
1181 
1182       assert(move->id() > 0, "invalid id");
1183       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1184       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1185 
1186       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1187 #endif
1188 
1189       Interval* interval = interval_at(reg_num(move->result_opr()));
1190 
1191       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1192       interval->set_canonical_spill_slot(stack_slot);
1193       interval->assign_reg(stack_slot);
1194     }
1195   }
1196 }
1197 
1198 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1199   // special handling for doubleword move from memory to register:
1200   // in this case the registers of the input address and the result
1201   // registers must not overlap -> add a temp range for the input registers
1202   if (op->code() == lir_move) {
1203     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1204     LIR_Op1* move = (LIR_Op1*)op;
1205 
1206     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1207       LIR_Address* address = move->in_opr()->as_address_ptr();
1208       if (address != NULL) {
1209         if (address->base()->is_valid()) {
1210           add_temp(address->base(), op->id(), noUse);
1211         }
1212         if (address->index()->is_valid()) {
1213           add_temp(address->index(), op->id(), noUse);
1214         }
1215       }
1216     }
1217   }
1218 }
1219 
1220 void LinearScan::add_register_hints(LIR_Op* op) {
1221   switch (op->code()) {
1222     case lir_move:      // fall through
1223     case lir_convert: {
1224       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1225       LIR_Op1* move = (LIR_Op1*)op;
1226 
1227       LIR_Opr move_from = move->in_opr();
1228       LIR_Opr move_to = move->result_opr();
1229 
1230       if (move_to->is_register() && move_from->is_register()) {
1231         Interval* from = interval_at(reg_num(move_from));
1232         Interval* to = interval_at(reg_num(move_to));
1233         if (from != NULL && to != NULL) {
1234           to->set_register_hint(from);
1235           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1236         }
1237       }
1238       break;
1239     }
1240     case lir_cmove: {
1241       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1242       LIR_Op2* cmove = (LIR_Op2*)op;
1243 
1244       LIR_Opr move_from = cmove->in_opr1();
1245       LIR_Opr move_to = cmove->result_opr();
1246 
1247       if (move_to->is_register() && move_from->is_register()) {
1248         Interval* from = interval_at(reg_num(move_from));
1249         Interval* to = interval_at(reg_num(move_to));
1250         if (from != NULL && to != NULL) {
1251           to->set_register_hint(from);
1252           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1253         }
1254       }
1255       break;
1256     }
1257   }
1258 }
1259 
1260 
1261 void LinearScan::build_intervals() {
1262   TIME_LINEAR_SCAN(timer_build_intervals);
1263 
1264   // initialize interval list with expected number of intervals
1265   // (32 is added to have some space for split children without having to resize the list)
1266   _intervals = IntervalList(num_virtual_regs() + 32);
1267   // initialize all slots that are used by build_intervals
1268   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1269 
1270   // create a list with all caller-save registers (cpu, fpu, xmm)
1271   // when an instruction is a call, a temp range is created for all these registers
1272   int num_caller_save_registers = 0;
1273   int caller_save_registers[LinearScan::nof_regs];
1274 
1275   int i;
1276   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1277     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1278     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1279     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1280     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1281   }
1282 
1283   // temp ranges for fpu registers are only created when the method has
1284   // virtual fpu operands. Otherwise no allocation for fpu registers is
1285   // perfomed and so the temp ranges would be useless
1286   if (has_fpu_registers()) {
1287 #ifdef X86
1288     if (UseSSE < 2) {
1289 #endif
1290       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1291         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1292         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1293         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1294         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1295       }
1296 #ifdef X86
1297     }
1298     if (UseSSE > 0) {
1299       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1300         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304       }
1305     }
1306 #endif
1307   }
1308   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1309 
1310 
1311   LIR_OpVisitState visitor;
1312 
1313   // iterate all blocks in reverse order
1314   for (i = block_count() - 1; i >= 0; i--) {
1315     BlockBegin* block = block_at(i);
1316     LIR_OpList* instructions = block->lir()->instructions_list();
1317     int         block_from =   block->first_lir_instruction_id();
1318     int         block_to =     block->last_lir_instruction_id();
1319 
1320     assert(block_from == instructions->at(0)->id(), "must be");
1321     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1322 
1323     // Update intervals for registers live at the end of this block;
1324     BitMap live = block->live_out();
1325     int size = (int)live.size();
1326     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1327       assert(live.at(number), "should not stop here otherwise");
1328       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1329       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1330 
1331       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1332 
1333       // add special use positions for loop-end blocks when the
1334       // interval is used anywhere inside this loop.  It's possible
1335       // that the block was part of a non-natural loop, so it might
1336       // have an invalid loop index.
1337       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1338           block->loop_index() != -1 &&
1339           is_interval_in_loop(number, block->loop_index())) {
1340         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1341       }
1342     }
1343 
1344     // iterate all instructions of the block in reverse order.
1345     // skip the first instruction because it is always a label
1346     // definitions of intervals are processed before uses
1347     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1348     for (int j = instructions->length() - 1; j >= 1; j--) {
1349       LIR_Op* op = instructions->at(j);
1350       int op_id = op->id();
1351 
1352       // visit operation to collect all operands
1353       visitor.visit(op);
1354 
1355       // add a temp range for each register if operation destroys caller-save registers
1356       if (visitor.has_call()) {
1357         for (int k = 0; k < num_caller_save_registers; k++) {
1358           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1359         }
1360         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1361       }
1362 
1363       // Add any platform dependent temps
1364       pd_add_temps(op);
1365 
1366       // visit definitions (output and temp operands)
1367       int k, n;
1368       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1369       for (k = 0; k < n; k++) {
1370         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1371         assert(opr->is_register(), "visitor should only return register operands");
1372         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1373       }
1374 
1375       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1376       for (k = 0; k < n; k++) {
1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1378         assert(opr->is_register(), "visitor should only return register operands");
1379         add_temp(opr, op_id, mustHaveRegister);
1380       }
1381 
1382       // visit uses (input operands)
1383       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1384       for (k = 0; k < n; k++) {
1385         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1386         assert(opr->is_register(), "visitor should only return register operands");
1387         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1388       }
1389 
1390       // Add uses of live locals from interpreter's point of view for proper
1391       // debug information generation
1392       // Treat these operands as temp values (if the life range is extended
1393       // to a call site, the value would be in a register at the call otherwise)
1394       n = visitor.info_count();
1395       for (k = 0; k < n; k++) {
1396         CodeEmitInfo* info = visitor.info_at(k);
1397         ValueStack* stack = info->stack();
1398         for_each_state_value(stack, value,
1399           add_use(value, block_from, op_id + 1, noUse);
1400         );
1401       }
1402 
1403       // special steps for some instructions (especially moves)
1404       handle_method_arguments(op);
1405       handle_doubleword_moves(op);
1406       add_register_hints(op);
1407 
1408     } // end of instruction iteration
1409   } // end of block iteration
1410 
1411 
1412   // add the range [0, 1[ to all fixed intervals
1413   // -> the register allocator need not handle unhandled fixed intervals
1414   for (int n = 0; n < LinearScan::nof_regs; n++) {
1415     Interval* interval = interval_at(n);
1416     if (interval != NULL) {
1417       interval->add_range(0, 1);
1418     }
1419   }
1420 }
1421 
1422 
1423 // ********** Phase 5: actual register allocation
1424 
1425 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1426   if (*a != NULL) {
1427     if (*b != NULL) {
1428       return (*a)->from() - (*b)->from();
1429     } else {
1430       return -1;
1431     }
1432   } else {
1433     if (*b != NULL) {
1434       return 1;
1435     } else {
1436       return 0;
1437     }
1438   }
1439 }
1440 
1441 #ifndef PRODUCT
1442 bool LinearScan::is_sorted(IntervalArray* intervals) {
1443   int from = -1;
1444   int i, j;
1445   for (i = 0; i < intervals->length(); i ++) {
1446     Interval* it = intervals->at(i);
1447     if (it != NULL) {
1448       if (from > it->from()) {
1449         assert(false, "");
1450         return false;
1451       }
1452       from = it->from();
1453     }
1454   }
1455 
1456   // check in both directions if sorted list and unsorted list contain same intervals
1457   for (i = 0; i < interval_count(); i++) {
1458     if (interval_at(i) != NULL) {
1459       int num_found = 0;
1460       for (j = 0; j < intervals->length(); j++) {
1461         if (interval_at(i) == intervals->at(j)) {
1462           num_found++;
1463         }
1464       }
1465       assert(num_found == 1, "lists do not contain same intervals");
1466     }
1467   }
1468   for (j = 0; j < intervals->length(); j++) {
1469     int num_found = 0;
1470     for (i = 0; i < interval_count(); i++) {
1471       if (interval_at(i) == intervals->at(j)) {
1472         num_found++;
1473       }
1474     }
1475     assert(num_found == 1, "lists do not contain same intervals");
1476   }
1477 
1478   return true;
1479 }
1480 #endif
1481 
1482 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1483   if (*prev != NULL) {
1484     (*prev)->set_next(interval);
1485   } else {
1486     *first = interval;
1487   }
1488   *prev = interval;
1489 }
1490 
1491 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1492   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1493 
1494   *list1 = *list2 = Interval::end();
1495 
1496   Interval* list1_prev = NULL;
1497   Interval* list2_prev = NULL;
1498   Interval* v;
1499 
1500   const int n = _sorted_intervals->length();
1501   for (int i = 0; i < n; i++) {
1502     v = _sorted_intervals->at(i);
1503     if (v == NULL) continue;
1504 
1505     if (is_list1(v)) {
1506       add_to_list(list1, &list1_prev, v);
1507     } else if (is_list2 == NULL || is_list2(v)) {
1508       add_to_list(list2, &list2_prev, v);
1509     }
1510   }
1511 
1512   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1513   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1514 
1515   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1516   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1517 }
1518 
1519 
1520 void LinearScan::sort_intervals_before_allocation() {
1521   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1522 
1523   IntervalList* unsorted_list = &_intervals;
1524   int unsorted_len = unsorted_list->length();
1525   int sorted_len = 0;
1526   int unsorted_idx;
1527   int sorted_idx = 0;
1528   int sorted_from_max = -1;
1529 
1530   // calc number of items for sorted list (sorted list must not contain NULL values)
1531   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1532     if (unsorted_list->at(unsorted_idx) != NULL) {
1533       sorted_len++;
1534     }
1535   }
1536   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1537 
1538   // special sorting algorithm: the original interval-list is almost sorted,
1539   // only some intervals are swapped. So this is much faster than a complete QuickSort
1540   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1541     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1542 
1543     if (cur_interval != NULL) {
1544       int cur_from = cur_interval->from();
1545 
1546       if (sorted_from_max <= cur_from) {
1547         sorted_list->at_put(sorted_idx++, cur_interval);
1548         sorted_from_max = cur_interval->from();
1549       } else {
1550         // the asumption that the intervals are already sorted failed,
1551         // so this interval must be sorted in manually
1552         int j;
1553         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1554           sorted_list->at_put(j + 1, sorted_list->at(j));
1555         }
1556         sorted_list->at_put(j + 1, cur_interval);
1557         sorted_idx++;
1558       }
1559     }
1560   }
1561   _sorted_intervals = sorted_list;
1562 }
1563 
1564 void LinearScan::sort_intervals_after_allocation() {
1565   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1566 
1567   IntervalArray* old_list      = _sorted_intervals;
1568   IntervalList*  new_list      = _new_intervals_from_allocation;
1569   int old_len = old_list->length();
1570   int new_len = new_list->length();
1571 
1572   if (new_len == 0) {
1573     // no intervals have been added during allocation, so sorted list is already up to date
1574     return;
1575   }
1576 
1577   // conventional sort-algorithm for new intervals
1578   new_list->sort(interval_cmp);
1579 
1580   // merge old and new list (both already sorted) into one combined list
1581   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1582   int old_idx = 0;
1583   int new_idx = 0;
1584 
1585   while (old_idx + new_idx < old_len + new_len) {
1586     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1587       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1588       old_idx++;
1589     } else {
1590       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1591       new_idx++;
1592     }
1593   }
1594 
1595   _sorted_intervals = combined_list;
1596 }
1597 
1598 
1599 void LinearScan::allocate_registers() {
1600   TIME_LINEAR_SCAN(timer_allocate_registers);
1601 
1602   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1603   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1604 
1605   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1606   if (has_fpu_registers()) {
1607     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1608 #ifdef ASSERT
1609   } else {
1610     // fpu register allocation is omitted because no virtual fpu registers are present
1611     // just check this again...
1612     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1613     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1614 #endif
1615   }
1616 
1617   // allocate cpu registers
1618   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1619   cpu_lsw.walk();
1620   cpu_lsw.finish_allocation();
1621 
1622   if (has_fpu_registers()) {
1623     // allocate fpu registers
1624     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1625     fpu_lsw.walk();
1626     fpu_lsw.finish_allocation();
1627   }
1628 }
1629 
1630 
1631 // ********** Phase 6: resolve data flow
1632 // (insert moves at edges between blocks if intervals have been split)
1633 
1634 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1635 // instead of returning NULL
1636 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1637   Interval* result = interval->split_child_at_op_id(op_id, mode);
1638   if (result != NULL) {
1639     return result;
1640   }
1641 
1642   assert(false, "must find an interval, but do a clean bailout in product mode");
1643   result = new Interval(LIR_OprDesc::vreg_base);
1644   result->assign_reg(0);
1645   result->set_type(T_INT);
1646   BAILOUT_("LinearScan: interval is NULL", result);
1647 }
1648 
1649 
1650 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1651   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1652   assert(interval_at(reg_num) != NULL, "no interval found");
1653 
1654   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1655 }
1656 
1657 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1658   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1659   assert(interval_at(reg_num) != NULL, "no interval found");
1660 
1661   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1662 }
1663 
1664 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1665   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1666   assert(interval_at(reg_num) != NULL, "no interval found");
1667 
1668   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1669 }
1670 
1671 
1672 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1673   DEBUG_ONLY(move_resolver.check_empty());
1674 
1675   const int num_regs = num_virtual_regs();
1676   const int size = live_set_size();
1677   const BitMap live_at_edge = to_block->live_in();
1678 
1679   // visit all registers where the live_at_edge bit is set
1680   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1681     assert(r < num_regs, "live information set for not exisiting interval");
1682     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1683 
1684     Interval* from_interval = interval_at_block_end(from_block, r);
1685     Interval* to_interval = interval_at_block_begin(to_block, r);
1686 
1687     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1688       // need to insert move instruction
1689       move_resolver.add_mapping(from_interval, to_interval);
1690     }
1691   }
1692 }
1693 
1694 
1695 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1696   if (from_block->number_of_sux() <= 1) {
1697     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1698 
1699     LIR_OpList* instructions = from_block->lir()->instructions_list();
1700     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1701     if (branch != NULL) {
1702       // insert moves before branch
1703       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1704       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1705     } else {
1706       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1707     }
1708 
1709   } else {
1710     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1711 #ifdef ASSERT
1712     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1713 
1714     // because the number of predecessor edges matches the number of
1715     // successor edges, blocks which are reached by switch statements
1716     // may have be more than one predecessor but it will be guaranteed
1717     // that all predecessors will be the same.
