1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_g1CollectedHeap.cpp.incl"
  27 
  28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  29 
  30 // turn it on so that the contents of the young list (scan-only /
  31 // to-be-collected) are printed at "strategic" points before / during
  32 // / after the collection --- this is useful for debugging
  33 #define YOUNG_LIST_VERBOSE 0
  34 // CURRENT STATUS
  35 // This file is under construction.  Search for "FIXME".
  36 
  37 // INVARIANTS/NOTES
  38 //
  39 // All allocation activity covered by the G1CollectedHeap interface is
  40 //   serialized by acquiring the HeapLock.  This happens in
  41 //   mem_allocate_work, which all such allocation functions call.
  42 //   (Note that this does not apply to TLAB allocation, which is not part
  43 //   of this interface: it is done by clients of this interface.)
  44 
  45 // Local to this file.
  46 
  47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  48   SuspendibleThreadSet* _sts;
  49   G1RemSet* _g1rs;
  50   ConcurrentG1Refine* _cg1r;
  51   bool _concurrent;
  52 public:
  53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  54                               G1RemSet* g1rs,
  55                               ConcurrentG1Refine* cg1r) :
  56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  57   {}
  58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  59     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  60     // This path is executed by the concurrent refine or mutator threads,
  61     // concurrently, and so we do not care if card_ptr contains references
  62     // that point into the collection set.
  63     assert(!oops_into_cset, "should be");
  64 
  65     if (_concurrent && _sts->should_yield()) {
  66       // Caller will actually yield.
  67       return false;
  68     }
  69     // Otherwise, we finished successfully; return true.
  70     return true;
  71   }
  72   void set_concurrent(bool b) { _concurrent = b; }
  73 };
  74 
  75 
  76 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  77   int _calls;
  78   G1CollectedHeap* _g1h;
  79   CardTableModRefBS* _ctbs;
  80   int _histo[256];
  81 public:
  82   ClearLoggedCardTableEntryClosure() :
  83     _calls(0)
  84   {
  85     _g1h = G1CollectedHeap::heap();
  86     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  87     for (int i = 0; i < 256; i++) _histo[i] = 0;
  88   }
  89   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  90     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
  91       _calls++;
  92       unsigned char* ujb = (unsigned char*)card_ptr;
  93       int ind = (int)(*ujb);
  94       _histo[ind]++;
  95       *card_ptr = -1;
  96     }
  97     return true;
  98   }
  99   int calls() { return _calls; }
 100   void print_histo() {
 101     gclog_or_tty->print_cr("Card table value histogram:");
 102     for (int i = 0; i < 256; i++) {
 103       if (_histo[i] != 0) {
 104         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 105       }
 106     }
 107   }
 108 };
 109 
 110 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 111   int _calls;
 112   G1CollectedHeap* _g1h;
 113   CardTableModRefBS* _ctbs;
 114 public:
 115   RedirtyLoggedCardTableEntryClosure() :
 116     _calls(0)
 117   {
 118     _g1h = G1CollectedHeap::heap();
 119     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 120   }
 121   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 122     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 123       _calls++;
 124       *card_ptr = 0;
 125     }
 126     return true;
 127   }
 128   int calls() { return _calls; }
 129 };
 130 
 131 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 132 public:
 133   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 134     *card_ptr = CardTableModRefBS::dirty_card_val();
 135     return true;
 136   }
 137 };
 138 
 139 YoungList::YoungList(G1CollectedHeap* g1h)
 140   : _g1h(g1h), _head(NULL),
 141     _length(0),
 142     _last_sampled_rs_lengths(0),
 143     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 144 {
 145   guarantee( check_list_empty(false), "just making sure..." );
 146 }
 147 
 148 void YoungList::push_region(HeapRegion *hr) {
 149   assert(!hr->is_young(), "should not already be young");
 150   assert(hr->get_next_young_region() == NULL, "cause it should!");
 151 
 152   hr->set_next_young_region(_head);
 153   _head = hr;
 154 
 155   hr->set_young();
 156   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 157   ++_length;
 158 }
 159 
 160 void YoungList::add_survivor_region(HeapRegion* hr) {
 161   assert(hr->is_survivor(), "should be flagged as survivor region");
 162   assert(hr->get_next_young_region() == NULL, "cause it should!");
 163 
 164   hr->set_next_young_region(_survivor_head);
 165   if (_survivor_head == NULL) {
 166     _survivor_tail = hr;
 167   }
 168   _survivor_head = hr;
 169 
 170   ++_survivor_length;
 171 }
 172 
 173 void YoungList::empty_list(HeapRegion* list) {
 174   while (list != NULL) {
 175     HeapRegion* next = list->get_next_young_region();
 176     list->set_next_young_region(NULL);
 177     list->uninstall_surv_rate_group();
 178     list->set_not_young();
 179     list = next;
 180   }
 181 }
 182 
 183 void YoungList::empty_list() {
 184   assert(check_list_well_formed(), "young list should be well formed");
 185 
 186   empty_list(_head);
 187   _head = NULL;
 188   _length = 0;
 189 
 190   empty_list(_survivor_head);
 191   _survivor_head = NULL;
 192   _survivor_tail = NULL;
 193   _survivor_length = 0;
 194 
 195   _last_sampled_rs_lengths = 0;
 196 
 197   assert(check_list_empty(false), "just making sure...");
 198 }
 199 
 200 bool YoungList::check_list_well_formed() {
 201   bool ret = true;
 202 
 203   size_t length = 0;
 204   HeapRegion* curr = _head;
 205   HeapRegion* last = NULL;
 206   while (curr != NULL) {
 207     if (!curr->is_young()) {
 208       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 209                              "incorrectly tagged (y: %d, surv: %d)",
 210                              curr->bottom(), curr->end(),
 211                              curr->is_young(), curr->is_survivor());
 212       ret = false;
 213     }
 214     ++length;
 215     last = curr;
 216     curr = curr->get_next_young_region();
 217   }
 218   ret = ret && (length == _length);
 219 
 220   if (!ret) {
 221     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 222     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 223                            length, _length);
 224   }
 225 
 226   return ret;
 227 }
 228 
 229 bool YoungList::check_list_empty(bool check_sample) {
 230   bool ret = true;
 231 
 232   if (_length != 0) {
 233     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 234                   _length);
 235     ret = false;
 236   }
 237   if (check_sample && _last_sampled_rs_lengths != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 239     ret = false;
 240   }
 241   if (_head != NULL) {
 242     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 243     ret = false;
 244   }
 245   if (!ret) {
 246     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 247   }
 248 
 249   return ret;
 250 }
 251 
 252 void
 253 YoungList::rs_length_sampling_init() {
 254   _sampled_rs_lengths = 0;
 255   _curr               = _head;
 256 }
 257 
 258 bool
 259 YoungList::rs_length_sampling_more() {
 260   return _curr != NULL;
 261 }
 262 
 263 void
 264 YoungList::rs_length_sampling_next() {
 265   assert( _curr != NULL, "invariant" );
 266   size_t rs_length = _curr->rem_set()->occupied();
 267 
 268   _sampled_rs_lengths += rs_length;
 269 
 270   // The current region may not yet have been added to the
 271   // incremental collection set (it gets added when it is
 272   // retired as the current allocation region).
 273   if (_curr->in_collection_set()) {
 274     // Update the collection set policy information for this region
 275     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 276   }
 277 
 278   _curr = _curr->get_next_young_region();
 279   if (_curr == NULL) {
 280     _last_sampled_rs_lengths = _sampled_rs_lengths;
 281     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 282   }
 283 }
 284 
 285 void
 286 YoungList::reset_auxilary_lists() {
 287   guarantee( is_empty(), "young list should be empty" );
 288   assert(check_list_well_formed(), "young list should be well formed");
 289 
 290   // Add survivor regions to SurvRateGroup.
 291   _g1h->g1_policy()->note_start_adding_survivor_regions();
 292   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 293 
 294   for (HeapRegion* curr = _survivor_head;
 295        curr != NULL;
 296        curr = curr->get_next_young_region()) {
 297     _g1h->g1_policy()->set_region_survivors(curr);
 298 
 299     // The region is a non-empty survivor so let's add it to
 300     // the incremental collection set for the next evacuation
 301     // pause.
 302     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 303   }
 304   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 305 
 306   _head   = _survivor_head;
 307   _length = _survivor_length;
 308   if (_survivor_head != NULL) {
 309     assert(_survivor_tail != NULL, "cause it shouldn't be");
 310     assert(_survivor_length > 0, "invariant");
 311     _survivor_tail->set_next_young_region(NULL);
 312   }
 313 
 314   // Don't clear the survivor list handles until the start of
 315   // the next evacuation pause - we need it in order to re-tag
 316   // the survivor regions from this evacuation pause as 'young'
 317   // at the start of the next.
 318 
 319   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 320 
 321   assert(check_list_well_formed(), "young list should be well formed");
 322 }
 323 
 324 void YoungList::print() {
 325   HeapRegion* lists[] = {_head,   _survivor_head};
 326   const char* names[] = {"YOUNG", "SURVIVOR"};
 327 
 328   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 329     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 330     HeapRegion *curr = lists[list];
 331     if (curr == NULL)
 332       gclog_or_tty->print_cr("  empty");
 333     while (curr != NULL) {
 334       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 335                              "age: %4d, y: %d, surv: %d",
 336                              curr->bottom(), curr->end(),
 337                              curr->top(),
 338                              curr->prev_top_at_mark_start(),
 339                              curr->next_top_at_mark_start(),
 340                              curr->top_at_conc_mark_count(),
 341                              curr->age_in_surv_rate_group_cond(),
 342                              curr->is_young(),
 343                              curr->is_survivor());
 344       curr = curr->get_next_young_region();
 345     }
 346   }
 347 
 348   gclog_or_tty->print_cr("");
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 void G1CollectedHeap::stop_conc_gc_threads() {
 405   _cg1r->stop();
 406   _czft->stop();
 407   _cmThread->stop();
 408 }
 409 
 410 
 411 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 412   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 413   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 414 
 415   // Count the dirty cards at the start.
 416   CountNonCleanMemRegionClosure count1(this);
 417   ct_bs->mod_card_iterate(&count1);
 418   int orig_count = count1.n();
 419 
 420   // First clear the logged cards.
 421   ClearLoggedCardTableEntryClosure clear;
 422   dcqs.set_closure(&clear);
 423   dcqs.apply_closure_to_all_completed_buffers();
 424   dcqs.iterate_closure_all_threads(false);
 425   clear.print_histo();
 426 
 427   // Now ensure that there's no dirty cards.
 428   CountNonCleanMemRegionClosure count2(this);
 429   ct_bs->mod_card_iterate(&count2);
 430   if (count2.n() != 0) {
 431     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 432                            count2.n(), orig_count);
 433   }
 434   guarantee(count2.n() == 0, "Card table should be clean.");
 435 
 436   RedirtyLoggedCardTableEntryClosure redirty;
 437   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 438   dcqs.apply_closure_to_all_completed_buffers();
 439   dcqs.iterate_closure_all_threads(false);
 440   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 441                          clear.calls(), orig_count);
 442   guarantee(redirty.calls() == clear.calls(),
 443             "Or else mechanism is broken.");
 444 
 445   CountNonCleanMemRegionClosure count3(this);
 446   ct_bs->mod_card_iterate(&count3);
 447   if (count3.n() != orig_count) {
 448     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 449                            orig_count, count3.n());
 450     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 451   }
 452 
 453   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 454 }
 455 
 456 // Private class members.
 457 
 458 G1CollectedHeap* G1CollectedHeap::_g1h;
 459 
 460 // Private methods.
 461 
 462 // Finds a HeapRegion that can be used to allocate a given size of block.
 463 
 464 
 465 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
 466                                                  bool do_expand,
 467                                                  bool zero_filled) {
 468   ConcurrentZFThread::note_region_alloc();
 469   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
 470   if (res == NULL && do_expand) {
 471     expand(word_size * HeapWordSize);
 472     res = alloc_free_region_from_lists(zero_filled);
 473     assert(res == NULL ||
 474            (!res->isHumongous() &&
 475             (!zero_filled ||
 476              res->zero_fill_state() == HeapRegion::Allocated)),
 477            "Alloc Regions must be zero filled (and non-H)");
 478   }
 479   if (res != NULL) {
 480     if (res->is_empty()) {
 481       _free_regions--;
 482     }
 483     assert(!res->isHumongous() &&
 484            (!zero_filled || res->zero_fill_state() == HeapRegion::Allocated),
 485            err_msg("Non-young alloc Regions must be zero filled (and non-H):"
 486                    " res->isHumongous()=%d, zero_filled=%d, res->zero_fill_state()=%d",
 487                    res->isHumongous(), zero_filled, res->zero_fill_state()));
 488     assert(!res->is_on_unclean_list(),
 489            "Alloc Regions must not be on the unclean list");
 490     if (G1PrintHeapRegions) {
 491       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
 492                              "top "PTR_FORMAT,
 493                              res->hrs_index(), res->bottom(), res->end(), res->top());
 494     }
 495   }
 496   return res;
 497 }
 498 
 499 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
 500                                                          size_t word_size,
 501                                                          bool zero_filled) {
 502   HeapRegion* alloc_region = NULL;
 503   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
 504     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
 505     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
 506       alloc_region->set_survivor();
 507     }
 508     ++_gc_alloc_region_counts[purpose];
 509   } else {
 510     g1_policy()->note_alloc_region_limit_reached(purpose);
 511   }
 512   return alloc_region;
 513 }
 514 
 515 // If could fit into free regions w/o expansion, try.
 516 // Otherwise, if can expand, do so.
 517 // Otherwise, if using ex regions might help, try with ex given back.
 518 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
 519   assert(regions_accounted_for(), "Region leakage!");
 520 
 521   // We can't allocate H regions while cleanupComplete is running, since
 522   // some of the regions we find to be empty might not yet be added to the
 523   // unclean list.  (If we're already at a safepoint, this call is
 524   // unnecessary, not to mention wrong.)
 525   if (!SafepointSynchronize::is_at_safepoint())
 526     wait_for_cleanup_complete();
 527 
 528   size_t num_regions =
 529     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 530 
 531   // Special case if < one region???
 532 
 533   // Remember the ft size.
 534   size_t x_size = expansion_regions();
 535 
 536   HeapWord* res = NULL;
 537   bool eliminated_allocated_from_lists = false;
 538 
 539   // Can the allocation potentially fit in the free regions?
 540   if (free_regions() >= num_regions) {
 541     res = _hrs->obj_allocate(word_size);
 542   }
 543   if (res == NULL) {
 544     // Try expansion.
 545     size_t fs = _hrs->free_suffix();
 546     if (fs + x_size >= num_regions) {
 547       expand((num_regions - fs) * HeapRegion::GrainBytes);
 548       res = _hrs->obj_allocate(word_size);
 549       assert(res != NULL, "This should have worked.");
 550     } else {
 551       // Expansion won't help.  Are there enough free regions if we get rid
 552       // of reservations?
 553       size_t avail = free_regions();
 554       if (avail >= num_regions) {
 555         res = _hrs->obj_allocate(word_size);
 556         if (res != NULL) {
 557           remove_allocated_regions_from_lists();
 558           eliminated_allocated_from_lists = true;
 559         }
 560       }
 561     }
 562   }
 563   if (res != NULL) {
 564     // Increment by the number of regions allocated.
 565     // FIXME: Assumes regions all of size GrainBytes.
 566 #ifndef PRODUCT
 567     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
 568                                            HeapRegion::GrainWords));
 569 #endif
 570     if (!eliminated_allocated_from_lists)
 571       remove_allocated_regions_from_lists();
 572     _summary_bytes_used += word_size * HeapWordSize;
 573     _free_regions -= num_regions;
 574     _num_humongous_regions += (int) num_regions;
 575   }
 576   assert(regions_accounted_for(), "Region Leakage");
 577   return res;
 578 }
 579 
 580 HeapWord*
 581 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 582                                          bool permit_collection_pause) {
 583   HeapWord* res = NULL;
 584   HeapRegion* allocated_young_region = NULL;
 585 
 586   assert( SafepointSynchronize::is_at_safepoint() ||
 587           Heap_lock->owned_by_self(), "pre condition of the call" );
 588 
 589   if (isHumongous(word_size)) {
 590     // Allocation of a humongous object can, in a sense, complete a
 591     // partial region, if the previous alloc was also humongous, and
 592     // caused the test below to succeed.
 593     if (permit_collection_pause)
 594       do_collection_pause_if_appropriate(word_size);
 595     res = humongousObjAllocate(word_size);
 596     assert(_cur_alloc_region == NULL
 597            || !_cur_alloc_region->isHumongous(),
 598            "Prevent a regression of this bug.");
 599 
 600   } else {
 601     // We may have concurrent cleanup working at the time. Wait for it
 602     // to complete. In the future we would probably want to make the
 603     // concurrent cleanup truly concurrent by decoupling it from the
 604     // allocation.
 605     if (!SafepointSynchronize::is_at_safepoint())
 606       wait_for_cleanup_complete();
 607     // If we do a collection pause, this will be reset to a non-NULL
 608     // value.  If we don't, nulling here ensures that we allocate a new
 609     // region below.
 610     if (_cur_alloc_region != NULL) {
 611       // We're finished with the _cur_alloc_region.
 612       // As we're builing (at least the young portion) of the collection
 613       // set incrementally we'll add the current allocation region to
 614       // the collection set here.
 615       if (_cur_alloc_region->is_young()) {
 616         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
 617       }
 618       _summary_bytes_used += _cur_alloc_region->used();
 619       _cur_alloc_region = NULL;
 620     }
 621     assert(_cur_alloc_region == NULL, "Invariant.");
 622     // Completion of a heap region is perhaps a good point at which to do
 623     // a collection pause.
 624     if (permit_collection_pause)
 625       do_collection_pause_if_appropriate(word_size);
 626     // Make sure we have an allocation region available.
 627     if (_cur_alloc_region == NULL) {
 628       if (!SafepointSynchronize::is_at_safepoint())
 629         wait_for_cleanup_complete();
 630       bool next_is_young = should_set_young_locked();
 631       // If the next region is not young, make sure it's zero-filled.
 632       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
 633       if (_cur_alloc_region != NULL) {
 634         _summary_bytes_used -= _cur_alloc_region->used();
 635         if (next_is_young) {
 636           set_region_short_lived_locked(_cur_alloc_region);
 637           allocated_young_region = _cur_alloc_region;
 638         }
 639       }
 640     }
 641     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
 642            "Prevent a regression of this bug.");
 643 
 644     // Now retry the allocation.
 645     if (_cur_alloc_region != NULL) {
 646       if (allocated_young_region != NULL) {
 647         // We need to ensure that the store to top does not
 648         // float above the setting of the young type.
 649         OrderAccess::storestore();
 650       }
 651       res = _cur_alloc_region->allocate(word_size);
 652     }
 653   }
 654 
 655   // NOTE: fails frequently in PRT
 656   assert(regions_accounted_for(), "Region leakage!");
 657 
 658   if (res != NULL) {
 659     if (!SafepointSynchronize::is_at_safepoint()) {
 660       assert( permit_collection_pause, "invariant" );
 661       assert( Heap_lock->owned_by_self(), "invariant" );
 662       Heap_lock->unlock();
 663     }
 664 
 665     if (allocated_young_region != NULL) {
 666       HeapRegion* hr = allocated_young_region;
 667       HeapWord* bottom = hr->bottom();
 668       HeapWord* end = hr->end();
 669       MemRegion mr(bottom, end);
 670       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
 671     }
 672   }
 673 
 674   assert( SafepointSynchronize::is_at_safepoint() ||
 675           (res == NULL && Heap_lock->owned_by_self()) ||
 676           (res != NULL && !Heap_lock->owned_by_self()),
 677           "post condition of the call" );
 678 
 679   return res;
 680 }
 681 
 682 HeapWord*
 683 G1CollectedHeap::mem_allocate(size_t word_size,
 684                               bool   is_noref,
 685                               bool   is_tlab,
 686                               bool* gc_overhead_limit_was_exceeded) {
 687   debug_only(check_for_valid_allocation_state());
 688   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 689   HeapWord* result = NULL;
 690 
 691   // Loop until the allocation is satisified,
 692   // or unsatisfied after GC.
 693   for (int try_count = 1; /* return or throw */; try_count += 1) {
 694     int gc_count_before;
 695     {
 696       Heap_lock->lock();
 697       result = attempt_allocation(word_size);
 698       if (result != NULL) {
 699         // attempt_allocation should have unlocked the heap lock
 700         assert(is_in(result), "result not in heap");
 701         return result;
 702       }
 703       // Read the gc count while the heap lock is held.
 704       gc_count_before = SharedHeap::heap()->total_collections();
 705       Heap_lock->unlock();
 706     }
 707 
 708     // Create the garbage collection operation...
 709     VM_G1CollectForAllocation op(word_size,
 710                                  gc_count_before);
 711 
 712     // ...and get the VM thread to execute it.
 713     VMThread::execute(&op);
 714     if (op.prologue_succeeded()) {
 715       result = op.result();
 716       assert(result == NULL || is_in(result), "result not in heap");
 717       return result;
 718     }
 719 
 720     // Give a warning if we seem to be looping forever.
 721     if ((QueuedAllocationWarningCount > 0) &&
 722         (try_count % QueuedAllocationWarningCount == 0)) {
 723       warning("G1CollectedHeap::mem_allocate_work retries %d times",
 724               try_count);
 725     }
 726   }
 727 }
 728 
 729 void G1CollectedHeap::abandon_cur_alloc_region() {
 730   if (_cur_alloc_region != NULL) {
 731     // We're finished with the _cur_alloc_region.
