1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  27 
  28 #include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/freeList.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/space.hpp"
  33 
  34 // Classes in support of keeping track of promotions into a non-Contiguous
  35 // space, in this case a CompactibleFreeListSpace.
  36 
  37 // Forward declarations
  38 class CompactibleFreeListSpace;
  39 class BlkClosure;
  40 class BlkClosureCareful;
  41 class UpwardsObjectClosure;
  42 class ObjectClosureCareful;
  43 class Klass;
  44 
  45 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
  46  public:
  47   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
  48     _allocation_size_limit(0) {}
  49   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
  50     size_t allocation_size_limit) {
  51     _ptr = ptr;
  52     _word_size = word_size;
  53     _refillSize = refill_size;
  54     _allocation_size_limit = allocation_size_limit;
  55   }
  56   HeapWord* _ptr;
  57   size_t    _word_size;
  58   size_t    _refillSize;
  59   size_t    _allocation_size_limit;  // largest size that will be allocated
  60 
  61   void print_on(outputStream* st) const;
  62 };
  63 
  64 // Concrete subclass of CompactibleSpace that implements
  65 // a free list space, such as used in the concurrent mark sweep
  66 // generation.
  67 
  68 class CompactibleFreeListSpace: public CompactibleSpace {
  69   friend class VMStructs;
  70   friend class ConcurrentMarkSweepGeneration;
  71   friend class ASConcurrentMarkSweepGeneration;
  72   friend class CMSCollector;
  73   friend class CMSPermGenGen;
  74   // Local alloc buffer for promotion into this space.
  75   friend class CFLS_LAB;
  76 
  77   // "Size" of chunks of work (executed during parallel remark phases
  78   // of CMS collection); this probably belongs in CMSCollector, although
  79   // it's cached here because it's used in
  80   // initialize_sequential_subtasks_for_rescan() which modifies
  81   // par_seq_tasks which also lives in Space. XXX
  82   const size_t _rescan_task_size;
  83   const size_t _marking_task_size;
  84 
  85   // Yet another sequential tasks done structure. This supports
  86   // CMS GC, where we have threads dynamically
  87   // claiming sub-tasks from a larger parallel task.
  88   SequentialSubTasksDone _conc_par_seq_tasks;
  89 
  90   BlockOffsetArrayNonContigSpace _bt;
  91 
  92   CMSCollector* _collector;
  93   ConcurrentMarkSweepGeneration* _gen;
  94 
  95   // Data structures for free blocks (used during allocation/sweeping)
  96 
  97   // Allocation is done linearly from two different blocks depending on
  98   // whether the request is small or large, in an effort to reduce
  99   // fragmentation. We assume that any locking for allocation is done
 100   // by the containing generation. Thus, none of the methods in this
 101   // space are re-entrant.
 102   enum SomeConstants {
 103     SmallForLinearAlloc = 16,        // size < this then use _sLAB
 104     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
 105     IndexSetSize        = SmallForDictionary  // keep this odd-sized
 106   };
 107   static int IndexSetStart;
 108   static int IndexSetStride;
 109 
 110  private:
 111   enum FitStrategyOptions {
 112     FreeBlockStrategyNone = 0,
 113     FreeBlockBestFitFirst
 114   };
 115 
 116   PromotionInfo _promoInfo;
 117 
 118   // helps to impose a global total order on freelistLock ranks;
 119   // assumes that CFLSpace's are allocated in global total order
 120   static int   _lockRank;
 121 
 122   // a lock protecting the free lists and free blocks;
 123   // mutable because of ubiquity of locking even for otherwise const methods
 124   mutable Mutex _freelistLock;
 125   // locking verifier convenience function
 126   void assert_locked() const PRODUCT_RETURN;
 127   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
 128 
 129   // Linear allocation blocks
 130   LinearAllocBlock _smallLinearAllocBlock;
 131 
 132   FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
 133   FreeBlockDictionary* _dictionary;    // ptr to dictionary for large size blocks
 134 
 135   FreeList _indexedFreeList[IndexSetSize];
 136                                        // indexed array for small size blocks
 137   // allocation stategy
 138   bool       _fitStrategy;      // Use best fit strategy.
 139   bool       _adaptive_freelists; // Use adaptive freelists
 140 
 141   // This is an address close to the largest free chunk in the heap.