1718     for (int i = 0; i < to_block->number_of_preds(); i++) {
1719       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1720     }
1721 #endif
1722 
1723     move_resolver.set_insert_position(to_block->lir(), 0);
1724   }
1725 }
1726 
1727 
1728 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1729 void LinearScan::resolve_data_flow() {
1730   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1731 
1732   int num_blocks = block_count();
1733   MoveResolver move_resolver(this);
1734   BitMap block_completed(num_blocks);  block_completed.clear();
1735   BitMap already_resolved(num_blocks); already_resolved.clear();
1736 
1737   int i;
1738   for (i = 0; i < num_blocks; i++) {
1739     BlockBegin* block = block_at(i);
1740 
1741     // check if block has only one predecessor and only one successor
1742     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1743       LIR_OpList* instructions = block->lir()->instructions_list();
1744       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1745       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1746       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1747 
1748       // check if block is empty (only label and branch)
1749       if (instructions->length() == 2) {
1750         BlockBegin* pred = block->pred_at(0);
1751         BlockBegin* sux = block->sux_at(0);
1752 
1753         // prevent optimization of two consecutive blocks
1754         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1755           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1756           block_completed.set_bit(block->linear_scan_number());
1757 
1758           // directly resolve between pred and sux (without looking at the empty block between)
1759           resolve_collect_mappings(pred, sux, move_resolver);
1760           if (move_resolver.has_mappings()) {
1761             move_resolver.set_insert_position(block->lir(), 0);
1762             move_resolver.resolve_and_append_moves();
1763           }
1764         }
1765       }
1766     }
1767   }
1768 
1769 
1770   for (i = 0; i < num_blocks; i++) {
1771     if (!block_completed.at(i)) {
1772       BlockBegin* from_block = block_at(i);
1773       already_resolved.set_from(block_completed);
1774 
1775       int num_sux = from_block->number_of_sux();
1776       for (int s = 0; s < num_sux; s++) {
1777         BlockBegin* to_block = from_block->sux_at(s);
1778 
1779         // check for duplicate edges between the same blocks (can happen with switch blocks)
1780         if (!already_resolved.at(to_block->linear_scan_number())) {
1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1782           already_resolved.set_bit(to_block->linear_scan_number());
1783 
1784           // collect all intervals that have been split between from_block and to_block
1785           resolve_collect_mappings(from_block, to_block, move_resolver);
1786           if (move_resolver.has_mappings()) {
1787             resolve_find_insert_pos(from_block, to_block, move_resolver);
1788             move_resolver.resolve_and_append_moves();
1789           }
1790         }
1791       }
1792     }
1793   }
1794 }
1795 
1796 
1797 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1798   if (interval_at(reg_num) == NULL) {
1799     // if a phi function is never used, no interval is created -> ignore this
1800     return;
1801   }
1802 
1803   Interval* interval = interval_at_block_begin(block, reg_num);
1804   int reg = interval->assigned_reg();
1805   int regHi = interval->assigned_regHi();
1806 
1807   if ((reg < nof_regs && interval->always_in_memory()) ||
1808       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1809     // the interval is split to get a short range that is located on the stack
1810     // in the following two cases:
1811     // * the interval started in memory (e.g. method parameter), but is currently in a register
1812     //   this is an optimization for exception handling that reduces the number of moves that
1813     //   are necessary for resolving the states when an exception uses this exception handler
1814     // * the interval would be on the fpu stack at the begin of the exception handler
1815     //   this is not allowed because of the complicated fpu stack handling on Intel
1816 
1817     // range that will be spilled to memory
1818     int from_op_id = block->first_lir_instruction_id();
1819     int to_op_id = from_op_id + 1;  // short live range of length 1
1820     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1821            "no split allowed between exception entry and first instruction");
1822 
1823     if (interval->from() != from_op_id) {
1824       // the part before from_op_id is unchanged
1825       interval = interval->split(from_op_id);
1826       interval->assign_reg(reg, regHi);
1827       append_interval(interval);
1828     }
1829     assert(interval->from() == from_op_id, "must be true now");
1830 
1831     Interval* spilled_part = interval;
1832     if (interval->to() != to_op_id) {
1833       // the part after to_op_id is unchanged
1834       spilled_part = interval->split_from_start(to_op_id);
1835       append_interval(spilled_part);
1836       move_resolver.add_mapping(spilled_part, interval);
1837     }
1838     assign_spill_slot(spilled_part);
1839 
1840     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1841   }
1842 }
1843 
1844 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1845   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1846   DEBUG_ONLY(move_resolver.check_empty());
1847 
1848   // visit all registers where the live_in bit is set
1849   int size = live_set_size();
1850   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1851     resolve_exception_entry(block, r, move_resolver);
1852   }
1853 
1854   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1855   for_each_phi_fun(block, phi,
1856     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1857   );
1858 
1859   if (move_resolver.has_mappings()) {
1860     // insert moves after first instruction
1861     move_resolver.set_insert_position(block->lir(), 1);
1862     move_resolver.resolve_and_append_moves();
1863   }
1864 }
1865 
1866 
1867 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1868   if (interval_at(reg_num) == NULL) {
1869     // if a phi function is never used, no interval is created -> ignore this
1870     return;
1871   }
1872 
1873   // the computation of to_interval is equal to resolve_collect_mappings,
1874   // but from_interval is more complicated because of phi functions
1875   BlockBegin* to_block = handler->entry_block();
1876   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1877 
1878   if (phi != NULL) {
1879     // phi function of the exception entry block
1880     // no moves are created for this phi function in the LIR_Generator, so the
1881     // interval at the throwing instruction must be searched using the operands
1882     // of the phi function
1883     Value from_value = phi->operand_at(handler->phi_operand());
1884 
1885     // with phi functions it can happen that the same from_value is used in
1886     // multiple mappings, so notify move-resolver that this is allowed
1887     move_resolver.set_multiple_reads_allowed();
1888 
1889     Constant* con = from_value->as_Constant();
1890     if (con != NULL && !con->is_pinned()) {
1891       // unpinned constants may have no register, so add mapping from constant to interval
1892       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1893     } else {
1894       // search split child at the throwing op_id
1895       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1896       move_resolver.add_mapping(from_interval, to_interval);
1897     }
1898 
1899   } else {
1900     // no phi function, so use reg_num also for from_interval
1901     // search split child at the throwing op_id
1902     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1903     if (from_interval != to_interval) {
1904       // optimization to reduce number of moves: when to_interval is on stack and
1905       // the stack slot is known to be always correct, then no move is necessary
1906       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1907         move_resolver.add_mapping(from_interval, to_interval);
1908       }
1909     }
1910   }
1911 }
1912 
1913 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1914   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1915 
1916   DEBUG_ONLY(move_resolver.check_empty());
1917   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1918   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1919   assert(handler->entry_code() == NULL, "code already present");
1920 
1921   // visit all registers where the live_in bit is set
1922   BlockBegin* block = handler->entry_block();
1923   int size = live_set_size();
1924   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1925     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1926   }
1927 
1928   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1929   for_each_phi_fun(block, phi,
1930     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1931   );
1932 
1933   if (move_resolver.has_mappings()) {
1934     LIR_List* entry_code = new LIR_List(compilation());
1935     move_resolver.set_insert_position(entry_code, 0);
1936     move_resolver.resolve_and_append_moves();
1937 
1938     entry_code->jump(handler->entry_block());
1939     handler->set_entry_code(entry_code);
1940   }
1941 }
1942 
1943 
1944 void LinearScan::resolve_exception_handlers() {
1945   MoveResolver move_resolver(this);
1946   LIR_OpVisitState visitor;
1947   int num_blocks = block_count();
1948 
1949   int i;
1950   for (i = 0; i < num_blocks; i++) {
1951     BlockBegin* block = block_at(i);
1952     if (block->is_set(BlockBegin::exception_entry_flag)) {
1953       resolve_exception_entry(block, move_resolver);
1954     }
1955   }
1956 
1957   for (i = 0; i < num_blocks; i++) {
1958     BlockBegin* block = block_at(i);
1959     LIR_List* ops = block->lir();
1960     int num_ops = ops->length();
1961 
1962     // iterate all instructions of the block. skip the first because it is always a label
1963     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1964     for (int j = 1; j < num_ops; j++) {
1965       LIR_Op* op = ops->at(j);
1966       int op_id = op->id();
1967 
1968       if (op_id != -1 && has_info(op_id)) {
1969         // visit operation to collect all operands
1970         visitor.visit(op);
1971         assert(visitor.info_count() > 0, "should not visit otherwise");
1972 
1973         XHandlers* xhandlers = visitor.all_xhandler();
1974         int n = xhandlers->length();
1975         for (int k = 0; k < n; k++) {
1976           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1977         }
1978 
1979 #ifdef ASSERT
1980       } else {
1981         visitor.visit(op);
1982         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1983 #endif
1984       }
1985     }
1986   }
1987 }
1988 
1989 
1990 // ********** Phase 7: assign register numbers back to LIR
1991 // (includes computation of debug information and oop maps)
1992 
1993 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1994   VMReg reg = interval->cached_vm_reg();
1995   if (!reg->is_valid() ) {
1996     reg = vm_reg_for_operand(operand_for_interval(interval));
1997     interval->set_cached_vm_reg(reg);
1998   }
1999   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2000   return reg;
2001 }
2002 
2003 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2004   assert(opr->is_oop(), "currently only implemented for oop operands");
2005   return frame_map()->regname(opr);
2006 }
2007 
2008 
2009 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2010   LIR_Opr opr = interval->cached_opr();
2011   if (opr->is_illegal()) {
2012     opr = calc_operand_for_interval(interval);
2013     interval->set_cached_opr(opr);
2014   }
2015 
2016   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2017   return opr;
2018 }
2019 
2020 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2021   int assigned_reg = interval->assigned_reg();
2022   BasicType type = interval->type();
2023 
2024   if (assigned_reg >= nof_regs) {
2025     // stack slot
2026     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2027     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2028 
2029   } else {
2030     // register
2031     switch (type) {
2032       case T_OBJECT: {
2033         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2034         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2035         return LIR_OprFact::single_cpu_oop(assigned_reg);
2036       }
2037 
2038       case T_ADDRESS: {
2039         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2040         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2041         return LIR_OprFact::single_cpu_address(assigned_reg);
2042       }
2043 
2044 #ifdef __SOFTFP__
2045       case T_FLOAT:  // fall through
2046 #endif // __SOFTFP__
2047       case T_INT: {
2048         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2049         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2050         return LIR_OprFact::single_cpu(assigned_reg);
2051       }
2052 
2053 #ifdef __SOFTFP__
2054       case T_DOUBLE:  // fall through
2055 #endif // __SOFTFP__
2056       case T_LONG: {
2057         int assigned_regHi = interval->assigned_regHi();
2058         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2059         assert(num_physical_regs(T_LONG) == 1 ||
2060                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2061 
2062         assert(assigned_reg != assigned_regHi, "invalid allocation");
2063         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2064                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2065         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2066         if (requires_adjacent_regs(T_LONG)) {
2067           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2068         }
2069 
2070 #ifdef _LP64
2071         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2072 #else
2073 #if defined(SPARC) || defined(PPC)
2074         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2075 #else
2076         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2077 #endif // SPARC
2078 #endif // LP64
2079       }
2080 
2081 #ifndef __SOFTFP__
2082       case T_FLOAT: {
2083 #ifdef X86
2084         if (UseSSE >= 1) {
2085           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2086           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2087           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2088         }
2089 #endif
2090 
2091         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2092         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2093         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2094       }
2095 
2096       case T_DOUBLE: {
2097 #ifdef X86
2098         if (UseSSE >= 2) {
2099           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2100           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2101           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2102         }
2103 #endif
2104 
2105 #ifdef SPARC
2106         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2107         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2108         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2109         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2110 #elif defined(ARM)
2111         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2112         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2113         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2114         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2115 #else
2116         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2117         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2118         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2119 #endif
2120         return result;
2121       }
2122 #endif // __SOFTFP__
2123 
2124       default: {
2125         ShouldNotReachHere();
2126         return LIR_OprFact::illegalOpr;
2127       }
2128     }
2129   }
2130 }
2131 
2132 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2133   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2134   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2135 }
2136 
2137 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2138   assert(opr->is_virtual(), "should not call this otherwise");
2139 
2140   Interval* interval = interval_at(opr->vreg_number());
2141   assert(interval != NULL, "interval must exist");
2142 
2143   if (op_id != -1) {
2144 #ifdef ASSERT
2145     BlockBegin* block = block_of_op_with_id(op_id);
2146     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2147       // check if spill moves could have been appended at the end of this block, but
2148       // before the branch instruction. So the split child information for this branch would
2149       // be incorrect.
2150       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2151       if (branch != NULL) {
2152         if (block->live_out().at(opr->vreg_number())) {
2153           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2154           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2155         }
2156       }
2157     }
2158 #endif
2159 
2160     // operands are not changed when an interval is split during allocation,
2161     // so search the right interval here
2162     interval = split_child_at_op_id(interval, op_id, mode);
2163   }
2164 
2165   LIR_Opr res = operand_for_interval(interval);
2166 
2167 #ifdef X86
2168   // new semantic for is_last_use: not only set on definite end of interval,
2169   // but also before hole
2170   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2171   // last use information is completely correct
2172   // information is only needed for fpu stack allocation
2173   if (res->is_fpu_register()) {
2174     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2175       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2176       res = res->make_last_use();
2177     }
2178   }
2179 #endif
2180 
2181   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2182 
2183   return res;
2184 }
2185 
2186 
2187 #ifdef ASSERT
2188 // some methods used to check correctness of debug information
2189 
2190 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2191   if (values == NULL) {
2192     return;
2193   }
2194 
2195   for (int i = 0; i < values->length(); i++) {
2196     ScopeValue* value = values->at(i);
2197 
2198     if (value->is_location()) {
2199       Location location = ((LocationValue*)value)->location();
2200       assert(location.where() == Location::on_stack, "value is in register");
2201     }
2202   }
2203 }
2204 
2205 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2206   if (values == NULL) {
2207     return;
2208   }
2209 
2210   for (int i = 0; i < values->length(); i++) {
2211     MonitorValue* value = values->at(i);
2212 
2213     if (value->owner()->is_location()) {
2214       Location location = ((LocationValue*)value->owner())->location();
2215       assert(location.where() == Location::on_stack, "owner is in register");
2216     }
2217     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2218   }
2219 }
2220 
2221 void assert_equal(Location l1, Location l2) {
2222   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2223 }
2224 
2225 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2226   if (v1->is_location()) {
2227     assert(v2->is_location(), "");
2228     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2229   } else if (v1->is_constant_int()) {
2230     assert(v2->is_constant_int(), "");
2231     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2232   } else if (v1->is_constant_double()) {
2233     assert(v2->is_constant_double(), "");
2234     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2235   } else if (v1->is_constant_long()) {
2236     assert(v2->is_constant_long(), "");
2237     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2238   } else if (v1->is_constant_oop()) {
2239     assert(v2->is_constant_oop(), "");
2240     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2241   } else {
2242     ShouldNotReachHere();
2243   }
2244 }
2245 
2246 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2247   assert_equal(m1->owner(), m2->owner());
2248   assert_equal(m1->basic_lock(), m2->basic_lock());
2249 }
2250 
2251 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2252   assert(d1->scope() == d2->scope(), "not equal");
2253   assert(d1->bci() == d2->bci(), "not equal");
2254 
2255   if (d1->locals() != NULL) {
2256     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2257     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2258     for (int i = 0; i < d1->locals()->length(); i++) {
2259       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2260     }
2261   } else {
2262     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2263   }
2264 
2265   if (d1->expressions() != NULL) {
2266     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2267     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2268     for (int i = 0; i < d1->expressions()->length(); i++) {
2269       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2270     }
2271   } else {
2272     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2273   }
2274 
2275   if (d1->monitors() != NULL) {
2276     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2277     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2278     for (int i = 0; i < d1->monitors()->length(); i++) {
2279       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2280     }
2281   } else {
2282     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2283   }
2284 
2285   if (d1->caller() != NULL) {
2286     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2287     assert_equal(d1->caller(), d2->caller());
2288   } else {
2289     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2290   }
2291 }
2292 
2293 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2294   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2295     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2296     switch (code) {
2297       case Bytecodes::_ifnull    : // fall through
2298       case Bytecodes::_ifnonnull : // fall through
2299       case Bytecodes::_ifeq      : // fall through
2300       case Bytecodes::_ifne      : // fall through
2301       case Bytecodes::_iflt      : // fall through
2302       case Bytecodes::_ifge      : // fall through
2303       case Bytecodes::_ifgt      : // fall through
2304       case Bytecodes::_ifle      : // fall through
2305       case Bytecodes::_if_icmpeq : // fall through
2306       case Bytecodes::_if_icmpne : // fall through
2307       case Bytecodes::_if_icmplt : // fall through
2308       case Bytecodes::_if_icmpge : // fall through
2309       case Bytecodes::_if_icmpgt : // fall through
2310       case Bytecodes::_if_icmple : // fall through
2311       case Bytecodes::_if_acmpeq : // fall through
2312       case Bytecodes::_if_acmpne :
2313         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2314         break;
2315     }
2316   }
2317 }
2318 
2319 #endif // ASSERT
2320 
2321 
2322 IntervalWalker* LinearScan::init_compute_oop_maps() {
2323   // setup lists of potential oops for walking
2324   Interval* oop_intervals;
2325   Interval* non_oop_intervals;
2326 
2327   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2328 
2329   // intervals that have no oops inside need not to be processed
2330   // to ensure a walking until the last instruction id, add a dummy interval
2331   // with a high operation id
2332   non_oop_intervals = new Interval(any_reg);
2333   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2334 
2335   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2336 }
2337 
2338 
2339 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2340   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2341 
2342   // walk before the current operation -> intervals that start at
2343   // the operation (= output operands of the operation) are not
2344   // included in the oop map
2345   iw->walk_before(op->id());
2346 
2347   int frame_size = frame_map()->framesize();
2348   int arg_count = frame_map()->oop_map_arg_count();
2349   OopMap* map = new OopMap(frame_size, arg_count);
2350 
2351   // Check if this is a patch site.
2352   bool is_patch_info = false;
2353   if (op->code() == lir_move) {
2354     assert(!is_call_site, "move must not be a call site");
2355     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2356     LIR_Op1* move = (LIR_Op1*)op;
2357 
2358     is_patch_info = move->patch_code() != lir_patch_none;
2359   }
2360 
2361   // Iterate through active intervals
2362   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2363     int assigned_reg = interval->assigned_reg();
2364 
2365     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2366     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2367     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2368 
2369     // Check if this range covers the instruction. Intervals that
2370     // start or end at the current operation are not included in the
2371     // oop map, except in the case of patching moves.  For patching
2372     // moves, any intervals which end at this instruction are included
2373     // in the oop map since we may safepoint while doing the patch
2374     // before we've consumed the inputs.
2375     if (is_patch_info || op->id() < interval->current_to()) {
2376 
2377       // caller-save registers must not be included into oop-maps at calls
2378       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2379 
2380       VMReg name = vm_reg_for_interval(interval);
2381       map->set_oop(name);
2382 
2383       // Spill optimization: when the stack value is guaranteed to be always correct,
2384       // then it must be added to the oop map even if the interval is currently in a register
2385       if (interval->always_in_memory() &&
2386           op->id() > interval->spill_definition_pos() &&
2387           interval->assigned_reg() != interval->canonical_spill_slot()) {
2388         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2389         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2390         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2391 
2392         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2393       }
2394     }
2395   }
2396 
2397   // add oops from lock stack
2398   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2399   int locks_count = info->stack()->total_locks_size();
2400   for (int i = 0; i < locks_count; i++) {
2401     map->set_oop(frame_map()->monitor_object_regname(i));
2402   }
2403 
2404   return map;
2405 }
2406 
2407 
2408 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2409   assert(visitor.info_count() > 0, "no oop map needed");
2410 
2411   // compute oop_map only for first CodeEmitInfo
2412   // because it is (in most cases) equal for all other infos of the same operation
2413   CodeEmitInfo* first_info = visitor.info_at(0);
2414   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2415 
2416   for (int i = 0; i < visitor.info_count(); i++) {
2417     CodeEmitInfo* info = visitor.info_at(i);
2418     OopMap* oop_map = first_oop_map;
2419 
2420     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2421       // this info has a different number of locks then the precomputed oop map
2422       // (possible for lock and unlock instructions) -> compute oop map with
2423       // correct lock information
2424       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2425     }
2426 
2427     if (info->_oop_map == NULL) {
2428       info->_oop_map = oop_map;
2429     } else {
2430       // a CodeEmitInfo can not be shared between different LIR-instructions
2431       // because interval splitting can occur anywhere between two instructions
2432       // and so the oop maps must be different
2433       // -> check if the already set oop_map is exactly the one calculated for this operation
2434       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2435     }
2436   }
2437 }
2438 
2439 
2440 // frequently used constants
2441 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2442 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2443 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2444 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2445 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2446 LocationValue         _illegal_value = LocationValue(Location());
2447 
2448 void LinearScan::init_compute_debug_info() {
2449   // cache for frequently used scope values
2450   // (cpu registers and stack slots)
2451   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2452 }
2453 
2454 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2455   Location loc;
2456   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2457     bailout("too large frame");
2458   }
2459   ScopeValue* object_scope_value = new LocationValue(loc);
2460 
2461   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2462     bailout("too large frame");
2463   }
2464   return new MonitorValue(object_scope_value, loc);
2465 }
2466 
2467 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2468   Location loc;
2469   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2470     bailout("too large frame");
2471   }
2472   return new LocationValue(loc);
2473 }
2474 
2475 
2476 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2477   assert(opr->is_constant(), "should not be called otherwise");
2478 
2479   LIR_Const* c = opr->as_constant_ptr();
2480   BasicType t = c->type();
2481   switch (t) {
2482     case T_OBJECT: {
2483       jobject value = c->as_jobject();
2484       if (value == NULL) {
2485         scope_values->append(&_oop_null_scope_value);
2486       } else {
2487         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2488       }
2489       return 1;
2490     }
2491 
2492     case T_INT: // fall through
2493     case T_FLOAT: {
2494       int value = c->as_jint_bits();
2495       switch (value) {
2496         case -1: scope_values->append(&_int_m1_scope_value); break;
2497         case 0:  scope_values->append(&_int_0_scope_value); break;
2498         case 1:  scope_values->append(&_int_1_scope_value); break;
2499         case 2:  scope_values->append(&_int_2_scope_value); break;
2500         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2501       }
2502       return 1;
2503     }
2504 
2505     case T_LONG: // fall through
2506     case T_DOUBLE: {
2507 #ifdef _LP64
2508       scope_values->append(&_int_0_scope_value);
2509       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2510 #else
2511       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2512         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2513         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2514       } else {
2515         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2516         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2517       }
2518 #endif
2519       return 2;
2520     }
2521 
2522     case T_ADDRESS: {
2523 #ifdef _LP64
2524       scope_values->append(new ConstantLongValue(c->as_jint()));
2525 #else
2526       scope_values->append(new ConstantIntValue(c->as_jint()));
2527 #endif
2528       return 1;
2529     }
2530 
2531     default:
2532       ShouldNotReachHere();
2533       return -1;
2534   }
2535 }
2536 
2537 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2538   if (opr->is_single_stack()) {
2539     int stack_idx = opr->single_stack_ix();
2540     bool is_oop = opr->is_oop_register();
2541     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2542 
2543     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2544     if (sv == NULL) {
2545       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2546       sv = location_for_name(stack_idx, loc_type);
2547       _scope_value_cache.at_put(cache_idx, sv);
2548     }
2549 
2550     // check if cached value is correct
2551     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2552 
2553     scope_values->append(sv);
2554     return 1;
2555 
2556   } else if (opr->is_single_cpu()) {
2557     bool is_oop = opr->is_oop_register();
2558     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2559     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2560 
2561     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2562     if (sv == NULL) {
2563       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2564       VMReg rname = frame_map()->regname(opr);
2565       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2566       _scope_value_cache.at_put(cache_idx, sv);
2567     }
2568 
2569     // check if cached value is correct
2570     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2571 
2572     scope_values->append(sv);
2573     return 1;
2574 
2575 #ifdef X86
2576   } else if (opr->is_single_xmm()) {
2577     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2578     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2579 
2580     scope_values->append(sv);
2581     return 1;
2582 #endif
2583 
2584   } else if (opr->is_single_fpu()) {
2585 #ifdef X86
2586     // the exact location of fpu stack values is only known
2587     // during fpu stack allocation, so the stack allocator object
2588     // must be present
2589     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2590     assert(_fpu_stack_allocator != NULL, "must be present");
2591     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2592 #endif
2593 
2594     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2595     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2596     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2597 
2598     scope_values->append(sv);
2599     return 1;
2600 
2601   } else {
2602     // double-size operands
2603 
2604     ScopeValue* first;
2605     ScopeValue* second;
2606 
2607     if (opr->is_double_stack()) {
2608 #ifdef _LP64
2609       Location loc1;
2610       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2611       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2612         bailout("too large frame");
2613       }
2614       // Does this reverse on x86 vs. sparc?