 732     if (_cur_alloc_region->is_empty()) {
 733       _free_regions++;
 734       free_region(_cur_alloc_region);
 735     } else {
 736       // As we're builing (at least the young portion) of the collection
 737       // set incrementally we'll add the current allocation region to
 738       // the collection set here.
 739       if (_cur_alloc_region->is_young()) {
 740         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
 741       }
 742       _summary_bytes_used += _cur_alloc_region->used();
 743     }
 744     _cur_alloc_region = NULL;
 745   }
 746 }
 747 
 748 void G1CollectedHeap::abandon_gc_alloc_regions() {
 749   // first, make sure that the GC alloc region list is empty (it should!)
 750   assert(_gc_alloc_region_list == NULL, "invariant");
 751   release_gc_alloc_regions(true /* totally */);
 752 }
 753 
 754 class PostMCRemSetClearClosure: public HeapRegionClosure {
 755   ModRefBarrierSet* _mr_bs;
 756 public:
 757   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 758   bool doHeapRegion(HeapRegion* r) {
 759     r->reset_gc_time_stamp();
 760     if (r->continuesHumongous())
 761       return false;
 762     HeapRegionRemSet* hrrs = r->rem_set();
 763     if (hrrs != NULL) hrrs->clear();
 764     // You might think here that we could clear just the cards
 765     // corresponding to the used region.  But no: if we leave a dirty card
 766     // in a region we might allocate into, then it would prevent that card
 767     // from being enqueued, and cause it to be missed.
 768     // Re: the performance cost: we shouldn't be doing full GC anyway!
 769     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
 770     return false;
 771   }
 772 };
 773 
 774 
 775 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
 776   ModRefBarrierSet* _mr_bs;
 777 public:
 778   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 779   bool doHeapRegion(HeapRegion* r) {
 780     if (r->continuesHumongous()) return false;
 781     if (r->used_region().word_size() != 0) {
 782       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
 783     }
 784     return false;
 785   }
 786 };
 787 
 788 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
 789   G1CollectedHeap*   _g1h;
 790   UpdateRSOopClosure _cl;
 791   int                _worker_i;
 792 public:
 793   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
 794     _cl(g1->g1_rem_set(), worker_i),
 795     _worker_i(worker_i),
 796     _g1h(g1)
 797   { }
 798   bool doHeapRegion(HeapRegion* r) {
 799     if (!r->continuesHumongous()) {
 800       _cl.set_from(r);
 801       r->oop_iterate(&_cl);
 802     }
 803     return false;
 804   }
 805 };
 806 
 807 class ParRebuildRSTask: public AbstractGangTask {
 808   G1CollectedHeap* _g1;
 809 public:
 810   ParRebuildRSTask(G1CollectedHeap* g1)
 811     : AbstractGangTask("ParRebuildRSTask"),
 812       _g1(g1)
 813   { }
 814 
 815   void work(int i) {
 816     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
 817     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
 818                                          HeapRegion::RebuildRSClaimValue);
 819   }
 820 };
 821 
 822 void G1CollectedHeap::do_collection(bool explicit_gc,
 823                                     bool clear_all_soft_refs,
 824                                     size_t word_size) {
 825   if (GC_locker::check_active_before_gc()) {
 826     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 827   }
 828 
 829   ResourceMark rm;
 830 
 831   if (PrintHeapAtGC) {
 832     Universe::print_heap_before_gc();
 833   }
 834 
 835   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 836   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
 837 
 838   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 839                            collector_policy()->should_clear_all_soft_refs();
 840 
 841   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 842 
 843   {
 844     IsGCActiveMark x;
 845 
 846     // Timing
 847     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
 848     assert(!system_gc || explicit_gc, "invariant");
 849     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 850     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 851     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
 852                 PrintGC, true, gclog_or_tty);
 853 
 854     TraceMemoryManagerStats tms(true /* fullGC */);
 855 
 856     double start = os::elapsedTime();
 857     g1_policy()->record_full_collection_start();
 858 
 859     gc_prologue(true);
 860     increment_total_collections(true /* full gc */);
 861 
 862     size_t g1h_prev_used = used();
 863     assert(used() == recalculate_used(), "Should be equal");
 864 
 865     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
 866       HandleMark hm;  // Discard invalid handles created during verification
 867       prepare_for_verify();
 868       gclog_or_tty->print(" VerifyBeforeGC:");
 869       Universe::verify(true);
 870     }
 871     assert(regions_accounted_for(), "Region leakage!");
 872 
 873     COMPILER2_PRESENT(DerivedPointerTable::clear());
 874 
 875     // We want to discover references, but not process them yet.
 876     // This mode is disabled in
 877     // instanceRefKlass::process_discovered_references if the
 878     // generation does some collection work, or
 879     // instanceRefKlass::enqueue_discovered_references if the
 880     // generation returns without doing any work.
 881     ref_processor()->disable_discovery();
 882     ref_processor()->abandon_partial_discovery();
 883     ref_processor()->verify_no_references_recorded();
 884 
 885     // Abandon current iterations of concurrent marking and concurrent
 886     // refinement, if any are in progress.
 887     concurrent_mark()->abort();
 888 
 889     // Make sure we'll choose a new allocation region afterwards.
 890     abandon_cur_alloc_region();
 891     abandon_gc_alloc_regions();
 892     assert(_cur_alloc_region == NULL, "Invariant.");
 893     g1_rem_set()->cleanupHRRS();
 894     tear_down_region_lists();
 895     set_used_regions_to_need_zero_fill();
 896 
 897     // We may have added regions to the current incremental collection
 898     // set between the last GC or pause and now. We need to clear the
 899     // incremental collection set and then start rebuilding it afresh
 900     // after this full GC.
 901     abandon_collection_set(g1_policy()->inc_cset_head());
 902     g1_policy()->clear_incremental_cset();
 903     g1_policy()->stop_incremental_cset_building();
 904 
 905     if (g1_policy()->in_young_gc_mode()) {
 906       empty_young_list();
 907       g1_policy()->set_full_young_gcs(true);
 908     }
 909 
 910     // Temporarily make reference _discovery_ single threaded (non-MT).
 911     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
 912 
 913     // Temporarily make refs discovery atomic
 914     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
 915 
 916     // Temporarily clear _is_alive_non_header
 917     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
 918 
 919     ref_processor()->enable_discovery();
 920     ref_processor()->setup_policy(do_clear_all_soft_refs);
 921 
 922     // Do collection work
 923     {
 924       HandleMark hm;  // Discard invalid handles created during gc
 925       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
 926     }
 927     // Because freeing humongous regions may have added some unclean
 928     // regions, it is necessary to tear down again before rebuilding.
 929     tear_down_region_lists();
 930     rebuild_region_lists();
 931 
 932     _summary_bytes_used = recalculate_used();
 933 
 934     ref_processor()->enqueue_discovered_references();
 935 
 936     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 937 
 938     MemoryService::track_memory_usage();
 939 
 940     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
 941       HandleMark hm;  // Discard invalid handles created during verification
 942       gclog_or_tty->print(" VerifyAfterGC:");
 943       prepare_for_verify();
 944       Universe::verify(false);
 945     }
 946     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 947 
 948     reset_gc_time_stamp();
 949     // Since everything potentially moved, we will clear all remembered
 950     // sets, and clear all cards.  Later we will rebuild remebered
 951     // sets. We will also reset the GC time stamps of the regions.
 952     PostMCRemSetClearClosure rs_clear(mr_bs());
 953     heap_region_iterate(&rs_clear);
 954 
 955     // Resize the heap if necessary.
 956     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
 957 
 958     if (_cg1r->use_cache()) {
 959       _cg1r->clear_and_record_card_counts();
 960       _cg1r->clear_hot_cache();
 961     }
 962 
 963     // Rebuild remembered sets of all regions.
 964 
 965     if (G1CollectedHeap::use_parallel_gc_threads()) {
 966       ParRebuildRSTask rebuild_rs_task(this);
 967       assert(check_heap_region_claim_values(
 968              HeapRegion::InitialClaimValue), "sanity check");
 969       set_par_threads(workers()->total_workers());
 970       workers()->run_task(&rebuild_rs_task);
 971       set_par_threads(0);
 972       assert(check_heap_region_claim_values(
 973              HeapRegion::RebuildRSClaimValue), "sanity check");
 974       reset_heap_region_claim_values();
 975     } else {
 976       RebuildRSOutOfRegionClosure rebuild_rs(this);
 977       heap_region_iterate(&rebuild_rs);
 978     }
 979 
 980     if (PrintGC) {
 981       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
 982     }
 983 
 984     if (true) { // FIXME
 985       // Ask the permanent generation to adjust size for full collections
 986       perm()->compute_new_size();
 987     }
 988 
 989     // Start a new incremental collection set for the next pause
 990     assert(g1_policy()->collection_set() == NULL, "must be");
 991     g1_policy()->start_incremental_cset_building();
 992 
 993     // Clear the _cset_fast_test bitmap in anticipation of adding
 994     // regions to the incremental collection set for the next
 995     // evacuation pause.
 996     clear_cset_fast_test();
 997 
 998     double end = os::elapsedTime();
 999     g1_policy()->record_full_collection_end();
1000 
1001 #ifdef TRACESPINNING
1002     ParallelTaskTerminator::print_termination_counts();
1003 #endif
1004 
1005     gc_epilogue(true);
1006 
1007     // Discard all rset updates
1008     JavaThread::dirty_card_queue_set().abandon_logs();
1009     assert(!G1DeferredRSUpdate
1010            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1011     assert(regions_accounted_for(), "Region leakage!");
1012   }
1013 
1014   if (g1_policy()->in_young_gc_mode()) {
1015     _young_list->reset_sampled_info();
1016     // At this point there should be no regions in the
1017     // entire heap tagged as young.
1018     assert( check_young_list_empty(true /* check_heap */),
1019             "young list should be empty at this point");
1020   }
1021 
1022   // Update the number of full collections that have been completed.
1023   increment_full_collections_completed(false /* outer */);
1024 
1025   if (PrintHeapAtGC) {
1026     Universe::print_heap_after_gc();
1027   }
1028 }
1029 
1030 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1031   do_collection(true,                /* explicit_gc */
1032                 clear_all_soft_refs,
1033                 0                    /* word_size */);
1034 }
1035 
1036 // This code is mostly copied from TenuredGeneration.
1037 void
1038 G1CollectedHeap::
1039 resize_if_necessary_after_full_collection(size_t word_size) {
1040   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1041 
1042   // Include the current allocation, if any, and bytes that will be
1043   // pre-allocated to support collections, as "used".
1044   const size_t used_after_gc = used();
1045   const size_t capacity_after_gc = capacity();
1046   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1047 
1048   // This is enforced in arguments.cpp.
1049   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1050          "otherwise the code below doesn't make sense");
1051 
1052   // We don't have floating point command-line arguments
1053   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1054   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1055   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1056   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1057 
1058   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1059   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1060 
1061   // We have to be careful here as these two calculations can overflow
1062   // 32-bit size_t's.
1063   double used_after_gc_d = (double) used_after_gc;
1064   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1065   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1066 
1067   // Let's make sure that they are both under the max heap size, which
1068   // by default will make them fit into a size_t.
1069   double desired_capacity_upper_bound = (double) max_heap_size;
1070   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1071                                     desired_capacity_upper_bound);
1072   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1073                                     desired_capacity_upper_bound);
1074 
1075   // We can now safely turn them into size_t's.
1076   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1077   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1078 
1079   // This assert only makes sense here, before we adjust them
1080   // with respect to the min and max heap size.
1081   assert(minimum_desired_capacity <= maximum_desired_capacity,
1082          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1083                  "maximum_desired_capacity = "SIZE_FORMAT,
1084                  minimum_desired_capacity, maximum_desired_capacity));
1085 
1086   // Should not be greater than the heap max size. No need to adjust
1087   // it with respect to the heap min size as it's a lower bound (i.e.,
1088   // we'll try to make the capacity larger than it, not smaller).
1089   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1090   // Should not be less than the heap min size. No need to adjust it
1091   // with respect to the heap max size as it's an upper bound (i.e.,
1092   // we'll try to make the capacity smaller than it, not greater).
1093   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1094 
1095   if (PrintGC && Verbose) {
1096     const double free_percentage =
1097       (double) free_after_gc / (double) capacity_after_gc;
1098     gclog_or_tty->print_cr("Computing new size after full GC ");
1099     gclog_or_tty->print_cr("  "
1100                            "  minimum_free_percentage: %6.2f",
1101                            minimum_free_percentage);
1102     gclog_or_tty->print_cr("  "
1103                            "  maximum_free_percentage: %6.2f",
1104                            maximum_free_percentage);
1105     gclog_or_tty->print_cr("  "
1106                            "  capacity: %6.1fK"
1107                            "  minimum_desired_capacity: %6.1fK"
1108                            "  maximum_desired_capacity: %6.1fK",
1109                            (double) capacity_after_gc / (double) K,
1110                            (double) minimum_desired_capacity / (double) K,
1111                            (double) maximum_desired_capacity / (double) K);
1112     gclog_or_tty->print_cr("  "
1113                            "  free_after_gc: %6.1fK"
1114                            "  used_after_gc: %6.1fK",
1115                            (double) free_after_gc / (double) K,
1116                            (double) used_after_gc / (double) K);
1117     gclog_or_tty->print_cr("  "
1118                            "   free_percentage: %6.2f",
1119                            free_percentage);
1120   }
1121   if (capacity_after_gc < minimum_desired_capacity) {
1122     // Don't expand unless it's significant
1123     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1124     expand(expand_bytes);
1125     if (PrintGC && Verbose) {
1126       gclog_or_tty->print_cr("  "
1127                              "  expanding:"
1128                              "  max_heap_size: %6.1fK"
1129                              "  minimum_desired_capacity: %6.1fK"
1130                              "  expand_bytes: %6.1fK",
1131                              (double) max_heap_size / (double) K,
1132                              (double) minimum_desired_capacity / (double) K,
1133                              (double) expand_bytes / (double) K);
1134     }
1135 
1136     // No expansion, now see if we want to shrink
1137   } else if (capacity_after_gc > maximum_desired_capacity) {
1138     // Capacity too large, compute shrinking size
1139     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1140     shrink(shrink_bytes);
1141     if (PrintGC && Verbose) {
1142       gclog_or_tty->print_cr("  "
1143                              "  shrinking:"
1144                              "  min_heap_size: %6.1fK"
1145                              "  maximum_desired_capacity: %6.1fK"
1146                              "  shrink_bytes: %6.1fK",
1147                              (double) min_heap_size / (double) K,
1148                              (double) maximum_desired_capacity / (double) K,
1149                              (double) shrink_bytes / (double) K);
1150     }
1151   }
1152 }
1153 
1154 
1155 HeapWord*
1156 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
1157   HeapWord* result = NULL;
1158 
1159   // In a G1 heap, we're supposed to keep allocation from failing by
1160   // incremental pauses.  Therefore, at least for now, we'll favor
1161   // expansion over collection.  (This might change in the future if we can
1162   // do something smarter than full collection to satisfy a failed alloc.)
1163 
1164   result = expand_and_allocate(word_size);
1165   if (result != NULL) {
1166     assert(is_in(result), "result not in heap");
1167     return result;
1168   }
1169 
1170   // OK, I guess we have to try collection.
1171 
1172   do_collection(false, false, word_size);
1173 
1174   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1175 
1176   if (result != NULL) {
1177     assert(is_in(result), "result not in heap");
1178     return result;
1179   }
1180 
1181   // Try collecting soft references.
1182   do_collection(false, true, word_size);
1183   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1184   if (result != NULL) {
1185     assert(is_in(result), "result not in heap");
1186     return result;
1187   }
1188 
1189   assert(!collector_policy()->should_clear_all_soft_refs(),
1190     "Flag should have been handled and cleared prior to this point");
1191 
1192   // What else?  We might try synchronous finalization later.  If the total
1193   // space available is large enough for the allocation, then a more
1194   // complete compaction phase than we've tried so far might be
1195   // appropriate.
1196   return NULL;
1197 }
1198 
1199 // Attempting to expand the heap sufficiently
1200 // to support an allocation of the given "word_size".  If
1201 // successful, perform the allocation and return the address of the
1202 // allocated block, or else "NULL".
1203 
1204 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1205   size_t expand_bytes = word_size * HeapWordSize;
1206   if (expand_bytes < MinHeapDeltaBytes) {
1207     expand_bytes = MinHeapDeltaBytes;
1208   }
1209   expand(expand_bytes);
1210   assert(regions_accounted_for(), "Region leakage!");
1211   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
1212   return result;
1213 }
1214 
1215 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
1216   size_t pre_used = 0;
1217   size_t cleared_h_regions = 0;
1218   size_t freed_regions = 0;
1219   UncleanRegionList local_list;
1220   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
1221                                     freed_regions, &local_list);
1222 
1223   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
1224                           &local_list);
1225   return pre_used;
1226 }
1227 
1228 void
1229 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
1230                                                    size_t& pre_used,
1231                                                    size_t& cleared_h,
1232                                                    size_t& freed_regions,
1233                                                    UncleanRegionList* list,
1234                                                    bool par) {
1235   assert(!hr->continuesHumongous(), "should have filtered these out");
1236   size_t res = 0;
1237   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
1238       !hr->is_young()) {
1239     if (G1PolicyVerbose > 0)
1240       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
1241                                                                                " during cleanup", hr, hr->used());
1242     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1243   }
1244 }
1245 
1246 // FIXME: both this and shrink could probably be more efficient by
1247 // doing one "VirtualSpace::expand_by" call rather than several.
1248 void G1CollectedHeap::expand(size_t expand_bytes) {
1249   size_t old_mem_size = _g1_storage.committed_size();
1250   // We expand by a minimum of 1K.
1251   expand_bytes = MAX2(expand_bytes, (size_t)K);
1252   size_t aligned_expand_bytes =
1253     ReservedSpace::page_align_size_up(expand_bytes);
1254   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1255                                        HeapRegion::GrainBytes);
1256   expand_bytes = aligned_expand_bytes;
1257   while (expand_bytes > 0) {
1258     HeapWord* base = (HeapWord*)_g1_storage.high();
1259     // Commit more storage.
1260     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
1261     if (!successful) {
1262         expand_bytes = 0;
1263     } else {
1264       expand_bytes -= HeapRegion::GrainBytes;
1265       // Expand the committed region.
1266       HeapWord* high = (HeapWord*) _g1_storage.high();
1267       _g1_committed.set_end(high);
1268       // Create a new HeapRegion.
1269       MemRegion mr(base, high);
1270       bool is_zeroed = !_g1_max_committed.contains(base);
1271       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
1272 
1273       // Now update max_committed if necessary.
1274       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
1275 
1276       // Add it to the HeapRegionSeq.
1277       _hrs->insert(hr);
1278       // Set the zero-fill state, according to whether it's already
1279       // zeroed.
1280       {
1281         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
1282         if (is_zeroed) {
1283           hr->set_zero_fill_complete();
1284           put_free_region_on_list_locked(hr);
1285         } else {
1286           hr->set_zero_fill_needed();
1287           put_region_on_unclean_list_locked(hr);
1288         }
1289       }
1290       _free_regions++;
1291       // And we used up an expansion region to create it.
1292       _expansion_regions--;
1293       // Tell the cardtable about it.
1294       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1295       // And the offset table as well.
1296       _bot_shared->resize(_g1_committed.word_size());
1297     }
1298   }
1299   if (Verbose && PrintGC) {
1300     size_t new_mem_size = _g1_storage.committed_size();
1301     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
1302                            old_mem_size/K, aligned_expand_bytes/K,
1303                            new_mem_size/K);
1304   }
1305 }
1306 
1307 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
1308 {
1309   size_t old_mem_size = _g1_storage.committed_size();
1310   size_t aligned_shrink_bytes =
1311     ReservedSpace::page_align_size_down(shrink_bytes);
1312   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1313                                          HeapRegion::GrainBytes);
1314   size_t num_regions_deleted = 0;
1315   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
1316 
1317   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1318   if (mr.byte_size() > 0)
1319     _g1_storage.shrink_by(mr.byte_size());
1320   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1321 
1322   _g1_committed.set_end(mr.start());
1323   _free_regions -= num_regions_deleted;
1324   _expansion_regions += num_regions_deleted;
1325 
1326   // Tell the cardtable about it.
1327   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1328 
1329   // And the offset table as well.
1330   _bot_shared->resize(_g1_committed.word_size());
1331 
1332   HeapRegionRemSet::shrink_heap(n_regions());
1333 
1334   if (Verbose && PrintGC) {
1335     size_t new_mem_size = _g1_storage.committed_size();
1336     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1337                            old_mem_size/K, aligned_shrink_bytes/K,
1338                            new_mem_size/K);
1339   }
1340 }
1341 
1342 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1343   release_gc_alloc_regions(true /* totally */);
1344   tear_down_region_lists();  // We will rebuild them in a moment.
1345   shrink_helper(shrink_bytes);
1346   rebuild_region_lists();
1347 }
1348 
1349 // Public methods.
1350 
1351 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1352 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1353 #endif // _MSC_VER
1354 
1355 
1356 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1357   SharedHeap(policy_),
1358   _g1_policy(policy_),
1359   _dirty_card_queue_set(false),
1360   _into_cset_dirty_card_queue_set(false),
1361   _ref_processor(NULL),
1362   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1363   _bot_shared(NULL),
1364   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
1365   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1366   _evac_failure_scan_stack(NULL) ,
1367   _mark_in_progress(false),
1368   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
1369   _cur_alloc_region(NULL),
1370   _refine_cte_cl(NULL),
1371   _free_region_list(NULL), _free_region_list_size(0),
1372   _free_regions(0),
1373   _full_collection(false),
1374   _unclean_region_list(),
1375   _unclean_regions_coming(false),
1376   _young_list(new YoungList(this)),
1377   _gc_time_stamp(0),
1378   _surviving_young_words(NULL),
1379   _full_collections_completed(0),
1380   _in_cset_fast_test(NULL),
1381   _in_cset_fast_test_base(NULL),
1382   _dirty_cards_region_list(NULL) {
1383   _g1h = this; // To catch bugs.
