1 /*
   2  * Copyright (c) 2005, 2006, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 //** Dependencies represent assertions (approximate invariants) within
  26 // the class hierarchy.  An example is an assertion that a given
  27 // method is not overridden; another example is that a type has only
  28 // one concrete subtype.  Compiled code which relies on such
  29 // assertions must be discarded if they are overturned by changes in
  30 // the class hierarchy.  We can think of these assertions as
  31 // approximate invariants, because we expect them to be overturned
  32 // very infrequently.  We are willing to perform expensive recovery
  33 // operations when they are overturned.  The benefit, of course, is
  34 // performing optimistic optimizations (!) on the object code.
  35 //
  36 // Changes in the class hierarchy due to dynamic linking or
  37 // class evolution can violate dependencies.  There is enough
  38 // indexing between classes and nmethods to make dependency
  39 // checking reasonably efficient.
  40 
  41 class ciEnv;
  42 class nmethod;
  43 class OopRecorder;
  44 class xmlStream;
  45 class CompileLog;
  46 class DepChange;
  47 class No_Safepoint_Verifier;
  48 
  49 class Dependencies: public ResourceObj {
  50  public:
  51   // Note: In the comments on dependency types, most uses of the terms
  52   // subtype and supertype are used in a "non-strict" or "inclusive"
  53   // sense, and are starred to remind the reader of this fact.
  54   // Strict uses of the terms use the word "proper".
  55   //
  56   // Specifically, every class is its own subtype* and supertype*.
  57   // (This trick is easier than continually saying things like "Y is a
  58   // subtype of X or X itself".)
  59   //
  60   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  61   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  62   // The notation X.m > Y means that Y inherits m from X, while
  63   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  64   // as *I > A, meaning (abstract) interface I is a super type of A,
  65   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  66   //
  67   // In this module, the terms "subtype" and "supertype" refer to
  68   // Java-level reference type conversions, as detected by
  69   // "instanceof" and performed by "checkcast" operations.  The method
  70   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  71   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  72   // since it takes account of relations involving interface and array
  73   // types.
  74   //
  75   // To avoid needless complexity, dependencies involving array types
  76   // are not accepted.  If you need to make an assertion about an
  77   // array type, make the assertion about its corresponding element
  78   // types.  Any assertion that might change about an array type can
  79   // be converted to an assertion about its element type.
  80   //
  81   // Most dependencies are evaluated over a "context type" CX, which
  82   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  83   // of CX.  When the system loads a new class or interface N, it is
  84   // responsible for re-evaluating changed dependencies whose context
  85   // type now includes N, that is, all super types of N.
  86   //
  87   enum DepType {
  88     end_marker = 0,
  89 
  90     // An 'evol' dependency simply notes that the contents of the
  91     // method were used.  If it evolves (is replaced), the nmethod
  92     // must be recompiled.  No other dependencies are implied.
  93     evol_method,
  94     FIRST_TYPE = evol_method,
  95 
  96     // A context type CX is a leaf it if has no proper subtype.
  97     leaf_type,
  98 
  99     // An abstract class CX has exactly one concrete subtype CC.
 100     abstract_with_unique_concrete_subtype,
 101 
 102     // The type CX is purely abstract, with no concrete subtype* at all.
 103     abstract_with_no_concrete_subtype,
 104 
 105     // The concrete CX is free of concrete proper subtypes.
 106     concrete_with_no_concrete_subtype,
 107 
 108     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 109     // "concrete matching methods" in CX of M1 is the set of every
 110     // concrete M2 for which it is possible to create an invokevirtual
 111     // or invokeinterface call site that can reach either M1 or M2.
 112     // That is, M1 and M2 share a name, signature, and vtable index.
 113     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 114     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 115 
 116     // The set MM(CX, M1) can be computed by starting with any matching
 117     // concrete M2 that is inherited into CX, and then walking the
 118     // subtypes* of CX looking for concrete definitions.
 119 
 120     // The parameters to this dependency are the method M1 and the
 121     // context class CX.  M1 must be either inherited in CX or defined
 122     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 123     // than {M1}.
 124     unique_concrete_method,       // one unique concrete method under CX
 125 
 126     // An "exclusive" assertion concerns two methods or subtypes, and
 127     // declares that there are at most two (or perhaps later N>2)
 128     // specific items that jointly satisfy the restriction.
 129     // We list all items explicitly rather than just giving their
 130     // count, for robustness in the face of complex schema changes.
 131 
 132     // A context class CX (which may be either abstract or concrete)
 133     // has two exclusive concrete subtypes* C1, C2 if every concrete
 134     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 135     // are equal to CX, then CX itself must be abstract.  But it is
 136     // also possible (for example) that C1 is CX (a concrete class)
 137     // and C2 is a proper subtype of C1.