2615       first =  new LocationValue(loc1);
2616       second = &_int_0_scope_value;
2617 #else
2618       Location loc1, loc2;
2619       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2620         bailout("too large frame");
2621       }
2622       first =  new LocationValue(loc1);
2623       second = new LocationValue(loc2);
2624 #endif // _LP64
2625 
2626     } else if (opr->is_double_cpu()) {
2627 #ifdef _LP64
2628       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2629       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2630       second = &_int_0_scope_value;
2631 #else
2632       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2633       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2634 
2635       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2636         // lo/hi and swapped relative to first and second, so swap them
2637         VMReg tmp = rname_first;
2638         rname_first = rname_second;
2639         rname_second = tmp;
2640       }
2641 
2642       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2643       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2644 #endif //_LP64
2645 
2646 
2647 #ifdef X86
2648     } else if (opr->is_double_xmm()) {
2649       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2650       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2651 #  ifdef _LP64
2652       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2653       second = &_int_0_scope_value;
2654 #  else
2655       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2656       // %%% This is probably a waste but we'll keep things as they were for now
2657       if (true) {
2658         VMReg rname_second = rname_first->next();
2659         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2660       }
2661 #  endif
2662 #endif
2663 
2664     } else if (opr->is_double_fpu()) {
2665       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2666       // the double as float registers in the native ordering. On X86,
2667       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2668       // the low-order word of the double and fpu_regnrLo + 1 is the
2669       // name for the other half.  *first and *second must represent the
2670       // least and most significant words, respectively.
2671 
2672 #ifdef X86
2673       // the exact location of fpu stack values is only known
2674       // during fpu stack allocation, so the stack allocator object
2675       // must be present
2676       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2677       assert(_fpu_stack_allocator != NULL, "must be present");
2678       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2679 
2680       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2681 #endif
2682 #ifdef SPARC
2683       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2684 #endif
2685 #ifdef ARM
2686       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2687 #endif
2688 #ifdef PPC
2689       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2690 #endif
2691 
2692       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2693 #ifdef _LP64
2694       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2695       second = &_int_0_scope_value;
2696 #else
2697       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2698       // %%% This is probably a waste but we'll keep things as they were for now
2699       if (true) {
2700         VMReg rname_second = rname_first->next();
2701         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2702       }
2703 #endif
2704 
2705     } else {
2706       ShouldNotReachHere();
2707       first = NULL;
2708       second = NULL;
2709     }
2710 
2711     assert(first != NULL && second != NULL, "must be set");
2712     // The convention the interpreter uses is that the second local
2713     // holds the first raw word of the native double representation.
2714     // This is actually reasonable, since locals and stack arrays
2715     // grow downwards in all implementations.
2716     // (If, on some machine, the interpreter's Java locals or stack
2717     // were to grow upwards, the embedded doubles would be word-swapped.)
2718     scope_values->append(second);
2719     scope_values->append(first);
2720     return 2;
2721   }
2722 }
2723 
2724 
2725 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2726   if (value != NULL) {
2727     LIR_Opr opr = value->operand();
2728     Constant* con = value->as_Constant();
2729 
2730     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2731     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2732 
2733     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2734       // Unpinned constants may have a virtual operand for a part of the lifetime
2735       // or may be illegal when it was optimized away,
2736       // so always use a constant operand
2737       opr = LIR_OprFact::value_type(con->type());
2738     }
2739     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2740 
2741     if (opr->is_virtual()) {
2742       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2743 
2744       BlockBegin* block = block_of_op_with_id(op_id);
2745       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2746         // generating debug information for the last instruction of a block.
2747         // if this instruction is a branch, spill moves are inserted before this branch
2748         // and so the wrong operand would be returned (spill moves at block boundaries are not
2749         // considered in the live ranges of intervals)
2750         // Solution: use the first op_id of the branch target block instead.
2751         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2752           if (block->live_out().at(opr->vreg_number())) {
2753             op_id = block->sux_at(0)->first_lir_instruction_id();
2754             mode = LIR_OpVisitState::outputMode;
2755           }
2756         }
2757       }
2758 
2759       // Get current location of operand
2760       // The operand must be live because debug information is considered when building the intervals
2761       // if the interval is not live, color_lir_opr will cause an assertion failure
2762       opr = color_lir_opr(opr, op_id, mode);
2763       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2764 
2765       // Append to ScopeValue array
2766       return append_scope_value_for_operand(opr, scope_values);
2767 
2768     } else {
2769       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2770       assert(opr->is_constant(), "operand must be constant");
2771 
2772       return append_scope_value_for_constant(opr, scope_values);
2773     }
2774   } else {
2775     // append a dummy value because real value not needed
2776     scope_values->append(&_illegal_value);
2777     return 1;
2778   }
2779 }
2780 
2781 
2782 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2783   IRScopeDebugInfo* caller_debug_info = NULL;
2784 
2785   ValueStack* caller_state = cur_state->caller_state();
2786   if (caller_state != NULL) {
2787     // process recursively to compute outermost scope first
2788     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2789   }
2790 
2791   // initialize these to null.
2792   // If we don't need deopt info or there are no locals, expressions or monitors,
2793   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2794   GrowableArray<ScopeValue*>*   locals      = NULL;
2795   GrowableArray<ScopeValue*>*   expressions = NULL;
2796   GrowableArray<MonitorValue*>* monitors    = NULL;
2797 
2798   // describe local variable values
2799   int nof_locals = cur_state->locals_size();
2800   if (nof_locals > 0) {
2801     locals = new GrowableArray<ScopeValue*>(nof_locals);
2802 
2803     int pos = 0;
2804     while (pos < nof_locals) {
2805       assert(pos < cur_state->locals_size(), "why not?");
2806 
2807       Value local = cur_state->local_at(pos);
2808       pos += append_scope_value(op_id, local, locals);
2809 
2810       assert(locals->length() == pos, "must match");
2811     }
2812     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2813     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2814   } else if (cur_scope->method()->max_locals() > 0) {
2815     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2816     nof_locals = cur_scope->method()->max_locals();
2817     locals = new GrowableArray<ScopeValue*>(nof_locals);
2818     for(int i = 0; i < nof_locals; i++) {
2819       locals->append(&_illegal_value);
2820     }
2821   }
2822 
2823   // describe expression stack
2824   int nof_stack = cur_state->stack_size();
2825   if (nof_stack > 0) {
2826     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2827 
2828     int pos = 0;
2829     while (pos < nof_stack) {
2830       Value expression = cur_state->stack_at_inc(pos);
2831       append_scope_value(op_id, expression, expressions);
2832 
2833       assert(expressions->length() == pos, "must match");
2834     }
2835     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2836   }
2837 
2838   // describe monitors
2839   int nof_locks = cur_state->locks_size();
2840   if (nof_locks > 0) {
2841     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2842     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2843     for (int i = 0; i < nof_locks; i++) {
2844       monitors->append(location_for_monitor_index(lock_offset + i));
2845     }
2846   }
2847 
2848   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2849 }
2850 
2851 
2852 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2853   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2854 
2855   IRScope* innermost_scope = info->scope();
2856   ValueStack* innermost_state = info->stack();
2857 
2858   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2859 
2860   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2861 
2862   if (info->_scope_debug_info == NULL) {
2863     // compute debug information
2864     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2865   } else {
2866     // debug information already set. Check that it is correct from the current point of view
2867     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2868   }
2869 }
2870 
2871 
2872 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2873   LIR_OpVisitState visitor;
2874   int num_inst = instructions->length();
2875   bool has_dead = false;
2876 
2877   for (int j = 0; j < num_inst; j++) {
2878     LIR_Op* op = instructions->at(j);
2879     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2880       has_dead = true;
2881       continue;
2882     }
2883     int op_id = op->id();
2884 
2885     // visit instruction to get list of operands
2886     visitor.visit(op);
2887 
2888     // iterate all modes of the visitor and process all virtual operands
2889     for_each_visitor_mode(mode) {
2890       int n = visitor.opr_count(mode);
2891       for (int k = 0; k < n; k++) {
2892         LIR_Opr opr = visitor.opr_at(mode, k);
2893         if (opr->is_virtual_register()) {
2894           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2895         }
2896       }
2897     }
2898 
2899     if (visitor.info_count() > 0) {
2900       // exception handling
2901       if (compilation()->has_exception_handlers()) {
2902         XHandlers* xhandlers = visitor.all_xhandler();
2903         int n = xhandlers->length();
2904         for (int k = 0; k < n; k++) {
2905           XHandler* handler = xhandlers->handler_at(k);
2906           if (handler->entry_code() != NULL) {
2907             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2908           }
2909         }
2910       } else {
2911         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2912       }
2913 
2914       // compute oop map
2915       assert(iw != NULL, "needed for compute_oop_map");
2916       compute_oop_map(iw, visitor, op);
2917 
2918       // compute debug information
2919       if (!use_fpu_stack_allocation()) {
2920         // compute debug information if fpu stack allocation is not needed.
2921         // when fpu stack allocation is needed, the debug information can not
2922         // be computed here because the exact location of fpu operands is not known
2923         // -> debug information is created inside the fpu stack allocator
2924         int n = visitor.info_count();
2925         for (int k = 0; k < n; k++) {
2926           compute_debug_info(visitor.info_at(k), op_id);
2927         }
2928       }
2929     }
2930 
2931 #ifdef ASSERT
2932     // make sure we haven't made the op invalid.
2933     op->verify();
2934 #endif
2935 
2936     // remove useless moves
2937     if (op->code() == lir_move) {
2938       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2939       LIR_Op1* move = (LIR_Op1*)op;
2940       LIR_Opr src = move->in_opr();
2941       LIR_Opr dst = move->result_opr();
2942       if (dst == src ||
2943           !dst->is_pointer() && !src->is_pointer() &&
2944           src->is_same_register(dst)) {
2945         instructions->at_put(j, NULL);
2946         has_dead = true;
2947       }
2948     }
2949   }
2950 
2951   if (has_dead) {
2952     // iterate all instructions of the block and remove all null-values.
2953     int insert_point = 0;
2954     for (int j = 0; j < num_inst; j++) {
2955       LIR_Op* op = instructions->at(j);
2956       if (op != NULL) {
2957         if (insert_point != j) {
2958           instructions->at_put(insert_point, op);
2959         }
2960         insert_point++;
2961       }
2962     }
2963     instructions->truncate(insert_point);
2964   }
2965 }
2966 
2967 void LinearScan::assign_reg_num() {
2968   TIME_LINEAR_SCAN(timer_assign_reg_num);
2969 
2970   init_compute_debug_info();
2971   IntervalWalker* iw = init_compute_oop_maps();
2972 
2973   int num_blocks = block_count();
2974   for (int i = 0; i < num_blocks; i++) {
2975     BlockBegin* block = block_at(i);
2976     assign_reg_num(block->lir()->instructions_list(), iw);
2977   }
2978 }
2979 
2980 
2981 void LinearScan::do_linear_scan() {
2982   NOT_PRODUCT(_total_timer.begin_method());
2983 
2984   number_instructions();
2985 
2986   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2987 
2988   compute_local_live_sets();
2989   compute_global_live_sets();
2990   CHECK_BAILOUT();
2991 
2992   build_intervals();
2993   CHECK_BAILOUT();
2994   sort_intervals_before_allocation();
2995 
2996   NOT_PRODUCT(print_intervals("Before Register Allocation"));
2997   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
2998 
2999   allocate_registers();
3000   CHECK_BAILOUT();
3001 
3002   resolve_data_flow();
3003   if (compilation()->has_exception_handlers()) {
3004     resolve_exception_handlers();
3005   }
3006   // fill in number of spill slots into frame_map
3007   propagate_spill_slots();
3008   CHECK_BAILOUT();
3009 
3010   NOT_PRODUCT(print_intervals("After Register Allocation"));
3011   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3012 
3013   sort_intervals_after_allocation();
3014 
3015   DEBUG_ONLY(verify());
3016 
3017   eliminate_spill_moves();
3018   assign_reg_num();
3019   CHECK_BAILOUT();
3020 
3021   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3022   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3023 
3024   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3025 
3026     if (use_fpu_stack_allocation()) {
3027       allocate_fpu_stack(); // Only has effect on Intel
3028       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3029     }
3030   }
3031 
3032   { TIME_LINEAR_SCAN(timer_optimize_lir);
3033 
3034     EdgeMoveOptimizer::optimize(ir()->code());
3035     ControlFlowOptimizer::optimize(ir()->code());
3036     // check that cfg is still correct after optimizations
3037     ir()->verify();
3038   }
3039 
3040   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3041   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3042   NOT_PRODUCT(_total_timer.end_method(this));
3043 }
3044 
3045 
3046 // ********** Printing functions
3047 
3048 #ifndef PRODUCT
3049 
3050 void LinearScan::print_timers(double total) {
3051   _total_timer.print(total);
3052 }
3053 
3054 void LinearScan::print_statistics() {
3055   _stat_before_alloc.print("before allocation");
3056   _stat_after_asign.print("after assignment of register");
3057   _stat_final.print("after optimization");
3058 }
3059 
3060 void LinearScan::print_bitmap(BitMap& b) {
3061   for (unsigned int i = 0; i < b.size(); i++) {
3062     if (b.at(i)) tty->print("%d ", i);
3063   }
3064   tty->cr();
3065 }
3066 
3067 void LinearScan::print_intervals(const char* label) {
3068   if (TraceLinearScanLevel >= 1) {
3069     int i;
3070     tty->cr();
3071     tty->print_cr("%s", label);
3072 
3073     for (i = 0; i < interval_count(); i++) {
3074       Interval* interval = interval_at(i);
3075       if (interval != NULL) {
3076         interval->print();
3077       }
3078     }
3079 
3080     tty->cr();
3081     tty->print_cr("--- Basic Blocks ---");
3082     for (i = 0; i < block_count(); i++) {
3083       BlockBegin* block = block_at(i);
3084       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3085     }
3086     tty->cr();
3087     tty->cr();
3088   }
3089 
3090   if (PrintCFGToFile) {
3091     CFGPrinter::print_intervals(&_intervals, label);
3092   }
3093 }
3094 
3095 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3096   if (TraceLinearScanLevel >= level) {
3097     tty->cr();
3098     tty->print_cr("%s", label);
3099     print_LIR(ir()->linear_scan_order());
3100     tty->cr();
3101   }
3102 
3103   if (level == 1 && PrintCFGToFile) {
3104     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3105   }
3106 }
3107 
3108 #endif //PRODUCT
3109 
3110 
3111 // ********** verification functions for allocation
3112 // (check that all intervals have a correct register and that no registers are overwritten)
3113 #ifdef ASSERT
3114 
3115 void LinearScan::verify() {
3116   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3117   verify_intervals();
3118 
3119   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3120   verify_no_oops_in_fixed_intervals();
3121 
3122   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3123   verify_constants();
3124 
3125   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3126   verify_registers();
3127 
3128   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3129 }
3130 
3131 void LinearScan::verify_intervals() {
3132   int len = interval_count();
3133   bool has_error = false;
3134 
3135   for (int i = 0; i < len; i++) {
3136     Interval* i1 = interval_at(i);
3137     if (i1 == NULL) continue;
3138 
3139     i1->check_split_children();
3140 
3141     if (i1->reg_num() != i) {
3142       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3143       has_error = true;
3144     }
3145 
3146     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3147       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3148       has_error = true;
3149     }
3150 
3151     if (i1->assigned_reg() == any_reg) {
3152       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3153       has_error = true;
3154     }
3155 
3156     if (i1->assigned_reg() == i1->assigned_regHi()) {
3157       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3158       has_error = true;
3159     }
3160 
3161     if (!is_processed_reg_num(i1->assigned_reg())) {
3162       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3163       has_error = true;
3164     }
3165 
3166     if (i1->first() == Range::end()) {
3167       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3168       has_error = true;
3169     }
3170 
3171     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3172       if (r->from() >= r->to()) {
3173         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3174         has_error = true;
3175       }
3176     }
3177 
3178     for (int j = i + 1; j < len; j++) {
3179       Interval* i2 = interval_at(j);
3180       if (i2 == NULL) continue;
3181 
3182       // special intervals that are created in MoveResolver
3183       // -> ignore them because the range information has no meaning there
3184       if (i1->from() == 1 && i1->to() == 2) continue;
3185       if (i2->from() == 1 && i2->to() == 2) continue;
3186 
3187       int r1 = i1->assigned_reg();
3188       int r1Hi = i1->assigned_regHi();
3189       int r2 = i2->assigned_reg();
3190       int r2Hi = i2->assigned_regHi();
3191       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3192         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3193         i1->print(); tty->cr();
3194         i2->print(); tty->cr();
3195         has_error = true;
3196       }
3197     }
3198   }
3199 
3200   assert(has_error == false, "register allocation invalid");
3201 }
3202 
3203 
3204 void LinearScan::verify_no_oops_in_fixed_intervals() {
3205   Interval* fixed_intervals;
3206   Interval* other_intervals;
3207   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3208 
3209   // to ensure a walking until the last instruction id, add a dummy interval
3210   // with a high operation id
3211   other_intervals = new Interval(any_reg);
3212   other_intervals->add_range(max_jint - 2, max_jint - 1);
3213   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3214 
3215   LIR_OpVisitState visitor;
3216   for (int i = 0; i < block_count(); i++) {
3217     BlockBegin* block = block_at(i);
3218 
3219     LIR_OpList* instructions = block->lir()->instructions_list();
3220 
3221     for (int j = 0; j < instructions->length(); j++) {
3222       LIR_Op* op = instructions->at(j);
3223       int op_id = op->id();
3224 
3225       visitor.visit(op);
3226 
3227       if (visitor.info_count() > 0) {
3228         iw->walk_before(op->id());
3229         bool check_live = true;
3230         if (op->code() == lir_move) {
3231           LIR_Op1* move = (LIR_Op1*)op;
3232           check_live = (move->patch_code() == lir_patch_none);
3233         }
3234         LIR_OpBranch* branch = op->as_OpBranch();
3235         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3236           // Don't bother checking the stub in this case since the
3237           // exception stub will never return to normal control flow.