1384   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1385     vm_exit_during_initialization("Failed necessary allocation.");
1386   }
1387 
1388   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1389 
1390   int n_queues = MAX2((int)ParallelGCThreads, 1);
1391   _task_queues = new RefToScanQueueSet(n_queues);
1392 
1393   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1394   assert(n_rem_sets > 0, "Invariant.");
1395 
1396   HeapRegionRemSetIterator** iter_arr =
1397     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1398   for (int i = 0; i < n_queues; i++) {
1399     iter_arr[i] = new HeapRegionRemSetIterator();
1400   }
1401   _rem_set_iterator = iter_arr;
1402 
1403   for (int i = 0; i < n_queues; i++) {
1404     RefToScanQueue* q = new RefToScanQueue();
1405     q->initialize();
1406     _task_queues->register_queue(i, q);
1407   }
1408 
1409   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1410     _gc_alloc_regions[ap]          = NULL;
1411     _gc_alloc_region_counts[ap]    = 0;
1412     _retained_gc_alloc_regions[ap] = NULL;
1413     // by default, we do not retain a GC alloc region for each ap;
1414     // we'll override this, when appropriate, below
1415     _retain_gc_alloc_region[ap]    = false;
1416   }
1417 
1418   // We will try to remember the last half-full tenured region we
1419   // allocated to at the end of a collection so that we can re-use it
1420   // during the next collection.
1421   _retain_gc_alloc_region[GCAllocForTenured]  = true;
1422 
1423   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1424 }
1425 
1426 jint G1CollectedHeap::initialize() {
1427   CollectedHeap::pre_initialize();
1428   os::enable_vtime();
1429 
1430   // Necessary to satisfy locking discipline assertions.
1431 
1432   MutexLocker x(Heap_lock);
1433 
1434   // While there are no constraints in the GC code that HeapWordSize
1435   // be any particular value, there are multiple other areas in the
1436   // system which believe this to be true (e.g. oop->object_size in some
1437   // cases incorrectly returns the size in wordSize units rather than
1438   // HeapWordSize).
1439   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1440 
1441   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1442   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1443 
1444   // Ensure that the sizes are properly aligned.
1445   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1446   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1447 
1448   _cg1r = new ConcurrentG1Refine();
1449 
1450   // Reserve the maximum.
1451   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1452   // Includes the perm-gen.
1453 
1454   const size_t total_reserved = max_byte_size + pgs->max_size();
1455   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1456 
1457   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
1458                         HeapRegion::GrainBytes,
1459                         false /*ism*/, addr);
1460 
1461   if (UseCompressedOops) {
1462     if (addr != NULL && !heap_rs.is_reserved()) {
1463       // Failed to reserve at specified address - the requested memory
1464       // region is taken already, for example, by 'java' launcher.
1465       // Try again to reserver heap higher.
1466       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1467       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1468                              false /*ism*/, addr);
1469       if (addr != NULL && !heap_rs0.is_reserved()) {
1470         // Failed to reserve at specified address again - give up.
1471         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1472         assert(addr == NULL, "");
1473         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1474                                false /*ism*/, addr);
1475         heap_rs = heap_rs1;
1476       } else {
1477         heap_rs = heap_rs0;
1478       }
1479     }
1480   }
1481 
1482   if (!heap_rs.is_reserved()) {
1483     vm_exit_during_initialization("Could not reserve enough space for object heap");
1484     return JNI_ENOMEM;
1485   }
1486 
1487   // It is important to do this in a way such that concurrent readers can't
1488   // temporarily think somethings in the heap.  (I've actually seen this
1489   // happen in asserts: DLD.)
1490   _reserved.set_word_size(0);
1491   _reserved.set_start((HeapWord*)heap_rs.base());
1492   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1493 
1494   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1495 
1496   _num_humongous_regions = 0;
1497 
1498   // Create the gen rem set (and barrier set) for the entire reserved region.
1499   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1500   set_barrier_set(rem_set()->bs());
1501   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1502     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1503   } else {
1504     vm_exit_during_initialization("G1 requires a mod ref bs.");
1505     return JNI_ENOMEM;
1506   }
1507 
1508   // Also create a G1 rem set.
1509   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1510     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1511   } else {
1512     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1513     return JNI_ENOMEM;
1514   }
1515 
1516   // Carve out the G1 part of the heap.
1517 
1518   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1519   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1520                            g1_rs.size()/HeapWordSize);
1521   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1522 
1523   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1524 
1525   _g1_storage.initialize(g1_rs, 0);
1526   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1527   _g1_max_committed = _g1_committed;
1528   _hrs = new HeapRegionSeq(_expansion_regions);
1529   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
1530   guarantee(_cur_alloc_region == NULL, "from constructor");
1531 
1532   // 6843694 - ensure that the maximum region index can fit
1533   // in the remembered set structures.
1534   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1535   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1536 
1537   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1538   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1539   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1540             "too many cards per region");
1541 
1542   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1543                                              heap_word_size(init_byte_size));
1544 
1545   _g1h = this;
1546 
1547    _in_cset_fast_test_length = max_regions();
1548    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1549 
1550    // We're biasing _in_cset_fast_test to avoid subtracting the
1551    // beginning of the heap every time we want to index; basically
1552    // it's the same with what we do with the card table.
1553    _in_cset_fast_test = _in_cset_fast_test_base -
1554                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1555 
1556    // Clear the _cset_fast_test bitmap in anticipation of adding
1557    // regions to the incremental collection set for the first
1558    // evacuation pause.
1559    clear_cset_fast_test();
1560 
1561   // Create the ConcurrentMark data structure and thread.
1562   // (Must do this late, so that "max_regions" is defined.)
1563   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1564   _cmThread = _cm->cmThread();
1565 
1566   // ...and the concurrent zero-fill thread, if necessary.
1567   if (G1ConcZeroFill) {
1568     _czft = new ConcurrentZFThread();
1569   }
1570 
1571   // Initialize the from_card cache structure of HeapRegionRemSet.
1572   HeapRegionRemSet::init_heap(max_regions());
1573 
1574   // Now expand into the initial heap size.
1575   expand(init_byte_size);
1576 
1577   // Perform any initialization actions delegated to the policy.
1578   g1_policy()->init();
1579 
1580   g1_policy()->note_start_of_mark_thread();
1581 
1582   _refine_cte_cl =
1583     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
1584                                     g1_rem_set(),
1585                                     concurrent_g1_refine());
1586   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
1587 
1588   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1589                                                SATB_Q_FL_lock,
1590                                                G1SATBProcessCompletedThreshold,
1591                                                Shared_SATB_Q_lock);
1592 
1593   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1594                                                 DirtyCardQ_FL_lock,
1595                                                 concurrent_g1_refine()->yellow_zone(),
1596                                                 concurrent_g1_refine()->red_zone(),
1597                                                 Shared_DirtyCardQ_lock);
1598 
1599   if (G1DeferredRSUpdate) {
1600     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1601                                       DirtyCardQ_FL_lock,
1602                                       -1, // never trigger processing
1603                                       -1, // no limit on length
1604                                       Shared_DirtyCardQ_lock,
1605                                       &JavaThread::dirty_card_queue_set());
1606   }
1607 
1608   // Initialize the card queue set used to hold cards containing
1609   // references into the collection set.
1610   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
1611                                              DirtyCardQ_FL_lock,
1612                                              -1, // never trigger processing
1613                                              -1, // no limit on length
1614                                              Shared_DirtyCardQ_lock,
1615                                              &JavaThread::dirty_card_queue_set());
1616 
1617   // In case we're keeping closure specialization stats, initialize those
1618   // counts and that mechanism.
1619   SpecializationStats::clear();
1620 
1621   _gc_alloc_region_list = NULL;
1622 
1623   // Do later initialization work for concurrent refinement.
1624   _cg1r->init();
1625 
1626   return JNI_OK;
1627 }
1628 
1629 void G1CollectedHeap::ref_processing_init() {
1630   SharedHeap::ref_processing_init();
1631   MemRegion mr = reserved_region();
1632   _ref_processor = ReferenceProcessor::create_ref_processor(
1633                                          mr,    // span
1634                                          false, // Reference discovery is not atomic
1635                                                 // (though it shouldn't matter here.)
1636                                          true,  // mt_discovery
1637                                          NULL,  // is alive closure: need to fill this in for efficiency
1638                                          ParallelGCThreads,
1639                                          ParallelRefProcEnabled,
1640                                          true); // Setting next fields of discovered
1641                                                 // lists requires a barrier.
1642 }
1643 
1644 size_t G1CollectedHeap::capacity() const {
1645   return _g1_committed.byte_size();
1646 }
1647 
1648 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
1649                                                  DirtyCardQueue* into_cset_dcq,
1650                                                  bool concurrent,
1651                                                  int worker_i) {
1652   // Clean cards in the hot card cache
1653   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
1654 
1655   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1656   int n_completed_buffers = 0;
1657   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
1658     n_completed_buffers++;
1659   }
1660   g1_policy()->record_update_rs_processed_buffers(worker_i,
1661                                                   (double) n_completed_buffers);
1662   dcqs.clear_n_completed_buffers();
1663   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1664 }
1665 
1666 
1667 // Computes the sum of the storage used by the various regions.
1668 
1669 size_t G1CollectedHeap::used() const {
1670   assert(Heap_lock->owner() != NULL,
1671          "Should be owned on this thread's behalf.");
1672   size_t result = _summary_bytes_used;
1673   // Read only once in case it is set to NULL concurrently
1674   HeapRegion* hr = _cur_alloc_region;
1675   if (hr != NULL)
1676     result += hr->used();
1677   return result;
1678 }
1679 
1680 size_t G1CollectedHeap::used_unlocked() const {
1681   size_t result = _summary_bytes_used;
1682   return result;
1683 }
1684 
1685 class SumUsedClosure: public HeapRegionClosure {
1686   size_t _used;
1687 public:
1688   SumUsedClosure() : _used(0) {}
1689   bool doHeapRegion(HeapRegion* r) {
1690     if (!r->continuesHumongous()) {
1691       _used += r->used();
1692     }
1693     return false;
1694   }
1695   size_t result() { return _used; }
1696 };
1697 
1698 size_t G1CollectedHeap::recalculate_used() const {
1699   SumUsedClosure blk;
1700   _hrs->iterate(&blk);
1701   return blk.result();
1702 }
1703 
1704 #ifndef PRODUCT
1705 class SumUsedRegionsClosure: public HeapRegionClosure {
1706   size_t _num;
1707 public:
1708   SumUsedRegionsClosure() : _num(0) {}
1709   bool doHeapRegion(HeapRegion* r) {
1710     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
1711       _num += 1;
1712     }
1713     return false;
1714   }
1715   size_t result() { return _num; }
1716 };
1717 
1718 size_t G1CollectedHeap::recalculate_used_regions() const {
1719   SumUsedRegionsClosure blk;
1720   _hrs->iterate(&blk);
1721   return blk.result();
1722 }
1723 #endif // PRODUCT
1724 
1725 size_t G1CollectedHeap::unsafe_max_alloc() {
1726   if (_free_regions > 0) return HeapRegion::GrainBytes;
1727   // otherwise, is there space in the current allocation region?
1728 
1729   // We need to store the current allocation region in a local variable
1730   // here. The problem is that this method doesn't take any locks and
1731   // there may be other threads which overwrite the current allocation
1732   // region field. attempt_allocation(), for example, sets it to NULL
1733   // and this can happen *after* the NULL check here but before the call
1734   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
1735   // to be a problem in the optimized build, since the two loads of the
1736   // current allocation region field are optimized away.
1737   HeapRegion* car = _cur_alloc_region;
1738 
1739   // FIXME: should iterate over all regions?
1740   if (car == NULL) {
1741     return 0;
1742   }
1743   return car->free();
1744 }
1745 
1746 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1747   return
1748     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
1749      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
1750 }
1751 
1752 void G1CollectedHeap::increment_full_collections_completed(bool outer) {
1753   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1754 
1755   // We have already incremented _total_full_collections at the start
1756   // of the GC, so total_full_collections() represents how many full
1757   // collections have been started.
1758   unsigned int full_collections_started = total_full_collections();
1759 
1760   // Given that this method is called at the end of a Full GC or of a
1761   // concurrent cycle, and those can be nested (i.e., a Full GC can
1762   // interrupt a concurrent cycle), the number of full collections
1763   // completed should be either one (in the case where there was no
1764   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1765   // behind the number of full collections started.
1766 
1767   // This is the case for the inner caller, i.e. a Full GC.
1768   assert(outer ||
1769          (full_collections_started == _full_collections_completed + 1) ||
1770          (full_collections_started == _full_collections_completed + 2),
1771          err_msg("for inner caller: full_collections_started = %u "
1772                  "is inconsistent with _full_collections_completed = %u",
1773                  full_collections_started, _full_collections_completed));
1774 
1775   // This is the case for the outer caller, i.e. the concurrent cycle.
1776   assert(!outer ||
1777          (full_collections_started == _full_collections_completed + 1),
1778          err_msg("for outer caller: full_collections_started = %u "
1779                  "is inconsistent with _full_collections_completed = %u",
1780                  full_collections_started, _full_collections_completed));
1781 
1782   _full_collections_completed += 1;
1783 
1784   // We need to clear the "in_progress" flag in the CM thread before
1785   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1786   // is set) so that if a waiter requests another System.gc() it doesn't
1787   // incorrectly see that a marking cyle is still in progress.
1788   if (outer) {
1789     _cmThread->clear_in_progress();
1790   }
1791 
1792   // This notify_all() will ensure that a thread that called
1793   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1794   // and it's waiting for a full GC to finish will be woken up. It is
1795   // waiting in VM_G1IncCollectionPause::doit_epilogue().
1796   FullGCCount_lock->notify_all();
1797 }
1798 
1799 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
1800   assert(Thread::current()->is_VM_thread(), "Precondition#1");
1801   assert(Heap_lock->is_locked(), "Precondition#2");
1802   GCCauseSetter gcs(this, cause);
1803   switch (cause) {
1804     case GCCause::_heap_inspection:
1805     case GCCause::_heap_dump: {
1806       HandleMark hm;
1807       do_full_collection(false);         // don't clear all soft refs
1808       break;
1809     }
1810     default: // XXX FIX ME
1811       ShouldNotReachHere(); // Unexpected use of this function
1812   }
1813 }
1814 
1815 void G1CollectedHeap::collect(GCCause::Cause cause) {
1816   // The caller doesn't have the Heap_lock
1817   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
1818 
1819   unsigned int gc_count_before;
1820   unsigned int full_gc_count_before;
1821   {
1822     MutexLocker ml(Heap_lock);
1823     // Read the GC count while holding the Heap_lock
1824     gc_count_before = SharedHeap::heap()->total_collections();
1825     full_gc_count_before = SharedHeap::heap()->total_full_collections();
1826 
1827     // Don't want to do a GC until cleanup is completed.
1828     wait_for_cleanup_complete();
1829 
1830     // We give up heap lock; VMThread::execute gets it back below
1831   }
1832 
1833   if (should_do_concurrent_full_gc(cause)) {
1834     // Schedule an initial-mark evacuation pause that will start a
1835     // concurrent cycle.
1836     VM_G1IncCollectionPause op(gc_count_before,
1837                                true, /* should_initiate_conc_mark */
1838                                g1_policy()->max_pause_time_ms(),
1839                                cause);
1840     VMThread::execute(&op);
1841   } else {
1842     if (cause == GCCause::_gc_locker
1843         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
1844 
1845       // Schedule a standard evacuation pause.
1846       VM_G1IncCollectionPause op(gc_count_before,
1847                                  false, /* should_initiate_conc_mark */
1848                                  g1_policy()->max_pause_time_ms(),
1849                                  cause);
1850       VMThread::execute(&op);
1851     } else {
1852       // Schedule a Full GC.
1853       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
1854       VMThread::execute(&op);
1855     }
1856   }
1857 }
1858 
1859 bool G1CollectedHeap::is_in(const void* p) const {
1860   if (_g1_committed.contains(p)) {
1861     HeapRegion* hr = _hrs->addr_to_region(p);
1862     return hr->is_in(p);
1863   } else {
1864     return _perm_gen->as_gen()->is_in(p);
1865   }
1866 }
1867 
1868 // Iteration functions.
1869 
1870 // Iterates an OopClosure over all ref-containing fields of objects
1871 // within a HeapRegion.
1872 
1873 class IterateOopClosureRegionClosure: public HeapRegionClosure {
1874   MemRegion _mr;
1875   OopClosure* _cl;
1876 public:
1877   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
1878     : _mr(mr), _cl(cl) {}
1879   bool doHeapRegion(HeapRegion* r) {
1880     if (! r->continuesHumongous()) {
1881       r->oop_iterate(_cl);
1882     }
1883     return false;
1884   }
1885 };
1886 
1887 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
1888   IterateOopClosureRegionClosure blk(_g1_committed, cl);
1889   _hrs->iterate(&blk);
1890   if (do_perm) {
1891     perm_gen()->oop_iterate(cl);
1892   }
1893 }
1894 
1895 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
1896   IterateOopClosureRegionClosure blk(mr, cl);
1897   _hrs->iterate(&blk);
1898   if (do_perm) {
1899     perm_gen()->oop_iterate(cl);
1900   }
1901 }
1902 
1903 // Iterates an ObjectClosure over all objects within a HeapRegion.
1904 
1905 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1906   ObjectClosure* _cl;
1907 public:
1908   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1909   bool doHeapRegion(HeapRegion* r) {
1910     if (! r->continuesHumongous()) {
1911       r->object_iterate(_cl);
1912     }
1913     return false;
1914   }
1915 };
1916 
1917 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
1918   IterateObjectClosureRegionClosure blk(cl);
1919   _hrs->iterate(&blk);
1920   if (do_perm) {
1921     perm_gen()->object_iterate(cl);
1922   }
1923 }
1924 
1925 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
1926   // FIXME: is this right?
1927   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
1928 }
1929 
1930 // Calls a SpaceClosure on a HeapRegion.
1931 
1932 class SpaceClosureRegionClosure: public HeapRegionClosure {
1933   SpaceClosure* _cl;
1934 public:
1935   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
1936   bool doHeapRegion(HeapRegion* r) {
1937     _cl->do_space(r);
1938     return false;
1939   }
1940 };
1941 
1942 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
1943   SpaceClosureRegionClosure blk(cl);
1944   _hrs->iterate(&blk);
1945 }
1946 
1947 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
1948   _hrs->iterate(cl);
1949 }
1950 
1951 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
1952                                                HeapRegionClosure* cl) {
1953   _hrs->iterate_from(r, cl);
1954 }
1955 
1956 void
1957 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
1958   _hrs->iterate_from(idx, cl);
1959 }
1960 
1961 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
1962 
1963 void
1964 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1965                                                  int worker,
1966                                                  jint claim_value) {
1967   const size_t regions = n_regions();
1968   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
1969   // try to spread out the starting points of the workers
1970   const size_t start_index = regions / worker_num * (size_t) worker;
1971 
1972   // each worker will actually look at all regions
1973   for (size_t count = 0; count < regions; ++count) {
1974     const size_t index = (start_index + count) % regions;
1975     assert(0 <= index && index < regions, "sanity");
1976     HeapRegion* r = region_at(index);
1977     // we'll ignore "continues humongous" regions (we'll process them
1978     // when we come across their corresponding "start humongous"
1979     // region) and regions already claimed
1980     if (r->claim_value() == claim_value || r->continuesHumongous()) {
1981       continue;
1982     }
1983     // OK, try to claim it
1984     if (r->claimHeapRegion(claim_value)) {
1985       // success!
1986       assert(!r->continuesHumongous(), "sanity");
1987       if (r->startsHumongous()) {
1988         // If the region is "starts humongous" we'll iterate over its
1989         // "continues humongous" first; in fact we'll do them
1990         // first. The order is important. In on case, calling the
1991         // closure on the "starts humongous" region might de-allocate
1992         // and clear all its "continues humongous" regions and, as a
1993         // result, we might end up processing them twice. So, we'll do
1994         // them first (notice: most closures will ignore them anyway) and
1995         // then we'll do the "starts humongous" region.
1996         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
1997           HeapRegion* chr = region_at(ch_index);
1998 
1999           // if the region has already been claimed or it's not
2000           // "continues humongous" we're done
2001           if (chr->claim_value() == claim_value ||
2002               !chr->continuesHumongous()) {
2003             break;
2004           }
2005 
2006           // Noone should have claimed it directly. We can given
2007           // that we claimed its "starts humongous" region.
2008           assert(chr->claim_value() != claim_value, "sanity");
2009           assert(chr->humongous_start_region() == r, "sanity");
2010 
2011           if (chr->claimHeapRegion(claim_value)) {
2012             // we should always be able to claim it; noone else should
2013             // be trying to claim this region
2014 
2015             bool res2 = cl->doHeapRegion(chr);
2016             assert(!res2, "Should not abort");
2017 
2018             // Right now, this holds (i.e., no closure that actually
2019             // does something with "continues humongous" regions
2020             // clears them). We might have to weaken it in the future,
2021             // but let's leave these two asserts here for extra safety.