 142   // It is currently assumed to be at the end of the heap.  Free
 143   // chunks with addresses greater than nearLargestChunk are coalesced
 144   // in an effort to maintain a large chunk at the end of the heap.
 145   HeapWord*  _nearLargestChunk;
 146 
 147   // Used to keep track of limit of sweep for the space
 148   HeapWord* _sweep_limit;
 149 
 150   // Support for compacting cms
 151   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 152   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
 153 
 154   // Initialization helpers.
 155   void initializeIndexedFreeListArray();
 156 
 157   // Extra stuff to manage promotion parallelism.
 158 
 159   // a lock protecting the dictionary during par promotion allocation.
 160   mutable Mutex _parDictionaryAllocLock;
 161   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
 162 
 163   // Locks protecting the exact lists during par promotion allocation.
 164   Mutex* _indexedFreeListParLocks[IndexSetSize];
 165 
 166   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
 167   // required to be smaller than "IndexSetSize".)  If successful,
 168   // adds them to "fl", which is required to be an empty free list.
 169   // If the count of "fl" is negative, it's absolute value indicates a
 170   // number of free chunks that had been previously "borrowed" from global
 171   // list of size "word_sz", and must now be decremented.
 172   void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
 173 
 174   // Allocation helper functions
 175   // Allocate using a strategy that takes from the indexed free lists
 176   // first.  This allocation strategy assumes a companion sweeping
 177   // strategy that attempts to keep the needed number of chunks in each
 178   // indexed free lists.
 179   HeapWord* allocate_adaptive_freelists(size_t size);
 180   // Allocate from the linear allocation buffers first.  This allocation
 181   // strategy assumes maximal coalescing can maintain chunks large enough
 182   // to be used as linear allocation buffers.
 183   HeapWord* allocate_non_adaptive_freelists(size_t size);
 184 
 185   // Gets a chunk from the linear allocation block (LinAB).  If there
 186   // is not enough space in the LinAB, refills it.
 187   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
 188   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
 189   // Get a chunk from the space remaining in the linear allocation block.  Do
 190   // not attempt to refill if the space is not available, return NULL.  Do the
 191   // repairs on the linear allocation block as appropriate.
 192   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
 193   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
 194 
 195   // Helper function for getChunkFromIndexedFreeList.
 196   // Replenish the indexed free list for this "size".  Do not take from an
 197   // underpopulated size.
 198   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
 199 
 200   // Get a chunk from the indexed free list.  If the indexed free list
 201   // does not have a free chunk, try to replenish the indexed free list
 202   // then get the free chunk from the replenished indexed free list.
 203   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
 204 
 205   // The returned chunk may be larger than requested (or null).
 206   FreeChunk* getChunkFromDictionary(size_t size);
 207   // The returned chunk is the exact size requested (or null).
 208   FreeChunk* getChunkFromDictionaryExact(size_t size);
 209 
 210   // Find a chunk in the indexed free list that is the best
 211   // fit for size "numWords".
 212   FreeChunk* bestFitSmall(size_t numWords);
 213   // For free list "fl" of chunks of size > numWords,
 214   // remove a chunk, split off a chunk of size numWords
 215   // and return it.  The split off remainder is returned to
 216   // the free lists.  The old name for getFromListGreater
 217   // was lookInListGreater.
 218   FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
 219   // Get a chunk in the indexed free list or dictionary,
 220   // by considering a larger chunk and splitting it.
 221   FreeChunk* getChunkFromGreater(size_t numWords);
 222   //  Verify that the given chunk is in the indexed free lists.
 223   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
 224   // Remove the specified chunk from the indexed free lists.
 225   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
 226   // Remove the specified chunk from the dictionary.
 227   void       removeChunkFromDictionary(FreeChunk* fc);
 228   // Split a free chunk into a smaller free chunk of size "new_size".
 229   // Return the smaller free chunk and return the remainder to the
 230   // free lists.
 231   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
 232   // Add a chunk to the free lists.
 233   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
 234   // Add a chunk to the free lists, preferring to suffix it
 235   // to the last free chunk at end of space if possible, and
 236   // updating the block census stats as well as block offset table.
 237   // Take any locks as appropriate if we are multithreaded.
 238   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
 239   // Add a free chunk to the indexed free lists.