3238           check_live = false;
3239         }
3240 
3241         // Make sure none of the fixed registers is live across an
3242         // oopmap since we can't handle that correctly.
3243         if (check_live) {
3244           for (Interval* interval = iw->active_first(fixedKind);
3245                interval != Interval::end();
3246                interval = interval->next()) {
3247             if (interval->current_to() > op->id() + 1) {
3248               // This interval is live out of this op so make sure
3249               // that this interval represents some value that's
3250               // referenced by this op either as an input or output.
3251               bool ok = false;
3252               for_each_visitor_mode(mode) {
3253                 int n = visitor.opr_count(mode);
3254                 for (int k = 0; k < n; k++) {
3255                   LIR_Opr opr = visitor.opr_at(mode, k);
3256                   if (opr->is_fixed_cpu()) {
3257                     if (interval_at(reg_num(opr)) == interval) {
3258                       ok = true;
3259                       break;
3260                     }
3261                     int hi = reg_numHi(opr);
3262                     if (hi != -1 && interval_at(hi) == interval) {
3263                       ok = true;
3264                       break;
3265                     }
3266                   }
3267                 }
3268               }
3269               assert(ok, "fixed intervals should never be live across an oopmap point");
3270             }
3271           }
3272         }
3273       }
3274 
3275       // oop-maps at calls do not contain registers, so check is not needed
3276       if (!visitor.has_call()) {
3277 
3278         for_each_visitor_mode(mode) {
3279           int n = visitor.opr_count(mode);
3280           for (int k = 0; k < n; k++) {
3281             LIR_Opr opr = visitor.opr_at(mode, k);
3282 
3283             if (opr->is_fixed_cpu() && opr->is_oop()) {
3284               // operand is a non-virtual cpu register and contains an oop
3285               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3286 
3287               Interval* interval = interval_at(reg_num(opr));
3288               assert(interval != NULL, "no interval");
3289 
3290               if (mode == LIR_OpVisitState::inputMode) {
3291                 if (interval->to() >= op_id + 1) {
3292                   assert(interval->to() < op_id + 2 ||
3293                          interval->has_hole_between(op_id, op_id + 2),
3294                          "oop input operand live after instruction");
3295                 }
3296               } else if (mode == LIR_OpVisitState::outputMode) {
3297                 if (interval->from() <= op_id - 1) {
3298                   assert(interval->has_hole_between(op_id - 1, op_id),
3299                          "oop input operand live after instruction");
3300                 }
3301               }
3302             }
3303           }
3304         }
3305       }
3306     }
3307   }
3308 }
3309 
3310 
3311 void LinearScan::verify_constants() {
3312   int num_regs = num_virtual_regs();
3313   int size = live_set_size();
3314   int num_blocks = block_count();
3315 
3316   for (int i = 0; i < num_blocks; i++) {
3317     BlockBegin* block = block_at(i);
3318     BitMap live_at_edge = block->live_in();
3319 
3320     // visit all registers where the live_at_edge bit is set
3321     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3322       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3323 
3324       Value value = gen()->instruction_for_vreg(r);
3325 
3326       assert(value != NULL, "all intervals live across block boundaries must have Value");
3327       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3328       assert(value->operand()->vreg_number() == r, "register number must match");
3329       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3330     }
3331   }
3332 }
3333 
3334 
3335 class RegisterVerifier: public StackObj {
3336  private:
3337   LinearScan*   _allocator;
3338   BlockList     _work_list;      // all blocks that must be processed
3339   IntervalsList _saved_states;   // saved information of previous check
3340 
3341   // simplified access to methods of LinearScan
3342   Compilation*  compilation() const              { return _allocator->compilation(); }
3343   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3344   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3345 
3346   // currently, only registers are processed
3347   int           state_size()                     { return LinearScan::nof_regs; }
3348 
3349   // accessors
3350   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3351   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3352   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3353 
3354   // helper functions
3355   IntervalList* copy(IntervalList* input_state);
3356   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3357   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3358 
3359   void process_block(BlockBegin* block);
3360   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3361   void process_successor(BlockBegin* block, IntervalList* input_state);
3362   void process_operations(LIR_List* ops, IntervalList* input_state);
3363 
3364  public:
3365   RegisterVerifier(LinearScan* allocator)
3366     : _allocator(allocator)
3367     , _work_list(16)
3368     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3369   { }
3370 
3371   void verify(BlockBegin* start);
3372 };
3373 
3374 
3375 // entry function from LinearScan that starts the verification
3376 void LinearScan::verify_registers() {
3377   RegisterVerifier verifier(this);
3378   verifier.verify(block_at(0));
3379 }
3380 
3381 
3382 void RegisterVerifier::verify(BlockBegin* start) {
3383   // setup input registers (method arguments) for first block
3384   IntervalList* input_state = new IntervalList(state_size(), NULL);
3385   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3386   for (int n = 0; n < args->length(); n++) {
3387     LIR_Opr opr = args->at(n);
3388     if (opr->is_register()) {
3389       Interval* interval = interval_at(reg_num(opr));
3390 
3391       if (interval->assigned_reg() < state_size()) {
3392         input_state->at_put(interval->assigned_reg(), interval);
3393       }
3394       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3395         input_state->at_put(interval->assigned_regHi(), interval);
3396       }
3397     }
3398   }
3399 
3400   set_state_for_block(start, input_state);
3401   add_to_work_list(start);
3402 
3403   // main loop for verification
3404   do {
3405     BlockBegin* block = _work_list.at(0);
3406     _work_list.remove_at(0);
3407 
3408     process_block(block);
3409   } while (!_work_list.is_empty());
3410 }
3411 
3412 void RegisterVerifier::process_block(BlockBegin* block) {
3413   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3414 
3415   // must copy state because it is modified
3416   IntervalList* input_state = copy(state_for_block(block));
3417 
3418   if (TraceLinearScanLevel >= 4) {
3419     tty->print_cr("Input-State of intervals:");
3420     tty->print("    ");
3421     for (int i = 0; i < state_size(); i++) {
3422       if (input_state->at(i) != NULL) {
3423         tty->print(" %4d", input_state->at(i)->reg_num());
3424       } else {
3425         tty->print("   __");
3426       }
3427     }
3428     tty->cr();
3429     tty->cr();
3430   }
3431 
3432   // process all operations of the block
3433   process_operations(block->lir(), input_state);
3434 
3435   // iterate all successors
3436   for (int i = 0; i < block->number_of_sux(); i++) {
3437     process_successor(block->sux_at(i), input_state);
3438   }
3439 }
3440 
3441 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3442   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3443 
3444   // must copy state because it is modified
3445   input_state = copy(input_state);
3446 
3447   if (xhandler->entry_code() != NULL) {
3448     process_operations(xhandler->entry_code(), input_state);
3449   }
3450   process_successor(xhandler->entry_block(), input_state);
3451 }
3452 
3453 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3454   IntervalList* saved_state = state_for_block(block);
3455 
3456   if (saved_state != NULL) {
3457     // this block was already processed before.
3458     // check if new input_state is consistent with saved_state
3459 
3460     bool saved_state_correct = true;
3461     for (int i = 0; i < state_size(); i++) {
3462       if (input_state->at(i) != saved_state->at(i)) {
3463         // current input_state and previous saved_state assume a different
3464         // interval in this register -> assume that this register is invalid
3465         if (saved_state->at(i) != NULL) {
3466           // invalidate old calculation only if it assumed that
3467           // register was valid. when the register was already invalid,
3468           // then the old calculation was correct.
3469           saved_state_correct = false;
3470           saved_state->at_put(i, NULL);
3471 
3472           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3473         }
3474       }
3475     }
3476 
3477     if (saved_state_correct) {
3478       // already processed block with correct input_state
3479       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3480     } else {
3481       // must re-visit this block
3482       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3483       add_to_work_list(block);
3484     }
3485 
3486   } else {
3487     // block was not processed before, so set initial input_state
3488     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3489 
3490     set_state_for_block(block, copy(input_state));
3491     add_to_work_list(block);
3492   }
3493 }
3494 
3495 
3496 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3497   IntervalList* copy_state = new IntervalList(input_state->length());
3498   copy_state->push_all(input_state);
3499   return copy_state;
3500 }
3501 
3502 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3503   if (reg != LinearScan::any_reg && reg < state_size()) {
3504     if (interval != NULL) {
3505       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3506     } else if (input_state->at(reg) != NULL) {
3507       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3508     }
3509 
3510     input_state->at_put(reg, interval);
3511   }
3512 }
3513 
3514 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3515   if (reg != LinearScan::any_reg && reg < state_size()) {
3516     if (input_state->at(reg) != interval) {
3517       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3518       return true;
3519     }
3520   }
3521   return false;
3522 }
3523 
3524 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3525   // visit all instructions of the block
3526   LIR_OpVisitState visitor;
3527   bool has_error = false;
3528 
3529   for (int i = 0; i < ops->length(); i++) {
3530     LIR_Op* op = ops->at(i);
3531     visitor.visit(op);
3532 
3533     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3534 
3535     // check if input operands are correct
3536     int j;
3537     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3538     for (j = 0; j < n; j++) {
3539       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3540       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3541         Interval* interval = interval_at(reg_num(opr));
3542         if (op->id() != -1) {
3543           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3544         }
3545 
3546         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3547         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3548 
3549         // When an operand is marked with is_last_use, then the fpu stack allocator
3550         // removes the register from the fpu stack -> the register contains no value
3551         if (opr->is_last_use()) {
3552           state_put(input_state, interval->assigned_reg(),   NULL);
3553           state_put(input_state, interval->assigned_regHi(), NULL);
3554         }
3555       }
3556     }
3557 
3558     // invalidate all caller save registers at calls
3559     if (visitor.has_call()) {
3560       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3561         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3562       }
3563       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3564         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3565       }
3566 
3567 #ifdef X86
3568       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3569         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3570       }
3571 #endif
3572     }
3573 
3574     // process xhandler before output and temp operands
3575     XHandlers* xhandlers = visitor.all_xhandler();
3576     n = xhandlers->length();
3577     for (int k = 0; k < n; k++) {
3578       process_xhandler(xhandlers->handler_at(k), input_state);
3579     }
3580 
3581     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3582     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3583     for (j = 0; j < n; j++) {
3584       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3585       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3586         Interval* interval = interval_at(reg_num(opr));
3587         if (op->id() != -1) {
3588           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3589         }
3590 
3591         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3592         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3593       }
3594     }
3595 
3596     // set output operands
3597     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3598     for (j = 0; j < n; j++) {
3599       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3600       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3601         Interval* interval = interval_at(reg_num(opr));
3602         if (op->id() != -1) {
3603           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3604         }
3605 
3606         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3607         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3608       }
3609     }
3610   }
3611   assert(has_error == false, "Error in register allocation");
3612 }
3613 
3614 #endif // ASSERT
3615 
3616 
3617 
3618 // **** Implementation of MoveResolver ******************************
3619 
3620 MoveResolver::MoveResolver(LinearScan* allocator) :
3621   _allocator(allocator),
3622   _multiple_reads_allowed(false),
3623   _mapping_from(8),
3624   _mapping_from_opr(8),
3625   _mapping_to(8),
3626   _insert_list(NULL),
3627   _insert_idx(-1),
3628   _insertion_buffer()
3629 {
3630   for (int i = 0; i < LinearScan::nof_regs; i++) {
3631     _register_blocked[i] = 0;
3632   }
3633   DEBUG_ONLY(check_empty());
3634 }
3635 
3636 
3637 #ifdef ASSERT
3638 
3639 void MoveResolver::check_empty() {
3640   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3641   for (int i = 0; i < LinearScan::nof_regs; i++) {
3642     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3643   }
3644   assert(_multiple_reads_allowed == false, "must have default value");
3645 }
3646 
3647 void MoveResolver::verify_before_resolve() {
3648   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3649   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3650   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3651 
3652   int i, j;
3653   if (!_multiple_reads_allowed) {
3654     for (i = 0; i < _mapping_from.length(); i++) {
3655       for (j = i + 1; j < _mapping_from.length(); j++) {
3656         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3657       }
3658     }
3659   }
3660 
3661   for (i = 0; i < _mapping_to.length(); i++) {
3662     for (j = i + 1; j < _mapping_to.length(); j++) {
3663       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3664     }
3665   }
3666 
3667 
3668   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3669   used_regs.clear();
3670   if (!_multiple_reads_allowed) {
3671     for (i = 0; i < _mapping_from.length(); i++) {
3672       Interval* it = _mapping_from.at(i);
3673       if (it != NULL) {
3674         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3675         used_regs.set_bit(it->assigned_reg());
3676 
3677         if (it->assigned_regHi() != LinearScan::any_reg) {
3678           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3679           used_regs.set_bit(it->assigned_regHi());
3680         }
3681       }
3682     }
3683   }
3684 
3685   used_regs.clear();
3686   for (i = 0; i < _mapping_to.length(); i++) {
3687     Interval* it = _mapping_to.at(i);
3688     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3689     used_regs.set_bit(it->assigned_reg());
3690 
3691     if (it->assigned_regHi() != LinearScan::any_reg) {
3692       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3693       used_regs.set_bit(it->assigned_regHi());
3694     }
3695   }
3696 
3697   used_regs.clear();
3698   for (i = 0; i < _mapping_from.length(); i++) {
3699     Interval* it = _mapping_from.at(i);
3700     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3701       used_regs.set_bit(it->assigned_reg());
3702     }
3703   }
3704   for (i = 0; i < _mapping_to.length(); i++) {
3705     Interval* it = _mapping_to.at(i);
3706     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3707   }
3708 }
3709 
3710 #endif // ASSERT
3711 
3712 
3713 // mark assigned_reg and assigned_regHi of the interval as blocked
3714 void MoveResolver::block_registers(Interval* it) {
3715   int reg = it->assigned_reg();
3716   if (reg < LinearScan::nof_regs) {
3717     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3718     set_register_blocked(reg, 1);
3719   }
3720   reg = it->assigned_regHi();
3721   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3722     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3723     set_register_blocked(reg, 1);
3724   }
3725 }
3726 
3727 // mark assigned_reg and assigned_regHi of the interval as unblocked
3728 void MoveResolver::unblock_registers(Interval* it) {
3729   int reg = it->assigned_reg();
3730   if (reg < LinearScan::nof_regs) {
3731     assert(register_blocked(reg) > 0, "register already marked as unused");
3732     set_register_blocked(reg, -1);
3733   }
3734   reg = it->assigned_regHi();
3735   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3736     assert(register_blocked(reg) > 0, "register already marked as unused");
3737     set_register_blocked(reg, -1);
3738   }
3739 }
3740 
3741 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3742 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3743   int from_reg = -1;
3744   int from_regHi = -1;
3745   if (from != NULL) {
3746     from_reg = from->assigned_reg();
3747     from_regHi = from->assigned_regHi();
3748   }
3749 
3750   int reg = to->assigned_reg();
3751   if (reg < LinearScan::nof_regs) {
3752     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3753       return false;
3754     }
3755   }
3756   reg = to->assigned_regHi();
3757   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3758     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3759       return false;
3760     }
3761   }
3762 
3763   return true;
3764 }
3765 
3766 
3767 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3768   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3769   _insertion_buffer.init(list);
3770 }
3771 
3772 void MoveResolver::append_insertion_buffer() {
3773   if (_insertion_buffer.initialized()) {
3774     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3775   }
3776   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3777 
3778   _insert_list = NULL;
3779   _insert_idx = -1;
3780 }
3781 
3782 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3783   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3784   assert(from_interval->type() == to_interval->type(), "move between different types");
3785   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3786   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3787 
3788   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3789   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3790 
3791   if (!_multiple_reads_allowed) {
3792     // the last_use flag is an optimization for FPU stack allocation. When the same
3793     // input interval is used in more than one move, then it is too difficult to determine
3794     // if this move is really the last use.
3795     from_opr = from_opr->make_last_use();
3796   }
3797   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3798 
3799   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3800 }
3801 
3802 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3803   assert(from_opr->type() == to_interval->type(), "move between different types");
3804   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3805   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3806 
3807   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3808   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3809 
3810   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3811 }
3812 
3813 
3814 void MoveResolver::resolve_mappings() {
3815   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3816   DEBUG_ONLY(verify_before_resolve());
3817 
3818   // Block all registers that are used as input operands of a move.
3819   // When a register is blocked, no move to this register is emitted.
3820   // This is necessary for detecting cycles in moves.
