1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "oops/methodOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/symbolOop.hpp"
  38 #include "runtime/icache.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/events.hpp"
  42 
  43 
  44 // Every time a compiled IC is changed or its type is being accessed,
  45 // either the CompiledIC_lock must be set or we must be at a safe point.
  46 
  47 //-----------------------------------------------------------------------------
  48 // Low-level access to an inline cache. Private, since they might not be
  49 // MT-safe to use.
  50 
  51 void CompiledIC::set_cached_oop(oop cache) {
  52   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  53   assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
  54   assert (cache == NULL || cache != badOop, "invalid oop");
  55 
  56   if (TraceCompiledIC) {
  57     tty->print("  ");
  58     print_compiled_ic();
  59     tty->print_cr(" changing oop to " INTPTR_FORMAT, (address)cache);
  60   }
  61 
  62   if (cache == NULL)  cache = (oop)Universe::non_oop_word();
  63 
  64   *_oop_addr = cache;
  65   // fix up the relocations
  66   RelocIterator iter = _oops;
  67   while (iter.next()) {
  68     if (iter.type() == relocInfo::oop_type) {
  69       oop_Relocation* r = iter.oop_reloc();
  70       if (r->oop_addr() == _oop_addr)
  71         r->fix_oop_relocation();
  72     }
  73   }
  74   return;
  75 }
  76 
  77 
  78 oop CompiledIC::cached_oop() const {
  79   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  80   assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
  81 
  82   if (!is_in_transition_state()) {
  83     oop data = *_oop_addr;
  84     // If we let the oop value here be initialized to zero...
  85     assert(data != NULL || Universe::non_oop_word() == NULL,
  86            "no raw nulls in CompiledIC oops, because of patching races");
  87     return (data == (oop)Universe::non_oop_word()) ? (oop)NULL : data;
  88   } else {
  89     return InlineCacheBuffer::cached_oop_for((CompiledIC *)this);
  90   }
  91 }
  92 
  93 
  94 void CompiledIC::set_ic_destination(address entry_point) {
  95   assert(entry_point != NULL, "must set legal entry point");
  96   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  97   if (TraceCompiledIC) {
  98     tty->print("  ");
  99     print_compiled_ic();
 100     tty->print_cr(" changing destination to " INTPTR_FORMAT, entry_point);
 101   }
 102   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 103 #ifdef ASSERT
 104   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
 105   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 106 #endif
 107   _ic_call->set_destination_mt_safe(entry_point);
 108 }
 109 
 110 
 111 address CompiledIC::ic_destination() const {
 112  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 113  if (!is_in_transition_state()) {
 114    return _ic_call->destination();
 115  } else {
 116    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
 117  }
 118 }
 119 
 120 
 121 bool CompiledIC::is_in_transition_state() const {
 122   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 123   return InlineCacheBuffer::contains(_ic_call->destination());
 124 }
 125 
 126 
 127 // Returns native address of 'call' instruction in inline-cache. Used by
 128 // the InlineCacheBuffer when it needs to find the stub.
 129 address CompiledIC::stub_address() const {
 130   assert(is_in_transition_state(), "should only be called when we are in a transition state");
 131   return _ic_call->destination();
 132 }
 133 
 134 
 135 //-----------------------------------------------------------------------------
 136 // High-level access to an inline cache. Guaranteed to be MT-safe.
 137 
 138 
 139 void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
 140   methodHandle method = call_info->selected_method();
 141   bool is_invoke_interface = (bytecode == Bytecodes::_invokeinterface && !call_info->has_vtable_index());
 142   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 143   assert(method->is_oop(), "cannot be NULL and must be oop");
 144   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
 145   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
 146 
 147   address entry;
 148   if (is_invoke_interface) {
 149     int index = klassItable::compute_itable_index(call_info->resolved_method()());
 150     entry = VtableStubs::create_stub(false, index, method());
 151     assert(entry != NULL, "entry not computed");
 152     klassOop k = call_info->resolved_method()->method_holder();
 153     assert(Klass::cast(k)->is_interface(), "sanity check");
 154     InlineCacheBuffer::create_transition_stub(this, k, entry);
 155   } else {
 156     // Can be different than method->vtable_index(), due to package-private etc.