 240   void       returnChunkToFreeList(FreeChunk* chunk);
 241   // Add a free chunk to the dictionary.
 242   void       returnChunkToDictionary(FreeChunk* chunk);
 243 
 244   // Functions for maintaining the linear allocation buffers (LinAB).
 245   // Repairing a linear allocation block refers to operations
 246   // performed on the remainder of a LinAB after an allocation
 247   // has been made from it.
 248   void       repairLinearAllocationBlocks();
 249   void       repairLinearAllocBlock(LinearAllocBlock* blk);
 250   void       refillLinearAllocBlock(LinearAllocBlock* blk);
 251   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
 252   void       refillLinearAllocBlocksIfNeeded();
 253 
 254   void       verify_objects_initialized() const;
 255 
 256   // Statistics reporting helper functions
 257   void       reportFreeListStatistics() const;
 258   void       reportIndexedFreeListStatistics() const;
 259   size_t     maxChunkSizeInIndexedFreeLists() const;
 260   size_t     numFreeBlocksInIndexedFreeLists() const;
 261   // Accessor
 262   HeapWord* unallocated_block() const {
 263     if (BlockOffsetArrayUseUnallocatedBlock) {
 264       HeapWord* ub = _bt.unallocated_block();
 265       assert(ub >= bottom() &&
 266              ub <= end(), "space invariant");
 267       return ub;
 268     } else {
 269       return end();
 270     }
 271   }
 272   void freed(HeapWord* start, size_t size) {
 273     _bt.freed(start, size);
 274   }
 275 
 276  protected:
 277   // reset the indexed free list to its initial empty condition.
 278   void resetIndexedFreeListArray();
 279   // reset to an initial state with a single free block described
 280   // by the MemRegion parameter.
 281   void reset(MemRegion mr);
 282   // Return the total number of words in the indexed free lists.
 283   size_t     totalSizeInIndexedFreeLists() const;
 284 
 285  public:
 286   // Constructor...
 287   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
 288                            bool use_adaptive_freelists,
 289                            FreeBlockDictionary::DictionaryChoice);
 290   // accessors
 291   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
 292   FreeBlockDictionary* dictionary() const { return _dictionary; }
 293   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
 294   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
 295 
 296   // Set CMS global values
 297   static void set_cms_values();
 298 
 299   // Return the free chunk at the end of the space.  If no such
 300   // chunk exists, return NULL.
 301   FreeChunk* find_chunk_at_end();
 302 
 303   bool adaptive_freelists() const { return _adaptive_freelists; }
 304 
 305   void set_collector(CMSCollector* collector) { _collector = collector; }
 306 
 307   // Support for parallelization of rescan and marking
 308   const size_t rescan_task_size()  const { return _rescan_task_size;  }
 309   const size_t marking_task_size() const { return _marking_task_size; }
 310   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
 311   void initialize_sequential_subtasks_for_rescan(int n_threads);
 312   void initialize_sequential_subtasks_for_marking(int n_threads,
 313          HeapWord* low = NULL);
 314 
 315   // Space enquiries
 316   size_t used() const;
 317   size_t free() const;
 318   size_t max_alloc_in_words() const;
 319   // XXX: should have a less conservative used_region() than that of
 320   // Space; we could consider keeping track of highest allocated
 321   // address and correcting that at each sweep, as the sweeper
 322   // goes through the entire allocated part of the generation. We
 323   // could also use that information to keep the sweeper from
 324   // sweeping more than is necessary. The allocator and sweeper will
 325   // of course need to synchronize on this, since the sweeper will
 326   // try to bump down the address and the allocator will try to bump it up.
 327   // For now, however, we'll just use the default used_region()
 328   // which overestimates the region by returning the entire
 329   // committed region (this is safe, but inefficient).
 330 
 331   // Returns a subregion of the space containing all the objects in
 332   // the space.
 333   MemRegion used_region() const {
 334     return MemRegion(bottom(),
 335                      BlockOffsetArrayUseUnallocatedBlock ?
 336                      unallocated_block() : end());
 337   }
 338 
 339   // This is needed because the default implementation uses block_start()
 340   // which can;t be used at certain times (for example phase 3 of mark-sweep).