 138     abstract_with_exclusive_concrete_subtypes_2,
 139 
 140     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 141     exclusive_concrete_methods_2,
 142 
 143     // This dependency asserts that no instances of class or it's
 144     // subclasses require finalization registration.
 145     no_finalizable_subclasses,
 146 
 147     TYPE_LIMIT
 148   };
 149   enum {
 150     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 151 
 152     // handy categorizations of dependency types:
 153     all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
 154     non_ctxk_types = (1<<evol_method),
 155     ctxk_types     = all_types & ~non_ctxk_types,
 156 
 157     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 158 
 159     // A "context type" is a class or interface that
 160     // provides context for evaluating a dependency.
 161     // When present, it is one of the arguments (dep_context_arg).
 162     //
 163     // If a dependency does not have a context type, there is a
 164     // default context, depending on the type of the dependency.
 165     // This bit signals that a default context has been compressed away.
 166     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 167   };
 168 
 169   static const char* dep_name(DepType dept);
 170   static int         dep_args(DepType dept);
 171   static int  dep_context_arg(DepType dept) {
 172     return dept_in_mask(dept, ctxk_types)? 0: -1;
 173   }
 174 
 175  private:
 176   // State for writing a new set of dependencies:
 177   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 178   GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
 179 
 180   static const char* _dep_name[TYPE_LIMIT];
 181   static int         _dep_args[TYPE_LIMIT];
 182 
 183   static bool dept_in_mask(DepType dept, int mask) {
 184     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 185   }
 186 
 187   bool note_dep_seen(int dept, ciObject* x) {
 188     assert(dept < BitsPerInt, "oob");
 189     int x_id = x->ident();
 190     assert(_dep_seen != NULL, "deps must be writable");
 191     int seen = _dep_seen->at_grow(x_id, 0);
 192     _dep_seen->at_put(x_id, seen | (1<<dept));
 193     // return true if we've already seen dept/x
 194     return (seen & (1<<dept)) != 0;
 195   }
 196 
 197   bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
 198                         int ctxk_i, ciKlass* ctxk);
 199 
 200   void sort_all_deps();
 201   size_t estimate_size_in_bytes();
 202 
 203   // Initialize _deps, etc.
 204   void initialize(ciEnv* env);
 205 
 206   // State for making a new set of dependencies:
 207   OopRecorder* _oop_recorder;
 208 
 209   // Logging support
 210   CompileLog* _log;
 211 
 212   address  _content_bytes;  // everything but the oop references, encoded
 213   size_t   _size_in_bytes;
 214 
 215  public:
 216   // Make a new empty dependencies set.
 217   Dependencies(ciEnv* env) {
 218     initialize(env);
 219   }
 220 
 221  private:
 222   // Check for a valid context type.
 223   // Enforce the restriction against array types.
 224   static void check_ctxk(ciKlass* ctxk) {
 225     assert(ctxk->is_instance_klass(), "java types only");
 226   }
 227   static void check_ctxk_concrete(ciKlass* ctxk) {
 228     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
 229   }
 230   static void check_ctxk_abstract(ciKlass* ctxk) {
 231     check_ctxk(ctxk);
 232     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
 233   }
 234 
 235   void assert_common_1(DepType dept, ciObject* x);
 236   void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
 237   void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
 238 
 239  public:
 240   // Adding assertions to a new dependency set at compile time:
 241   void assert_evol_method(ciMethod* m);
 242   void assert_leaf_type(ciKlass* ctxk);
 243   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
 244   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
 245   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
 246   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
 247   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
 248   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
 249   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
 250 
 251   // Define whether a given method or type is concrete.
 252   // These methods define the term "concrete" as used in this module.
 253   // For this module, an "abstract" class is one which is non-concrete.
 254   //
 255   // Future optimizations may allow some classes to remain
 256   // non-concrete until their first instantiation, and allow some
 257   // methods to remain non-concrete until their first invocation.
 258   // In that case, there would be a middle ground between concrete
 259   // and abstract (as defined by the Java language and VM).
 260   static bool is_concrete_klass(klassOop k);    // k is instantiable
 261   static bool is_concrete_method(methodOop m);  // m is invocable
 262   static Klass* find_finalizable_subclass(Klass* k);
 263 
 264   // These versions of the concreteness queries work through the CI.
 265   // The CI versions are allowed to skew sometimes from the VM
 266   // (oop-based) versions.  The cost of such a difference is a
 267   // (safely) aborted compilation, or a deoptimization, or a missed
 268   // optimization opportunity.
 269   //
 270   // In order to prevent spurious assertions, query results must
 271   // remain stable within any single ciEnv instance.  (I.e., they must
 272   // not go back into the VM to get their value; they must cache the
 273   // bit in the CI, either eagerly or lazily.)