 157     int vtable_index = call_info->vtable_index();
 158     entry = VtableStubs::create_stub(true, vtable_index, method());
 159     InlineCacheBuffer::create_transition_stub(this, method(), entry);
 160   }
 161 
 162   if (TraceICs) {
 163     ResourceMark rm;
 164     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
 165                    instruction_address(), method->print_value_string(), entry);
 166   }
 167 
 168   Events::log("compiledIC " INTPTR_FORMAT " --> megamorphic " INTPTR_FORMAT, this, (address)method());
 169   // We can't check this anymore. With lazy deopt we could have already
 170   // cleaned this IC entry before we even return. This is possible if
 171   // we ran out of space in the inline cache buffer trying to do the
 172   // set_next and we safepointed to free up space. This is a benign
 173   // race because the IC entry was complete when we safepointed so
 174   // cleaning it immediately is harmless.
 175   // assert(is_megamorphic(), "sanity check");
 176 }
 177 
 178 
 179 // true if destination is megamorphic stub
 180 bool CompiledIC::is_megamorphic() const {
 181   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 182   assert(!is_optimized(), "an optimized call cannot be megamorphic");
 183 
 184   // Cannot rely on cached_oop. It is either an interface or a method.
 185   return VtableStubs::is_entry_point(ic_destination());
 186 }
 187 
 188 bool CompiledIC::is_call_to_compiled() const {
 189   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 190 
 191   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
 192   // method is guaranteed to still exist, since we only remove methods after all inline caches
 193   // has been cleaned up
 194   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 195   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
 196   // Check that the cached_oop is a klass for non-optimized monomorphic calls
 197   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
 198   // for calling directly to vep without using the inline cache (i.e., cached_oop == NULL)
 199 #ifdef ASSERT
 200 #ifdef TIERED
 201   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
 202   bool is_c1_method = caller->is_compiled_by_c1();
 203 #else
 204 #ifdef COMPILER1
 205   bool is_c1_method = true;
 206 #else
 207   bool is_c1_method = false;
 208 #endif // COMPILER1
 209 #endif // TIERED
 210   assert( is_c1_method ||
 211          !is_monomorphic ||
 212          is_optimized() ||
 213          (cached_oop() != NULL && cached_oop()->is_klass()), "sanity check");
 214 #endif // ASSERT
 215   return is_monomorphic;
 216 }
 217 
 218 
 219 bool CompiledIC::is_call_to_interpreted() const {
 220   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 221   // Call to interpreter if destination is either calling to a stub (if it
 222   // is optimized), or calling to an I2C blob
 223   bool is_call_to_interpreted = false;
 224   if (!is_optimized()) {
 225     // must use unsafe because the destination can be a zombie (and we're cleaning)
 226     // and the print_compiled_ic code wants to know if site (in the non-zombie)
 227     // is to the interpreter.
 228     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 229     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
 230     assert(!is_call_to_interpreted ||  (cached_oop() != NULL && cached_oop()->is_compiledICHolder()), "sanity check");
 231   } else {
 232     // Check if we are calling into our own codeblob (i.e., to a stub)
 233     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
 234     address dest = ic_destination();
 235 #ifdef ASSERT
 236     {
 237       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
 238       assert(!db->is_adapter_blob(), "must use stub!");
 239     }
 240 #endif /* ASSERT */
 241     is_call_to_interpreted = cb->contains(dest);
 242   }
 243   return is_call_to_interpreted;
 244 }
 245 
 246 
 247 void CompiledIC::set_to_clean() {
 248   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
 249   if (TraceInlineCacheClearing || TraceICs) {
 250     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
 251     print();
 252   }
 253 
 254   address entry;
 255   if (is_optimized()) {
 256     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
 257   } else {
 258     entry = SharedRuntime::get_resolve_virtual_call_stub();
 259   }
 260 
 261   // A zombie transition will always be safe, since the oop has already been set to NULL, so
 262   // we only need to patch the destination
 263   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
 264 
 265   if (safe_transition) {
 266     if (!is_optimized()) set_cached_oop(NULL);
 267     // Kill any leftover stub we might have too
 268     if (is_in_transition_state()) {
 269       ICStub* old_stub = ICStub_from_destination_address(stub_address());
 270       old_stub->clear();
 271     }
 272     set_ic_destination(entry);
 273   } else {
 274     // Unsafe transition - create stub.
 275     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
 276   }
 277   // We can't check this anymore. With lazy deopt we could have already
 278   // cleaned this IC entry before we even return. This is possible if
 279   // we ran out of space in the inline cache buffer trying to do the
 280   // set_next and we safepointed to free up space. This is a benign
 281   // race because the IC entry was complete when we safepointed so
 282   // cleaning it immediately is harmless.