 341   // A better fix is to change the assertions in phase 3 of mark-sweep to
 342   // use is_in_reserved(), but that is deferred since the is_in() assertions
 343   // are buried through several layers of callers and are used elsewhere
 344   // as well.
 345   bool is_in(const void* p) const {
 346     return used_region().contains(p);
 347   }
 348 
 349   virtual bool is_free_block(const HeapWord* p) const;
 350 
 351   // Resizing support
 352   void set_end(HeapWord* value);  // override
 353 
 354   // mutual exclusion support
 355   Mutex* freelistLock() const { return &_freelistLock; }
 356 
 357   // Iteration support
 358   void oop_iterate(MemRegion mr, OopClosure* cl);
 359   void oop_iterate(OopClosure* cl);
 360 
 361   void object_iterate(ObjectClosure* blk);
 362   // Apply the closure to each object in the space whose references
 363   // point to objects in the heap.  The usage of CompactibleFreeListSpace
 364   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 365   // objects in the space with references to objects that are no longer
 366   // valid.  For example, an object may reference another object
 367   // that has already been sweep up (collected).  This method uses
 368   // obj_is_alive() to determine whether it is safe to iterate of
 369   // an object.
 370   void safe_object_iterate(ObjectClosure* blk);
 371   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 372 
 373   // Requires that "mr" be entirely within the space.
 374   // Apply "cl->do_object" to all objects that intersect with "mr".
 375   // If the iteration encounters an unparseable portion of the region,
 376   // terminate the iteration and return the address of the start of the
 377   // subregion that isn't done.  Return of "NULL" indicates that the
 378   // interation completed.
 379   virtual HeapWord*
 380        object_iterate_careful_m(MemRegion mr,
 381                                 ObjectClosureCareful* cl);
 382   virtual HeapWord*
 383        object_iterate_careful(ObjectClosureCareful* cl);
 384 
 385   // Override: provides a DCTO_CL specific to this kind of space.
 386   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
 387                                      CardTableModRefBS::PrecisionStyle precision,
 388                                      HeapWord* boundary);
 389 
 390   void blk_iterate(BlkClosure* cl);
 391   void blk_iterate_careful(BlkClosureCareful* cl);
 392   HeapWord* block_start_const(const void* p) const;
 393   HeapWord* block_start_careful(const void* p) const;
 394   size_t block_size(const HeapWord* p) const;
 395   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
 396   bool block_is_obj(const HeapWord* p) const;
 397   bool obj_is_alive(const HeapWord* p) const;
 398   size_t block_size_nopar(const HeapWord* p) const;
 399   bool block_is_obj_nopar(const HeapWord* p) const;
 400 
 401   // iteration support for promotion
 402   void save_marks();
 403   bool no_allocs_since_save_marks();
 404   void object_iterate_since_last_GC(ObjectClosure* cl);
 405 
 406   // iteration support for sweeping
 407   void save_sweep_limit() {
 408     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
 409                    unallocated_block() : end();
 410   }
 411   NOT_PRODUCT(
 412     void clear_sweep_limit() { _sweep_limit = NULL; }
 413   )
 414   HeapWord* sweep_limit() { return _sweep_limit; }
 415 
 416   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 417   // promoted into this generation since the most recent save_marks() call.
 418   // Fields in objects allocated by applications of the closure
 419   // *are* included in the iteration. Thus, when the iteration completes
 420   // there should be no further such objects remaining.
 421   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 422     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 423   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
 424   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
 425 
 426   // Allocation support
 427   HeapWord* allocate(size_t size);
 428   HeapWord* par_allocate(size_t size);
 429 
 430   oop       promote(oop obj, size_t obj_size);
 431   void      gc_prologue();
 432   void      gc_epilogue();
 433 
 434   // This call is used by a containing CMS generation / collector
 435   // to inform the CFLS space that a sweep has been completed
 436   // and that the space can do any related house-keeping functions.
 437   void      sweep_completed();
 438 
 439   // For an object in this space, the mark-word's two
 440   // LSB's having the value [11] indicates that it has been
 441   // promoted since the most recent call to save_marks() on
 442   // this generation and has not subsequently been iterated
 443   // over (using oop_since_save_marks_iterate() above).