3821   int i;
3822   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3823     Interval* from_interval = _mapping_from.at(i);
3824     if (from_interval != NULL) {
3825       block_registers(from_interval);
3826     }
3827   }
3828 
3829   int spill_candidate = -1;
3830   while (_mapping_from.length() > 0) {
3831     bool processed_interval = false;
3832 
3833     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3834       Interval* from_interval = _mapping_from.at(i);
3835       Interval* to_interval = _mapping_to.at(i);
3836 
3837       if (save_to_process_move(from_interval, to_interval)) {
3838         // this inverval can be processed because target is free
3839         if (from_interval != NULL) {
3840           insert_move(from_interval, to_interval);
3841           unblock_registers(from_interval);
3842         } else {
3843           insert_move(_mapping_from_opr.at(i), to_interval);
3844         }
3845         _mapping_from.remove_at(i);
3846         _mapping_from_opr.remove_at(i);
3847         _mapping_to.remove_at(i);
3848 
3849         processed_interval = true;
3850       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3851         // this interval cannot be processed now because target is not free
3852         // it starts in a register, so it is a possible candidate for spilling
3853         spill_candidate = i;
3854       }
3855     }
3856 
3857     if (!processed_interval) {
3858       // no move could be processed because there is a cycle in the move list
3859       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3860       assert(spill_candidate != -1, "no interval in register for spilling found");
3861 
3862       // create a new spill interval and assign a stack slot to it
3863       Interval* from_interval = _mapping_from.at(spill_candidate);
3864       Interval* spill_interval = new Interval(-1);
3865       spill_interval->set_type(from_interval->type());
3866 
3867       // add a dummy range because real position is difficult to calculate
3868       // Note: this range is a special case when the integrity of the allocation is checked
3869       spill_interval->add_range(1, 2);
3870 
3871       //       do not allocate a new spill slot for temporary interval, but
3872       //       use spill slot assigned to from_interval. Otherwise moves from
3873       //       one stack slot to another can happen (not allowed by LIR_Assembler
3874       int spill_slot = from_interval->canonical_spill_slot();
3875       if (spill_slot < 0) {
3876         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3877         from_interval->set_canonical_spill_slot(spill_slot);
3878       }
3879       spill_interval->assign_reg(spill_slot);
3880       allocator()->append_interval(spill_interval);
3881 
3882       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3883 
3884       // insert a move from register to stack and update the mapping
3885       insert_move(from_interval, spill_interval);
3886       _mapping_from.at_put(spill_candidate, spill_interval);
3887       unblock_registers(from_interval);
3888     }
3889   }
3890 
3891   // reset to default value
3892   _multiple_reads_allowed = false;
3893 
3894   // check that all intervals have been processed
3895   DEBUG_ONLY(check_empty());
3896 }
3897 
3898 
3899 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3900   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3901   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3902 
3903   create_insertion_buffer(insert_list);
3904   _insert_list = insert_list;
3905   _insert_idx = insert_idx;
3906 }
3907 
3908 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3909   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3910 
3911   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3912     // insert position changed -> resolve current mappings
3913     resolve_mappings();
3914   }
3915 
3916   if (insert_list != _insert_list) {
3917     // block changed -> append insertion_buffer because it is
3918     // bound to a specific block and create a new insertion_buffer
3919     append_insertion_buffer();
3920     create_insertion_buffer(insert_list);
3921   }
3922 
3923   _insert_list = insert_list;
3924   _insert_idx = insert_idx;
3925 }
3926 
3927 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3928   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3929 
3930   _mapping_from.append(from_interval);
3931   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3932   _mapping_to.append(to_interval);
3933 }
3934 
3935 
3936 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3937   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3938   assert(from_opr->is_constant(), "only for constants");
3939 
3940   _mapping_from.append(NULL);
3941   _mapping_from_opr.append(from_opr);
3942   _mapping_to.append(to_interval);
3943 }
3944 
3945 void MoveResolver::resolve_and_append_moves() {
3946   if (has_mappings()) {
3947     resolve_mappings();
3948   }
3949   append_insertion_buffer();
3950 }
3951 
3952 
3953 
3954 // **** Implementation of Range *************************************
3955 
3956 Range::Range(int from, int to, Range* next) :
3957   _from(from),
3958   _to(to),
3959   _next(next)
3960 {
3961 }
3962 
3963 // initialize sentinel
3964 Range* Range::_end = NULL;
3965 void Range::initialize(Arena* arena) {
3966   _end = new (arena) Range(max_jint, max_jint, NULL);
3967 }
3968 
3969 int Range::intersects_at(Range* r2) const {
3970   const Range* r1 = this;
3971 
3972   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3973   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3974 
3975   do {
3976     if (r1->from() < r2->from()) {
3977       if (r1->to() <= r2->from()) {
3978         r1 = r1->next(); if (r1 == _end) return -1;
3979       } else {
3980         return r2->from();
3981       }
3982     } else if (r2->from() < r1->from()) {
3983       if (r2->to() <= r1->from()) {
3984         r2 = r2->next(); if (r2 == _end) return -1;
3985       } else {
3986         return r1->from();
3987       }
3988     } else { // r1->from() == r2->from()
3989       if (r1->from() == r1->to()) {
3990         r1 = r1->next(); if (r1 == _end) return -1;
3991       } else if (r2->from() == r2->to()) {
3992         r2 = r2->next(); if (r2 == _end) return -1;
3993       } else {
3994         return r1->from();
3995       }
3996     }
3997   } while (true);
3998 }
3999 
4000 #ifndef PRODUCT
4001 void Range::print(outputStream* out) const {
4002   out->print("[%d, %d[ ", _from, _to);
4003 }
4004 #endif
4005 
4006 
4007 
4008 // **** Implementation of Interval **********************************
4009 
4010 // initialize sentinel
4011 Interval* Interval::_end = NULL;
4012 void Interval::initialize(Arena* arena) {
4013   Range::initialize(arena);
4014   _end = new (arena) Interval(-1);
4015 }
4016 
4017 Interval::Interval(int reg_num) :
4018   _reg_num(reg_num),
4019   _type(T_ILLEGAL),
4020   _first(Range::end()),
4021   _use_pos_and_kinds(12),
4022   _current(Range::end()),
4023   _next(_end),
4024   _state(invalidState),
4025   _assigned_reg(LinearScan::any_reg),
4026   _assigned_regHi(LinearScan::any_reg),
4027   _cached_to(-1),
4028   _cached_opr(LIR_OprFact::illegalOpr),
4029   _cached_vm_reg(VMRegImpl::Bad()),
4030   _split_children(0),
4031   _canonical_spill_slot(-1),
4032   _insert_move_when_activated(false),
4033   _register_hint(NULL),
4034   _spill_state(noDefinitionFound),
4035   _spill_definition_pos(-1)
4036 {
4037   _split_parent = this;
4038   _current_split_child = this;
4039 }
4040 
4041 int Interval::calc_to() {
4042   assert(_first != Range::end(), "interval has no range");
4043 
4044   Range* r = _first;
4045   while (r->next() != Range::end()) {
4046     r = r->next();
4047   }
4048   return r->to();
4049 }
4050 
4051 
4052 #ifdef ASSERT
4053 // consistency check of split-children
4054 void Interval::check_split_children() {
4055   if (_split_children.length() > 0) {
4056     assert(is_split_parent(), "only split parents can have children");
4057 
4058     for (int i = 0; i < _split_children.length(); i++) {
4059       Interval* i1 = _split_children.at(i);
4060 
4061       assert(i1->split_parent() == this, "not a split child of this interval");
4062       assert(i1->type() == type(), "must be equal for all split children");
4063       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4064 
4065       for (int j = i + 1; j < _split_children.length(); j++) {
4066         Interval* i2 = _split_children.at(j);
4067 
4068         assert(i1->reg_num() != i2->reg_num(), "same register number");
4069 
4070         if (i1->from() < i2->from()) {
4071           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4072         } else {
4073           assert(i2->from() < i1->from(), "intervals start at same op_id");
4074           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4075         }
4076       }
4077     }
4078   }
4079 }
4080 #endif // ASSERT
4081 
4082 Interval* Interval::register_hint(bool search_split_child) const {
4083   if (!search_split_child) {
4084     return _register_hint;
4085   }
4086 
4087   if (_register_hint != NULL) {
4088     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4089 
4090     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4091       return _register_hint;
4092 
4093     } else if (_register_hint->_split_children.length() > 0) {
4094       // search the first split child that has a register assigned
4095       int len = _register_hint->_split_children.length();
4096       for (int i = 0; i < len; i++) {
4097         Interval* cur = _register_hint->_split_children.at(i);
4098 
4099         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4100           return cur;
4101         }
4102       }
4103     }
4104   }
4105 
4106   // no hint interval found that has a register assigned
4107   return NULL;
4108 }
4109 
4110 
4111 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4112   assert(is_split_parent(), "can only be called for split parents");
4113   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4114 
4115   Interval* result;
4116   if (_split_children.length() == 0) {
4117     result = this;
4118   } else {
4119     result = NULL;
4120     int len = _split_children.length();
4121 
4122     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4123     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4124 
4125     int i;
4126     for (i = 0; i < len; i++) {
4127       Interval* cur = _split_children.at(i);
4128       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4129         if (i > 0) {
4130           // exchange current split child to start of list (faster access for next call)
4131           _split_children.at_put(i, _split_children.at(0));
4132           _split_children.at_put(0, cur);
4133         }
4134 
4135         // interval found
4136         result = cur;
4137         break;
4138       }
4139     }
4140 
4141 #ifdef ASSERT
4142     for (i = 0; i < len; i++) {
4143       Interval* tmp = _split_children.at(i);
4144       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4145         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4146         result->print();
4147         tmp->print();
4148         assert(false, "two valid result intervals found");
4149       }
4150     }
4151 #endif
4152   }
4153 
4154   assert(result != NULL, "no matching interval found");
4155   assert(result->covers(op_id, mode), "op_id not covered by interval");
4156 
4157   return result;
4158 }
4159 
4160 
4161 // returns the last split child that ends before the given op_id
4162 Interval* Interval::split_child_before_op_id(int op_id) {
4163   assert(op_id >= 0, "invalid op_id");
4164 
4165   Interval* parent = split_parent();
4166   Interval* result = NULL;
4167 
4168   int len = parent->_split_children.length();
4169   assert(len > 0, "no split children available");
4170 
4171   for (int i = len - 1; i >= 0; i--) {
4172     Interval* cur = parent->_split_children.at(i);
4173     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4174       result = cur;
4175     }
4176   }
4177 
4178   assert(result != NULL, "no split child found");
4179   return result;
4180 }
4181 
4182 
4183 // checks if op_id is covered by any split child
4184 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4185   assert(is_split_parent(), "can only be called for split parents");
4186   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4187 
4188   if (_split_children.length() == 0) {
4189     // simple case if interval was not split
4190     return covers(op_id, mode);
4191 
4192   } else {
4193     // extended case: check all split children
4194     int len = _split_children.length();
4195     for (int i = 0; i < len; i++) {
4196       Interval* cur = _split_children.at(i);
4197       if (cur->covers(op_id, mode)) {
4198         return true;
4199       }
4200     }
4201     return false;
4202   }
4203 }
4204 
4205 
4206 // Note: use positions are sorted descending -> first use has highest index
4207 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4208   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4209 
4210   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4211     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4212       return _use_pos_and_kinds.at(i);
4213     }
4214   }
4215   return max_jint;
4216 }
4217 
4218 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4219   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4220 
4221   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4222     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4223       return _use_pos_and_kinds.at(i);
4224     }
4225   }
4226   return max_jint;
4227 }
4228 
4229 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4230   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4231 
4232   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4233     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4234       return _use_pos_and_kinds.at(i);
4235     }
4236   }
4237   return max_jint;
4238 }
4239 
4240 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4241   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4242 
4243   int prev = 0;
4244   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4245     if (_use_pos_and_kinds.at(i) > from) {
4246       return prev;
4247     }
4248     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4249       prev = _use_pos_and_kinds.at(i);
4250     }
4251   }
4252   return prev;
4253 }
4254 
4255 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4256   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4257 
4258   // do not add use positions for precolored intervals because
4259   // they are never used
4260   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4261 #ifdef ASSERT
4262     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4263     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4264       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4265       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4266       if (i > 0) {
4267         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4268       }
4269     }
4270 #endif
4271 
4272     // Note: add_use is called in descending order, so list gets sorted
4273     //       automatically by just appending new use positions
4274     int len = _use_pos_and_kinds.length();
4275     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4276       _use_pos_and_kinds.append(pos);
4277       _use_pos_and_kinds.append(use_kind);
4278     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4279       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4280       _use_pos_and_kinds.at_put(len - 1, use_kind);
4281     }
4282   }
4283 }
4284 
4285 void Interval::add_range(int from, int to) {
4286   assert(from < to, "invalid range");
4287   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4288   assert(from <= first()->to(), "not inserting at begin of interval");
4289 
4290   if (first()->from() <= to) {
4291     // join intersecting ranges
4292     first()->set_from(MIN2(from, first()->from()));
4293     first()->set_to  (MAX2(to,   first()->to()));
4294   } else {
4295     // insert new range
4296     _first = new Range(from, to, first());
4297   }
4298 }
4299 
4300 Interval* Interval::new_split_child() {
4301   // allocate new interval
4302   Interval* result = new Interval(-1);
4303   result->set_type(type());
4304 
4305   Interval* parent = split_parent();
4306   result->_split_parent = parent;
4307   result->set_register_hint(parent);
4308 
4309   // insert new interval in children-list of parent
4310   if (parent->_split_children.length() == 0) {
4311     assert(is_split_parent(), "list must be initialized at first split");
4312 
4313     parent->_split_children = IntervalList(4);
4314     parent->_split_children.append(this);
4315   }
4316   parent->_split_children.append(result);
4317 
4318   return result;
4319 }
4320 
4321 // split this interval at the specified position and return
4322 // the remainder as a new interval.
4323 //
4324 // when an interval is split, a bi-directional link is established between the original interval
4325 // (the split parent) and the intervals that are split off this interval (the split children)
4326 // When a split child is split again, the new created interval is also a direct child
4327 // of the original parent (there is no tree of split children stored, but a flat list)
4328 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4329 //
4330 // Note: The new interval has no valid reg_num
4331 Interval* Interval::split(int split_pos) {
4332   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4333 
4334   // allocate new interval
4335   Interval* result = new_split_child();
4336 
4337   // split the ranges
4338   Range* prev = NULL;
4339   Range* cur = _first;
4340   while (cur != Range::end() && cur->to() <= split_pos) {
4341     prev = cur;
4342     cur = cur->next();
4343   }
4344   assert(cur != Range::end(), "split interval after end of last range");
4345 
4346   if (cur->from() < split_pos) {
4347     result->_first = new Range(split_pos, cur->to(), cur->next());
4348     cur->set_to(split_pos);
4349     cur->set_next(Range::end());
4350 
4351   } else {
4352     assert(prev != NULL, "split before start of first range");
4353     result->_first = cur;
4354     prev->set_next(Range::end());
4355   }
4356   result->_current = result->_first;
4357   _cached_to = -1; // clear cached value
4358 
4359   // split list of use positions
4360   int total_len = _use_pos_and_kinds.length();
4361   int start_idx = total_len - 2;
4362   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4363     start_idx -= 2;
4364   }
4365 
4366   intStack new_use_pos_and_kinds(total_len - start_idx);
4367   int i;
4368   for (i = start_idx + 2; i < total_len; i++) {
4369     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4370   }
4371 
4372   _use_pos_and_kinds.truncate(start_idx + 2);
4373   result->_use_pos_and_kinds = _use_pos_and_kinds;
4374   _use_pos_and_kinds = new_use_pos_and_kinds;
4375 
4376 #ifdef ASSERT
4377   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4378   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4379   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4380 
4381   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4382     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4383     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4384   }
4385   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4386     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4387     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4388   }
4389 #endif
4390 
4391   return result;
4392 }
4393 
4394 // split this interval at the specified position and return
4395 // the head as a new interval (the original interval is the tail)
4396 //
4397 // Currently, only the first range can be split, and the new interval
4398 // must not have split positions
4399 Interval* Interval::split_from_start(int split_pos) {
4400   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4401   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4402   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4403   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4404 
4405   // allocate new interval
4406   Interval* result = new_split_child();
4407 
4408   // the new created interval has only one range (checked by assertion above),
4409   // so the splitting of the ranges is very simple
4410   result->add_range(_first->from(), split_pos);
4411 
4412   if (split_pos == _first->to()) {
4413     assert(_first->next() != Range::end(), "must not be at end");
4414     _first = _first->next();
4415   } else {
4416     _first->set_from(split_pos);
4417   }
4418 
4419   return result;
4420 }
4421 
4422 
4423 // returns true if the op_id is inside the interval
4424 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4425   Range* cur  = _first;
4426 
4427   while (cur != Range::end() && cur->to() < op_id) {
4428     cur = cur->next();
4429   }
4430   if (cur != Range::end()) {
4431     assert(cur->to() != cur->next()->from(), "ranges not separated");
4432 
4433     if (mode == LIR_OpVisitState::outputMode) {
4434       return cur->from() <= op_id && op_id < cur->to();
4435     } else {
4436       return cur->from() <= op_id && op_id <= cur->to();
4437     }
4438   }
4439   return false;
4440 }
4441 
4442 // returns true if the interval has any hole between hole_from and hole_to
4443 // (even if the hole has only the length 1)
4444 bool Interval::has_hole_between(int hole_from, int hole_to) {
4445   assert(hole_from < hole_to, "check");
4446   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4447 
4448   Range* cur  = _first;
4449   while (cur != Range::end()) {
4450     assert(cur->to() < cur->next()->from(), "no space between ranges");
4451 
4452     // hole-range starts before this range -> hole
4453     if (hole_from < cur->from()) {
4454       return true;
4455 
4456     // hole-range completely inside this range -> no hole
4457     } else if (hole_to <= cur->to()) {
4458       return false;
4459 
4460     // overlapping of hole-range with this range -> hole
4461     } else if (hole_from <= cur->to()) {
4462       return true;
4463     }
4464 
4465     cur = cur->next();
4466   }
4467 
4468   return false;
4469 }
4470 
4471 
4472 #ifndef PRODUCT
4473 void Interval::print(outputStream* out) const {
4474   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4475   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4476 
4477   const char* type_name;
4478   LIR_Opr opr = LIR_OprFact::illegal();
4479   if (reg_num() < LIR_OprDesc::vreg_base) {
4480     type_name = "fixed";
4481     // need a temporary operand for fixed intervals because type() cannot be called
4482     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4483       opr = LIR_OprFact::single_cpu(assigned_reg());
4484     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4485       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4486 #ifdef X86
4487     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4488       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4489 #endif
4490     } else {
4491       ShouldNotReachHere();
4492     }
4493   } else {
4494     type_name = type2name(type());
4495     if (assigned_reg() != -1) {
4496       opr = LinearScan::calc_operand_for_interval(this);
4497     }
4498   }
4499 
4500   out->print("%d %s ", reg_num(), type_name);
4501   if (opr->is_valid()) {
4502     out->print("\"");
4503     opr->print(out);
4504     out->print("\" ");
4505   }
4506   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4507 
4508   // print ranges
4509   Range* cur = _first;
4510   while (cur != Range::end()) {
4511     cur->print(out);
4512     cur = cur->next();
4513     assert(cur != NULL, "range list not closed with range sentinel");
4514   }
4515 
4516   // print use positions
4517   int prev = 0;
4518   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4519   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4520     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4521     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4522 
4523     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4524     prev = _use_pos_and_kinds.at(i);
4525   }
4526 
4527   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4528   out->cr();
4529 }
4530 #endif
4531 
4532 
4533 
4534 // **** Implementation of IntervalWalker ****************************
4535 
4536 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4537  : _compilation(allocator->compilation())
4538  , _allocator(allocator)
4539 {
4540   _unhandled_first[fixedKind] = unhandled_fixed_first;
4541   _unhandled_first[anyKind]   = unhandled_any_first;
4542   _active_first[fixedKind]    = Interval::end();
4543   _inactive_first[fixedKind]  = Interval::end();
4544   _active_first[anyKind]      = Interval::end();
4545   _inactive_first[anyKind]    = Interval::end();
4546   _current_position = -1;
4547   _current = NULL;
4548   next_interval();
4549 }
4550 
4551 
4552 // append interval at top of list
4553 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4554   interval->set_next(*list); *list = interval;
4555 }
4556 
4557 
4558 // append interval in order of current range from()
4559 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4560   Interval* prev = NULL;
4561   Interval* cur  = *list;
4562   while (cur->current_from() < interval->current_from()) {
4563     prev = cur; cur = cur->next();
4564   }
4565   if (prev == NULL) {
4566     *list = interval;
4567   } else {
4568     prev->set_next(interval);
4569   }
4570   interval->set_next(cur);
4571 }
4572 
4573 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4574   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4575 
4576   Interval* prev = NULL;
4577   Interval* cur  = *list;
4578   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4579     prev = cur; cur = cur->next();
4580   }
4581   if (prev == NULL) {
4582     *list = interval;
4583   } else {
4584     prev->set_next(interval);
4585   }
4586   interval->set_next(cur);
4587 }
4588 
4589 
4590 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4591   while (*list != Interval::end() && *list != i) {
4592     list = (*list)->next_addr();
4593   }
4594   if (*list != Interval::end()) {
4595     assert(*list == i, "check");
4596     *list = (*list)->next();
4597     return true;
4598   } else {
4599     return false;
4600   }
4601 }
4602 
4603 void IntervalWalker::remove_from_list(Interval* i) {
4604   bool deleted;
4605 
4606   if (i->state() == activeState) {
4607     deleted = remove_from_list(active_first_addr(anyKind), i);
4608   } else {
4609     assert(i->state() == inactiveState, "invalid state");
4610     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4611   }
4612 
4613   assert(deleted, "interval has not been found in list");
4614 }
4615 
4616 
4617 void IntervalWalker::walk_to(IntervalState state, int from) {
4618   assert (state == activeState || state == inactiveState, "wrong state");
4619   for_each_interval_kind(kind) {
4620     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4621     Interval* next   = *prev;
4622     while (next->current_from() <= from) {
4623       Interval* cur = next;
4624       next = cur->next();
4625 
4626       bool range_has_changed = false;
4627       while (cur->current_to() <= from) {
4628         cur->next_range();
4629         range_has_changed = true;
4630       }
4631 
4632       // also handle move from inactive list to active list
4633       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4634 
4635       if (range_has_changed) {
4636         // remove cur from list
4637         *prev = next;
4638         if (cur->current_at_end()) {
4639           // move to handled state (not maintained as a list)
4640           cur->set_state(handledState);
4641           interval_moved(cur, kind, state, handledState);
4642         } else if (cur->current_from() <= from){
4643           // sort into active list
4644           append_sorted(active_first_addr(kind), cur);
4645           cur->set_state(activeState);
4646           if (*prev == cur) {
4647             assert(state == activeState, "check");
4648             prev = cur->next_addr();
4649           }
4650           interval_moved(cur, kind, state, activeState);
4651         } else {
4652           // sort into inactive list
4653           append_sorted(inactive_first_addr(kind), cur);
4654           cur->set_state(inactiveState);
4655           if (*prev == cur) {
4656             assert(state == inactiveState, "check");
4657             prev = cur->next_addr();
4658           }
4659           interval_moved(cur, kind, state, inactiveState);
4660         }
4661       } else {
4662         prev = cur->next_addr();
4663         continue;
4664       }
4665     }
4666   }
4667 }
4668 
4669 
4670 void IntervalWalker::next_interval() {
4671   IntervalKind kind;
4672   Interval* any   = _unhandled_first[anyKind];
4673   Interval* fixed = _unhandled_first[fixedKind];
4674 
4675   if (any != Interval::end()) {
4676     // intervals may start at same position -> prefer fixed interval
4677     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4678 
4679     assert (kind == fixedKind && fixed->from() <= any->from() ||
4680             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4681     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4682 
4683   } else if (fixed != Interval::end()) {
4684     kind = fixedKind;
4685   } else {
4686     _current = NULL; return;
4687   }
4688   _current_kind = kind;
4689   _current = _unhandled_first[kind];
4690   _unhandled_first[kind] = _current->next();
4691   _current->set_next(Interval::end());
4692   _current->rewind_range();
4693 }
4694 
4695 
4696 void IntervalWalker::walk_to(int lir_op_id) {
4697   assert(_current_position <= lir_op_id, "can not walk backwards");
4698   while (current() != NULL) {
4699     bool is_active = current()->from() <= lir_op_id;
4700     int id = is_active ? current()->from() : lir_op_id;
4701 
4702     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4703 
4704     // set _current_position prior to call of walk_to
4705     _current_position = id;
4706 
4707     // call walk_to even if _current_position == id
4708     walk_to(activeState, id);
4709     walk_to(inactiveState, id);
4710 
4711     if (is_active) {
4712       current()->set_state(activeState);
4713       if (activate_current()) {
4714         append_sorted(active_first_addr(current_kind()), current());
4715         interval_moved(current(), current_kind(), unhandledState, activeState);
4716       }
4717 
4718       next_interval();
4719     } else {
4720       return;
4721     }
4722   }
4723 }
4724 
4725 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4726 #ifndef PRODUCT
4727   if (TraceLinearScanLevel >= 4) {
4728     #define print_state(state) \
4729     switch(state) {\
4730       case unhandledState: tty->print("unhandled"); break;\
4731       case activeState: tty->print("active"); break;\
4732       case inactiveState: tty->print("inactive"); break;\
4733       case handledState: tty->print("handled"); break;\
4734       default: ShouldNotReachHere(); \
4735     }
4736 
4737     print_state(from); tty->print(" to "); print_state(to);
4738     tty->fill_to(23);
4739     interval->print();
4740 
4741     #undef print_state
4742   }
4743 #endif
4744 }
4745 
4746 
4747 
4748 // **** Implementation of LinearScanWalker **************************
4749 
4750 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4751   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4752   , _move_resolver(allocator)
4753 {
4754   for (int i = 0; i < LinearScan::nof_regs; i++) {
4755     _spill_intervals[i] = new IntervalList(2);
4756   }
4757 }
4758 
4759 
4760 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4761   for (int i = _first_reg; i <= _last_reg; i++) {
4762     _use_pos[i] = max_jint;
4763 
4764     if (!only_process_use_pos) {
4765       _block_pos[i] = max_jint;
4766       _spill_intervals[i]->clear();
4767     }
4768   }
4769 }
4770 
4771 inline void LinearScanWalker::exclude_from_use(int reg) {
4772   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4773   if (reg >= _first_reg && reg <= _last_reg) {
4774     _use_pos[reg] = 0;
4775   }
4776 }
4777 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4778   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4779 
4780   exclude_from_use(i->assigned_reg());
4781   exclude_from_use(i->assigned_regHi());
4782 }
4783 
4784 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4785   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4786 
4787   if (reg >= _first_reg && reg <= _last_reg) {
4788     if (_use_pos[reg] > use_pos) {
4789       _use_pos[reg] = use_pos;
4790     }
4791     if (!only_process_use_pos) {
4792       _spill_intervals[reg]->append(i);
4793     }
4794   }
4795 }
4796 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4797   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4798   if (use_pos != -1) {
4799     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4800     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4801   }
4802 }
4803 
4804 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4805   if (reg >= _first_reg && reg <= _last_reg) {
4806     if (_block_pos[reg] > block_pos) {
4807       _block_pos[reg] = block_pos;
4808     }
4809     if (_use_pos[reg] > block_pos) {
4810       _use_pos[reg] = block_pos;
4811     }
4812   }
4813 }
4814 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4815   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4816   if (block_pos != -1) {
4817     set_block_pos(i->assigned_reg(), i, block_pos);
4818     set_block_pos(i->assigned_regHi(), i, block_pos);
4819   }
4820 }
4821 
4822 
4823 void LinearScanWalker::free_exclude_active_fixed() {
4824   Interval* list = active_first(fixedKind);
4825   while (list != Interval::end()) {
4826     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4827     exclude_from_use(list);
4828     list = list->next();
4829   }
4830 }
4831 
4832 void LinearScanWalker::free_exclude_active_any() {
4833   Interval* list = active_first(anyKind);
4834   while (list != Interval::end()) {
4835     exclude_from_use(list);
4836     list = list->next();
4837   }
4838 }
4839 
4840 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4841   Interval* list = inactive_first(fixedKind);
4842   while (list != Interval::end()) {
4843     if (cur->to() <= list->current_from()) {
4844       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4845       set_use_pos(list, list->current_from(), true);
4846     } else {
4847       set_use_pos(list, list->current_intersects_at(cur), true);
4848     }
4849     list = list->next();
4850   }
4851 }
4852 
4853 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4854   Interval* list = inactive_first(anyKind);
4855   while (list != Interval::end()) {
4856     set_use_pos(list, list->current_intersects_at(cur), true);
4857     list = list->next();
4858   }
4859 }
4860 
4861 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4862   Interval* list = unhandled_first(kind);
4863   while (list != Interval::end()) {
4864     set_use_pos(list, list->intersects_at(cur), true);
4865     if (kind == fixedKind && cur->to() <= list->from()) {
4866       set_use_pos(list, list->from(), true);
4867     }
4868     list = list->next();
4869   }
4870 }
4871 
4872 void LinearScanWalker::spill_exclude_active_fixed() {
4873   Interval* list = active_first(fixedKind);
4874   while (list != Interval::end()) {
4875     exclude_from_use(list);
4876     list = list->next();
4877   }
4878 }
4879 
4880 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4881   Interval* list = unhandled_first(fixedKind);
4882   while (list != Interval::end()) {
4883     set_block_pos(list, list->intersects_at(cur));
4884     list = list->next();
4885   }
4886 }
4887 
4888 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4889   Interval* list = inactive_first(fixedKind);
4890   while (list != Interval::end()) {
4891     if (cur->to() > list->current_from()) {
4892       set_block_pos(list, list->current_intersects_at(cur));
4893     } else {
4894       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4895     }
4896 
4897     list = list->next();
4898   }
4899 }
4900 
4901 void LinearScanWalker::spill_collect_active_any() {
4902   Interval* list = active_first(anyKind);
4903   while (list != Interval::end()) {
4904     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4905     list = list->next();
4906   }
4907 }
4908 
4909 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4910   Interval* list = inactive_first(anyKind);
4911   while (list != Interval::end()) {
4912     if (list->current_intersects(cur)) {
4913       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4914     }
4915     list = list->next();
4916   }
4917 }
4918 
4919 
4920 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4921   // output all moves here. When source and target are equal, the move is
4922   // optimized away later in assign_reg_nums
4923 
4924   op_id = (op_id + 1) & ~1;
4925   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4926   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4927 
4928   // calculate index of instruction inside instruction list of current block
4929   // the minimal index (for a block with no spill moves) can be calculated because the
4930   // numbering of instructions is known.
4931   // When the block already contains spill moves, the index must be increased until the
4932   // correct index is reached.
4933   LIR_OpList* list = op_block->lir()->instructions_list();
4934   int index = (op_id - list->at(0)->id()) / 2;
4935   assert(list->at(index)->id() <= op_id, "error in calculation");
4936 
4937   while (list->at(index)->id() != op_id) {
4938     index++;
4939     assert(0 <= index && index < list->length(), "index out of bounds");
4940   }
4941   assert(1 <= index && index < list->length(), "index out of bounds");
4942   assert(list->at(index)->id() == op_id, "error in calculation");
4943 
4944   // insert new instruction before instruction at position index
4945   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4946   _move_resolver.add_mapping(src_it, dst_it);
4947 }
4948 
4949 
4950 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4951   int from_block_nr = min_block->linear_scan_number();
4952   int to_block_nr = max_block->linear_scan_number();
4953 
4954   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4955   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4956   assert(from_block_nr < to_block_nr, "must cross block boundary");
4957 
4958   // Try to split at end of max_block. If this would be after
4959   // max_split_pos, then use the begin of max_block
4960   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4961   if (optimal_split_pos > max_split_pos) {
4962     optimal_split_pos = max_block->first_lir_instruction_id();
4963   }
4964 
4965   int min_loop_depth = max_block->loop_depth();
4966   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4967     BlockBegin* cur = block_at(i);
4968 
4969     if (cur->loop_depth() < min_loop_depth) {
4970       // block with lower loop-depth found -> split at the end of this block
4971       min_loop_depth = cur->loop_depth();
4972       optimal_split_pos = cur->last_lir_instruction_id() + 2;
4973     }
4974   }
4975   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4976 
4977   return optimal_split_pos;
4978 }
4979 
4980 
4981 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4982   int optimal_split_pos = -1;
4983   if (min_split_pos == max_split_pos) {
4984     // trivial case, no optimization of split position possible
4985     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4986     optimal_split_pos = min_split_pos;
4987 
4988   } else {
4989     assert(min_split_pos < max_split_pos, "must be true then");
4990     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4991 
4992     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
4993     // beginning of a block, then min_split_pos is also a possible split position.
4994     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
4995     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
4996 
4997     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
4998     // when an interval ends at the end of the last block of the method
4999     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5000     // block at this op_id)
5001     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5002 
5003     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5004     if (min_block == max_block) {
5005       // split position cannot be moved to block boundary, so split as late as possible
5006       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5007       optimal_split_pos = max_split_pos;
5008 
5009     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5010       // Do not move split position if the interval has a hole before max_split_pos.
5011       // Intervals resulting from Phi-Functions have more than one definition (marked
5012       // as mustHaveRegister) with a hole before each definition. When the register is needed
5013       // for the second definition, an earlier reloading is unnecessary.
5014       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5015       optimal_split_pos = max_split_pos;
5016 
5017     } else {
5018       // seach optimal block boundary between min_split_pos and max_split_pos
5019       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5020 
5021       if (do_loop_optimization) {
5022         // Loop optimization: if a loop-end marker is found between min- and max-position,
5023         // then split before this loop
5024         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5025         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5026 
5027         assert(loop_end_pos > min_split_pos, "invalid order");
5028         if (loop_end_pos < max_split_pos) {
5029           // loop-end marker found between min- and max-position
5030           // if it is not the end marker for the same loop as the min-position, then move
5031           // the max-position to this loop block.
5032           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5033           // of the interval (normally, only mustHaveRegister causes a reloading)
5034           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5035 
5036           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5037           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5038 
5039           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5040           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5041             optimal_split_pos = -1;
5042             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5043           } else {
5044             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5045           }
5046         }
5047       }
5048 
5049       if (optimal_split_pos == -1) {
5050         // not calculated by loop optimization
5051         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5052       }
5053     }
5054   }
5055   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5056 
5057   return optimal_split_pos;
5058 }
5059 
5060 
5061 /*
5062   split an interval at the optimal position between min_split_pos and
5063   max_split_pos in two parts:
5064   1) the left part has already a location assigned
5065   2) the right part is sorted into to the unhandled-list
5066 */
5067 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5068   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5069   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5070 
5071   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5072   assert(current_position() < min_split_pos, "cannot split before current position");
5073   assert(min_split_pos <= max_split_pos,     "invalid order");
5074   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5075 
5076   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5077 
5078   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5079   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5080   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5081 
5082   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5083     // the split position would be just before the end of the interval
5084     // -> no split at all necessary
5085     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5086     return;
5087   }
5088 
5089   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5090   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5091 
5092   if (!allocator()->is_block_begin(optimal_split_pos)) {
5093     // move position before actual instruction (odd op_id)
5094     optimal_split_pos = (optimal_split_pos - 1) | 1;
5095   }
5096 
5097   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5098   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5099   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5100 
5101   Interval* split_part = it->split(optimal_split_pos);
5102 
5103   allocator()->append_interval(split_part);
5104   allocator()->copy_register_flags(it, split_part);
5105   split_part->set_insert_move_when_activated(move_necessary);
5106   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5107 
5108   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5109   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5110   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5111 }
5112 
5113 /*
5114   split an interval at the optimal position between min_split_pos and
5115   max_split_pos in two parts:
5116   1) the left part has already a location assigned
5117   2) the right part is always on the stack and therefore ignored in further processing
5118 */
5119 void LinearScanWalker::split_for_spilling(Interval* it) {
5120   // calculate allowed range of splitting position
5121   int max_split_pos = current_position();
5122   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5123 
5124   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5125   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5126 
5127   assert(it->state() == activeState,     "why spill interval that is not active?");
5128   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5129   assert(min_split_pos <= max_split_pos, "invalid order");
5130   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5131   assert(current_position() < it->to(),  "interval must not end before current position");
5132 
5133   if (min_split_pos == it->from()) {
5134     // the whole interval is never used, so spill it entirely to memory
5135     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5136     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5137 
5138     allocator()->assign_spill_slot(it);
5139     allocator()->change_spill_state(it, min_split_pos);
5140 
5141     // Also kick parent intervals out of register to memory when they have no use
5142     // position. This avoids short interval in register surrounded by intervals in
5143     // memory -> avoid useless moves from memory to register and back
5144     Interval* parent = it;
5145     while (parent != NULL && parent->is_split_child()) {
5146       parent = parent->split_child_before_op_id(parent->from());
5147 
5148       if (parent->assigned_reg() < LinearScan::nof_regs) {
5149         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5150           // parent is never used, so kick it out of its assigned register
5151           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5152           allocator()->assign_spill_slot(parent);
5153         } else {
5154           // do not go further back because the register is actually used by the interval
5155           parent = NULL;
5156         }
5157       }
5158     }
5159 
5160   } else {
5161     // search optimal split pos, split interval and spill only the right hand part
5162     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5163 
5164     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5165     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5166     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5167 
5168     if (!allocator()->is_block_begin(optimal_split_pos)) {
5169       // move position before actual instruction (odd op_id)
5170       optimal_split_pos = (optimal_split_pos - 1) | 1;
5171     }
5172 
5173     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5174     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5175     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5176 
5177     Interval* spilled_part = it->split(optimal_split_pos);
5178     allocator()->append_interval(spilled_part);
5179     allocator()->assign_spill_slot(spilled_part);
5180     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5181 
5182     if (!allocator()->is_block_begin(optimal_split_pos)) {
5183       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5184       insert_move(optimal_split_pos, it, spilled_part);
5185     }
5186 
5187     // the current_split_child is needed later when moves are inserted for reloading
5188     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5189     spilled_part->make_current_split_child();
5190 
5191     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5192     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5193     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5194   }
5195 }
5196 
5197 
5198 void LinearScanWalker::split_stack_interval(Interval* it) {
5199   int min_split_pos = current_position() + 1;
5200   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5201 
5202   split_before_usage(it, min_split_pos, max_split_pos);
5203 }
5204 
5205 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5206   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5207   int max_split_pos = register_available_until;
5208 
5209   split_before_usage(it, min_split_pos, max_split_pos);
5210 }
5211 
5212 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5213   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5214 
5215   int current_pos = current_position();
5216   if (it->state() == inactiveState) {
5217     // the interval is currently inactive, so no spill slot is needed for now.
5218     // when the split part is activated, the interval has a new chance to get a register,
5219     // so in the best case no stack slot is necessary
5220     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5221     split_before_usage(it, current_pos + 1, current_pos + 1);
5222 
5223   } else {
5224     // search the position where the interval must have a register and split
5225     // at the optimal position before.
5226     // The new created part is added to the unhandled list and will get a register
5227     // when it is activated
5228     int min_split_pos = current_pos + 1;
5229     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5230 
5231     split_before_usage(it, min_split_pos, max_split_pos);
5232 
5233     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5234     split_for_spilling(it);
5235   }
5236 }
5237 
5238 
5239 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5240   int min_full_reg = any_reg;
5241   int max_partial_reg = any_reg;
5242 
5243   for (int i = _first_reg; i <= _last_reg; i++) {
5244     if (i == ignore_reg) {
5245       // this register must be ignored
5246 
5247     } else if (_use_pos[i] >= interval_to) {
5248       // this register is free for the full interval
5249       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5250         min_full_reg = i;
5251       }
5252     } else if (_use_pos[i] > reg_needed_until) {
5253       // this register is at least free until reg_needed_until
5254       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5255         max_partial_reg = i;
5256       }
5257     }
5258   }
5259 
5260   if (min_full_reg != any_reg) {
5261     return min_full_reg;
5262   } else if (max_partial_reg != any_reg) {
5263     *need_split = true;
5264     return max_partial_reg;
5265   } else {
5266     return any_reg;
5267   }
5268 }
5269 
5270 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5271   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5272 
5273   int min_full_reg = any_reg;
5274   int max_partial_reg = any_reg;
5275 
5276   for (int i = _first_reg; i < _last_reg; i+=2) {
5277     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5278       // this register is free for the full interval
5279       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5280         min_full_reg = i;
5281       }
5282     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5283       // this register is at least free until reg_needed_until
5284       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5285         max_partial_reg = i;
5286       }
5287     }
5288   }
5289 
5290   if (min_full_reg != any_reg) {
5291     return min_full_reg;
5292   } else if (max_partial_reg != any_reg) {
5293     *need_split = true;
5294     return max_partial_reg;
5295   } else {
5296     return any_reg;
5297   }
5298 }
5299 
5300 
5301 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5302   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5303 
5304   init_use_lists(true);
5305   free_exclude_active_fixed();
5306   free_exclude_active_any();
5307   free_collect_inactive_fixed(cur);
5308   free_collect_inactive_any(cur);
5309 //  free_collect_unhandled(fixedKind, cur);
5310   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5311 
5312   // _use_pos contains the start of the next interval that has this register assigned
5313   // (either as a fixed register or a normal allocated register in the past)
5314   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5315   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5316   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5317 
5318   int hint_reg, hint_regHi;
5319   Interval* register_hint = cur->register_hint();
5320   if (register_hint != NULL) {
5321     hint_reg = register_hint->assigned_reg();
5322     hint_regHi = register_hint->assigned_regHi();
5323 
5324     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5325       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5326       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5327     }
5328     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5329 
5330   } else {
5331     hint_reg = any_reg;
5332     hint_regHi = any_reg;
5333   }
5334   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5335   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5336 
5337   // the register must be free at least until this position
5338   int reg_needed_until = cur->from() + 1;
5339   int interval_to = cur->to();
5340 
5341   bool need_split = false;
5342   int split_pos = -1;
5343   int reg = any_reg;
5344   int regHi = any_reg;
5345 
5346   if (_adjacent_regs) {
5347     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5348     regHi = reg + 1;
5349     if (reg == any_reg) {
5350       return false;
5351     }
5352     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5353 
5354   } else {
5355     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5356     if (reg == any_reg) {
5357       return false;
5358     }
5359     split_pos = _use_pos[reg];
5360 
5361     if (_num_phys_regs == 2) {
5362       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5363 
5364       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5365         // do not split interval if only one register can be assigned until the split pos
5366         // (when one register is found for the whole interval, split&spill is only
5367         // performed for the hi register)
5368         return false;
5369 
5370       } else if (regHi != any_reg) {
5371         split_pos = MIN2(split_pos, _use_pos[regHi]);
5372 
5373         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5374         if (reg > regHi) {
5375           int temp = reg;
5376           reg = regHi;
5377           regHi = temp;
5378         }
5379       }
5380     }
5381   }
5382 
5383   cur->assign_reg(reg, regHi);
5384   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5385 
5386   assert(split_pos > 0, "invalid split_pos");
5387   if (need_split) {
5388     // register not available for full interval, so split it
5389     split_when_partial_register_available(cur, split_pos);
5390   }
5391 
5392   // only return true if interval is completely assigned
5393   return _num_phys_regs == 1 || regHi != any_reg;
5394 }
5395 
5396 
5397 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5398   int max_reg = any_reg;
5399 
5400   for (int i = _first_reg; i <= _last_reg; i++) {
5401     if (i == ignore_reg) {
5402       // this register must be ignored
5403 
5404     } else if (_use_pos[i] > reg_needed_until) {
5405       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5406         max_reg = i;
5407       }
5408     }
5409   }
5410 
5411   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5412     *need_split = true;
5413   }
5414 
5415   return max_reg;
5416 }
5417 
5418 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5419   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5420 
5421   int max_reg = any_reg;
5422 
5423   for (int i = _first_reg; i < _last_reg; i+=2) {
5424     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5425       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5426         max_reg = i;
5427       }
5428     }
5429   }
5430 
5431   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5432     *need_split = true;
5433   }
5434 
5435   return max_reg;
5436 }
5437 
5438 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5439   assert(reg != any_reg, "no register assigned");
5440 
5441   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5442     Interval* it = _spill_intervals[reg]->at(i);
5443     remove_from_list(it);
5444     split_and_spill_interval(it);
5445   }
5446 
5447   if (regHi != any_reg) {
5448     IntervalList* processed = _spill_intervals[reg];
5449     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5450       Interval* it = _spill_intervals[regHi]->at(i);
5451       if (processed->index_of(it) == -1) {
5452         remove_from_list(it);
5453         split_and_spill_interval(it);
5454       }
5455     }
5456   }
5457 }
5458 
5459 
5460 // Split an Interval and spill it to memory so that cur can be placed in a register
5461 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5462   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5463 
5464   // collect current usage of registers
5465   init_use_lists(false);
5466   spill_exclude_active_fixed();
5467 //  spill_block_unhandled_fixed(cur);
5468   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5469   spill_block_inactive_fixed(cur);
5470   spill_collect_active_any();
5471   spill_collect_inactive_any(cur);
5472 
5473 #ifndef PRODUCT
5474   if (TraceLinearScanLevel >= 4) {
5475     tty->print_cr("      state of registers:");
5476     for (int i = _first_reg; i <= _last_reg; i++) {
5477       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5478       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5479         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5480       }
5481       tty->cr();
5482     }
5483   }
5484 #endif
5485 
5486   // the register must be free at least until this position
5487   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5488   int interval_to = cur->to();
5489   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5490 
5491   int split_pos = 0;
5492   int use_pos = 0;
5493   bool need_split = false;
5494   int reg, regHi;
5495 
5496   if (_adjacent_regs) {
5497     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5498     regHi = reg + 1;
5499 
5500     if (reg != any_reg) {
5501       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5502       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5503     }
5504   } else {
5505     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5506     regHi = any_reg;
5507 
5508     if (reg != any_reg) {
5509       use_pos = _use_pos[reg];
5510       split_pos = _block_pos[reg];
5511 
5512       if (_num_phys_regs == 2) {
5513         if (cur->assigned_reg() != any_reg) {
5514           regHi = reg;
5515           reg = cur->assigned_reg();
5516         } else {
5517           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5518           if (regHi != any_reg) {
5519             use_pos = MIN2(use_pos, _use_pos[regHi]);
5520             split_pos = MIN2(split_pos, _block_pos[regHi]);
5521           }
5522         }
5523 
5524         if (regHi != any_reg && reg > regHi) {
5525           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5526           int temp = reg;
5527           reg = regHi;
5528           regHi = temp;
5529         }
5530       }
5531     }
5532   }
5533 
5534   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5535     // the first use of cur is later than the spilling position -> spill cur
5536     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5537 
5538     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5539       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5540       // assign a reasonable register and do a bailout in product mode to avoid errors
5541       allocator()->assign_spill_slot(cur);
5542       BAILOUT("LinearScan: no register found");
5543     }
5544 
5545     split_and_spill_interval(cur);
5546   } else {
5547     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5548     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5549     assert(split_pos > 0, "invalid split_pos");
5550     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5551 
5552     cur->assign_reg(reg, regHi);
5553     if (need_split) {
5554       // register not available for full interval, so split it
5555       split_when_partial_register_available(cur, split_pos);
5556     }
5557 
5558     // perform splitting and spilling for all affected intervalls
5559     split_and_spill_intersecting_intervals(reg, regHi);
5560   }
5561 }
5562 
5563 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5564 #ifdef X86
5565   // fast calculation of intervals that can never get a register because the
5566   // the next instruction is a call that blocks all registers
5567   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5568 
5569   // check if this interval is the result of a split operation
5570   // (an interval got a register until this position)
5571   int pos = cur->from();
5572   if ((pos & 1) == 1) {
5573     // the current instruction is a call that blocks all registers
5574     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5575       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5576 
5577       // safety check that there is really no register available
5578       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5579       return true;
5580     }
5581 
5582   }
5583 #endif
5584   return false;
5585 }
5586 
5587 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5588   BasicType type = cur->type();
5589   _num_phys_regs = LinearScan::num_physical_regs(type);
5590   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5591 
5592   if (pd_init_regs_for_alloc(cur)) {
5593     // the appropriate register range was selected.
5594   } else if (type == T_FLOAT || type == T_DOUBLE) {
5595     _first_reg = pd_first_fpu_reg;
5596     _last_reg = pd_last_fpu_reg;
5597   } else {
5598     _first_reg = pd_first_cpu_reg;
5599     _last_reg = pd_last_cpu_reg;
5600   }
5601 
5602   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5603   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5604 }
5605 
5606 
5607 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5608   if (op->code() != lir_move) {
5609     return false;
5610   }
5611   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5612 
5613   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5614   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5615   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5616 }
5617 
5618 // optimization (especially for phi functions of nested loops):
5619 // assign same spill slot to non-intersecting intervals
5620 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5621   if (cur->is_split_child()) {
5622     // optimization is only suitable for split parents
5623     return;
5624   }
5625 
5626   Interval* register_hint = cur->register_hint(false);
5627   if (register_hint == NULL) {
5628     // cur is not the target of a move, otherwise register_hint would be set
5629     return;
5630   }
5631   assert(register_hint->is_split_parent(), "register hint must be split parent");
5632 
5633   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5634     // combining the stack slots for intervals where spill move optimization is applied
5635     // is not benefitial and would cause problems
5636     return;
5637   }
5638 
5639   int begin_pos = cur->from();
5640   int end_pos = cur->to();
5641   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5642     // safety check that lir_op_with_id is allowed
5643     return;
5644   }
5645 
5646   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5647     // cur and register_hint are not connected with two moves
5648     return;
5649   }
5650 
5651   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5652   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5653   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5654     // register_hint must be split, otherwise the re-writing of use positions does not work
5655     return;
5656   }
5657 
5658   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5659   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5660   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5661   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5662 
5663   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5664     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5665     return;
5666   }
5667   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5668 
5669   // modify intervals such that cur gets the same stack slot as register_hint
5670   // delete use positions to prevent the intervals to get a register at beginning
5671   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5672   cur->remove_first_use_pos();
5673   end_hint->remove_first_use_pos();
5674 }
5675 
5676 
5677 // allocate a physical register or memory location to an interval
5678 bool LinearScanWalker::activate_current() {
5679   Interval* cur = current();
5680   bool result = true;
5681 
5682   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5683   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5684 
5685   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5686     // activating an interval that has a stack slot assigned -> split it at first use position
5687     // used for method parameters
5688     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5689 
5690     split_stack_interval(cur);
5691     result = false;
5692 
5693   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5694     // activating an interval that must start in a stack slot, but may get a register later
5695     // used for lir_roundfp: rounding is done by store to stack and reload later
5696     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5697     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5698 
5699     allocator()->assign_spill_slot(cur);
5700     split_stack_interval(cur);
5701     result = false;
5702 
5703   } else if (cur->assigned_reg() == any_reg) {
5704     // interval has not assigned register -> normal allocation
5705     // (this is the normal case for most intervals)
5706     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5707 
5708     // assign same spill slot to non-intersecting intervals
5709     combine_spilled_intervals(cur);
5710 
5711     init_vars_for_alloc(cur);
5712     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5713       // no empty register available.
5714       // split and spill another interval so that this interval gets a register
5715       alloc_locked_reg(cur);
5716     }
5717 
5718     // spilled intervals need not be move to active-list
5719     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5720       result = false;
5721     }
5722   }
5723 
5724   // load spilled values that become active from stack slot to register
5725   if (cur->insert_move_when_activated()) {
5726     assert(cur->is_split_child(), "must be");
5727     assert(cur->current_split_child() != NULL, "must be");
5728     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5729     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5730 
5731     insert_move(cur->from(), cur->current_split_child(), cur);
5732   }
5733   cur->make_current_split_child();
5734 
5735   return result; // true = interval is moved to active list
5736 }
5737 
5738 
5739 // Implementation of EdgeMoveOptimizer
5740 
5741 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5742   _edge_instructions(4),
5743   _edge_instructions_idx(4)
5744 {
5745 }
5746 
5747 void EdgeMoveOptimizer::optimize(BlockList* code) {
5748   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5749 
5750   // ignore the first block in the list (index 0 is not processed)
5751   for (int i = code->length() - 1; i >= 1; i--) {
5752     BlockBegin* block = code->at(i);
5753 
5754     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5755       optimizer.optimize_moves_at_block_end(block);
5756     }
5757     if (block->number_of_sux() == 2) {
5758       optimizer.optimize_moves_at_block_begin(block);
5759     }
5760   }
5761 }
5762 
5763 
5764 // clear all internal data structures
5765 void EdgeMoveOptimizer::init_instructions() {
5766   _edge_instructions.clear();
5767   _edge_instructions_idx.clear();
5768 }
5769 
5770 // append a lir-instruction-list and the index of the current operation in to the list
5771 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5772   _edge_instructions.append(instructions);
5773   _edge_instructions_idx.append(instructions_idx);
5774 }
5775 
5776 // return the current operation of the given edge (predecessor or successor)
5777 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5778   LIR_OpList* instructions = _edge_instructions.at(edge);
5779   int idx = _edge_instructions_idx.at(edge);
5780 
5781   if (idx < instructions->length()) {
5782     return instructions->at(idx);
5783   } else {
5784     return NULL;
5785   }
5786 }
5787 
5788 // removes the current operation of the given edge (predecessor or successor)
5789 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5790   LIR_OpList* instructions = _edge_instructions.at(edge);
5791   int idx = _edge_instructions_idx.at(edge);
5792   instructions->remove_at(idx);
5793 
5794   if (decrement_index) {
5795     _edge_instructions_idx.at_put(edge, idx - 1);
5796   }
5797 }
5798 
5799 
5800 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5801   if (op1 == NULL || op2 == NULL) {
5802     // at least one block is already empty -> no optimization possible
5803     return true;
5804   }
5805 
5806   if (op1->code() == lir_move && op2->code() == lir_move) {
5807     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5808     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5809     LIR_Op1* move1 = (LIR_Op1*)op1;
5810     LIR_Op1* move2 = (LIR_Op1*)op2;
5811     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5812       // these moves are exactly equal and can be optimized
5813       return false;
5814     }
5815 
5816   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5817     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5818     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5819     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5820     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5821     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5822       // equal FPU stack operations can be optimized
5823       return false;
5824     }
5825 
5826   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5827     // equal FPU stack operations can be optimized
5828     return false;
5829   }
5830 
5831   // no optimization possible
5832   return true;
5833 }
5834 
5835 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5836   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5837 
5838   if (block->is_predecessor(block)) {
5839     // currently we can't handle this correctly.
5840     return;
5841   }
5842 
5843   init_instructions();
5844   int num_preds = block->number_of_preds();
5845   assert(num_preds > 1, "do not call otherwise");
5846   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5847 
5848   // setup a list with the lir-instructions of all predecessors
5849   int i;
5850   for (i = 0; i < num_preds; i++) {
5851     BlockBegin* pred = block->pred_at(i);
5852     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5853 
5854     if (pred->number_of_sux() != 1) {
5855       // this can happen with switch-statements where multiple edges are between
5856       // the same blocks.
5857       return;
5858     }
5859 
5860     assert(pred->number_of_sux() == 1, "can handle only one successor");
5861     assert(pred->sux_at(0) == block, "invalid control flow");
5862     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5863     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5864     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5865 
5866     if (pred_instructions->last()->info() != NULL) {
5867       // can not optimize instructions when debug info is needed
5868       return;
5869     }
5870 
5871     // ignore the unconditional branch at the end of the block
5872     append_instructions(pred_instructions, pred_instructions->length() - 2);
5873   }
5874 
5875 
5876   // process lir-instructions while all predecessors end with the same instruction
5877   while (true) {
5878     LIR_Op* op = instruction_at(0);
5879     for (i = 1; i < num_preds; i++) {
5880       if (operations_different(op, instruction_at(i))) {
5881         // these instructions are different and cannot be optimized ->
5882         // no further optimization possible
5883         return;
5884       }
5885     }
5886 
5887     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5888 
5889     // insert the instruction at the beginning of the current block
5890     block->lir()->insert_before(1, op);
5891 
5892     // delete the instruction at the end of all predecessors
5893     for (i = 0; i < num_preds; i++) {
5894       remove_cur_instruction(i, true);
5895     }
5896   }
5897 }
5898 
5899 
5900 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5901   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5902 
5903   init_instructions();
5904   int num_sux = block->number_of_sux();
5905 
5906   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5907 
5908   assert(num_sux == 2, "method should not be called otherwise");
5909   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5910   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5911   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5912 
5913   if (cur_instructions->last()->info() != NULL) {
5914     // can no optimize instructions when debug info is needed
5915     return;
5916   }
5917 
5918   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5919   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5920     // not a valid case for optimization
5921     // currently, only blocks that end with two branches (conditional branch followed
5922     // by unconditional branch) are optimized
5923     return;
5924   }
5925 
5926   // now it is guaranteed that the block ends with two branch instructions.
5927   // the instructions are inserted at the end of the block before these two branches
5928   int insert_idx = cur_instructions->length() - 2;
5929 
5930   int i;
5931 #ifdef ASSERT
5932   for (i = insert_idx - 1; i >= 0; i--) {
5933     LIR_Op* op = cur_instructions->at(i);
5934     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5935       assert(false, "block with two successors can have only two branch instructions");
5936     }
5937   }
5938 #endif
5939 
5940   // setup a list with the lir-instructions of all successors
5941   for (i = 0; i < num_sux; i++) {
5942     BlockBegin* sux = block->sux_at(i);
5943     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5944 
5945     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5946 
5947     if (sux->number_of_preds() != 1) {
5948       // this can happen with switch-statements where multiple edges are between
5949       // the same blocks.
5950       return;
5951     }
5952     assert(sux->pred_at(0) == block, "invalid control flow");
5953     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5954 
5955     // ignore the label at the beginning of the block
5956     append_instructions(sux_instructions, 1);
5957   }
5958 
5959   // process lir-instructions while all successors begin with the same instruction
5960   while (true) {
5961     LIR_Op* op = instruction_at(0);
5962     for (i = 1; i < num_sux; i++) {
5963       if (operations_different(op, instruction_at(i))) {
5964         // these instructions are different and cannot be optimized ->
5965         // no further optimization possible
5966         return;
5967       }
5968     }
5969 
5970     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5971 
5972     // insert instruction at end of current block
5973     block->lir()->insert_before(insert_idx, op);
5974     insert_idx++;
5975 
5976     // delete the instructions at the beginning of all successors
5977     for (i = 0; i < num_sux; i++) {
5978       remove_cur_instruction(i, false);
5979     }
5980   }
5981 }
5982 
5983 
5984 // Implementation of ControlFlowOptimizer
5985 
5986 ControlFlowOptimizer::ControlFlowOptimizer() :
5987   _original_preds(4)
5988 {
5989 }
5990 
5991 void ControlFlowOptimizer::optimize(BlockList* code) {
5992   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
5993 
5994   // push the OSR entry block to the end so that we're not jumping over it.
5995   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
5996   if (osr_entry) {
5997     int index = osr_entry->linear_scan_number();
5998     assert(code->at(index) == osr_entry, "wrong index");
5999     code->remove_at(index);
6000     code->append(osr_entry);
6001   }
6002 
6003   optimizer.reorder_short_loops(code);
6004   optimizer.delete_empty_blocks(code);
6005   optimizer.delete_unnecessary_jumps(code);
6006   optimizer.delete_jumps_to_return(code);
6007 }
6008 
6009 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6010   int i = header_idx + 1;
6011   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6012   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6013     i++;
6014   }
6015 
6016   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6017     int end_idx = i - 1;
6018     BlockBegin* end_block = code->at(end_idx);
6019 
6020     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6021       // short loop from header_idx to end_idx found -> reorder blocks such that
6022       // the header_block is the last block instead of the first block of the loop
6023       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6024                                          end_idx - header_idx + 1,
6025                                          header_block->block_id(), end_block->block_id()));
6026 
6027       for (int j = header_idx; j < end_idx; j++) {
6028         code->at_put(j, code->at(j + 1));
6029       }
6030       code->at_put(end_idx, header_block);
6031 
6032       // correct the flags so that any loop alignment occurs in the right place.
6033       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6034       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6035       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6036     }
6037   }
6038 }
6039 
6040 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6041   for (int i = code->length() - 1; i >= 0; i--) {
6042     BlockBegin* block = code->at(i);
6043 
6044     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6045       reorder_short_loop(code, block, i);
6046     }
6047   }
6048 
6049   DEBUG_ONLY(verify(code));
6050 }
6051 
6052 // only blocks with exactly one successor can be deleted. Such blocks
6053 // must always end with an unconditional branch to this successor
6054 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6055   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6056     return false;
6057   }
6058 
6059   LIR_OpList* instructions = block->lir()->instructions_list();
6060 
6061   assert(instructions->length() >= 2, "block must have label and branch");
6062   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6063   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6064   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6065   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6066 
6067   // block must have exactly one successor
6068 
6069   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6070     return true;
6071   }
6072   return false;
6073 }
6074 
6075 // substitute branch targets in all branch-instructions of this blocks
6076 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6077   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6078 
6079   LIR_OpList* instructions = block->lir()->instructions_list();
6080 
6081   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6082   for (int i = instructions->length() - 1; i >= 1; i--) {
6083     LIR_Op* op = instructions->at(i);
6084 
6085     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6086       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6087       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6088 
6089       if (branch->block() == target_from) {
6090         branch->change_block(target_to);
6091       }
6092       if (branch->ublock() == target_from) {
6093         branch->change_ublock(target_to);
6094       }
6095     }
6096   }
6097 }
6098 
6099 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6100   int old_pos = 0;
6101   int new_pos = 0;
6102   int num_blocks = code->length();
6103 
6104   while (old_pos < num_blocks) {
6105     BlockBegin* block = code->at(old_pos);
6106 
6107     if (can_delete_block(block)) {
6108       BlockBegin* new_target = block->sux_at(0);
6109 
6110       // propagate backward branch target flag for correct code alignment
6111       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6112         new_target->set(BlockBegin::backward_branch_target_flag);
6113       }
6114 
6115       // collect a list with all predecessors that contains each predecessor only once
6116       // the predecessors of cur are changed during the substitution, so a copy of the
6117       // predecessor list is necessary
6118       int j;
6119       _original_preds.clear();
6120       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6121         BlockBegin* pred = block->pred_at(j);
6122         if (_original_preds.index_of(pred) == -1) {
6123           _original_preds.append(pred);
6124         }
6125       }
6126 
6127       for (j = _original_preds.length() - 1; j >= 0; j--) {
6128         BlockBegin* pred = _original_preds.at(j);
6129         substitute_branch_target(pred, block, new_target);
6130         pred->substitute_sux(block, new_target);
6131       }
6132     } else {
6133       // adjust position of this block in the block list if blocks before
6134       // have been deleted
6135       if (new_pos != old_pos) {
6136         code->at_put(new_pos, code->at(old_pos));
6137       }
6138       new_pos++;
6139     }
6140     old_pos++;
6141   }
6142   code->truncate(new_pos);
6143 
6144   DEBUG_ONLY(verify(code));
6145 }
6146 
6147 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6148   // skip the last block because there a branch is always necessary
6149   for (int i = code->length() - 2; i >= 0; i--) {
6150     BlockBegin* block = code->at(i);
6151     LIR_OpList* instructions = block->lir()->instructions_list();
6152 
6153     LIR_Op* last_op = instructions->last();
6154     if (last_op->code() == lir_branch) {
6155       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6156       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6157 
6158       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6159       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6160 
6161       if (last_branch->info() == NULL) {
6162         if (last_branch->block() == code->at(i + 1)) {
6163 
6164           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6165 
6166           // delete last branch instruction
6167           instructions->truncate(instructions->length() - 1);
6168 
6169         } else {
6170           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6171           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6172             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6173             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6174 
6175             LIR_Op2* prev_cmp = NULL;
6176 
6177             for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6178               prev_op = instructions->at(j);
6179               if(prev_op->code() == lir_cmp) {
6180                 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6181                 prev_cmp = (LIR_Op2*)prev_op;
6182                 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6183               }
6184             }
6185             assert(prev_cmp != NULL, "should have found comp instruction for branch");
6186             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6187 
6188               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6189 
6190               // eliminate a conditional branch to the immediate successor
6191               prev_branch->change_block(last_branch->block());
6192               prev_branch->negate_cond();
6193               prev_cmp->set_condition(prev_branch->cond());
6194               instructions->truncate(instructions->length() - 1);
6195             }
6196           }
6197         }
6198       }
6199     }
6200   }
6201 
6202   DEBUG_ONLY(verify(code));
6203 }
6204 
6205 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6206 #ifdef ASSERT
6207   BitMap return_converted(BlockBegin::number_of_blocks());
6208   return_converted.clear();
6209 #endif
6210 
6211   for (int i = code->length() - 1; i >= 0; i--) {
6212     BlockBegin* block = code->at(i);
6213     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6214     LIR_Op*     cur_last_op = cur_instructions->last();
6215 
6216     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6217     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6218       // the block contains only a label and a return
6219       // if a predecessor ends with an unconditional jump to this block, then the jump
6220       // can be replaced with a return instruction
6221       //
6222       // Note: the original block with only a return statement cannot be deleted completely
6223       //       because the predecessors might have other (conditional) jumps to this block
6224       //       -> this may lead to unnecesary return instructions in the final code
6225 
6226       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6227       assert(block->number_of_sux() == 0 ||
6228              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6229              "blocks that end with return must not have successors");
6230 
6231       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6232       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6233 
6234       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6235         BlockBegin* pred = block->pred_at(j);
6236         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6237         LIR_Op*     pred_last_op = pred_instructions->last();
6238 
6239         if (pred_last_op->code() == lir_branch) {
6240           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6241           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6242 
6243           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6244             // replace the jump to a return with a direct return
6245             // Note: currently the edge between the blocks is not deleted
6246             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6247 #ifdef ASSERT
6248             return_converted.set_bit(pred->block_id());
6249 #endif
6250           }
6251         }
6252       }
6253     }
6254   }
6255 }
6256 
6257 
6258 #ifdef ASSERT
6259 void ControlFlowOptimizer::verify(BlockList* code) {
6260   for (int i = 0; i < code->length(); i++) {
6261     BlockBegin* block = code->at(i);
6262     LIR_OpList* instructions = block->lir()->instructions_list();
6263 
6264     int j;
6265     for (j = 0; j < instructions->length(); j++) {
6266       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6267 
6268       if (op_branch != NULL) {
6269         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6270         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6271       }
6272     }
6273 
6274     for (j = 0; j < block->number_of_sux() - 1; j++) {
6275       BlockBegin* sux = block->sux_at(j);
6276       assert(code->index_of(sux) != -1, "successor not valid");
6277     }
6278 
6279     for (j = 0; j < block->number_of_preds() - 1; j++) {
6280       BlockBegin* pred = block->pred_at(j);
6281       assert(code->index_of(pred) != -1, "successor not valid");
6282     }
6283   }
6284 }
6285 #endif
6286 
6287 
6288 #ifndef PRODUCT
6289 
6290 // Implementation of LinearStatistic
6291 
6292 const char* LinearScanStatistic::counter_name(int counter_idx) {
6293   switch (counter_idx) {
6294     case counter_method:          return "compiled methods";
6295     case counter_fpu_method:      return "methods using fpu";
6296     case counter_loop_method:     return "methods with loops";
6297     case counter_exception_method:return "methods with xhandler";
6298 
6299     case counter_loop:            return "loops";
6300     case counter_block:           return "blocks";
6301     case counter_loop_block:      return "blocks inside loop";
6302     case counter_exception_block: return "exception handler entries";
6303     case counter_interval:        return "intervals";
6304     case counter_fixed_interval:  return "fixed intervals";
6305     case counter_range:           return "ranges";
6306     case counter_fixed_range:     return "fixed ranges";
6307     case counter_use_pos:         return "use positions";
6308     case counter_fixed_use_pos:   return "fixed use positions";
6309     case counter_spill_slots:     return "spill slots";
6310 
6311     // counter for classes of lir instructions
6312     case counter_instruction:     return "total instructions";
6313     case counter_label:           return "labels";
6314     case counter_entry:           return "method entries";
6315     case counter_return:          return "method returns";
6316     case counter_call:            return "method calls";
6317     case counter_move:            return "moves";
6318     case counter_cmp:             return "compare";
6319     case counter_cond_branch:     return "conditional branches";
6320     case counter_uncond_branch:   return "unconditional branches";
6321     case counter_stub_branch:     return "branches to stub";
6322     case counter_alu:             return "artithmetic + logic";
6323     case counter_alloc:           return "allocations";
6324     case counter_sync:            return "synchronisation";
6325     case counter_throw:           return "throw";
6326     case counter_unwind:          return "unwind";
6327     case counter_typecheck:       return "type+null-checks";
6328     case counter_fpu_stack:       return "fpu-stack";
6329     case counter_misc_inst:       return "other instructions";
6330     case counter_other_inst:      return "misc. instructions";
6331 
6332     // counter for different types of moves
6333     case counter_move_total:      return "total moves";
6334     case counter_move_reg_reg:    return "register->register";
6335     case counter_move_reg_stack:  return "register->stack";
6336     case counter_move_stack_reg:  return "stack->register";
6337     case counter_move_stack_stack:return "stack->stack";
6338     case counter_move_reg_mem:    return "register->memory";
6339     case counter_move_mem_reg:    return "memory->register";
6340     case counter_move_const_any:  return "constant->any";
6341 
6342     case blank_line_1:            return "";
6343     case blank_line_2:            return "";
6344 
6345     default: ShouldNotReachHere(); return "";
6346   }
6347 }
6348 
6349 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6350   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6351     return counter_method;
6352   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6353     return counter_block;
6354   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6355     return counter_instruction;
6356   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6357     return counter_move_total;
6358   }
6359   return invalid_counter;
6360 }
6361 
6362 LinearScanStatistic::LinearScanStatistic() {
6363   for (int i = 0; i < number_of_counters; i++) {
6364     _counters_sum[i] = 0;
6365     _counters_max[i] = -1;
6366   }
6367 
6368 }
6369 
6370 // add the method-local numbers to the total sum
6371 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6372   for (int i = 0; i < number_of_counters; i++) {
6373     _counters_sum[i] += method_statistic._counters_sum[i];
6374     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6375   }
6376 }
6377 
6378 void LinearScanStatistic::print(const char* title) {
6379   if (CountLinearScan || TraceLinearScanLevel > 0) {
6380     tty->cr();
6381     tty->print_cr("***** LinearScan statistic - %s *****", title);
6382 
6383     for (int i = 0; i < number_of_counters; i++) {
6384       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6385         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6386 
6387         if (base_counter(i) != invalid_counter) {
6388           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6389         } else {
6390           tty->print("           ");
6391         }
6392 
6393         if (_counters_max[i] >= 0) {
6394           tty->print("%8d", _counters_max[i]);
6395         }
6396       }
6397       tty->cr();
6398     }
6399   }
6400 }
6401 
6402 void LinearScanStatistic::collect(LinearScan* allocator) {
6403   inc_counter(counter_method);
6404   if (allocator->has_fpu_registers()) {
6405     inc_counter(counter_fpu_method);
6406   }
6407   if (allocator->num_loops() > 0) {
6408     inc_counter(counter_loop_method);
6409   }
6410   inc_counter(counter_loop, allocator->num_loops());
6411   inc_counter(counter_spill_slots, allocator->max_spills());
6412 
6413   int i;
6414   for (i = 0; i < allocator->interval_count(); i++) {
6415     Interval* cur = allocator->interval_at(i);
6416 
6417     if (cur != NULL) {
6418       inc_counter(counter_interval);
6419       inc_counter(counter_use_pos, cur->num_use_positions());
6420       if (LinearScan::is_precolored_interval(cur)) {
6421         inc_counter(counter_fixed_interval);
6422         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6423       }
6424 
6425       Range* range = cur->first();
6426       while (range != Range::end()) {
6427         inc_counter(counter_range);
6428         if (LinearScan::is_precolored_interval(cur)) {
6429           inc_counter(counter_fixed_range);
6430         }
6431         range = range->next();
6432       }
6433     }
6434   }
6435 
6436   bool has_xhandlers = false;
6437   // Note: only count blocks that are in code-emit order
6438   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6439     BlockBegin* cur = allocator->ir()->code()->at(i);
6440 
6441     inc_counter(counter_block);
6442     if (cur->loop_depth() > 0) {
6443       inc_counter(counter_loop_block);
6444     }
6445     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6446       inc_counter(counter_exception_block);
6447       has_xhandlers = true;
6448     }
6449 
6450     LIR_OpList* instructions = cur->lir()->instructions_list();
6451     for (int j = 0; j < instructions->length(); j++) {
6452       LIR_Op* op = instructions->at(j);
6453 
6454       inc_counter(counter_instruction);
6455 
6456       switch (op->code()) {
6457         case lir_label:           inc_counter(counter_label); break;
6458         case lir_std_entry:
6459         case lir_osr_entry:       inc_counter(counter_entry); break;
6460         case lir_return:          inc_counter(counter_return); break;
6461 
6462         case lir_rtcall:
6463         case lir_static_call:
6464         case lir_optvirtual_call:
6465         case lir_virtual_call:    inc_counter(counter_call); break;
6466 
6467         case lir_move: {
6468           inc_counter(counter_move);
6469           inc_counter(counter_move_total);
6470 
6471           LIR_Opr in = op->as_Op1()->in_opr();
6472           LIR_Opr res = op->as_Op1()->result_opr();
6473           if (in->is_register()) {
6474             if (res->is_register()) {
6475               inc_counter(counter_move_reg_reg);
6476             } else if (res->is_stack()) {
6477               inc_counter(counter_move_reg_stack);
6478             } else if (res->is_address()) {
6479               inc_counter(counter_move_reg_mem);
6480             } else {
6481               ShouldNotReachHere();
6482             }
6483           } else if (in->is_stack()) {
6484             if (res->is_register()) {
6485               inc_counter(counter_move_stack_reg);
6486             } else {
6487               inc_counter(counter_move_stack_stack);
6488             }
6489           } else if (in->is_address()) {
6490             assert(res->is_register(), "must be");
6491             inc_counter(counter_move_mem_reg);
6492           } else if (in->is_constant()) {
6493             inc_counter(counter_move_const_any);
6494           } else {
6495             ShouldNotReachHere();
6496           }
6497           break;
6498         }
6499 
6500         case lir_cmp:             inc_counter(counter_cmp); break;
6501 
6502         case lir_branch:
6503         case lir_cond_float_branch: {
6504           LIR_OpBranch* branch = op->as_OpBranch();
6505           if (branch->block() == NULL) {
6506             inc_counter(counter_stub_branch);
6507           } else if (branch->cond() == lir_cond_always) {
6508             inc_counter(counter_uncond_branch);
6509           } else {
6510             inc_counter(counter_cond_branch);
6511           }
6512           break;
6513         }
6514 
6515         case lir_neg:
6516         case lir_add:
6517         case lir_sub:
6518         case lir_mul:
6519         case lir_mul_strictfp:
6520         case lir_div:
6521         case lir_div_strictfp:
6522         case lir_rem:
6523         case lir_sqrt:
6524         case lir_sin:
6525         case lir_cos:
6526         case lir_abs:
6527         case lir_log10:
6528         case lir_log:
6529         case lir_logic_and:
6530         case lir_logic_or:
6531         case lir_logic_xor:
6532         case lir_shl:
6533         case lir_shr:
6534         case lir_ushr:            inc_counter(counter_alu); break;
6535 
6536         case lir_alloc_object:
6537         case lir_alloc_array:     inc_counter(counter_alloc); break;
6538 
6539         case lir_monaddr:
6540         case lir_lock:
6541         case lir_unlock:          inc_counter(counter_sync); break;
6542 
6543         case lir_throw:           inc_counter(counter_throw); break;
6544 
6545         case lir_unwind:          inc_counter(counter_unwind); break;
6546 
6547         case lir_null_check:
6548         case lir_leal:
6549         case lir_instanceof:
6550         case lir_checkcast:
6551         case lir_store_check:     inc_counter(counter_typecheck); break;
6552 
6553         case lir_fpop_raw:
6554         case lir_fxch:
6555         case lir_fld:             inc_counter(counter_fpu_stack); break;
6556 
6557         case lir_nop:
6558         case lir_push:
6559         case lir_pop:
6560         case lir_convert:
6561         case lir_roundfp:
6562         case lir_cmove:           inc_counter(counter_misc_inst); break;
6563 
6564         default:                  inc_counter(counter_other_inst); break;
6565       }
6566     }
6567   }
6568 
6569   if (has_xhandlers) {
6570     inc_counter(counter_exception_method);
6571   }
6572 }
6573 
6574 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6575   if (CountLinearScan || TraceLinearScanLevel > 0) {
6576 
6577     LinearScanStatistic local_statistic = LinearScanStatistic();
6578 
6579     local_statistic.collect(allocator);
6580     global_statistic.sum_up(local_statistic);
6581 
6582     if (TraceLinearScanLevel > 2) {
6583       local_statistic.print("current local statistic");
6584     }
6585   }
6586 }
6587 
6588 
6589 // Implementation of LinearTimers
6590 
6591 LinearScanTimers::LinearScanTimers() {
6592   for (int i = 0; i < number_of_timers; i++) {
6593     timer(i)->reset();
6594   }
6595 }
6596 
6597 const char* LinearScanTimers::timer_name(int idx) {
6598   switch (idx) {
6599     case timer_do_nothing:               return "Nothing (Time Check)";
6600     case timer_number_instructions:      return "Number Instructions";
6601     case timer_compute_local_live_sets:  return "Local Live Sets";
6602     case timer_compute_global_live_sets: return "Global Live Sets";
6603     case timer_build_intervals:          return "Build Intervals";
6604     case timer_sort_intervals_before:    return "Sort Intervals Before";
6605     case timer_allocate_registers:       return "Allocate Registers";
6606     case timer_resolve_data_flow:        return "Resolve Data Flow";
6607     case timer_sort_intervals_after:     return "Sort Intervals After";
6608     case timer_eliminate_spill_moves:    return "Spill optimization";
6609     case timer_assign_reg_num:           return "Assign Reg Num";
6610     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6611     case timer_optimize_lir:             return "Optimize LIR";
6612     default: ShouldNotReachHere();       return "";
6613   }
6614 }
6615 
6616 void LinearScanTimers::begin_method() {
6617   if (TimeEachLinearScan) {
6618     // reset all timers to measure only current method
6619     for (int i = 0; i < number_of_timers; i++) {
6620       timer(i)->reset();
6621     }
6622   }
6623 }
6624 
6625 void LinearScanTimers::end_method(LinearScan* allocator) {
6626   if (TimeEachLinearScan) {
6627 
6628     double c = timer(timer_do_nothing)->seconds();
6629     double total = 0;
6630     for (int i = 1; i < number_of_timers; i++) {
6631       total += timer(i)->seconds() - c;
6632     }
6633 
6634     if (total >= 0.0005) {
6635       // print all information in one line for automatic processing
6636       tty->print("@"); allocator->compilation()->method()->print_name();
6637 
6638       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6639       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6640       tty->print("@ %d ", allocator->block_count());
6641       tty->print("@ %d ", allocator->num_virtual_regs());
6642       tty->print("@ %d ", allocator->interval_count());
6643       tty->print("@ %d ", allocator->_num_calls);
6644       tty->print("@ %d ", allocator->num_loops());
6645 
6646       tty->print("@ %6.6f ", total);
6647       for (int i = 1; i < number_of_timers; i++) {
6648         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6649       }
6650       tty->cr();
6651     }
6652   }
6653 }
6654 
6655 void LinearScanTimers::print(double total_time) {
6656   if (TimeLinearScan) {
6657     // correction value: sum of dummy-timer that only measures the time that
6658     // is necesary to start and stop itself
6659     double c = timer(timer_do_nothing)->seconds();
6660 
6661     for (int i = 0; i < number_of_timers; i++) {
6662       double t = timer(i)->seconds();
6663       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6664     }
6665   }
6666 }
6667 
6668 #endif // #ifndef PRODUCT