 283   // assert(is_clean(), "sanity check");
 284 }
 285 
 286 
 287 bool CompiledIC::is_clean() const {
 288   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 289   bool is_clean = false;
 290   address dest = ic_destination();
 291   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
 292              dest == SharedRuntime::get_resolve_virtual_call_stub();
 293   assert(!is_clean || is_optimized() || cached_oop() == NULL, "sanity check");
 294   return is_clean;
 295 }
 296 
 297 
 298 void CompiledIC::set_to_monomorphic(const CompiledICInfo& info) {
 299   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 300   // Updating a cache to the wrong entry can cause bugs that are very hard
 301   // to track down - if cache entry gets invalid - we just clean it. In
 302   // this way it is always the same code path that is responsible for
 303   // updating and resolving an inline cache
 304   //
 305   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
 306   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
 307   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
 308   //
 309   // In both of these cases the only thing being modifed is the jump/call target and these
 310   // transitions are mt_safe
 311 
 312   Thread *thread = Thread::current();
 313   if (info._to_interpreter) {
 314     // Call to interpreter
 315     if (info.is_optimized() && is_optimized()) {
 316        assert(is_clean(), "unsafe IC path");
 317        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 318       // the call analysis (callee structure) specifies that the call is optimized
 319       // (either because of CHA or the static target is final)
 320       // At code generation time, this call has been emitted as static call
 321       // Call via stub
 322       assert(info.cached_oop().not_null() && info.cached_oop()->is_method(), "sanity check");
 323       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
 324       methodHandle method (thread, (methodOop)info.cached_oop()());
 325       csc->set_to_interpreted(method, info.entry());
 326       if (TraceICs) {
 327          ResourceMark rm(thread);
 328          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
 329            instruction_address(),
 330            method->print_value_string());
 331       }
 332     } else {
 333       // Call via method-klass-holder
 334       assert(info.cached_oop().not_null(), "must be set");
 335       InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
 336 
 337       if (TraceICs) {
 338          ResourceMark rm(thread);
 339          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via mkh", instruction_address());
 340       }
 341     }
 342   } else {
 343     // Call to compiled code
 344     bool static_bound = info.is_optimized() || (info.cached_oop().is_null());
 345 #ifdef ASSERT
 346     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
 347     assert (cb->is_nmethod(), "must be compiled!");
 348 #endif /* ASSERT */
 349 
 350     // This is MT safe if we come from a clean-cache and go through a
 351     // non-verified entry point
 352     bool safe = SafepointSynchronize::is_at_safepoint() ||
 353                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
 354 
 355     if (!safe) {
 356       InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
 357     } else {
 358       set_ic_destination(info.entry());
 359       if (!is_optimized()) set_cached_oop(info.cached_oop()());
 360     }
 361 
 362     if (TraceICs) {
 363       ResourceMark rm(thread);
 364       assert(info.cached_oop() == NULL || info.cached_oop()()->is_klass(), "must be");
 365       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
 366         instruction_address(),
 367         ((klassOop)info.cached_oop()())->print_value_string(),
 368         (safe) ? "" : "via stub");
 369     }
 370   }
 371   // We can't check this anymore. With lazy deopt we could have already
 372   // cleaned this IC entry before we even return. This is possible if
 373   // we ran out of space in the inline cache buffer trying to do the
 374   // set_next and we safepointed to free up space. This is a benign
 375   // race because the IC entry was complete when we safepointed so
 376   // cleaning it immediately is harmless.
 377   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
 378 }
 379 
 380 
 381 // is_optimized: Compiler has generated an optimized call (i.e., no inline
 382 // cache) static_bound: The call can be static bound (i.e, no need to use
 383 // inline cache)
 384 void CompiledIC::compute_monomorphic_entry(methodHandle method,
 385                                            KlassHandle receiver_klass,
 386                                            bool is_optimized,
 387                                            bool static_bound,
 388                                            CompiledICInfo& info,
 389                                            TRAPS) {
 390   info._is_optimized = is_optimized;
 391 
 392   nmethod* method_code = method->code();
 393   address entry = NULL;
 394   if (method_code != NULL) {
 395     // Call to compiled code
 396     if (static_bound || is_optimized) {
 397       entry      = method_code->verified_entry_point();
 398     } else {
 399       entry      = method_code->entry_point();
 400     }
 401   }
 402   if (entry != NULL) {
 403     // Call to compiled code
 404     info._entry      = entry;
 405     if (static_bound || is_optimized) {
 406       info._cached_oop = Handle(THREAD, (oop)NULL);
 407     } else {
 408       info._cached_oop = receiver_klass;
 409     }
 410     info._to_interpreter = false;
 411   } else {
 412     // Note: the following problem exists with Compiler1:
 413     //   - at compile time we may or may not know if the destination is final
 414     //   - if we know that the destination is final, we will emit an optimized
 415     //     virtual call (no inline cache), and need a methodOop to make a call
 416     //     to the interpreter
 417     //   - if we do not know if the destination is final, we emit a standard
 418     //     virtual call, and use CompiledICHolder to call interpreted code
 419     //     (no static call stub has been generated)
 420     //     However in that case we will now notice it is static_bound
 421     //     and convert the call into what looks to be an optimized
 422     //     virtual call. This causes problems in verifying the IC because
 423     //     it look vanilla but is optimized. Code in is_call_to_interpreted
 424     //     is aware of this and weakens its asserts.
 425 
 426     info._to_interpreter = true;
 427     // static_bound should imply is_optimized -- otherwise we have a
 428     // performance bug (statically-bindable method is called via
 429     // dynamically-dispatched call note: the reverse implication isn't
 430     // necessarily true -- the call may have been optimized based on compiler
 431     // analysis (static_bound is only based on "final" etc.)
 432 #ifdef COMPILER2
 433 #ifdef TIERED
 434 #if defined(ASSERT)
 435     // can't check the assert because we don't have the CompiledIC with which to
 436     // find the address if the call instruction.
 437     //
 438     // CodeBlob* cb = find_blob_unsafe(instruction_address());
 439     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
 440 #endif // ASSERT
 441 #else
 442     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
 443 #endif // TIERED
 444 #endif // COMPILER2
 445     if (is_optimized) {
 446       // Use stub entry
 447       info._entry      = method()->get_c2i_entry();
 448       info._cached_oop = method;
 449     } else {
 450       // Use mkh entry
 451       oop holder = oopFactory::new_compiledICHolder(method, receiver_klass, CHECK);
 452       info._cached_oop = Handle(THREAD, holder);
 453       info._entry      = method()->get_c2i_unverified_entry();
 454     }
 455   }
 456 }
 457 
 458 
 459 inline static RelocIterator parse_ic(nmethod* nm, address ic_call, oop* &_oop_addr, bool *is_optimized) {
 460    address  first_oop = NULL;
 461    // Mergers please note: Sun SC5.x CC insists on an lvalue for a reference parameter.
 462    nmethod* tmp_nm = nm;
 463    return virtual_call_Relocation::parse_ic(tmp_nm, ic_call, first_oop, _oop_addr, is_optimized);
 464 }
 465 
 466 CompiledIC::CompiledIC(NativeCall* ic_call)
 467   : _ic_call(ic_call),
 468     _oops(parse_ic(NULL, ic_call->instruction_address(), _oop_addr, &_is_optimized))
 469 {
 470 }
 471 
 472 
 473 CompiledIC::CompiledIC(Relocation* ic_reloc)
 474   : _ic_call(nativeCall_at(ic_reloc->addr())),
 475     _oops(parse_ic(ic_reloc->code(), ic_reloc->addr(), _oop_addr, &_is_optimized))
 476 {
 477   assert(ic_reloc->type() == relocInfo::virtual_call_type ||
 478          ic_reloc->type() == relocInfo::opt_virtual_call_type, "wrong reloc. info");
 479 }
 480 
 481 
 482 // ----------------------------------------------------------------------------
 483 
 484 void CompiledStaticCall::set_to_clean() {
 485   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 486   // Reset call site
 487   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 488 #ifdef ASSERT
 489   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
 490   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 491 #endif
 492   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
 493 
 494   // Do not reset stub here:  It is too expensive to call find_stub.
 495   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
 496   // both the call and its stub.
 497 }
 498 
 499 
 500 bool CompiledStaticCall::is_clean() const {
 501   return destination() == SharedRuntime::get_resolve_static_call_stub();
 502 }
 503 
 504 bool CompiledStaticCall::is_call_to_compiled() const {
 505   return CodeCache::contains(destination());
 506 }
 507 
 508 
 509 bool CompiledStaticCall::is_call_to_interpreted() const {
 510   // It is a call to interpreted, if it calls to a stub. Hence, the destination
 511   // must be in the stub part of the nmethod that contains the call
 512   nmethod* nm = CodeCache::find_nmethod(instruction_address());
 513   return nm->stub_contains(destination());
 514 }
 515 
 516 
 517 void CompiledStaticCall::set_to_interpreted(methodHandle callee, address entry) {
 518   address stub=find_stub();
 519   assert(stub!=NULL, "stub not found");
 520 
 521   if (TraceICs) {
 522     ResourceMark rm;
 523     tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_interpreted %s",
 524                   instruction_address(),
 525                   callee->name_and_sig_as_C_string());
 526   }
 527 
 528   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
 529   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
 530 
 531   assert(method_holder->data()    == 0           || method_holder->data()    == (intptr_t)callee(), "a) MT-unsafe modification of inline cache");
 532   assert(jump->jump_destination() == (address)-1 || jump->jump_destination() == entry, "b) MT-unsafe modification of inline cache");
 533 
 534   // Update stub
 535   method_holder->set_data((intptr_t)callee());
 536   jump->set_jump_destination(entry);
 537 
 538   // Update jump to call
 539   set_destination_mt_safe(stub);
 540 }
 541 
 542 
 543 void CompiledStaticCall::set(const StaticCallInfo& info) {
 544   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 545   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 546   // Updating a cache to the wrong entry can cause bugs that are very hard
 547   // to track down - if cache entry gets invalid - we just clean it. In
 548   // this way it is always the same code path that is responsible for
 549   // updating and resolving an inline cache
 550   assert(is_clean(), "do not update a call entry - use clean");
 551 
 552   if (info._to_interpreter) {
 553     // Call to interpreted code
 554     set_to_interpreted(info.callee(), info.entry());
 555   } else {
 556     if (TraceICs) {
 557       ResourceMark rm;
 558       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
 559                     instruction_address(),
 560                     info.entry());
 561     }
 562     // Call to compiled code
 563     assert (CodeCache::contains(info.entry()), "wrong entry point");
 564     set_destination_mt_safe(info.entry());
 565   }
 566 }
 567 
 568 
 569 // Compute settings for a CompiledStaticCall. Since we might have to set
 570 // the stub when calling to the interpreter, we need to return arguments.
 571 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
 572   nmethod* m_code = m->code();
 573   info._callee = m;
 574   if (m_code != NULL) {
 575     info._to_interpreter = false;
 576     info._entry  = m_code->verified_entry_point();
 577   } else {
 578     // Callee is interpreted code.  In any case entering the interpreter
 579     // puts a converter-frame on the stack to save arguments.
 580     info._to_interpreter = true;
 581     info._entry      = m()->get_c2i_entry();
 582   }
 583 }
 584 
 585 
 586 void CompiledStaticCall::set_stub_to_clean(static_stub_Relocation* static_stub) {
 587   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 588   // Reset stub
 589   address stub = static_stub->addr();
 590   assert(stub!=NULL, "stub not found");
 591   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
 592   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
 593   method_holder->set_data(0);
 594   jump->set_jump_destination((address)-1);
 595 }
 596 
 597 
 598 address CompiledStaticCall::find_stub() {
 599   // Find reloc. information containing this call-site
 600   RelocIterator iter((nmethod*)NULL, instruction_address());
 601   while (iter.next()) {
 602     if (iter.addr() == instruction_address()) {
 603       switch(iter.type()) {
 604         case relocInfo::static_call_type:
 605           return iter.static_call_reloc()->static_stub();
 606         // We check here for opt_virtual_call_type, since we reuse the code
 607         // from the CompiledIC implementation
 608         case relocInfo::opt_virtual_call_type:
 609           return iter.opt_virtual_call_reloc()->static_stub();
 610         case relocInfo::poll_type:
 611         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
 612         default:
 613           ShouldNotReachHere();
 614       }
 615     }
 616   }
 617   return NULL;
 618 }
 619 
 620 
 621 //-----------------------------------------------------------------------------
 622 // Non-product mode code
 623 #ifndef PRODUCT
 624 
 625 void CompiledIC::verify() {
 626   // make sure code pattern is actually a call imm32 instruction
 627   _ic_call->verify();
 628   if (os::is_MP()) {
 629     _ic_call->verify_alignment();
 630   }
 631   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
 632           || is_optimized() || is_megamorphic(), "sanity check");
 633 }
 634 
 635 
 636 void CompiledIC::print() {
 637   print_compiled_ic();
 638   tty->cr();
 639 }
 640 
 641 
 642 void CompiledIC::print_compiled_ic() {
 643   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT,
 644              instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination());
 645 }
 646 
 647 
 648 void CompiledStaticCall::print() {
 649   tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
 650   if (is_clean()) {
 651     tty->print("clean");
 652   } else if (is_call_to_compiled()) {
 653     tty->print("compiled");
 654   } else if (is_call_to_interpreted()) {
 655     tty->print("interpreted");
 656   }
 657   tty->cr();
 658 }
 659 
 660 void CompiledStaticCall::verify() {
 661   // Verify call
 662   NativeCall::verify();
 663   if (os::is_MP()) {
 664     verify_alignment();
 665   }
 666 
 667   // Verify stub
 668   address stub = find_stub();
 669   assert(stub != NULL, "no stub found for static call");
 670   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
 671   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
 672 
 673   // Verify state
 674   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
 675 }
 676 
 677 #endif