 444   // This property holds only for single-threaded collections,
 445   // and is typically used for Cheney scans; for MT scavenges,
 446   // the property holds for all objects promoted during that
 447   // scavenge for the duration of the scavenge and is used
 448   // by card-scanning to avoid scanning objects (being) promoted
 449   // during that scavenge.
 450   bool obj_allocated_since_save_marks(const oop obj) const {
 451     assert(is_in_reserved(obj), "Wrong space?");
 452     return ((PromotedObject*)obj)->hasPromotedMark();
 453   }
 454 
 455   // A worst-case estimate of the space required (in HeapWords) to expand the
 456   // heap when promoting an obj of size obj_size.
 457   size_t expansionSpaceRequired(size_t obj_size) const;
 458 
 459   FreeChunk* allocateScratch(size_t size);
 460 
 461   // returns true if either the small or large linear allocation buffer is empty.
 462   bool       linearAllocationWouldFail() const;
 463 
 464   // Adjust the chunk for the minimum size.  This version is called in
 465   // most cases in CompactibleFreeListSpace methods.
 466   inline static size_t adjustObjectSize(size_t size) {
 467     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
 468   }
 469   // This is a virtual version of adjustObjectSize() that is called
 470   // only occasionally when the compaction space changes and the type
 471   // of the new compaction space is is only known to be CompactibleSpace.
 472   size_t adjust_object_size_v(size_t size) const {
 473     return adjustObjectSize(size);
 474   }
 475   // Minimum size of a free block.
 476   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
 477   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
 478   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
 479               bool coalesced);
 480 
 481   // Support for decisions regarding concurrent collection policy
 482   bool should_concurrent_collect() const;
 483 
 484   // Support for compaction
 485   void prepare_for_compaction(CompactPoint* cp);
 486   void adjust_pointers();
 487   void compact();
 488   // reset the space to reflect the fact that a compaction of the
 489   // space has been done.
 490   virtual void reset_after_compaction();
 491 
 492   // Debugging support
 493   void print()                            const;
 494   void print_on(outputStream* st)         const;
 495   void prepare_for_verify();
 496   void verify(bool allow_dirty)           const;
 497   void verifyFreeLists()                  const PRODUCT_RETURN;
 498   void verifyIndexedFreeLists()           const;
 499   void verifyIndexedFreeList(size_t size) const;
 500   // verify that the given chunk is in the free lists.
 501   bool verifyChunkInFreeLists(FreeChunk* fc) const;
 502   // Do some basic checks on the the free lists.
 503   void checkFreeListConsistency()         const PRODUCT_RETURN;
 504 
 505   // Printing support
 506   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
 507   void print_indexed_free_lists(outputStream* st) const;
 508   void print_dictionary_free_lists(outputStream* st) const;
 509   void print_promo_info_blocks(outputStream* st) const;
 510 
 511   NOT_PRODUCT (
 512     void initializeIndexedFreeListArrayReturnedBytes();
 513     size_t sumIndexedFreeListArrayReturnedBytes();
 514     // Return the total number of chunks in the indexed free lists.
 515     size_t totalCountInIndexedFreeLists() const;
 516     // Return the total numberof chunks in the space.
 517     size_t totalCount();
 518   )
 519 
 520   // The census consists of counts of the quantities such as
 521   // the current count of the free chunks, number of chunks
 522   // created as a result of the split of a larger chunk or
 523   // coalescing of smaller chucks, etc.  The counts in the
 524   // census is used to make decisions on splitting and
 525   // coalescing of chunks during the sweep of garbage.
 526 
 527   // Print the statistics for the free lists.
 528   void printFLCensus(size_t sweep_count) const;
 529 
 530   // Statistics functions
 531   // Initialize census for lists before the sweep.
 532   void beginSweepFLCensus(float inter_sweep_current,
 533                           float inter_sweep_estimate,
 534                           float intra_sweep_estimate);
 535   // Set the surplus for each of the free lists.
 536   void setFLSurplus();
 537   // Set the hint for each of the free lists.
 538   void setFLHints();
 539   // Clear the census for each of the free lists.
 540   void clearFLCensus();
 541   // Perform functions for the census after the end of the sweep.
 542   void endSweepFLCensus(size_t sweep_count);
 543   // Return true if the count of free chunks is greater
 544   // than the desired number of free chunks.