 274   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 275   static bool is_concrete_method(ciMethod* m);       // m appears invocable
 276   static bool has_finalizable_subclass(ciInstanceKlass* k);
 277 
 278   // As a general rule, it is OK to compile under the assumption that
 279   // a given type or method is concrete, even if it at some future
 280   // point becomes abstract.  So dependency checking is one-sided, in
 281   // that it permits supposedly concrete classes or methods to turn up
 282   // as really abstract.  (This shouldn't happen, except during class
 283   // evolution, but that's the logic of the checking.)  However, if a
 284   // supposedly abstract class or method suddenly becomes concrete, a
 285   // dependency on it must fail.
 286 
 287   // Checking old assertions at run-time (in the VM only):
 288   static klassOop check_evol_method(methodOop m);
 289   static klassOop check_leaf_type(klassOop ctxk);
 290   static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
 291                                                               DepChange* changes = NULL);
 292   static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
 293                                                           DepChange* changes = NULL);
 294   static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
 295                                                           DepChange* changes = NULL);
 296   static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
 297                                                DepChange* changes = NULL);
 298   static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
 299                                                                   DepChange* changes = NULL);
 300   static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
 301                                                    DepChange* changes = NULL);
 302   static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
 303                                                       DepChange* changes = NULL);
 304   // A returned klassOop is NULL if the dependency assertion is still
 305   // valid.  A non-NULL klassOop is a 'witness' to the assertion
 306   // failure, a point in the class hierarchy where the assertion has
 307   // been proven false.  For example, if check_leaf_type returns
 308   // non-NULL, the value is a subtype of the supposed leaf type.  This
 309   // witness value may be useful for logging the dependency failure.
 310   // Note that, when a dependency fails, there may be several possible
 311   // witnesses to the failure.  The value returned from the check_foo
 312   // method is chosen arbitrarily.
 313 
 314   // The 'changes' value, if non-null, requests a limited spot-check
 315   // near the indicated recent changes in the class hierarchy.
 316   // It is used by DepStream::spot_check_dependency_at.
 317 
 318   // Detecting possible new assertions:
 319   static klassOop  find_unique_concrete_subtype(klassOop ctxk);
 320   static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
 321   static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
 322   static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
 323 
 324   // Create the encoding which will be stored in an nmethod.
 325   void encode_content_bytes();
 326 
 327   address content_bytes() {
 328     assert(_content_bytes != NULL, "encode it first");
 329     return _content_bytes;
 330   }
 331   size_t size_in_bytes() {
 332     assert(_content_bytes != NULL, "encode it first");
 333     return _size_in_bytes;
 334   }
 335 
 336   OopRecorder* oop_recorder() { return _oop_recorder; }
 337   CompileLog*  log()          { return _log; }
 338 
 339   void copy_to(nmethod* nm);
 340 
 341   void log_all_dependencies();
 342   void log_dependency(DepType dept, int nargs, ciObject* args[]) {
 343     write_dependency_to(log(), dept, nargs, args);
 344   }
 345   void log_dependency(DepType dept,
 346                       ciObject* x0,
 347                       ciObject* x1 = NULL,
 348                       ciObject* x2 = NULL) {
 349     if (log() == NULL)  return;
 350     ciObject* args[max_arg_count];
 351     args[0] = x0;
 352     args[1] = x1;
 353     args[2] = x2;
 354     assert(2 < max_arg_count, "");
 355     log_dependency(dept, dep_args(dept), args);
 356   }
 357 
 358   static void write_dependency_to(CompileLog* log,
 359                                   DepType dept,
 360                                   int nargs, ciObject* args[],
 361                                   klassOop witness = NULL);
 362   static void write_dependency_to(CompileLog* log,
 363                                   DepType dept,
 364                                   int nargs, oop args[],
 365                                   klassOop witness = NULL);
 366   static void write_dependency_to(xmlStream* xtty,
 367                                   DepType dept,
 368                                   int nargs, oop args[],
 369                                   klassOop witness = NULL);
 370   static void print_dependency(DepType dept,
 371                                int nargs, oop args[],
 372                                klassOop witness = NULL);
 373 
 374  private:
 375   // helper for encoding common context types as zero:
 376   static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
 377 
 378   static klassOop ctxk_encoded_as_null(DepType dept, oop x);
 379 
 380  public:
 381   // Use this to iterate over an nmethod's dependency set.
 382   // Works on new and old dependency sets.
 383   // Usage:
 384   //
 385   // ;
 386   // Dependencies::DepType dept;
 387   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 388   //   ...
 389   // }
 390   //
 391   // The caller must be in the VM, since oops are not wrapped in handles.
 392   class DepStream {
 393   private:
 394     nmethod*              _code;   // null if in a compiler thread
 395     Dependencies*         _deps;   // null if not in a compiler thread
 396     CompressedReadStream  _bytes;
 397 #ifdef ASSERT
 398     size_t                _byte_limit;
 399 #endif
 400 
 401     // iteration variables:
 402     DepType               _type;
 403     int                   _xi[max_arg_count+1];
 404 
 405     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 406 
 407     inline oop recorded_oop_at(int i);
 408         // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
 409 
 410     klassOop check_dependency_impl(DepChange* changes);
 411 
 412   public:
 413     DepStream(Dependencies* deps)
 414       : _deps(deps),
 415         _code(NULL),
 416         _bytes(deps->content_bytes())
 417     {
 418       initial_asserts(deps->size_in_bytes());
 419     }
 420     DepStream(nmethod* code)
 421       : _deps(NULL),
 422         _code(code),
 423         _bytes(code->dependencies_begin())
 424     {
 425       initial_asserts(code->dependencies_size());
 426     }
 427 
 428     bool next();
 429 
 430     DepType type()               { return _type; }
 431     int argument_count()         { return dep_args(type()); }
 432     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 433                                    return _xi[i]; }
 434     oop argument(int i);         // => recorded_oop_at(argument_index(i))
 435     klassOop context_type();
 436 
 437     methodOop method_argument(int i) {
 438       oop x = argument(i);
 439       assert(x->is_method(), "type");
 440       return (methodOop) x;
 441     }
 442     klassOop type_argument(int i) {
 443       oop x = argument(i);
 444       assert(x->is_klass(), "type");
 445       return (klassOop) x;
 446     }
 447 
 448     // The point of the whole exercise:  Is this dep is still OK?
 449     klassOop check_dependency() {
 450       return check_dependency_impl(NULL);
 451     }
 452     // A lighter version:  Checks only around recent changes in a class
 453     // hierarchy.  (See Universe::flush_dependents_on.)
 454     klassOop spot_check_dependency_at(DepChange& changes);
 455 
 456     // Log the current dependency to xtty or compilation log.
 457     void log_dependency(klassOop witness = NULL);
 458 
 459     // Print the current dependency to tty.
 460     void print_dependency(klassOop witness = NULL, bool verbose = false);
 461   };
 462   friend class Dependencies::DepStream;
 463 
 464   static void print_statistics() PRODUCT_RETURN;
 465 };
 466 
 467 // A class hierarchy change coming through the VM (under the Compile_lock).
 468 // The change is structured as a single new type with any number of supers
 469 // and implemented interface types.  Other than the new type, any of the
 470 // super types can be context types for a relevant dependency, which the
 471 // new type could invalidate.
 472 class DepChange : public StackObj {
 473  public:
 474   enum ChangeType {
 475     NO_CHANGE = 0,              // an uninvolved klass
 476     Change_new_type,            // a newly loaded type
 477     Change_new_sub,             // a super with a new subtype
 478     Change_new_impl,            // an interface with a new implementation
 479     CHANGE_LIMIT,
 480     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 481   };
 482 
 483  private:
 484   // each change set is rooted in exactly one new type (at present):
 485   KlassHandle _new_type;
 486 
 487   void initialize();
 488 
 489  public:
 490   // notes the new type, marks it and all its super-types
 491   DepChange(KlassHandle new_type)
 492     : _new_type(new_type)
 493   {
 494     initialize();
 495   }
 496 
 497   // cleans up the marks
 498   ~DepChange();
 499 
 500   klassOop new_type()                   { return _new_type(); }
 501 
 502   // involves_context(k) is true if k is new_type or any of the super types
 503   bool involves_context(klassOop k);
 504 
 505   // Usage:
 506   // for (DepChange::ContextStream str(changes); str.next(); ) {
 507   //   klassOop k = str.klass();
 508   //   switch (str.change_type()) {
 509   //     ...
 510   //   }
 511   // }
 512   class ContextStream : public StackObj {
 513    private:
 514     DepChange&  _changes;
 515     friend class DepChange;
 516 
 517     // iteration variables:
 518     ChangeType  _change_type;
 519     klassOop    _klass;
 520     objArrayOop _ti_base;    // i.e., transitive_interfaces
 521     int         _ti_index;
 522     int         _ti_limit;
 523 
 524     // start at the beginning:
 525     void start() {
 526       klassOop new_type = _changes.new_type();
 527       _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
 528       _klass = new_type;
 529       _ti_base = NULL;
 530       _ti_index = 0;
 531       _ti_limit = 0;
 532     }
 533 
 534    public:
 535     ContextStream(DepChange& changes)
 536       : _changes(changes)
 537     { start(); }
 538 
 539     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
 540       : _changes(changes)
 541       // the nsv argument makes it safe to hold oops like _klass
 542     { start(); }
 543 
 544     bool next();
 545 
 546     ChangeType change_type()     { return _change_type; }
 547     klassOop   klass()           { return _klass; }
 548   };
 549   friend class DepChange::ContextStream;
 550 
 551   void print();
 552 };