2022             assert(chr->continuesHumongous(), "should still be the case");
2023             assert(chr->humongous_start_region() == r, "sanity");
2024           } else {
2025             guarantee(false, "we should not reach here");
2026           }
2027         }
2028       }
2029 
2030       assert(!r->continuesHumongous(), "sanity");
2031       bool res = cl->doHeapRegion(r);
2032       assert(!res, "Should not abort");
2033     }
2034   }
2035 }
2036 
2037 class ResetClaimValuesClosure: public HeapRegionClosure {
2038 public:
2039   bool doHeapRegion(HeapRegion* r) {
2040     r->set_claim_value(HeapRegion::InitialClaimValue);
2041     return false;
2042   }
2043 };
2044 
2045 void
2046 G1CollectedHeap::reset_heap_region_claim_values() {
2047   ResetClaimValuesClosure blk;
2048   heap_region_iterate(&blk);
2049 }
2050 
2051 #ifdef ASSERT
2052 // This checks whether all regions in the heap have the correct claim
2053 // value. I also piggy-backed on this a check to ensure that the
2054 // humongous_start_region() information on "continues humongous"
2055 // regions is correct.
2056 
2057 class CheckClaimValuesClosure : public HeapRegionClosure {
2058 private:
2059   jint _claim_value;
2060   size_t _failures;
2061   HeapRegion* _sh_region;
2062 public:
2063   CheckClaimValuesClosure(jint claim_value) :
2064     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2065   bool doHeapRegion(HeapRegion* r) {
2066     if (r->claim_value() != _claim_value) {
2067       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2068                              "claim value = %d, should be %d",
2069                              r->bottom(), r->end(), r->claim_value(),
2070                              _claim_value);
2071       ++_failures;
2072     }
2073     if (!r->isHumongous()) {
2074       _sh_region = NULL;
2075     } else if (r->startsHumongous()) {
2076       _sh_region = r;
2077     } else if (r->continuesHumongous()) {
2078       if (r->humongous_start_region() != _sh_region) {
2079         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2080                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2081                                r->bottom(), r->end(),
2082                                r->humongous_start_region(),
2083                                _sh_region);
2084         ++_failures;
2085       }
2086     }
2087     return false;
2088   }
2089   size_t failures() {
2090     return _failures;
2091   }
2092 };
2093 
2094 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2095   CheckClaimValuesClosure cl(claim_value);
2096   heap_region_iterate(&cl);
2097   return cl.failures() == 0;
2098 }
2099 #endif // ASSERT
2100 
2101 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2102   HeapRegion* r = g1_policy()->collection_set();
2103   while (r != NULL) {
2104     HeapRegion* next = r->next_in_collection_set();
2105     if (cl->doHeapRegion(r)) {
2106       cl->incomplete();
2107       return;
2108     }
2109     r = next;
2110   }
2111 }
2112 
2113 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2114                                                   HeapRegionClosure *cl) {
2115   if (r == NULL) {
2116     // The CSet is empty so there's nothing to do.
2117     return;
2118   }
2119 
2120   assert(r->in_collection_set(),
2121          "Start region must be a member of the collection set.");
2122   HeapRegion* cur = r;
2123   while (cur != NULL) {
2124     HeapRegion* next = cur->next_in_collection_set();
2125     if (cl->doHeapRegion(cur) && false) {
2126       cl->incomplete();
2127       return;
2128     }
2129     cur = next;
2130   }
2131   cur = g1_policy()->collection_set();
2132   while (cur != r) {
2133     HeapRegion* next = cur->next_in_collection_set();
2134     if (cl->doHeapRegion(cur) && false) {
2135       cl->incomplete();
2136       return;
2137     }
2138     cur = next;
2139   }
2140 }
2141 
2142 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2143   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
2144 }
2145 
2146 
2147 Space* G1CollectedHeap::space_containing(const void* addr) const {
2148   Space* res = heap_region_containing(addr);
2149   if (res == NULL)
2150     res = perm_gen()->space_containing(addr);
2151   return res;
2152 }
2153 
2154 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2155   Space* sp = space_containing(addr);
2156   if (sp != NULL) {
2157     return sp->block_start(addr);
2158   }
2159   return NULL;
2160 }
2161 
2162 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2163   Space* sp = space_containing(addr);
2164   assert(sp != NULL, "block_size of address outside of heap");
2165   return sp->block_size(addr);
2166 }
2167 
2168 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2169   Space* sp = space_containing(addr);
2170   return sp->block_is_obj(addr);
2171 }
2172 
2173 bool G1CollectedHeap::supports_tlab_allocation() const {
2174   return true;
2175 }
2176 
2177 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2178   return HeapRegion::GrainBytes;
2179 }
2180 
2181 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2182   // Return the remaining space in the cur alloc region, but not less than
2183   // the min TLAB size.
2184 
2185   // Also, this value can be at most the humongous object threshold,
2186   // since we can't allow tlabs to grow big enough to accomodate
2187   // humongous objects.
2188 
2189   // We need to store the cur alloc region locally, since it might change
2190   // between when we test for NULL and when we use it later.
2191   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2192   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2193 
2194   if (cur_alloc_space == NULL) {
2195     return max_tlab_size;
2196   } else {
2197     return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
2198                 max_tlab_size);
2199   }
2200 }
2201 
2202 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
2203   assert(!isHumongous(word_size),
2204          err_msg("a TLAB should not be of humongous size, "
2205                  "word_size = "SIZE_FORMAT, word_size));
2206   bool dummy;
2207   return G1CollectedHeap::mem_allocate(word_size, false, true, &dummy);
2208 }
2209 
2210 bool G1CollectedHeap::allocs_are_zero_filled() {
2211   return false;
2212 }
2213 
2214 size_t G1CollectedHeap::large_typearray_limit() {
2215   // FIXME
2216   return HeapRegion::GrainBytes/HeapWordSize;
2217 }
2218 
2219 size_t G1CollectedHeap::max_capacity() const {
2220   return g1_reserved_obj_bytes();
2221 }
2222 
2223 jlong G1CollectedHeap::millis_since_last_gc() {
2224   // assert(false, "NYI");
2225   return 0;
2226 }
2227 
2228 
2229 void G1CollectedHeap::prepare_for_verify() {
2230   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2231     ensure_parsability(false);
2232   }
2233   g1_rem_set()->prepare_for_verify();
2234 }
2235 
2236 class VerifyLivenessOopClosure: public OopClosure {
2237   G1CollectedHeap* g1h;
2238 public:
2239   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
2240     g1h = _g1h;
2241   }
2242   void do_oop(narrowOop *p) { do_oop_work(p); }
2243   void do_oop(      oop *p) { do_oop_work(p); }
2244 
2245   template <class T> void do_oop_work(T *p) {
2246     oop obj = oopDesc::load_decode_heap_oop(p);
2247     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
2248               "Dead object referenced by a not dead object");
2249   }
2250 };
2251 
2252 class VerifyObjsInRegionClosure: public ObjectClosure {
2253 private:
2254   G1CollectedHeap* _g1h;
2255   size_t _live_bytes;
2256   HeapRegion *_hr;
2257   bool _use_prev_marking;
2258 public:
2259   // use_prev_marking == true  -> use "prev" marking information,
2260   // use_prev_marking == false -> use "next" marking information
2261   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
2262     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2263     _g1h = G1CollectedHeap::heap();
2264   }
2265   void do_object(oop o) {
2266     VerifyLivenessOopClosure isLive(_g1h);
2267     assert(o != NULL, "Huh?");
2268     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2269       o->oop_iterate(&isLive);
2270       if (!_hr->obj_allocated_since_prev_marking(o)) {
2271         size_t obj_size = o->size();    // Make sure we don't overflow
2272         _live_bytes += (obj_size * HeapWordSize);
2273       }
2274     }
2275   }
2276   size_t live_bytes() { return _live_bytes; }
2277 };
2278 
2279 class PrintObjsInRegionClosure : public ObjectClosure {
2280   HeapRegion *_hr;
2281   G1CollectedHeap *_g1;
2282 public:
2283   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2284     _g1 = G1CollectedHeap::heap();
2285   };
2286 
2287   void do_object(oop o) {
2288     if (o != NULL) {
2289       HeapWord *start = (HeapWord *) o;
2290       size_t word_sz = o->size();
2291       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2292                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2293                           (void*) o, word_sz,
2294                           _g1->isMarkedPrev(o),
2295                           _g1->isMarkedNext(o),
2296                           _hr->obj_allocated_since_prev_marking(o));
2297       HeapWord *end = start + word_sz;
2298       HeapWord *cur;
2299       int *val;
2300       for (cur = start; cur < end; cur++) {
2301         val = (int *) cur;
2302         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2303       }
2304     }
2305   }
2306 };
2307 
2308 class VerifyRegionClosure: public HeapRegionClosure {
2309 private:
2310   bool _allow_dirty;
2311   bool _par;
2312   bool _use_prev_marking;
2313   bool _failures;
2314 public:
2315   // use_prev_marking == true  -> use "prev" marking information,
2316   // use_prev_marking == false -> use "next" marking information
2317   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2318     : _allow_dirty(allow_dirty),
2319       _par(par),
2320       _use_prev_marking(use_prev_marking),
2321       _failures(false) {}
2322 
2323   bool failures() {
2324     return _failures;
2325   }
2326 
2327   bool doHeapRegion(HeapRegion* r) {
2328     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2329               "Should be unclaimed at verify points.");
2330     if (!r->continuesHumongous()) {
2331       bool failures = false;
2332       r->verify(_allow_dirty, _use_prev_marking, &failures);
2333       if (failures) {
2334         _failures = true;
2335       } else {
2336         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
2337         r->object_iterate(&not_dead_yet_cl);
2338         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2339           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2340                                  "max_live_bytes "SIZE_FORMAT" "
2341                                  "< calculated "SIZE_FORMAT,
2342                                  r->bottom(), r->end(),
2343                                  r->max_live_bytes(),
2344                                  not_dead_yet_cl.live_bytes());
2345           _failures = true;
2346         }
2347       }
2348     }
2349     return false; // stop the region iteration if we hit a failure
2350   }
2351 };
2352 
2353 class VerifyRootsClosure: public OopsInGenClosure {
2354 private:
2355   G1CollectedHeap* _g1h;
2356   bool             _use_prev_marking;
2357   bool             _failures;
2358 public:
2359   // use_prev_marking == true  -> use "prev" marking information,
2360   // use_prev_marking == false -> use "next" marking information
2361   VerifyRootsClosure(bool use_prev_marking) :
2362     _g1h(G1CollectedHeap::heap()),
2363     _use_prev_marking(use_prev_marking),
2364     _failures(false) { }
2365 
2366   bool failures() { return _failures; }
2367 
2368   template <class T> void do_oop_nv(T* p) {
2369     T heap_oop = oopDesc::load_heap_oop(p);
2370     if (!oopDesc::is_null(heap_oop)) {
2371       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2372       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2373         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2374                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2375         obj->print_on(gclog_or_tty);
2376         _failures = true;
2377       }
2378     }
2379   }
2380 
2381   void do_oop(oop* p)       { do_oop_nv(p); }
2382   void do_oop(narrowOop* p) { do_oop_nv(p); }
2383 };
2384 
2385 // This is the task used for parallel heap verification.
2386 
2387 class G1ParVerifyTask: public AbstractGangTask {
2388 private:
2389   G1CollectedHeap* _g1h;
2390   bool _allow_dirty;
2391   bool _use_prev_marking;
2392   bool _failures;
2393 
2394 public:
2395   // use_prev_marking == true  -> use "prev" marking information,
2396   // use_prev_marking == false -> use "next" marking information
2397   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
2398                   bool use_prev_marking) :
2399     AbstractGangTask("Parallel verify task"),
2400     _g1h(g1h),
2401     _allow_dirty(allow_dirty),
2402     _use_prev_marking(use_prev_marking),
2403     _failures(false) { }
2404 
2405   bool failures() {
2406     return _failures;
2407   }
2408 
2409   void work(int worker_i) {
2410     HandleMark hm;
2411     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2412     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2413                                           HeapRegion::ParVerifyClaimValue);
2414     if (blk.failures()) {
2415       _failures = true;
2416     }
2417   }
2418 };
2419 
2420 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2421   verify(allow_dirty, silent, /* use_prev_marking */ true);
2422 }
2423 
2424 void G1CollectedHeap::verify(bool allow_dirty,
2425                              bool silent,
2426                              bool use_prev_marking) {
2427   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2428     if (!silent) { gclog_or_tty->print("roots "); }
2429     VerifyRootsClosure rootsCl(use_prev_marking);
2430     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2431     process_strong_roots(true,  // activate StrongRootsScope
2432                          false,
2433                          SharedHeap::SO_AllClasses,
2434                          &rootsCl,
2435                          &blobsCl,
2436                          &rootsCl);
2437     bool failures = rootsCl.failures();
2438     rem_set()->invalidate(perm_gen()->used_region(), false);
2439     if (!silent) { gclog_or_tty->print("heapRegions "); }
2440     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2441       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2442              "sanity check");
2443 
2444       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
2445       int n_workers = workers()->total_workers();
2446       set_par_threads(n_workers);
2447       workers()->run_task(&task);
2448       set_par_threads(0);
2449       if (task.failures()) {
2450         failures = true;
2451       }
2452 
2453       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2454              "sanity check");
2455 
2456       reset_heap_region_claim_values();
2457 
2458       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2459              "sanity check");
2460     } else {
2461       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
2462       _hrs->iterate(&blk);
2463       if (blk.failures()) {
2464         failures = true;
2465       }
2466     }
2467     if (!silent) gclog_or_tty->print("remset ");
2468     rem_set()->verify();
2469 
2470     if (failures) {
2471       gclog_or_tty->print_cr("Heap:");
2472       print_on(gclog_or_tty, true /* extended */);
2473       gclog_or_tty->print_cr("");
2474 #ifndef PRODUCT
2475       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2476         concurrent_mark()->print_reachable("at-verification-failure",
2477                                            use_prev_marking, false /* all */);
2478       }
2479 #endif
2480       gclog_or_tty->flush();
2481     }
2482     guarantee(!failures, "there should not have been any failures");
2483   } else {
2484     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2485   }
2486 }
2487 
2488 class PrintRegionClosure: public HeapRegionClosure {
2489   outputStream* _st;
2490 public:
2491   PrintRegionClosure(outputStream* st) : _st(st) {}
2492   bool doHeapRegion(HeapRegion* r) {
2493     r->print_on(_st);
2494     return false;
2495   }
2496 };
2497 
2498 void G1CollectedHeap::print() const { print_on(tty); }
2499 
2500 void G1CollectedHeap::print_on(outputStream* st) const {
2501   print_on(st, PrintHeapAtGCExtended);
2502 }
2503 
2504 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2505   st->print(" %-20s", "garbage-first heap");
2506   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2507             capacity()/K, used_unlocked()/K);
2508   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2509             _g1_storage.low_boundary(),
2510             _g1_storage.high(),
2511             _g1_storage.high_boundary());
2512   st->cr();
2513   st->print("  region size " SIZE_FORMAT "K, ",
2514             HeapRegion::GrainBytes/K);
2515   size_t young_regions = _young_list->length();
2516   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
2517             young_regions, young_regions * HeapRegion::GrainBytes / K);
2518   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
2519   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
2520             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
2521   st->cr();
2522   perm()->as_gen()->print_on(st);
2523   if (extended) {
2524     st->cr();
2525     print_on_extended(st);
2526   }
2527 }
2528 
2529 void G1CollectedHeap::print_on_extended(outputStream* st) const {
2530   PrintRegionClosure blk(st);
2531   _hrs->iterate(&blk);
2532 }
2533 
2534 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2535   if (G1CollectedHeap::use_parallel_gc_threads()) {
2536     workers()->print_worker_threads_on(st);
2537   }
2538 
2539   _cmThread->print_on(st);
2540   st->cr();
2541 
2542   _cm->print_worker_threads_on(st);
2543 
2544   _cg1r->print_worker_threads_on(st);
2545 
2546   _czft->print_on(st);
2547   st->cr();
2548 }
2549 
2550 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2551   if (G1CollectedHeap::use_parallel_gc_threads()) {
2552     workers()->threads_do(tc);
2553   }
2554   tc->do_thread(_cmThread);
2555   _cg1r->threads_do(tc);
2556   tc->do_thread(_czft);
2557 }
2558 
2559 void G1CollectedHeap::print_tracing_info() const {
2560   // We'll overload this to mean "trace GC pause statistics."
2561   if (TraceGen0Time || TraceGen1Time) {
2562     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
2563     // to that.
2564     g1_policy()->print_tracing_info();
2565   }
2566   if (G1SummarizeRSetStats) {
2567     g1_rem_set()->print_summary_info();
2568   }
2569   if (G1SummarizeConcMark) {
2570     concurrent_mark()->print_summary_info();
2571   }
2572   if (G1SummarizeZFStats) {
2573     ConcurrentZFThread::print_summary_info();
2574   }
2575   g1_policy()->print_yg_surv_rate_info();
2576 
2577   SpecializationStats::print();
2578 }
2579 
2580 
2581 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
2582   HeapRegion* hr = heap_region_containing(addr);
2583   if (hr == NULL) {
2584     return 0;
2585   } else {
2586     return 1;
2587   }
2588 }
2589 
2590 G1CollectedHeap* G1CollectedHeap::heap() {
2591   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
2592          "not a garbage-first heap");
2593   return _g1h;
2594 }
2595 
2596 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2597   // always_do_update_barrier = false;
2598   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2599   // Call allocation profiler
2600   AllocationProfiler::iterate_since_last_gc();
2601   // Fill TLAB's and such
2602   ensure_parsability(true);
2603 }
2604 
2605 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
2606   // FIXME: what is this about?
2607   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2608   // is set.
2609   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
2610                         "derived pointer present"));
2611   // always_do_update_barrier = true;
2612 }
2613 
2614 void G1CollectedHeap::do_collection_pause() {
2615   assert(Heap_lock->owned_by_self(), "we assume we'reholding the Heap_lock");
2616 
2617   // Read the GC count while holding the Heap_lock
2618   // we need to do this _before_ wait_for_cleanup_complete(), to
2619   // ensure that we do not give up the heap lock and potentially
2620   // pick up the wrong count
2621   unsigned int gc_count_before = SharedHeap::heap()->total_collections();
2622 
2623   // Don't want to do a GC pause while cleanup is being completed!
2624   wait_for_cleanup_complete();
2625 
2626   g1_policy()->record_stop_world_start();
2627   {
2628     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
2629     VM_G1IncCollectionPause op(gc_count_before,
2630                                false, /* should_initiate_conc_mark */
2631                                g1_policy()->max_pause_time_ms(),
2632                                GCCause::_g1_inc_collection_pause);
2633     VMThread::execute(&op);
2634   }
2635 }
2636 
2637 void
2638 G1CollectedHeap::doConcurrentMark() {
2639   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2640   if (!_cmThread->in_progress()) {
2641     _cmThread->set_started();
2642     CGC_lock->notify();
2643   }
2644 }
2645 
2646 class VerifyMarkedObjsClosure: public ObjectClosure {
2647     G1CollectedHeap* _g1h;
2648     public:
2649     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
2650     void do_object(oop obj) {
2651       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
2652              "markandsweep mark should agree with concurrent deadness");
2653     }
2654 };
2655 
2656 void
2657 G1CollectedHeap::checkConcurrentMark() {
2658     VerifyMarkedObjsClosure verifycl(this);
2659     //    MutexLockerEx x(getMarkBitMapLock(),
2660     //              Mutex::_no_safepoint_check_flag);
2661     object_iterate(&verifycl, false);
2662 }
2663 
2664 void G1CollectedHeap::do_sync_mark() {
2665   _cm->checkpointRootsInitial();
2666   _cm->markFromRoots();
2667   _cm->checkpointRootsFinal(false);
2668 }
2669 
2670 // <NEW PREDICTION>
2671 
2672 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
2673                                                        bool young) {
2674   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
2675 }
2676 
2677 void G1CollectedHeap::check_if_region_is_too_expensive(double
2678                                                            predicted_time_ms) {
2679   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
2680 }
2681 
2682 size_t G1CollectedHeap::pending_card_num() {
2683   size_t extra_cards = 0;
2684   JavaThread *curr = Threads::first();
2685   while (curr != NULL) {
2686     DirtyCardQueue& dcq = curr->dirty_card_queue();
2687     extra_cards += dcq.size();
2688     curr = curr->next();
2689   }
2690   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2691   size_t buffer_size = dcqs.buffer_size();
2692   size_t buffer_num = dcqs.completed_buffers_num();
2693   return buffer_size * buffer_num + extra_cards;
2694 }
2695 
2696 size_t G1CollectedHeap::max_pending_card_num() {
2697   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2698   size_t buffer_size = dcqs.buffer_size();
2699   size_t buffer_num  = dcqs.completed_buffers_num();
2700   int thread_num  = Threads::number_of_threads();
2701   return (buffer_num + thread_num) * buffer_size;
2702 }
2703 
2704 size_t G1CollectedHeap::cards_scanned() {
2705   return g1_rem_set()->cardsScanned();
2706 }
2707 
2708 void
2709 G1CollectedHeap::setup_surviving_young_words() {
2710   guarantee( _surviving_young_words == NULL, "pre-condition" );
2711   size_t array_length = g1_policy()->young_cset_length();
2712   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
2713   if (_surviving_young_words == NULL) {
2714     vm_exit_out_of_memory(sizeof(size_t) * array_length,
2715                           "Not enough space for young surv words summary.");
2716   }
2717   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
2718 #ifdef ASSERT
2719   for (size_t i = 0;  i < array_length; ++i) {
2720     assert( _surviving_young_words[i] == 0, "memset above" );
2721   }
2722 #endif // !ASSERT
2723 }
2724 
2725 void
2726 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
2727   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2728   size_t array_length = g1_policy()->young_cset_length();
2729   for (size_t i = 0; i < array_length; ++i)
2730     _surviving_young_words[i] += surv_young_words[i];
2731 }
2732 
2733 void
2734 G1CollectedHeap::cleanup_surviving_young_words() {
2735   guarantee( _surviving_young_words != NULL, "pre-condition" );
2736   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
2737   _surviving_young_words = NULL;
2738 }
2739 
2740 // </NEW PREDICTION>
2741 
2742 struct PrepareForRSScanningClosure : public HeapRegionClosure {
2743   bool doHeapRegion(HeapRegion *r) {
2744     r->rem_set()->set_iter_claimed(0);
2745     return false;
2746   }
2747 };
2748 
2749 #if TASKQUEUE_STATS
2750 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2751   st->print_raw_cr("GC Task Stats");
2752   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2753   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2754 }
2755 
2756 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
2757   print_taskqueue_stats_hdr(st);
2758 
2759   TaskQueueStats totals;
2760   const int n = workers() != NULL ? workers()->total_workers() : 1;
2761   for (int i = 0; i < n; ++i) {
2762     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
2763     totals += task_queue(i)->stats;
2764   }
2765   st->print_raw("tot "); totals.print(st); st->cr();
2766 
2767   DEBUG_ONLY(totals.verify());
2768 }
2769 
2770 void G1CollectedHeap::reset_taskqueue_stats() {
2771   const int n = workers() != NULL ? workers()->total_workers() : 1;
2772   for (int i = 0; i < n; ++i) {
2773     task_queue(i)->stats.reset();
2774   }
2775 }
2776 #endif // TASKQUEUE_STATS
2777 
2778 void
2779 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2780   if (GC_locker::check_active_before_gc()) {
2781     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
2782   }
2783 
2784   if (PrintHeapAtGC) {
2785     Universe::print_heap_before_gc();
2786   }
2787 
2788   {
2789     ResourceMark rm;
2790 
2791     // This call will decide whether this pause is an initial-mark
2792     // pause. If it is, during_initial_mark_pause() will return true
2793     // for the duration of this pause.
2794     g1_policy()->decide_on_conc_mark_initiation();
2795 
2796     char verbose_str[128];
2797     sprintf(verbose_str, "GC pause ");
2798     if (g1_policy()->in_young_gc_mode()) {
2799       if (g1_policy()->full_young_gcs())
2800         strcat(verbose_str, "(young)");
2801       else
2802         strcat(verbose_str, "(partial)");
2803     }
2804     if (g1_policy()->during_initial_mark_pause()) {
2805       strcat(verbose_str, " (initial-mark)");
2806       // We are about to start a marking cycle, so we increment the
2807       // full collection counter.
2808       increment_total_full_collections();
2809     }
2810 
2811     // if PrintGCDetails is on, we'll print long statistics information
2812     // in the collector policy code, so let's not print this as the output
2813     // is messy if we do.
2814     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2815     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2816     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
2817 
2818     TraceMemoryManagerStats tms(false /* fullGC */);
2819 
2820     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
2821     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
2822     guarantee(!is_gc_active(), "collection is not reentrant");
2823     assert(regions_accounted_for(), "Region leakage!");
2824 
2825     increment_gc_time_stamp();
2826 
2827     if (g1_policy()->in_young_gc_mode()) {
2828       assert(check_young_list_well_formed(),
2829              "young list should be well formed");
2830     }
2831 
2832     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2833       IsGCActiveMark x;
2834 
2835       gc_prologue(false);
2836       increment_total_collections(false /* full gc */);
2837 
2838 #if G1_REM_SET_LOGGING
2839       gclog_or_tty->print_cr("\nJust chose CS, heap:");
2840       print();
2841 #endif
2842 
2843       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
2844         HandleMark hm;  // Discard invalid handles created during verification
2845         prepare_for_verify();
2846         gclog_or_tty->print(" VerifyBeforeGC:");
2847         Universe::verify(false);
2848       }
2849 
2850       COMPILER2_PRESENT(DerivedPointerTable::clear());
2851 
2852       // We want to turn off ref discovery, if necessary, and turn it back on
2853       // on again later if we do. XXX Dubious: why is discovery disabled?
2854       bool was_enabled = ref_processor()->discovery_enabled();
2855       if (was_enabled) ref_processor()->disable_discovery();
2856 
2857       // Forget the current alloc region (we might even choose it to be part
2858       // of the collection set!).
2859       abandon_cur_alloc_region();
2860 
2861       // The elapsed time induced by the start time below deliberately elides
2862       // the possible verification above.
2863       double start_time_sec = os::elapsedTime();
2864       size_t start_used_bytes = used();
2865 
2866 #if YOUNG_LIST_VERBOSE
2867       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
2868       _young_list->print();
2869       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
2870 #endif // YOUNG_LIST_VERBOSE
2871 
2872       g1_policy()->record_collection_pause_start(start_time_sec,
2873                                                  start_used_bytes);
2874 
2875 #if YOUNG_LIST_VERBOSE
2876       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
2877       _young_list->print();
2878 #endif // YOUNG_LIST_VERBOSE
2879 
2880       if (g1_policy()->during_initial_mark_pause()) {
2881         concurrent_mark()->checkpointRootsInitialPre();
2882       }
2883       save_marks();
2884 
2885       // We must do this before any possible evacuation that should propagate
2886       // marks.
2887       if (mark_in_progress()) {
2888         double start_time_sec = os::elapsedTime();
2889 
2890         _cm->drainAllSATBBuffers();
2891         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
2892         g1_policy()->record_satb_drain_time(finish_mark_ms);
2893       }
2894       // Record the number of elements currently on the mark stack, so we
2895       // only iterate over these.  (Since evacuation may add to the mark
2896       // stack, doing more exposes race conditions.)  If no mark is in
2897       // progress, this will be zero.
2898       _cm->set_oops_do_bound();
2899 
2900       assert(regions_accounted_for(), "Region leakage.");
2901 
2902       if (mark_in_progress())
2903         concurrent_mark()->newCSet();
2904 
2905 #if YOUNG_LIST_VERBOSE
2906       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
2907       _young_list->print();
2908       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
2909 #endif // YOUNG_LIST_VERBOSE
2910 
2911       g1_policy()->choose_collection_set(target_pause_time_ms);
2912 
2913       // Nothing to do if we were unable to choose a collection set.
2914 #if G1_REM_SET_LOGGING
2915       gclog_or_tty->print_cr("\nAfter pause, heap:");
2916       print();
2917 #endif
2918       PrepareForRSScanningClosure prepare_for_rs_scan;
2919       collection_set_iterate(&prepare_for_rs_scan);
2920 
2921       setup_surviving_young_words();
2922 
2923       // Set up the gc allocation regions.
2924       get_gc_alloc_regions();
2925 
2926       // Actually do the work...
2927       evacuate_collection_set();
2928 
2929       free_collection_set(g1_policy()->collection_set());
2930       g1_policy()->clear_collection_set();
2931 
2932       cleanup_surviving_young_words();
2933 
2934       // Start a new incremental collection set for the next pause.
2935       g1_policy()->start_incremental_cset_building();
2936 
2937       // Clear the _cset_fast_test bitmap in anticipation of adding
2938       // regions to the incremental collection set for the next
2939       // evacuation pause.
2940       clear_cset_fast_test();
2941 
2942       if (g1_policy()->in_young_gc_mode()) {
2943         _young_list->reset_sampled_info();
2944 
2945         // Don't check the whole heap at this point as the
2946         // GC alloc regions from this pause have been tagged
2947         // as survivors and moved on to the survivor list.
2948         // Survivor regions will fail the !is_young() check.
2949         assert(check_young_list_empty(false /* check_heap */),
2950                "young list should be empty");
2951 
2952 #if YOUNG_LIST_VERBOSE
2953         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
2954         _young_list->print();
2955 #endif // YOUNG_LIST_VERBOSE
2956 
2957         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
2958                                           _young_list->first_survivor_region(),
2959                                           _young_list->last_survivor_region());
2960 
2961         _young_list->reset_auxilary_lists();
2962       }
2963 
2964       if (evacuation_failed()) {
2965         _summary_bytes_used = recalculate_used();
2966       } else {
2967         // The "used" of the the collection set have already been subtracted
2968         // when they were freed.  Add in the bytes evacuated.
2969         _summary_bytes_used += g1_policy()->bytes_in_to_space();
2970       }
2971 
2972       if (g1_policy()->in_young_gc_mode() &&
2973           g1_policy()->during_initial_mark_pause()) {
2974         concurrent_mark()->checkpointRootsInitialPost();
2975         set_marking_started();
2976         // CAUTION: after the doConcurrentMark() call below,
2977         // the concurrent marking thread(s) could be running
2978         // concurrently with us. Make sure that anything after
2979         // this point does not assume that we are the only GC thread
2980         // running. Note: of course, the actual marking work will
2981         // not start until the safepoint itself is released in
2982         // ConcurrentGCThread::safepoint_desynchronize().
2983         doConcurrentMark();
2984       }
2985 
2986 #if YOUNG_LIST_VERBOSE
2987       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
2988       _young_list->print();
2989       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
2990 #endif // YOUNG_LIST_VERBOSE
2991 
2992       double end_time_sec = os::elapsedTime();
2993       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
2994       g1_policy()->record_pause_time_ms(pause_time_ms);
2995       g1_policy()->record_collection_pause_end();
2996 
2997       assert(regions_accounted_for(), "Region leakage.");
2998 
2999       MemoryService::track_memory_usage();
3000 
3001       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3002         HandleMark hm;  // Discard invalid handles created during verification
3003         gclog_or_tty->print(" VerifyAfterGC:");
3004         prepare_for_verify();
3005         Universe::verify(false);
3006       }
3007 
3008       if (was_enabled) ref_processor()->enable_discovery();
3009 
3010       {
3011         size_t expand_bytes = g1_policy()->expansion_amount();
3012         if (expand_bytes > 0) {
3013           size_t bytes_before = capacity();
3014           expand(expand_bytes);
3015         }
3016       }
3017 
3018       if (mark_in_progress()) {
3019         concurrent_mark()->update_g1_committed();
3020       }
3021 
3022 #ifdef TRACESPINNING
3023       ParallelTaskTerminator::print_termination_counts();
3024 #endif
3025 
3026       gc_epilogue(false);
3027     }
3028 
3029     assert(verify_region_lists(), "Bad region lists.");
3030 
3031     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3032       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3033       print_tracing_info();
3034       vm_exit(-1);
3035     }
3036   }
3037 
3038   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3039   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3040 
3041   if (PrintHeapAtGC) {
3042     Universe::print_heap_after_gc();
3043   }
3044   if (G1SummarizeRSetStats &&
3045       (G1SummarizeRSetStatsPeriod > 0) &&
3046       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3047     g1_rem_set()->print_summary_info();
3048   }
3049 }
3050 
3051 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3052 {
3053   size_t gclab_word_size;
3054   switch (purpose) {
3055     case GCAllocForSurvived:
3056       gclab_word_size = YoungPLABSize;
3057       break;
3058     case GCAllocForTenured:
3059       gclab_word_size = OldPLABSize;
3060       break;
3061     default:
3062       assert(false, "unknown GCAllocPurpose");
3063       gclab_word_size = OldPLABSize;
3064       break;
3065   }
3066   return gclab_word_size;
3067 }
3068 
3069 
3070 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
3071   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3072   // make sure we don't call set_gc_alloc_region() multiple times on
3073   // the same region
3074   assert(r == NULL || !r->is_gc_alloc_region(),
3075          "shouldn't already be a GC alloc region");
3076   assert(r == NULL || !r->isHumongous(),
3077          "humongous regions shouldn't be used as GC alloc regions");
3078 
3079   HeapWord* original_top = NULL;
3080   if (r != NULL)
3081     original_top = r->top();
3082 
3083   // We will want to record the used space in r as being there before gc.
3084   // One we install it as a GC alloc region it's eligible for allocation.
3085   // So record it now and use it later.
3086   size_t r_used = 0;
3087   if (r != NULL) {
3088     r_used = r->used();
3089 
3090     if (G1CollectedHeap::use_parallel_gc_threads()) {
3091       // need to take the lock to guard against two threads calling
3092       // get_gc_alloc_region concurrently (very unlikely but...)
3093       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3094       r->save_marks();
3095     }
3096   }
3097   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
3098   _gc_alloc_regions[purpose] = r;
3099   if (old_alloc_region != NULL) {
3100     // Replace aliases too.
3101     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3102       if (_gc_alloc_regions[ap] == old_alloc_region) {
3103         _gc_alloc_regions[ap] = r;
3104       }
3105     }
3106   }
3107   if (r != NULL) {
3108     push_gc_alloc_region(r);
3109     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
3110       // We are using a region as a GC alloc region after it has been used
3111       // as a mutator allocation region during the current marking cycle.
3112       // The mutator-allocated objects are currently implicitly marked, but
3113       // when we move hr->next_top_at_mark_start() forward at the the end
3114       // of the GC pause, they won't be.  We therefore mark all objects in
3115       // the "gap".  We do this object-by-object, since marking densely
3116       // does not currently work right with marking bitmap iteration.  This
3117       // means we rely on TLAB filling at the start of pauses, and no
3118       // "resuscitation" of filled TLAB's.  If we want to do this, we need
3119       // to fix the marking bitmap iteration.
3120       HeapWord* curhw = r->next_top_at_mark_start();
3121       HeapWord* t = original_top;
3122 
3123       while (curhw < t) {
3124         oop cur = (oop)curhw;
3125         // We'll assume parallel for generality.  This is rare code.
3126         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
3127         curhw = curhw + cur->size();
3128       }
3129       assert(curhw == t, "Should have parsed correctly.");
3130     }
3131     if (G1PolicyVerbose > 1) {
3132       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
3133                           "for survivors:", r->bottom(), original_top, r->end());
3134       r->print();
3135     }
3136     g1_policy()->record_before_bytes(r_used);
3137   }
3138 }
3139 
3140 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
3141   assert(Thread::current()->is_VM_thread() ||
3142          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
3143   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
3144          "Precondition.");
3145   hr->set_is_gc_alloc_region(true);
3146   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
3147   _gc_alloc_region_list = hr;
3148 }
3149 
3150 #ifdef G1_DEBUG
3151 class FindGCAllocRegion: public HeapRegionClosure {
3152 public:
3153   bool doHeapRegion(HeapRegion* r) {
3154     if (r->is_gc_alloc_region()) {
3155       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
3156                              r->hrs_index(), r->bottom());
3157     }
3158     return false;
3159   }
3160 };
3161 #endif // G1_DEBUG
3162 
3163 void G1CollectedHeap::forget_alloc_region_list() {
3164   assert(Thread::current()->is_VM_thread(), "Precondition");
3165   while (_gc_alloc_region_list != NULL) {
3166     HeapRegion* r = _gc_alloc_region_list;
3167     assert(r->is_gc_alloc_region(), "Invariant.");
3168     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
3169     // newly allocated data in order to be able to apply deferred updates
3170     // before the GC is done for verification purposes (i.e to allow
3171     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
3172     // collection.
3173     r->ContiguousSpace::set_saved_mark();
3174     _gc_alloc_region_list = r->next_gc_alloc_region();
3175     r->set_next_gc_alloc_region(NULL);
3176     r->set_is_gc_alloc_region(false);
3177     if (r->is_survivor()) {
3178       if (r->is_empty()) {
3179         r->set_not_young();
3180       } else {
3181         _young_list->add_survivor_region(r);
3182       }
3183     }
3184     if (r->is_empty()) {
3185       ++_free_regions;
3186     }
3187   }
3188 #ifdef G1_DEBUG
3189   FindGCAllocRegion fa;
3190   heap_region_iterate(&fa);
3191 #endif // G1_DEBUG
3192 }
3193 
3194 
3195 bool G1CollectedHeap::check_gc_alloc_regions() {
3196   // TODO: allocation regions check
3197   return true;
3198 }
3199 
3200 void G1CollectedHeap::get_gc_alloc_regions() {
3201   // First, let's check that the GC alloc region list is empty (it should)
3202   assert(_gc_alloc_region_list == NULL, "invariant");
3203 
3204   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3205     assert(_gc_alloc_regions[ap] == NULL, "invariant");
3206     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3207 
3208     // Create new GC alloc regions.
3209     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
3210     _retained_gc_alloc_regions[ap] = NULL;
3211 
3212     if (alloc_region != NULL) {
3213       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
3214 
3215       // let's make sure that the GC alloc region is not tagged as such
3216       // outside a GC operation
3217       assert(!alloc_region->is_gc_alloc_region(), "sanity");
3218 
3219       if (alloc_region->in_collection_set() ||
3220           alloc_region->top() == alloc_region->end() ||
3221           alloc_region->top() == alloc_region->bottom() ||
3222           alloc_region->isHumongous()) {
3223         // we will discard the current GC alloc region if
3224         // * it's in the collection set (it can happen!),
3225         // * it's already full (no point in using it),
3226         // * it's empty (this means that it was emptied during
3227         // a cleanup and it should be on the free list now), or
3228         // * it's humongous (this means that it was emptied
3229         // during a cleanup and was added to the free list, but
3230         // has been subseqently used to allocate a humongous
3231         // object that may be less than the region size).
3232 
3233         alloc_region = NULL;
3234       }
3235     }
3236 
3237     if (alloc_region == NULL) {
3238       // we will get a new GC alloc region
3239       alloc_region = newAllocRegionWithExpansion(ap, 0);
3240     } else {
3241       // the region was retained from the last collection
3242       ++_gc_alloc_region_counts[ap];
3243       if (G1PrintHeapRegions) {
3244         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
3245                                "top "PTR_FORMAT,
3246                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
3247       }
3248     }
3249 
3250     if (alloc_region != NULL) {
3251       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3252       set_gc_alloc_region(ap, alloc_region);
3253     }
3254 
3255     assert(_gc_alloc_regions[ap] == NULL ||
3256            _gc_alloc_regions[ap]->is_gc_alloc_region(),
3257            "the GC alloc region should be tagged as such");
3258     assert(_gc_alloc_regions[ap] == NULL ||
3259            _gc_alloc_regions[ap] == _gc_alloc_region_list,
3260            "the GC alloc region should be the same as the GC alloc list head");
3261   }
3262   // Set alternative regions for allocation purposes that have reached
3263   // their limit.
3264   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3265     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
3266     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
3267       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
3268     }
3269   }
3270   assert(check_gc_alloc_regions(), "alloc regions messed up");
3271 }
3272 
3273 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3274   // We keep a separate list of all regions that have been alloc regions in
3275   // the current collection pause. Forget that now. This method will
3276   // untag the GC alloc regions and tear down the GC alloc region
3277   // list. It's desirable that no regions are tagged as GC alloc
3278   // outside GCs.
3279   forget_alloc_region_list();
3280 
3281   // The current alloc regions contain objs that have survived
3282   // collection. Make them no longer GC alloc regions.
3283   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3284     HeapRegion* r = _gc_alloc_regions[ap];
3285     _retained_gc_alloc_regions[ap] = NULL;
3286     _gc_alloc_region_counts[ap] = 0;
3287 
3288     if (r != NULL) {
3289       // we retain nothing on _gc_alloc_regions between GCs
3290       set_gc_alloc_region(ap, NULL);
3291 
3292       if (r->is_empty()) {
3293         // we didn't actually allocate anything in it; let's just put
3294         // it on the free list
3295         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
3296         r->set_zero_fill_complete();
3297         put_free_region_on_list_locked(r);
3298       } else if (_retain_gc_alloc_region[ap] && !totally) {
3299         // retain it so that we can use it at the beginning of the next GC
3300         _retained_gc_alloc_regions[ap] = r;
3301       }
3302     }
3303   }
3304 }
3305 
3306 #ifndef PRODUCT
3307 // Useful for debugging
3308 
3309 void G1CollectedHeap::print_gc_alloc_regions() {
3310   gclog_or_tty->print_cr("GC alloc regions");
3311   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3312     HeapRegion* r = _gc_alloc_regions[ap];
3313     if (r == NULL) {
3314       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
3315     } else {
3316       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
3317                              ap, r->bottom(), r->used());
3318     }
3319   }
3320 }
3321 #endif // PRODUCT
3322 
3323 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3324   _drain_in_progress = false;
3325   set_evac_failure_closure(cl);
3326   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3327 }
3328 
3329 void G1CollectedHeap::finalize_for_evac_failure() {
3330   assert(_evac_failure_scan_stack != NULL &&
3331          _evac_failure_scan_stack->length() == 0,
3332          "Postcondition");
3333   assert(!_drain_in_progress, "Postcondition");
3334   delete _evac_failure_scan_stack;
3335   _evac_failure_scan_stack = NULL;
3336 }
3337 
3338 
3339 
3340 // *** Sequential G1 Evacuation
3341 
3342 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
3343   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
3344   // let the caller handle alloc failure
3345   if (alloc_region == NULL) return NULL;
3346   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
3347          "Either the object is humongous or the region isn't");
3348   HeapWord* block = alloc_region->allocate(word_size);
3349   if (block == NULL) {
3350     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
3351   }
3352   return block;
3353 }
3354 
3355 class G1IsAliveClosure: public BoolObjectClosure {
3356   G1CollectedHeap* _g1;
3357 public:
3358   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3359   void do_object(oop p) { assert(false, "Do not call."); }
3360   bool do_object_b(oop p) {
3361     // It is reachable if it is outside the collection set, or is inside
3362     // and forwarded.
3363 
3364 #ifdef G1_DEBUG
3365     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3366                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3367                            !_g1->obj_in_cs(p) || p->is_forwarded());
3368 #endif // G1_DEBUG
3369 
3370     return !_g1->obj_in_cs(p) || p->is_forwarded();
3371   }
3372 };
3373 
3374 class G1KeepAliveClosure: public OopClosure {
3375   G1CollectedHeap* _g1;
3376 public:
3377   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3378   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3379   void do_oop(      oop* p) {
3380     oop obj = *p;
3381 #ifdef G1_DEBUG
3382     if (PrintGC && Verbose) {
3383       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3384                              p, (void*) obj, (void*) *p);
3385     }
3386 #endif // G1_DEBUG
3387 
3388     if (_g1->obj_in_cs(obj)) {
3389       assert( obj->is_forwarded(), "invariant" );
3390       *p = obj->forwardee();
3391 #ifdef G1_DEBUG
3392       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3393                              (void*) obj, (void*) *p);
3394 #endif // G1_DEBUG
3395     }
3396   }
3397 };
3398 
3399 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3400 private:
3401   G1CollectedHeap* _g1;
3402   DirtyCardQueue *_dcq;
3403   CardTableModRefBS* _ct_bs;
3404 
3405 public:
3406   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3407     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3408 
3409   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3410   virtual void do_oop(      oop* p) { do_oop_work(p); }
3411   template <class T> void do_oop_work(T* p) {
3412     assert(_from->is_in_reserved(p), "paranoia");
3413     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3414         !_from->is_survivor()) {
3415       size_t card_index = _ct_bs->index_for(p);
3416       if (_ct_bs->mark_card_deferred(card_index)) {
3417         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3418       }
3419     }
3420   }
3421 };
3422 
3423 class RemoveSelfPointerClosure: public ObjectClosure {
3424 private:
3425   G1CollectedHeap* _g1;
3426   ConcurrentMark* _cm;
3427   HeapRegion* _hr;
3428   size_t _prev_marked_bytes;
3429   size_t _next_marked_bytes;
3430   OopsInHeapRegionClosure *_cl;
3431 public:
3432   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
3433     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3434     _next_marked_bytes(0), _cl(cl) {}
3435 
3436   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3437   size_t next_marked_bytes() { return _next_marked_bytes; }
3438 
3439   // The original idea here was to coalesce evacuated and dead objects.
3440   // However that caused complications with the block offset table (BOT).
3441   // In particular if there were two TLABs, one of them partially refined.
3442   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3443   // The BOT entries of the unrefined part of TLAB_2 point to the start
3444   // of TLAB_2. If the last object of the TLAB_1 and the first object
3445   // of TLAB_2 are coalesced, then the cards of the unrefined part
3446   // would point into middle of the filler object.
3447   //
3448   // The current approach is to not coalesce and leave the BOT contents intact.
3449   void do_object(oop obj) {
3450     if (obj->is_forwarded() && obj->forwardee() == obj) {
3451       // The object failed to move.
3452       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3453       _cm->markPrev(obj);
3454       assert(_cm->isPrevMarked(obj), "Should be marked!");
3455       _prev_marked_bytes += (obj->size() * HeapWordSize);
3456       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3457         _cm->markAndGrayObjectIfNecessary(obj);
3458       }
3459       obj->set_mark(markOopDesc::prototype());
3460       // While we were processing RSet buffers during the
3461       // collection, we actually didn't scan any cards on the
3462       // collection set, since we didn't want to update remebered
3463       // sets with entries that point into the collection set, given
3464       // that live objects fromthe collection set are about to move
3465       // and such entries will be stale very soon. This change also
3466       // dealt with a reliability issue which involved scanning a
3467       // card in the collection set and coming across an array that
3468       // was being chunked and looking malformed. The problem is
3469       // that, if evacuation fails, we might have remembered set
3470       // entries missing given that we skipped cards on the
3471       // collection set. So, we'll recreate such entries now.
3472       obj->oop_iterate(_cl);
3473       assert(_cm->isPrevMarked(obj), "Should be marked!");
3474     } else {
3475       // The object has been either evacuated or is dead. Fill it with a
3476       // dummy object.
3477       MemRegion mr((HeapWord*)obj, obj->size());
3478       CollectedHeap::fill_with_object(mr);
3479       _cm->clearRangeBothMaps(mr);
3480     }
3481   }
3482 };
3483 
3484 void G1CollectedHeap::remove_self_forwarding_pointers() {
3485   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3486   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3487   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3488   OopsInHeapRegionClosure *cl;
3489   if (G1DeferredRSUpdate) {
3490     cl = &deferred_update;
3491   } else {
3492     cl = &immediate_update;
3493   }
3494   HeapRegion* cur = g1_policy()->collection_set();
3495   while (cur != NULL) {
3496     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3497 
3498     RemoveSelfPointerClosure rspc(_g1h, cl);
3499     if (cur->evacuation_failed()) {
3500       assert(cur->in_collection_set(), "bad CS");
3501       cl->set_region(cur);
3502       cur->object_iterate(&rspc);
3503 
3504       // A number of manipulations to make the TAMS be the current top,
3505       // and the marked bytes be the ones observed in the iteration.
3506       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3507         // The comments below are the postconditions achieved by the
3508         // calls.  Note especially the last such condition, which says that
3509         // the count of marked bytes has been properly restored.
3510         cur->note_start_of_marking(false);
3511         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3512         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3513         // _next_marked_bytes == prev_marked_bytes.
3514         cur->note_end_of_marking();
3515         // _prev_top_at_mark_start == top(),
3516         // _prev_marked_bytes == prev_marked_bytes
3517       }
3518       // If there is no mark in progress, we modified the _next variables
3519       // above needlessly, but harmlessly.
3520       if (_g1h->mark_in_progress()) {
3521         cur->note_start_of_marking(false);
3522         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3523         // _next_marked_bytes == next_marked_bytes.
3524       }
3525 
3526       // Now make sure the region has the right index in the sorted array.
3527       g1_policy()->note_change_in_marked_bytes(cur);
3528     }
3529     cur = cur->next_in_collection_set();
3530   }
3531   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3532 
3533   // Now restore saved marks, if any.
3534   if (_objs_with_preserved_marks != NULL) {
3535     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3536     assert(_objs_with_preserved_marks->length() ==
3537            _preserved_marks_of_objs->length(), "Both or none.");
3538     guarantee(_objs_with_preserved_marks->length() ==
3539               _preserved_marks_of_objs->length(), "Both or none.");
3540     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3541       oop obj   = _objs_with_preserved_marks->at(i);
3542       markOop m = _preserved_marks_of_objs->at(i);
3543       obj->set_mark(m);
3544     }
3545     // Delete the preserved marks growable arrays (allocated on the C heap).
3546     delete _objs_with_preserved_marks;
3547     delete _preserved_marks_of_objs;
3548     _objs_with_preserved_marks = NULL;
3549     _preserved_marks_of_objs = NULL;
3550   }
3551 }
3552 
3553 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3554   _evac_failure_scan_stack->push(obj);
3555 }
3556 
3557 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3558   assert(_evac_failure_scan_stack != NULL, "precondition");
3559 
3560   while (_evac_failure_scan_stack->length() > 0) {
3561      oop obj = _evac_failure_scan_stack->pop();
3562      _evac_failure_closure->set_region(heap_region_containing(obj));
3563      obj->oop_iterate_backwards(_evac_failure_closure);
3564   }
3565 }
3566 
3567 void G1CollectedHeap::handle_evacuation_failure(oop old) {
3568   markOop m = old->mark();
3569   // forward to self
3570   assert(!old->is_forwarded(), "precondition");
3571 
3572   old->forward_to(old);
3573   handle_evacuation_failure_common(old, m);
3574 }
3575 
3576 oop
3577 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3578                                                oop old) {
3579   markOop m = old->mark();
3580   oop forward_ptr = old->forward_to_atomic(old);
3581   if (forward_ptr == NULL) {
3582     // Forward-to-self succeeded.
3583     if (_evac_failure_closure != cl) {
3584       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3585       assert(!_drain_in_progress,
3586              "Should only be true while someone holds the lock.");
3587       // Set the global evac-failure closure to the current thread's.
3588       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3589       set_evac_failure_closure(cl);
3590       // Now do the common part.
3591       handle_evacuation_failure_common(old, m);
3592       // Reset to NULL.
3593       set_evac_failure_closure(NULL);
3594     } else {
3595       // The lock is already held, and this is recursive.
3596       assert(_drain_in_progress, "This should only be the recursive case.");
3597       handle_evacuation_failure_common(old, m);
3598     }
3599     return old;
3600   } else {
3601     // Someone else had a place to copy it.
3602     return forward_ptr;
3603   }
3604 }
3605 
3606 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
3607   set_evacuation_failed(true);
3608 
3609   preserve_mark_if_necessary(old, m);
3610 
3611   HeapRegion* r = heap_region_containing(old);
3612   if (!r->evacuation_failed()) {
3613     r->set_evacuation_failed(true);
3614     if (G1PrintHeapRegions) {
3615       gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
3616                           "["PTR_FORMAT","PTR_FORMAT")\n",
3617                           r, r->bottom(), r->end());
3618     }
3619   }
3620 
3621   push_on_evac_failure_scan_stack(old);
3622 
3623   if (!_drain_in_progress) {
3624     // prevent recursion in copy_to_survivor_space()
3625     _drain_in_progress = true;
3626     drain_evac_failure_scan_stack();
3627     _drain_in_progress = false;
3628   }
3629 }
3630 
3631 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
3632   if (m != markOopDesc::prototype()) {
3633     if (_objs_with_preserved_marks == NULL) {
3634       assert(_preserved_marks_of_objs == NULL, "Both or none.");
3635       _objs_with_preserved_marks =
3636         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3637       _preserved_marks_of_objs =
3638         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
3639     }
3640     _objs_with_preserved_marks->push(obj);
3641     _preserved_marks_of_objs->push(m);
3642   }
3643 }
3644 
3645 // *** Parallel G1 Evacuation
3646 
3647 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
3648                                                   size_t word_size) {
3649   assert(!isHumongous(word_size),
3650          err_msg("we should not be seeing humongous allocation requests "
3651                  "during GC, word_size = "SIZE_FORMAT, word_size));
3652 
3653   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
3654   // let the caller handle alloc failure
3655   if (alloc_region == NULL) return NULL;
3656 
3657   HeapWord* block = alloc_region->par_allocate(word_size);
3658   if (block == NULL) {
3659     MutexLockerEx x(par_alloc_during_gc_lock(),
3660                     Mutex::_no_safepoint_check_flag);
3661     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
3662   }
3663   return block;
3664 }
3665 
3666 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
3667                                             bool par) {
3668   // Another thread might have obtained alloc_region for the given
3669   // purpose, and might be attempting to allocate in it, and might
3670   // succeed.  Therefore, we can't do the "finalization" stuff on the
3671   // region below until we're sure the last allocation has happened.
3672   // We ensure this by allocating the remaining space with a garbage
3673   // object.
3674   if (par) par_allocate_remaining_space(alloc_region);
3675   // Now we can do the post-GC stuff on the region.
3676   alloc_region->note_end_of_copying();
3677   g1_policy()->record_after_bytes(alloc_region->used());
3678 }
3679 
3680 HeapWord*
3681 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
3682                                          HeapRegion*    alloc_region,
3683                                          bool           par,
3684                                          size_t         word_size) {
3685   assert(!isHumongous(word_size),
3686          err_msg("we should not be seeing humongous allocation requests "
3687                  "during GC, word_size = "SIZE_FORMAT, word_size));
3688 
3689   HeapWord* block = NULL;
3690   // In the parallel case, a previous thread to obtain the lock may have
3691   // already assigned a new gc_alloc_region.
3692   if (alloc_region != _gc_alloc_regions[purpose]) {
3693     assert(par, "But should only happen in parallel case.");
3694     alloc_region = _gc_alloc_regions[purpose];
3695     if (alloc_region == NULL) return NULL;
3696     block = alloc_region->par_allocate(word_size);
3697     if (block != NULL) return block;
3698     // Otherwise, continue; this new region is empty, too.
3699   }
3700   assert(alloc_region != NULL, "We better have an allocation region");
3701   retire_alloc_region(alloc_region, par);
3702 
3703   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
3704     // Cannot allocate more regions for the given purpose.
3705     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
3706     // Is there an alternative?
3707     if (purpose != alt_purpose) {
3708       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
3709       // Has not the alternative region been aliased?
3710       if (alloc_region != alt_region && alt_region != NULL) {
3711         // Try to allocate in the alternative region.
3712         if (par) {
3713           block = alt_region->par_allocate(word_size);
3714         } else {
3715           block = alt_region->allocate(word_size);
3716         }
3717         // Make an alias.
3718         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
3719         if (block != NULL) {
3720           return block;
3721         }
3722         retire_alloc_region(alt_region, par);
3723       }
3724       // Both the allocation region and the alternative one are full
3725       // and aliased, replace them with a new allocation region.
3726       purpose = alt_purpose;
3727     } else {
3728       set_gc_alloc_region(purpose, NULL);
3729       return NULL;
3730     }
3731   }
3732 
3733   // Now allocate a new region for allocation.
3734   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
3735 
3736   // let the caller handle alloc failure
3737   if (alloc_region != NULL) {
3738 
3739     assert(check_gc_alloc_regions(), "alloc regions messed up");
3740     assert(alloc_region->saved_mark_at_top(),
3741            "Mark should have been saved already.");
3742     // We used to assert that the region was zero-filled here, but no
3743     // longer.
3744 
3745     // This must be done last: once it's installed, other regions may
3746     // allocate in it (without holding the lock.)
3747     set_gc_alloc_region(purpose, alloc_region);
3748 
3749     if (par) {
3750       block = alloc_region->par_allocate(word_size);
3751     } else {
3752       block = alloc_region->allocate(word_size);
3753     }
3754     // Caller handles alloc failure.
3755   } else {
3756     // This sets other apis using the same old alloc region to NULL, also.
3757     set_gc_alloc_region(purpose, NULL);
3758   }
3759   return block;  // May be NULL.
3760 }
3761 
3762 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
3763   HeapWord* block = NULL;
3764   size_t free_words;
3765   do {
3766     free_words = r->free()/HeapWordSize;
3767     // If there's too little space, no one can allocate, so we're done.
3768     if (free_words < CollectedHeap::min_fill_size()) return;
3769     // Otherwise, try to claim it.
3770     block = r->par_allocate(free_words);
3771   } while (block == NULL);
3772   fill_with_object(block, free_words);
3773 }
3774 
3775 #ifndef PRODUCT
3776 bool GCLabBitMapClosure::do_bit(size_t offset) {
3777   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
3778   guarantee(_cm->isMarked(oop(addr)), "it should be!");
3779   return true;
3780 }
3781 #endif // PRODUCT
3782 
3783 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
3784   : _g1h(g1h),
3785     _refs(g1h->task_queue(queue_num)),
3786     _dcq(&g1h->dirty_card_queue_set()),
3787     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
3788     _g1_rem(g1h->g1_rem_set()),
3789     _hash_seed(17), _queue_num(queue_num),
3790     _term_attempts(0),
3791     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
3792     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
3793     _age_table(false),
3794     _strong_roots_time(0), _term_time(0),
3795     _alloc_buffer_waste(0), _undo_waste(0)
3796 {
3797   // we allocate G1YoungSurvRateNumRegions plus one entries, since
3798   // we "sacrifice" entry 0 to keep track of surviving bytes for
3799   // non-young regions (where the age is -1)
3800   // We also add a few elements at the beginning and at the end in
3801   // an attempt to eliminate cache contention
3802   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
3803   size_t array_length = PADDING_ELEM_NUM +
3804                         real_length +
3805                         PADDING_ELEM_NUM;
3806   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
3807   if (_surviving_young_words_base == NULL)
3808     vm_exit_out_of_memory(array_length * sizeof(size_t),
3809                           "Not enough space for young surv histo.");
3810   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
3811   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
3812 
3813   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
3814   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
3815 
3816   _start = os::elapsedTime();
3817 }
3818 
3819 void
3820 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
3821 {
3822   st->print_raw_cr("GC Termination Stats");
3823   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
3824                    " ------waste (KiB)------");
3825   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
3826                    "  total   alloc    undo");
3827   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
3828                    " ------- ------- -------");
3829 }
3830 
3831 void
3832 G1ParScanThreadState::print_termination_stats(int i,
3833                                               outputStream* const st) const
3834 {
3835   const double elapsed_ms = elapsed_time() * 1000.0;
3836   const double s_roots_ms = strong_roots_time() * 1000.0;
3837   const double term_ms    = term_time() * 1000.0;
3838   st->print_cr("%3d %9.2f %9.2f %6.2f "
3839                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3840                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3841                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
3842                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
3843                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
3844                alloc_buffer_waste() * HeapWordSize / K,
3845                undo_waste() * HeapWordSize / K);
3846 }
3847 
3848 #ifdef ASSERT
3849 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
3850   assert(ref != NULL, "invariant");
3851   assert(UseCompressedOops, "sanity");
3852   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
3853   oop p = oopDesc::load_decode_heap_oop(ref);
3854   assert(_g1h->is_in_g1_reserved(p),
3855          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
3856   return true;
3857 }
3858 
3859 bool G1ParScanThreadState::verify_ref(oop* ref) const {
3860   assert(ref != NULL, "invariant");
3861   if (has_partial_array_mask(ref)) {
3862     // Must be in the collection set--it's already been copied.
3863     oop p = clear_partial_array_mask(ref);
3864     assert(_g1h->obj_in_cs(p),
3865            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
3866   } else {
3867     oop p = oopDesc::load_decode_heap_oop(ref);
3868     assert(_g1h->is_in_g1_reserved(p),
3869            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
3870   }
3871   return true;
3872 }
3873 
3874 bool G1ParScanThreadState::verify_task(StarTask ref) const {
3875   if (ref.is_narrow()) {
3876     return verify_ref((narrowOop*) ref);
3877   } else {
3878     return verify_ref((oop*) ref);
3879   }
3880 }
3881 #endif // ASSERT
3882 
3883 void G1ParScanThreadState::trim_queue() {
3884   StarTask ref;
3885   do {
3886     // Drain the overflow stack first, so other threads can steal.
3887     while (refs()->pop_overflow(ref)) {
3888       deal_with_reference(ref);
3889     }
3890     while (refs()->pop_local(ref)) {
3891       deal_with_reference(ref);
3892     }
3893   } while (!refs()->is_empty());
3894 }
3895 
3896 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
3897   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
3898   _par_scan_state(par_scan_state) { }
3899 
3900 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
3901   // This is called _after_ do_oop_work has been called, hence after
3902   // the object has been relocated to its new location and *p points
3903   // to its new location.
3904 
3905   T heap_oop = oopDesc::load_heap_oop(p);
3906   if (!oopDesc::is_null(heap_oop)) {
3907     oop obj = oopDesc::decode_heap_oop(heap_oop);
3908     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
3909            "shouldn't still be in the CSet if evacuation didn't fail.");
3910     HeapWord* addr = (HeapWord*)obj;
3911     if (_g1->is_in_g1_reserved(addr))
3912       _cm->grayRoot(oop(addr));
3913   }
3914 }
3915 
3916 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
3917   size_t    word_sz = old->size();
3918   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
3919   // +1 to make the -1 indexes valid...
3920   int       young_index = from_region->young_index_in_cset()+1;
3921   assert( (from_region->is_young() && young_index > 0) ||
3922           (!from_region->is_young() && young_index == 0), "invariant" );
3923   G1CollectorPolicy* g1p = _g1->g1_policy();
3924   markOop m = old->mark();
3925   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
3926                                            : m->age();
3927   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
3928                                                              word_sz);
3929   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
3930   oop       obj     = oop(obj_ptr);
3931 
3932   if (obj_ptr == NULL) {
3933     // This will either forward-to-self, or detect that someone else has
3934     // installed a forwarding pointer.
3935     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
3936     return _g1->handle_evacuation_failure_par(cl, old);
3937   }
3938 
3939   // We're going to allocate linearly, so might as well prefetch ahead.
3940   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
3941 
3942   oop forward_ptr = old->forward_to_atomic(obj);
3943   if (forward_ptr == NULL) {
3944     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
3945     if (g1p->track_object_age(alloc_purpose)) {
3946       // We could simply do obj->incr_age(). However, this causes a
3947       // performance issue. obj->incr_age() will first check whether
3948       // the object has a displaced mark by checking its mark word;
3949       // getting the mark word from the new location of the object
3950       // stalls. So, given that we already have the mark word and we
3951       // are about to install it anyway, it's better to increase the
3952       // age on the mark word, when the object does not have a
3953       // displaced mark word. We're not expecting many objects to have
3954       // a displaced marked word, so that case is not optimized
3955       // further (it could be...) and we simply call obj->incr_age().
3956 
3957       if (m->has_displaced_mark_helper()) {
3958         // in this case, we have to install the mark word first,
3959         // otherwise obj looks to be forwarded (the old mark word,
3960         // which contains the forward pointer, was copied)
3961         obj->set_mark(m);
3962         obj->incr_age();
3963       } else {
3964         m = m->incr_age();
3965         obj->set_mark(m);
3966       }
3967       _par_scan_state->age_table()->add(obj, word_sz);
3968     } else {
3969       obj->set_mark(m);
3970     }
3971 
3972     // preserve "next" mark bit
3973     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
3974       if (!use_local_bitmaps ||
3975           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
3976         // if we couldn't mark it on the local bitmap (this happens when
3977         // the object was not allocated in the GCLab), we have to bite
3978         // the bullet and do the standard parallel mark
3979         _cm->markAndGrayObjectIfNecessary(obj);
3980       }
3981 #if 1
3982       if (_g1->isMarkedNext(old)) {
3983         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
3984       }
3985 #endif
3986     }
3987 
3988     size_t* surv_young_words = _par_scan_state->surviving_young_words();
3989     surv_young_words[young_index] += word_sz;
3990 
3991     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
3992       arrayOop(old)->set_length(0);
3993       oop* old_p = set_partial_array_mask(old);
3994       _par_scan_state->push_on_queue(old_p);
3995     } else {
3996       // No point in using the slower heap_region_containing() method,
3997       // given that we know obj is in the heap.
3998       _scanner->set_region(_g1->heap_region_containing_raw(obj));
3999       obj->oop_iterate_backwards(_scanner);
4000     }
4001   } else {
4002     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4003     obj = forward_ptr;
4004   }
4005   return obj;
4006 }
4007 
4008 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4009 template <class T>
4010 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4011 ::do_oop_work(T* p) {
4012   oop obj = oopDesc::load_decode_heap_oop(p);
4013   assert(barrier != G1BarrierRS || obj != NULL,
4014          "Precondition: G1BarrierRS implies obj is nonNull");
4015 
4016   // here the null check is implicit in the cset_fast_test() test
4017   if (_g1->in_cset_fast_test(obj)) {
4018 #if G1_REM_SET_LOGGING
4019     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
4020                            "into CS.", p, (void*) obj);
4021 #endif
4022     if (obj->is_forwarded()) {
4023       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4024     } else {
4025       oop copy_oop = copy_to_survivor_space(obj);
4026       oopDesc::encode_store_heap_oop(p, copy_oop);
4027     }
4028     // When scanning the RS, we only care about objs in CS.
4029     if (barrier == G1BarrierRS) {
4030       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4031     }
4032   }
4033 
4034   if (barrier == G1BarrierEvac && obj != NULL) {
4035     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4036   }
4037 
4038   if (do_gen_barrier && obj != NULL) {
4039     par_do_barrier(p);
4040   }
4041 }
4042 
4043 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4044 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4045 
4046 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4047   assert(has_partial_array_mask(p), "invariant");
4048   oop old = clear_partial_array_mask(p);
4049   assert(old->is_objArray(), "must be obj array");
4050   assert(old->is_forwarded(), "must be forwarded");
4051   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4052 
4053   objArrayOop obj = objArrayOop(old->forwardee());
4054   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4055   // Process ParGCArrayScanChunk elements now
4056   // and push the remainder back onto queue
4057   int start     = arrayOop(old)->length();
4058   int end       = obj->length();
4059   int remainder = end - start;
4060   assert(start <= end, "just checking");
4061   if (remainder > 2 * ParGCArrayScanChunk) {
4062     // Test above combines last partial chunk with a full chunk
4063     end = start + ParGCArrayScanChunk;
4064     arrayOop(old)->set_length(end);
4065     // Push remainder.
4066     oop* old_p = set_partial_array_mask(old);
4067     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4068     _par_scan_state->push_on_queue(old_p);
4069   } else {
4070     // Restore length so that the heap remains parsable in
4071     // case of evacuation failure.
4072     arrayOop(old)->set_length(end);
4073   }
4074   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4075   // process our set of indices (include header in first chunk)
4076   obj->oop_iterate_range(&_scanner, start, end);
4077 }
4078 
4079 class G1ParEvacuateFollowersClosure : public VoidClosure {
4080 protected:
4081   G1CollectedHeap*              _g1h;
4082   G1ParScanThreadState*         _par_scan_state;
4083   RefToScanQueueSet*            _queues;
4084   ParallelTaskTerminator*       _terminator;
4085 
4086   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4087   RefToScanQueueSet*      queues()         { return _queues; }
4088   ParallelTaskTerminator* terminator()     { return _terminator; }
4089 
4090 public:
4091   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4092                                 G1ParScanThreadState* par_scan_state,
4093                                 RefToScanQueueSet* queues,
4094                                 ParallelTaskTerminator* terminator)
4095     : _g1h(g1h), _par_scan_state(par_scan_state),
4096       _queues(queues), _terminator(terminator) {}
4097 
4098   void do_void();
4099 
4100 private:
4101   inline bool offer_termination();
4102 };
4103 
4104 bool G1ParEvacuateFollowersClosure::offer_termination() {
4105   G1ParScanThreadState* const pss = par_scan_state();
4106   pss->start_term_time();
4107   const bool res = terminator()->offer_termination();
4108   pss->end_term_time();
4109   return res;
4110 }
4111 
4112 void G1ParEvacuateFollowersClosure::do_void() {
4113   StarTask stolen_task;
4114   G1ParScanThreadState* const pss = par_scan_state();
4115   pss->trim_queue();
4116 
4117   do {
4118     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4119       assert(pss->verify_task(stolen_task), "sanity");
4120       if (stolen_task.is_narrow()) {
4121         pss->push_on_queue((narrowOop*) stolen_task);
4122       } else {
4123         pss->push_on_queue((oop*) stolen_task);
4124       }
4125       pss->trim_queue();
4126     }
4127   } while (!offer_termination());
4128 
4129   pss->retire_alloc_buffers();
4130 }
4131 
4132 class G1ParTask : public AbstractGangTask {
4133 protected:
4134   G1CollectedHeap*       _g1h;
4135   RefToScanQueueSet      *_queues;
4136   ParallelTaskTerminator _terminator;
4137   int _n_workers;
4138 
4139   Mutex _stats_lock;
4140   Mutex* stats_lock() { return &_stats_lock; }
4141 
4142   size_t getNCards() {
4143     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4144       / G1BlockOffsetSharedArray::N_bytes;
4145   }
4146 
4147 public:
4148   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4149     : AbstractGangTask("G1 collection"),
4150       _g1h(g1h),
4151       _queues(task_queues),
4152       _terminator(workers, _queues),
4153       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4154       _n_workers(workers)
4155   {}
4156 
4157   RefToScanQueueSet* queues() { return _queues; }
4158 
4159   RefToScanQueue *work_queue(int i) {
4160     return queues()->queue(i);
4161   }
4162 
4163   void work(int i) {
4164     if (i >= _n_workers) return;  // no work needed this round
4165 
4166     double start_time_ms = os::elapsedTime() * 1000.0;
4167     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4168 
4169     ResourceMark rm;
4170     HandleMark   hm;
4171 
4172     G1ParScanThreadState            pss(_g1h, i);
4173     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4174     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4175     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4176 
4177     pss.set_evac_closure(&scan_evac_cl);
4178     pss.set_evac_failure_closure(&evac_failure_cl);
4179     pss.set_partial_scan_closure(&partial_scan_cl);
4180 
4181     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4182     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4183     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4184     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4185 
4186     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4187     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4188     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4189 
4190     OopsInHeapRegionClosure        *scan_root_cl;
4191     OopsInHeapRegionClosure        *scan_perm_cl;
4192 
4193     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4194       scan_root_cl = &scan_mark_root_cl;
4195       scan_perm_cl = &scan_mark_perm_cl;
4196     } else {
4197       scan_root_cl = &only_scan_root_cl;
4198       scan_perm_cl = &only_scan_perm_cl;
4199     }
4200 
4201     pss.start_strong_roots();
4202     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4203                                   SharedHeap::SO_AllClasses,
4204                                   scan_root_cl,
4205                                   &push_heap_rs_cl,
4206                                   scan_perm_cl,
4207                                   i);
4208     pss.end_strong_roots();
4209     {
4210       double start = os::elapsedTime();
4211       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4212       evac.do_void();
4213       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4214       double term_ms = pss.term_time()*1000.0;
4215       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4216       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4217     }
4218     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4219     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4220 
4221     // Clean up any par-expanded rem sets.
4222     HeapRegionRemSet::par_cleanup();
4223 
4224     if (ParallelGCVerbose) {
4225       MutexLocker x(stats_lock());
4226       pss.print_termination_stats(i);
4227     }
4228 
4229     assert(pss.refs()->is_empty(), "should be empty");
4230     double end_time_ms = os::elapsedTime() * 1000.0;
4231     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4232   }
4233 };
4234 
4235 // *** Common G1 Evacuation Stuff
4236 
4237 // This method is run in a GC worker.
4238 
4239 void
4240 G1CollectedHeap::
4241 g1_process_strong_roots(bool collecting_perm_gen,
4242                         SharedHeap::ScanningOption so,
4243                         OopClosure* scan_non_heap_roots,
4244                         OopsInHeapRegionClosure* scan_rs,
4245                         OopsInGenClosure* scan_perm,
4246                         int worker_i) {
4247   // First scan the strong roots, including the perm gen.
4248   double ext_roots_start = os::elapsedTime();
4249   double closure_app_time_sec = 0.0;
4250 
4251   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4252   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4253   buf_scan_perm.set_generation(perm_gen());
4254 
4255   // Walk the code cache w/o buffering, because StarTask cannot handle
4256   // unaligned oop locations.
4257   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4258 
4259   process_strong_roots(false, // no scoping; this is parallel code
4260                        collecting_perm_gen, so,
4261                        &buf_scan_non_heap_roots,
4262                        &eager_scan_code_roots,
4263                        &buf_scan_perm);
4264 
4265   // Finish up any enqueued closure apps.
4266   buf_scan_non_heap_roots.done();
4267   buf_scan_perm.done();
4268   double ext_roots_end = os::elapsedTime();
4269   g1_policy()->reset_obj_copy_time(worker_i);
4270   double obj_copy_time_sec =
4271     buf_scan_non_heap_roots.closure_app_seconds() +
4272     buf_scan_perm.closure_app_seconds();
4273   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4274   double ext_root_time_ms =
4275     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4276   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4277 
4278   // Scan strong roots in mark stack.
4279   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4280     concurrent_mark()->oops_do(scan_non_heap_roots);
4281   }
4282   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4283   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4284 
4285   // XXX What should this be doing in the parallel case?
4286   g1_policy()->record_collection_pause_end_CH_strong_roots();
4287   // Now scan the complement of the collection set.
4288   if (scan_rs != NULL) {
4289     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4290   }
4291   // Finish with the ref_processor roots.
4292   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4293     ref_processor()->oops_do(scan_non_heap_roots);
4294   }
4295   g1_policy()->record_collection_pause_end_G1_strong_roots();
4296   _process_strong_tasks->all_tasks_completed();
4297 }
4298 
4299 void
4300 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4301                                        OopClosure* non_root_closure) {
4302   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4303   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4304 }
4305 
4306 
4307 class SaveMarksClosure: public HeapRegionClosure {
4308 public:
4309   bool doHeapRegion(HeapRegion* r) {
4310     r->save_marks();
4311     return false;
4312   }
4313 };
4314 
4315 void G1CollectedHeap::save_marks() {
4316   if (!CollectedHeap::use_parallel_gc_threads()) {
4317     SaveMarksClosure sm;
4318     heap_region_iterate(&sm);
4319   }
4320   // We do this even in the parallel case
4321   perm_gen()->save_marks();
4322 }
4323 
4324 void G1CollectedHeap::evacuate_collection_set() {
4325   set_evacuation_failed(false);
4326 
4327   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4328   concurrent_g1_refine()->set_use_cache(false);
4329   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4330 
4331   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4332   set_par_threads(n_workers);
4333   G1ParTask g1_par_task(this, n_workers, _task_queues);
4334 
4335   init_for_evac_failure(NULL);
4336 
4337   rem_set()->prepare_for_younger_refs_iterate(true);
4338 
4339   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4340   double start_par = os::elapsedTime();
4341   if (G1CollectedHeap::use_parallel_gc_threads()) {
4342     // The individual threads will set their evac-failure closures.
4343     StrongRootsScope srs(this);
4344     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4345     workers()->run_task(&g1_par_task);
4346   } else {
4347     StrongRootsScope srs(this);
4348     g1_par_task.work(0);
4349   }
4350 
4351   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4352   g1_policy()->record_par_time(par_time);
4353   set_par_threads(0);
4354   // Is this the right thing to do here?  We don't save marks
4355   // on individual heap regions when we allocate from
4356   // them in parallel, so this seems like the correct place for this.
4357   retire_all_alloc_regions();
4358   {
4359     G1IsAliveClosure is_alive(this);
4360     G1KeepAliveClosure keep_alive(this);
4361     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4362   }
4363   release_gc_alloc_regions(false /* totally */);
4364   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4365 
4366   concurrent_g1_refine()->clear_hot_cache();
4367   concurrent_g1_refine()->set_use_cache(true);
4368 
4369   finalize_for_evac_failure();
4370 
4371   // Must do this before removing self-forwarding pointers, which clears
4372   // the per-region evac-failure flags.
4373   concurrent_mark()->complete_marking_in_collection_set();
4374 
4375   if (evacuation_failed()) {
4376     remove_self_forwarding_pointers();
4377     if (PrintGCDetails) {
4378       gclog_or_tty->print(" (to-space overflow)");
4379     } else if (PrintGC) {
4380       gclog_or_tty->print("--");
4381     }
4382   }
4383 
4384   if (G1DeferredRSUpdate) {
4385     RedirtyLoggedCardTableEntryFastClosure redirty;
4386     dirty_card_queue_set().set_closure(&redirty);
4387     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4388 
4389     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4390     dcq.merge_bufferlists(&dirty_card_queue_set());
4391     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4392   }
4393   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4394 }
4395 
4396 void G1CollectedHeap::free_region(HeapRegion* hr) {
4397   size_t pre_used = 0;
4398   size_t cleared_h_regions = 0;
4399   size_t freed_regions = 0;
4400   UncleanRegionList local_list;
4401 
4402   HeapWord* start = hr->bottom();
4403   HeapWord* end   = hr->prev_top_at_mark_start();
4404   size_t used_bytes = hr->used();
4405   size_t live_bytes = hr->max_live_bytes();
4406   if (used_bytes > 0) {
4407     guarantee( live_bytes <= used_bytes, "invariant" );
4408   } else {
4409     guarantee( live_bytes == 0, "invariant" );
4410   }
4411 
4412   size_t garbage_bytes = used_bytes - live_bytes;
4413   if (garbage_bytes > 0)
4414     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
4415 
4416   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
4417                    &local_list);
4418   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
4419                           &local_list);
4420 }
4421 
4422 void
4423 G1CollectedHeap::free_region_work(HeapRegion* hr,
4424                                   size_t& pre_used,
4425                                   size_t& cleared_h_regions,
4426                                   size_t& freed_regions,
4427                                   UncleanRegionList* list,
4428                                   bool par) {
4429   pre_used += hr->used();
4430   if (hr->isHumongous()) {
4431     assert(hr->startsHumongous(),
4432            "Only the start of a humongous region should be freed.");
4433     int ind = _hrs->find(hr);
4434     assert(ind != -1, "Should have an index.");
4435     // Clear the start region.
4436     hr->hr_clear(par, true /*clear_space*/);
4437     list->insert_before_head(hr);
4438     cleared_h_regions++;
4439     freed_regions++;
4440     // Clear any continued regions.
4441     ind++;
4442     while ((size_t)ind < n_regions()) {
4443       HeapRegion* hrc = _hrs->at(ind);
4444       if (!hrc->continuesHumongous()) break;
4445       // Otherwise, does continue the H region.
4446       assert(hrc->humongous_start_region() == hr, "Huh?");
4447       hrc->hr_clear(par, true /*clear_space*/);
4448       cleared_h_regions++;
4449       freed_regions++;
4450       list->insert_before_head(hrc);
4451       ind++;
4452     }
4453   } else {
4454     hr->hr_clear(par, true /*clear_space*/);
4455     list->insert_before_head(hr);
4456     freed_regions++;
4457     // If we're using clear2, this should not be enabled.
4458     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
4459   }
4460 }
4461 
4462 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
4463                                               size_t cleared_h_regions,
4464                                               size_t freed_regions,
4465                                               UncleanRegionList* list) {
4466   if (list != NULL && list->sz() > 0) {
4467     prepend_region_list_on_unclean_list(list);
4468   }
4469   // Acquire a lock, if we're parallel, to update possibly-shared
4470   // variables.
4471   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
4472   {
4473     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4474     _summary_bytes_used -= pre_used;
4475     _num_humongous_regions -= (int) cleared_h_regions;
4476     _free_regions += freed_regions;
4477   }
4478 }
4479 
4480 
4481 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
4482   while (list != NULL) {
4483     guarantee( list->is_young(), "invariant" );
4484 
4485     HeapWord* bottom = list->bottom();
4486     HeapWord* end = list->end();
4487     MemRegion mr(bottom, end);
4488     ct_bs->dirty(mr);
4489 
4490     list = list->get_next_young_region();
4491   }
4492 }
4493 
4494 
4495 class G1ParCleanupCTTask : public AbstractGangTask {
4496   CardTableModRefBS* _ct_bs;
4497   G1CollectedHeap* _g1h;
4498   HeapRegion* volatile _su_head;
4499 public:
4500   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4501                      G1CollectedHeap* g1h,
4502                      HeapRegion* survivor_list) :
4503     AbstractGangTask("G1 Par Cleanup CT Task"),
4504     _ct_bs(ct_bs),
4505     _g1h(g1h),
4506     _su_head(survivor_list)
4507   { }
4508 
4509   void work(int i) {
4510     HeapRegion* r;
4511     while (r = _g1h->pop_dirty_cards_region()) {
4512       clear_cards(r);
4513     }
4514     // Redirty the cards of the survivor regions.
4515     dirty_list(&this->_su_head);
4516   }
4517 
4518   void clear_cards(HeapRegion* r) {
4519     // Cards for Survivor regions will be dirtied later.
4520     if (!r->is_survivor()) {
4521       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4522     }
4523   }
4524 
4525   void dirty_list(HeapRegion* volatile * head_ptr) {
4526     HeapRegion* head;
4527     do {
4528       // Pop region off the list.
4529       head = *head_ptr;
4530       if (head != NULL) {
4531         HeapRegion* r = (HeapRegion*)
4532           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
4533         if (r == head) {
4534           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
4535           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
4536         }
4537       }
4538     } while (*head_ptr != NULL);
4539   }
4540 };
4541 
4542 
4543 #ifndef PRODUCT
4544 class G1VerifyCardTableCleanup: public HeapRegionClosure {
4545   CardTableModRefBS* _ct_bs;
4546 public:
4547   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
4548     : _ct_bs(ct_bs)
4549   { }
4550   virtual bool doHeapRegion(HeapRegion* r)
4551   {
4552     MemRegion mr(r->bottom(), r->end());
4553     if (r->is_survivor()) {
4554       _ct_bs->verify_dirty_region(mr);
4555     } else {
4556       _ct_bs->verify_clean_region(mr);
4557     }
4558     return false;
4559   }
4560 };
4561 #endif
4562 
4563 void G1CollectedHeap::cleanUpCardTable() {
4564   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4565   double start = os::elapsedTime();
4566 
4567   // Iterate over the dirty cards region list.
4568   G1ParCleanupCTTask cleanup_task(ct_bs, this,
4569                                   _young_list->first_survivor_region());
4570 
4571   if (ParallelGCThreads > 0) {
4572     set_par_threads(workers()->total_workers());
4573     workers()->run_task(&cleanup_task);
4574     set_par_threads(0);
4575   } else {
4576     while (_dirty_cards_region_list) {
4577       HeapRegion* r = _dirty_cards_region_list;
4578       cleanup_task.clear_cards(r);
4579       _dirty_cards_region_list = r->get_next_dirty_cards_region();
4580       if (_dirty_cards_region_list == r) {
4581         // The last region.
4582         _dirty_cards_region_list = NULL;
4583       }
4584       r->set_next_dirty_cards_region(NULL);
4585     }
4586     // now, redirty the cards of the survivor regions
4587     // (it seemed faster to do it this way, instead of iterating over
4588     // all regions and then clearing / dirtying as appropriate)
4589     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
4590   }
4591 
4592   double elapsed = os::elapsedTime() - start;
4593   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4594 #ifndef PRODUCT
4595   if (G1VerifyCTCleanup || VerifyAfterGC) {
4596     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
4597     heap_region_iterate(&cleanup_verifier);
4598   }
4599 #endif
4600 }
4601 
4602 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
4603   if (g1_policy()->should_do_collection_pause(word_size)) {
4604     do_collection_pause();
4605   }
4606 }
4607 
4608 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4609   double young_time_ms     = 0.0;
4610   double non_young_time_ms = 0.0;
4611 
4612   // Since the collection set is a superset of the the young list,
4613   // all we need to do to clear the young list is clear its
4614   // head and length, and unlink any young regions in the code below
4615   _young_list->clear();
4616 
4617   G1CollectorPolicy* policy = g1_policy();
4618 
4619   double start_sec = os::elapsedTime();
4620   bool non_young = true;
4621 
4622   HeapRegion* cur = cs_head;
4623   int age_bound = -1;
4624   size_t rs_lengths = 0;
4625 
4626   while (cur != NULL) {
4627     if (non_young) {
4628       if (cur->is_young()) {
4629         double end_sec = os::elapsedTime();
4630         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4631         non_young_time_ms += elapsed_ms;
4632 
4633         start_sec = os::elapsedTime();
4634         non_young = false;
4635       }
4636     } else {
4637       if (!cur->is_on_free_list()) {
4638         double end_sec = os::elapsedTime();
4639         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4640         young_time_ms += elapsed_ms;
4641 
4642         start_sec = os::elapsedTime();
4643         non_young = true;
4644       }
4645     }
4646 
4647     rs_lengths += cur->rem_set()->occupied();
4648 
4649     HeapRegion* next = cur->next_in_collection_set();
4650     assert(cur->in_collection_set(), "bad CS");
4651     cur->set_next_in_collection_set(NULL);
4652     cur->set_in_collection_set(false);
4653 
4654     if (cur->is_young()) {
4655       int index = cur->young_index_in_cset();
4656       guarantee( index != -1, "invariant" );
4657       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4658       size_t words_survived = _surviving_young_words[index];
4659       cur->record_surv_words_in_group(words_survived);
4660 
4661       // At this point the we have 'popped' cur from the collection set
4662       // (linked via next_in_collection_set()) but it is still in the
4663       // young list (linked via next_young_region()). Clear the
4664       // _next_young_region field.
4665       cur->set_next_young_region(NULL);
4666     } else {
4667       int index = cur->young_index_in_cset();
4668       guarantee( index == -1, "invariant" );
4669     }
4670 
4671     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4672             (!cur->is_young() && cur->young_index_in_cset() == -1),
4673             "invariant" );
4674 
4675     if (!cur->evacuation_failed()) {
4676       // And the region is empty.
4677       assert(!cur->is_empty(),
4678              "Should not have empty regions in a CS.");
4679       free_region(cur);
4680     } else {
4681       cur->uninstall_surv_rate_group();
4682       if (cur->is_young())
4683         cur->set_young_index_in_cset(-1);
4684       cur->set_not_young();
4685       cur->set_evacuation_failed(false);
4686     }
4687     cur = next;
4688   }
4689 
4690   policy->record_max_rs_lengths(rs_lengths);
4691   policy->cset_regions_freed();
4692 
4693   double end_sec = os::elapsedTime();
4694   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4695   if (non_young)
4696     non_young_time_ms += elapsed_ms;
4697   else
4698     young_time_ms += elapsed_ms;
4699 
4700   policy->record_young_free_cset_time_ms(young_time_ms);
4701   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4702 }
4703 
4704 // This routine is similar to the above but does not record
4705 // any policy statistics or update free lists; we are abandoning
4706 // the current incremental collection set in preparation of a
4707 // full collection. After the full GC we will start to build up
4708 // the incremental collection set again.
4709 // This is only called when we're doing a full collection
4710 // and is immediately followed by the tearing down of the young list.
4711 
4712 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
4713   HeapRegion* cur = cs_head;
4714 
4715   while (cur != NULL) {
4716     HeapRegion* next = cur->next_in_collection_set();
4717     assert(cur->in_collection_set(), "bad CS");
4718     cur->set_next_in_collection_set(NULL);
4719     cur->set_in_collection_set(false);
4720     cur->set_young_index_in_cset(-1);
4721     cur = next;
4722   }
4723 }
4724 
4725 HeapRegion*
4726 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
4727   assert(ZF_mon->owned_by_self(), "Precondition");
4728   HeapRegion* res = pop_unclean_region_list_locked();
4729   if (res != NULL) {
4730     assert(!res->continuesHumongous() &&
4731            res->zero_fill_state() != HeapRegion::Allocated,
4732            "Only free regions on unclean list.");
4733     if (zero_filled) {
4734       res->ensure_zero_filled_locked();
4735       res->set_zero_fill_allocated();
4736     }
4737   }
4738   return res;
4739 }
4740 
4741 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
4742   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
4743   return alloc_region_from_unclean_list_locked(zero_filled);
4744 }
4745 
4746 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
4747   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4748   put_region_on_unclean_list_locked(r);
4749   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4750 }
4751 
4752 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
4753   MutexLockerEx x(Cleanup_mon);
4754   set_unclean_regions_coming_locked(b);
4755 }
4756 
4757 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
4758   assert(Cleanup_mon->owned_by_self(), "Precondition");
4759   _unclean_regions_coming = b;
4760   // Wake up mutator threads that might be waiting for completeCleanup to
4761   // finish.
4762   if (!b) Cleanup_mon->notify_all();
4763 }
4764 
4765 void G1CollectedHeap::wait_for_cleanup_complete() {
4766   MutexLockerEx x(Cleanup_mon);
4767   wait_for_cleanup_complete_locked();
4768 }
4769 
4770 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
4771   assert(Cleanup_mon->owned_by_self(), "precondition");
4772   while (_unclean_regions_coming) {
4773     Cleanup_mon->wait();
4774   }
4775 }
4776 
4777 void
4778 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
4779   assert(ZF_mon->owned_by_self(), "precondition.");
4780 #ifdef ASSERT
4781   if (r->is_gc_alloc_region()) {
4782     ResourceMark rm;
4783     stringStream region_str;
4784     print_on(&region_str);
4785     assert(!r->is_gc_alloc_region(), err_msg("Unexpected GC allocation region: %s",
4786                                              region_str.as_string()));
4787   }
4788 #endif
4789   _unclean_region_list.insert_before_head(r);
4790 }
4791 
4792 void
4793 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
4794   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4795   prepend_region_list_on_unclean_list_locked(list);
4796   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4797 }
4798 
4799 void
4800 G1CollectedHeap::
4801 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
4802   assert(ZF_mon->owned_by_self(), "precondition.");
4803   _unclean_region_list.prepend_list(list);
4804 }
4805 
4806 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
4807   assert(ZF_mon->owned_by_self(), "precondition.");
4808   HeapRegion* res = _unclean_region_list.pop();
4809   if (res != NULL) {
4810     // Inform ZF thread that there's a new unclean head.
4811     if (_unclean_region_list.hd() != NULL && should_zf())
4812       ZF_mon->notify_all();
4813   }
4814   return res;
4815 }
4816 
4817 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
4818   assert(ZF_mon->owned_by_self(), "precondition.");
4819   return _unclean_region_list.hd();
4820 }
4821 
4822 
4823 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
4824   assert(ZF_mon->owned_by_self(), "Precondition");
4825   HeapRegion* r = peek_unclean_region_list_locked();
4826   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
4827     // Result of below must be equal to "r", since we hold the lock.
4828     (void)pop_unclean_region_list_locked();
4829     put_free_region_on_list_locked(r);
4830     return true;
4831   } else {
4832     return false;
4833   }
4834 }
4835 
4836 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
4837   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4838   return move_cleaned_region_to_free_list_locked();
4839 }
4840 
4841 
4842 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
4843   assert(ZF_mon->owned_by_self(), "precondition.");
4844   assert(_free_region_list_size == free_region_list_length(), "Inv");
4845   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
4846         "Regions on free list must be zero filled");
4847   assert(!r->isHumongous(), "Must not be humongous.");
4848   assert(r->is_empty(), "Better be empty");
4849   assert(!r->is_on_free_list(),
4850          "Better not already be on free list");
4851   assert(!r->is_on_unclean_list(),
4852          "Better not already be on unclean list");
4853   r->set_on_free_list(true);
4854   r->set_next_on_free_list(_free_region_list);
4855   _free_region_list = r;
4856   _free_region_list_size++;
4857   assert(_free_region_list_size == free_region_list_length(), "Inv");
4858 }
4859 
4860 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
4861   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4862   put_free_region_on_list_locked(r);
4863 }
4864 
4865 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
4866   assert(ZF_mon->owned_by_self(), "precondition.");
4867   assert(_free_region_list_size == free_region_list_length(), "Inv");
4868   HeapRegion* res = _free_region_list;
4869   if (res != NULL) {
4870     _free_region_list = res->next_from_free_list();
4871     _free_region_list_size--;
4872     res->set_on_free_list(false);
4873     res->set_next_on_free_list(NULL);
4874     assert(_free_region_list_size == free_region_list_length(), "Inv");
4875   }
4876   return res;
4877 }
4878 
4879 
4880 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
4881   // By self, or on behalf of self.
4882   assert(Heap_lock->is_locked(), "Precondition");
4883   HeapRegion* res = NULL;
4884   bool first = true;
4885   while (res == NULL) {
4886     if (zero_filled || !first) {
4887       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4888       res = pop_free_region_list_locked();
4889       if (res != NULL) {
4890         assert(!res->zero_fill_is_allocated(),
4891                "No allocated regions on free list.");
4892         res->set_zero_fill_allocated();
4893       } else if (!first) {
4894         break;  // We tried both, time to return NULL.
4895       }
4896     }
4897 
4898     if (res == NULL) {
4899       res = alloc_region_from_unclean_list(zero_filled);
4900     }
4901     assert(res == NULL ||
4902            !zero_filled ||
4903            res->zero_fill_is_allocated(),
4904            "We must have allocated the region we're returning");
4905     first = false;
4906   }
4907   return res;
4908 }
4909 
4910 void G1CollectedHeap::remove_allocated_regions_from_lists() {
4911   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4912   {
4913     HeapRegion* prev = NULL;
4914     HeapRegion* cur = _unclean_region_list.hd();
4915     while (cur != NULL) {
4916       HeapRegion* next = cur->next_from_unclean_list();
4917       if (cur->zero_fill_is_allocated()) {
4918         // Remove from the list.
4919         if (prev == NULL) {
4920           (void)_unclean_region_list.pop();
4921         } else {
4922           _unclean_region_list.delete_after(prev);
4923         }
4924         cur->set_on_unclean_list(false);
4925         cur->set_next_on_unclean_list(NULL);
4926       } else {
4927         prev = cur;
4928       }
4929       cur = next;
4930     }
4931     assert(_unclean_region_list.sz() == unclean_region_list_length(),
4932            "Inv");
4933   }
4934 
4935   {
4936     HeapRegion* prev = NULL;
4937     HeapRegion* cur = _free_region_list;
4938     while (cur != NULL) {
4939       HeapRegion* next = cur->next_from_free_list();
4940       if (cur->zero_fill_is_allocated()) {
4941         // Remove from the list.
4942         if (prev == NULL) {
4943           _free_region_list = cur->next_from_free_list();
4944         } else {
4945           prev->set_next_on_free_list(cur->next_from_free_list());
4946         }
4947         cur->set_on_free_list(false);
4948         cur->set_next_on_free_list(NULL);
4949         _free_region_list_size--;
4950       } else {
4951         prev = cur;
4952       }
4953       cur = next;
4954     }
4955     assert(_free_region_list_size == free_region_list_length(), "Inv");
4956   }
4957 }
4958 
4959 bool G1CollectedHeap::verify_region_lists() {
4960   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4961   return verify_region_lists_locked();
4962 }
4963 
4964 bool G1CollectedHeap::verify_region_lists_locked() {
4965   HeapRegion* unclean = _unclean_region_list.hd();
4966   while (unclean != NULL) {
4967     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
4968     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
4969     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
4970               "Everything else is possible.");
4971     unclean = unclean->next_from_unclean_list();
4972   }
4973   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
4974 
4975   HeapRegion* free_r = _free_region_list;
4976   while (free_r != NULL) {
4977     assert(free_r->is_on_free_list(), "Well, it is!");
4978     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
4979     switch (free_r->zero_fill_state()) {
4980     case HeapRegion::NotZeroFilled:
4981     case HeapRegion::ZeroFilling:
4982       guarantee(false, "Should not be on free list.");
4983       break;
4984     default:
4985       // Everything else is possible.
4986       break;
4987     }
4988     free_r = free_r->next_from_free_list();
4989   }
4990   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
4991   // If we didn't do an assertion...
4992   return true;
4993 }
4994 
4995 size_t G1CollectedHeap::free_region_list_length() {
4996   assert(ZF_mon->owned_by_self(), "precondition.");
4997   size_t len = 0;
4998   HeapRegion* cur = _free_region_list;
4999   while (cur != NULL) {
5000     len++;
5001     cur = cur->next_from_free_list();
5002   }
5003   return len;
5004 }
5005 
5006 size_t G1CollectedHeap::unclean_region_list_length() {
5007   assert(ZF_mon->owned_by_self(), "precondition.");
5008   return _unclean_region_list.length();
5009 }
5010 
5011 size_t G1CollectedHeap::n_regions() {
5012   return _hrs->length();
5013 }
5014 
5015 size_t G1CollectedHeap::max_regions() {
5016   return
5017     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
5018     HeapRegion::GrainBytes;
5019 }
5020 
5021 size_t G1CollectedHeap::free_regions() {
5022   /* Possibly-expensive assert.
5023   assert(_free_regions == count_free_regions(),
5024          "_free_regions is off.");
5025   */
5026   return _free_regions;
5027 }
5028 
5029 bool G1CollectedHeap::should_zf() {
5030   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
5031 }
5032 
5033 class RegionCounter: public HeapRegionClosure {
5034   size_t _n;
5035 public:
5036   RegionCounter() : _n(0) {}
5037   bool doHeapRegion(HeapRegion* r) {
5038     if (r->is_empty()) {
5039       assert(!r->isHumongous(), "H regions should not be empty.");
5040       _n++;
5041     }
5042     return false;
5043   }
5044   int res() { return (int) _n; }
5045 };
5046 
5047 size_t G1CollectedHeap::count_free_regions() {
5048   RegionCounter rc;
5049   heap_region_iterate(&rc);
5050   size_t n = rc.res();
5051   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
5052     n--;
5053   return n;
5054 }
5055 
5056 size_t G1CollectedHeap::count_free_regions_list() {
5057   size_t n = 0;
5058   size_t o = 0;
5059   ZF_mon->lock_without_safepoint_check();
5060   HeapRegion* cur = _free_region_list;
5061   while (cur != NULL) {
5062     cur = cur->next_from_free_list();
5063     n++;
5064   }
5065   size_t m = unclean_region_list_length();
5066   ZF_mon->unlock();
5067   return n + m;
5068 }
5069 
5070 bool G1CollectedHeap::should_set_young_locked() {
5071   assert(heap_lock_held_for_gc(),
5072               "the heap lock should already be held by or for this thread");
5073   return  (g1_policy()->in_young_gc_mode() &&
5074            g1_policy()->should_add_next_region_to_young_list());
5075 }
5076 
5077 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5078   assert(heap_lock_held_for_gc(),
5079               "the heap lock should already be held by or for this thread");
5080   _young_list->push_region(hr);
5081   g1_policy()->set_region_short_lived(hr);
5082 }
5083 
5084 class NoYoungRegionsClosure: public HeapRegionClosure {
5085 private:
5086   bool _success;
5087 public:
5088   NoYoungRegionsClosure() : _success(true) { }
5089   bool doHeapRegion(HeapRegion* r) {
5090     if (r->is_young()) {
5091       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5092                              r->bottom(), r->end());
5093       _success = false;
5094     }
5095     return false;
5096   }
5097   bool success() { return _success; }
5098 };
5099 
5100 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5101   bool ret = _young_list->check_list_empty(check_sample);
5102 
5103   if (check_heap) {
5104     NoYoungRegionsClosure closure;
5105     heap_region_iterate(&closure);
5106     ret = ret && closure.success();
5107   }
5108 
5109   return ret;
5110 }
5111 
5112 void G1CollectedHeap::empty_young_list() {
5113   assert(heap_lock_held_for_gc(),
5114               "the heap lock should already be held by or for this thread");
5115   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
5116 
5117   _young_list->empty_list();
5118 }
5119 
5120 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
5121   bool no_allocs = true;
5122   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
5123     HeapRegion* r = _gc_alloc_regions[ap];
5124     no_allocs = r == NULL || r->saved_mark_at_top();
5125   }
5126   return no_allocs;
5127 }
5128 
5129 void G1CollectedHeap::retire_all_alloc_regions() {
5130   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
5131     HeapRegion* r = _gc_alloc_regions[ap];
5132     if (r != NULL) {
5133       // Check for aliases.
5134       bool has_processed_alias = false;
5135       for (int i = 0; i < ap; ++i) {
5136         if (_gc_alloc_regions[i] == r) {
5137           has_processed_alias = true;
5138           break;
5139         }
5140       }
5141       if (!has_processed_alias) {
5142         retire_alloc_region(r, false /* par */);
5143       }
5144     }
5145   }
5146 }
5147 
5148 
5149 // Done at the start of full GC.
5150 void G1CollectedHeap::tear_down_region_lists() {
5151   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5152   while (pop_unclean_region_list_locked() != NULL) ;
5153   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
5154          "Postconditions of loop.");
5155   while (pop_free_region_list_locked() != NULL) ;
5156   assert(_free_region_list == NULL, "Postcondition of loop.");
5157   if (_free_region_list_size != 0) {
5158     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
5159     print_on(gclog_or_tty, true /* extended */);
5160   }
5161   assert(_free_region_list_size == 0, "Postconditions of loop.");
5162 }
5163 
5164 
5165 class RegionResetter: public HeapRegionClosure {
5166   G1CollectedHeap* _g1;
5167   int _n;
5168 public:
5169   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5170   bool doHeapRegion(HeapRegion* r) {
5171     if (r->continuesHumongous()) return false;
5172     if (r->top() > r->bottom()) {
5173       if (r->top() < r->end()) {
5174         Copy::fill_to_words(r->top(),
5175                           pointer_delta(r->end(), r->top()));
5176       }
5177       r->set_zero_fill_allocated();
5178     } else {
5179       assert(r->is_empty(), "tautology");
5180       _n++;
5181       switch (r->zero_fill_state()) {
5182         case HeapRegion::NotZeroFilled:
5183         case HeapRegion::ZeroFilling:
5184           _g1->put_region_on_unclean_list_locked(r);
5185           break;
5186         case HeapRegion::Allocated:
5187           r->set_zero_fill_complete();
5188           // no break; go on to put on free list.
5189         case HeapRegion::ZeroFilled:
5190           _g1->put_free_region_on_list_locked(r);
5191           break;
5192       }
5193     }
5194     return false;
5195   }
5196 
5197   int getFreeRegionCount() {return _n;}
5198 };
5199 
5200 // Done at the end of full GC.
5201 void G1CollectedHeap::rebuild_region_lists() {
5202   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5203   // This needs to go at the end of the full GC.
5204   RegionResetter rs;
5205   heap_region_iterate(&rs);
5206   _free_regions = rs.getFreeRegionCount();
5207   // Tell the ZF thread it may have work to do.
5208   if (should_zf()) ZF_mon->notify_all();
5209 }
5210 
5211 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
5212   G1CollectedHeap* _g1;
5213   int _n;
5214 public:
5215   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5216   bool doHeapRegion(HeapRegion* r) {
5217     if (r->continuesHumongous()) return false;
5218     if (r->top() > r->bottom()) {
5219       // There are assertions in "set_zero_fill_needed()" below that
5220       // require top() == bottom(), so this is technically illegal.
5221       // We'll skirt the law here, by making that true temporarily.
5222       DEBUG_ONLY(HeapWord* save_top = r->top();
5223                  r->set_top(r->bottom()));
5224       r->set_zero_fill_needed();
5225       DEBUG_ONLY(r->set_top(save_top));
5226     }
5227     return false;
5228   }
5229 };
5230 
5231 // Done at the start of full GC.
5232 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
5233   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5234   // This needs to go at the end of the full GC.
5235   UsedRegionsNeedZeroFillSetter rs;
5236   heap_region_iterate(&rs);
5237 }
5238 
5239 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5240   _refine_cte_cl->set_concurrent(concurrent);
5241 }
5242 
5243 #ifndef PRODUCT
5244 
5245 class PrintHeapRegionClosure: public HeapRegionClosure {
5246 public:
5247   bool doHeapRegion(HeapRegion *r) {
5248     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
5249     if (r != NULL) {
5250       if (r->is_on_free_list())
5251         gclog_or_tty->print("Free ");
5252       if (r->is_young())
5253         gclog_or_tty->print("Young ");
5254       if (r->isHumongous())
5255         gclog_or_tty->print("Is Humongous ");
5256       r->print();
5257     }
5258     return false;
5259   }
5260 };
5261 
5262 class SortHeapRegionClosure : public HeapRegionClosure {
5263   size_t young_regions,free_regions, unclean_regions;
5264   size_t hum_regions, count;
5265   size_t unaccounted, cur_unclean, cur_alloc;
5266   size_t total_free;
5267   HeapRegion* cur;
5268 public:
5269   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
5270     free_regions(0), unclean_regions(0),
5271     hum_regions(0),
5272     count(0), unaccounted(0),
5273     cur_alloc(0), total_free(0)
5274   {}
5275   bool doHeapRegion(HeapRegion *r) {
5276     count++;
5277     if (r->is_on_free_list()) free_regions++;
5278     else if (r->is_on_unclean_list()) unclean_regions++;
5279     else if (r->isHumongous())  hum_regions++;
5280     else if (r->is_young()) young_regions++;
5281     else if (r == cur) cur_alloc++;
5282     else unaccounted++;
5283     return false;
5284   }
5285   void print() {
5286     total_free = free_regions + unclean_regions;
5287     gclog_or_tty->print("%d regions\n", count);
5288     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
5289                         total_free, free_regions, unclean_regions);
5290     gclog_or_tty->print("%d humongous %d young\n",
5291                         hum_regions, young_regions);
5292     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
5293     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
5294   }
5295 };
5296 
5297 void G1CollectedHeap::print_region_counts() {
5298   SortHeapRegionClosure sc(_cur_alloc_region);
5299   PrintHeapRegionClosure cl;
5300   heap_region_iterate(&cl);
5301   heap_region_iterate(&sc);
5302   sc.print();
5303   print_region_accounting_info();
5304 };
5305 
5306 bool G1CollectedHeap::regions_accounted_for() {
5307   // TODO: regions accounting for young/survivor/tenured
5308   return true;
5309 }
5310 
5311 bool G1CollectedHeap::print_region_accounting_info() {
5312   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
5313                          free_regions(),
5314                          count_free_regions(), count_free_regions_list(),
5315                          _free_region_list_size, _unclean_region_list.sz());
5316   gclog_or_tty->print_cr("cur_alloc: %d.",
5317                          (_cur_alloc_region == NULL ? 0 : 1));
5318   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
5319 
5320   // TODO: check regions accounting for young/survivor/tenured
5321   return true;
5322 }
5323 
5324 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5325   HeapRegion* hr = heap_region_containing(p);
5326   if (hr == NULL) {
5327     return is_in_permanent(p);
5328   } else {
5329     return hr->is_in(p);
5330   }
5331 }
5332 #endif // !PRODUCT
5333 
5334 void G1CollectedHeap::g1_unimplemented() {
5335   // Unimplemented();
5336 }