 545   bool coalOverPopulated(size_t size);
 546 
 547 // Record (for each size):
 548 //
 549 //   split-births = #chunks added due to splits in (prev-sweep-end,
 550 //      this-sweep-start)
 551 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
 552 //      this-sweep-start)
 553 //   num-curr     = #chunks at start of this sweep
 554 //   num-prev     = #chunks at end of previous sweep
 555 //
 556 // The above are quantities that are measured. Now define:
 557 //
 558 //   num-desired := num-prev + split-births - split-deaths - num-curr
 559 //
 560 // Roughly, num-prev + split-births is the supply,
 561 // split-deaths is demand due to other sizes
 562 // and num-curr is what we have left.
 563 //
 564 // Thus, num-desired is roughly speaking the "legitimate demand"
 565 // for blocks of this size and what we are striving to reach at the
 566 // end of the current sweep.
 567 //
 568 // For a given list, let num-len be its current population.
 569 // Define, for a free list of a given size:
 570 //
 571 //   coal-overpopulated := num-len >= num-desired * coal-surplus
 572 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
 573 // coalescing -- we do not coalesce unless we think that the current
 574 // supply has exceeded the estimated demand by more than 5%).
 575 //
 576 // For the set of sizes in the binary tree, which is neither dense nor
 577 // closed, it may be the case that for a particular size we have never
 578 // had, or do not now have, or did not have at the previous sweep,
 579 // chunks of that size. We need to extend the definition of
 580 // coal-overpopulated to such sizes as well:
 581 //
 582 //   For a chunk in/not in the binary tree, extend coal-overpopulated
 583 //   defined above to include all sizes as follows:
 584 //
 585 //   . a size that is non-existent is coal-overpopulated
 586 //   . a size that has a num-desired <= 0 as defined above is
 587 //     coal-overpopulated.
 588 //
 589 // Also define, for a chunk heap-offset C and mountain heap-offset M:
 590 //
 591 //   close-to-mountain := C >= 0.99 * M
 592 //
 593 // Now, the coalescing strategy is:
 594 //
 595 //    Coalesce left-hand chunk with right-hand chunk if and
 596 //    only if:
 597 //
 598 //      EITHER
 599 //        . left-hand chunk is of a size that is coal-overpopulated
 600 //      OR
 601 //        . right-hand chunk is close-to-mountain
 602   void smallCoalBirth(size_t size);
 603   void smallCoalDeath(size_t size);
 604   void coalBirth(size_t size);
 605   void coalDeath(size_t size);
 606   void smallSplitBirth(size_t size);
 607   void smallSplitDeath(size_t size);
 608   void splitBirth(size_t size);
 609   void splitDeath(size_t size);
 610   void split(size_t from, size_t to1);
 611 
 612   double flsFrag() const;
 613 };
 614 
 615 // A parallel-GC-thread-local allocation buffer for allocation into a
 616 // CompactibleFreeListSpace.
 617 class CFLS_LAB : public CHeapObj {
 618   // The space that this buffer allocates into.
 619   CompactibleFreeListSpace* _cfls;
 620 
 621   // Our local free lists.
 622   FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
 623 
 624   // Initialized from a command-line arg.
 625 
 626   // Allocation statistics in support of dynamic adjustment of
 627   // #blocks to claim per get_from_global_pool() call below.
 628   static AdaptiveWeightedAverage
 629                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
 630   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
 631   static int    _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
 632   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
 633 
 634   // Internal work method
 635   void get_from_global_pool(size_t word_sz, FreeList* fl);
 636 
 637 public:
 638   CFLS_LAB(CompactibleFreeListSpace* cfls);
 639 
 640   // Allocate and return a block of the given size, or else return NULL.
 641   HeapWord* alloc(size_t word_sz);
 642 
 643   // Return any unused portions of the buffer to the global pool.
 644   void retire(int tid);
 645 
 646   // Dynamic OldPLABSize sizing
 647   static void compute_desired_plab_size();
 648   // When the settings are modified from default static initialization
 649   static void modify_initialization(size_t n, unsigned wt);
 650 };
 651 
 652 size_t PromotionInfo::refillSize() const {
 653   const size_t CMSSpoolBlockSize = 256;
 654   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
 655                                    * CMSSpoolBlockSize);
 656   return CompactibleFreeListSpace::adjustObjectSize(sz);
 657 }
 658 
 659 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP