1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_g1CollectorPolicy.cpp.incl"
  27 
  28 #define PREDICTIONS_VERBOSE 0
  29 
  30 // <NEW PREDICTION>
  31 
  32 // Different defaults for different number of GC threads
  33 // They were chosen by running GCOld and SPECjbb on debris with different
  34 //   numbers of GC threads and choosing them based on the results
  35 
  36 // all the same
  37 static double rs_length_diff_defaults[] = {
  38   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  39 };
  40 
  41 static double cost_per_card_ms_defaults[] = {
  42   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  43 };
  44 
  45 // all the same
  46 static double fully_young_cards_per_entry_ratio_defaults[] = {
  47   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  48 };
  49 
  50 static double cost_per_entry_ms_defaults[] = {
  51   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  52 };
  53 
  54 static double cost_per_byte_ms_defaults[] = {
  55   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  56 };
  57 
  58 // these should be pretty consistent
  59 static double constant_other_time_ms_defaults[] = {
  60   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  61 };
  62 
  63 
  64 static double young_other_cost_per_region_ms_defaults[] = {
  65   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  66 };
  67 
  68 static double non_young_other_cost_per_region_ms_defaults[] = {
  69   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  70 };
  71 
  72 // </NEW PREDICTION>
  73 
  74 G1CollectorPolicy::G1CollectorPolicy() :
  75   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  76     ? ParallelGCThreads : 1),
  77 
  78 
  79   _n_pauses(0),
  80   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  81   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  82   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  83   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  84   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _all_pause_times_ms(new NumberSeq()),
  87   _stop_world_start(0.0),
  88   _all_stop_world_times_ms(new NumberSeq()),
  89   _all_yield_times_ms(new NumberSeq()),
  90 
  91   _all_mod_union_times_ms(new NumberSeq()),
  92 
  93   _summary(new Summary()),
  94 
  95 #ifndef PRODUCT
  96   _cur_clear_ct_time_ms(0.0),
  97   _min_clear_cc_time_ms(-1.0),
  98   _max_clear_cc_time_ms(-1.0),
  99   _cur_clear_cc_time_ms(0.0),
 100   _cum_clear_cc_time_ms(0.0),
 101   _num_cc_clears(0L),
 102 #endif
 103 
 104   _region_num_young(0),
 105   _region_num_tenured(0),
 106   _prev_region_num_young(0),
 107   _prev_region_num_tenured(0),
 108 
 109   _aux_num(10),
 110   _all_aux_times_ms(new NumberSeq[_aux_num]),
 111   _cur_aux_start_times_ms(new double[_aux_num]),
 112   _cur_aux_times_ms(new double[_aux_num]),
 113   _cur_aux_times_set(new bool[_aux_num]),
 114 
 115   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 116   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 117   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 118 
 119   // <NEW PREDICTION>
 120 
 121   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 122   _prev_collection_pause_end_ms(0.0),
 123   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 124   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 125   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 126   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 127   _partially_young_cards_per_entry_ratio_seq(
 128                                          new TruncatedSeq(TruncatedSeqLength)),
 129   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 130   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 131   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 132   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 133   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 134   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 135   _non_young_other_cost_per_region_ms_seq(
 136                                          new TruncatedSeq(TruncatedSeqLength)),
 137 
 138   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 139   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 140   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 141 
 142   _pause_time_target_ms((double) MaxGCPauseMillis),
 143 
 144   // </NEW PREDICTION>
 145 
 146   _in_young_gc_mode(false),
 147   _full_young_gcs(true),
 148   _full_young_pause_num(0),
 149   _partial_young_pause_num(0),
 150 
 151   _during_marking(false),
 152   _in_marking_window(false),
 153   _in_marking_window_im(false),
 154 
 155   _known_garbage_ratio(0.0),
 156   _known_garbage_bytes(0),
 157 
 158   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 159 
 160    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
 161 
 162   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
 163   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
 164 
 165   _recent_avg_pause_time_ratio(0.0),
 166   _num_markings(0),
 167   _n_marks(0),
 168   _n_pauses_at_mark_end(0),
 169 
 170   _all_full_gc_times_ms(new NumberSeq()),
 171 
 172   // G1PausesBtwnConcMark defaults to -1
 173   // so the hack is to do the cast  QQQ FIXME
 174   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
 175   _n_marks_since_last_pause(0),
 176   _initiate_conc_mark_if_possible(false),
 177   _during_initial_mark_pause(false),
 178   _should_revert_to_full_young_gcs(false),
 179   _last_full_young_gc(false),
 180 
 181   _prev_collection_pause_used_at_end_bytes(0),
 182 
 183   _collection_set(NULL),
 184   _collection_set_size(0),
 185   _collection_set_bytes_used_before(0),
 186 
 187   // Incremental CSet attributes
 188   _inc_cset_build_state(Inactive),
 189   _inc_cset_head(NULL),
 190   _inc_cset_tail(NULL),
 191   _inc_cset_size(0),
 192   _inc_cset_young_index(0),
 193   _inc_cset_bytes_used_before(0),
 194   _inc_cset_max_finger(NULL),
 195   _inc_cset_recorded_young_bytes(0),
 196   _inc_cset_recorded_rs_lengths(0),
 197   _inc_cset_predicted_elapsed_time_ms(0.0),
 198   _inc_cset_predicted_bytes_to_copy(0),
 199 
 200 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 201 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 202 #endif // _MSC_VER
 203 
 204   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 205                                                  G1YoungSurvRateNumRegionsSummary)),
 206   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 207                                               G1YoungSurvRateNumRegionsSummary)),
 208   // add here any more surv rate groups
 209   _recorded_survivor_regions(0),
 210   _recorded_survivor_head(NULL),
 211   _recorded_survivor_tail(NULL),
 212   _survivors_age_table(true),
 213 
 214   _gc_overhead_perc(0.0)
 215 
 216 {
 217   // Set up the region size and associated fields. Given that the
 218   // policy is created before the heap, we have to set this up here,
 219   // so it's done as soon as possible.
 220   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 221   HeapRegionRemSet::setup_remset_size();
 222 
 223   // Verify PLAB sizes
 224   const uint region_size = HeapRegion::GrainWords;
 225   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 226     char buffer[128];
 227     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
 228                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 229     vm_exit_during_initialization(buffer);
 230   }
 231 
 232   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 233   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 234 
 235   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 236   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 237   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 238 
 239   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 240   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 241 
 242   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 243 
 244   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 245 
 246   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 247   _par_last_termination_attempts = new double[_parallel_gc_threads];
 248   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 249 
 250   // start conservatively
 251   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 252 
 253   // <NEW PREDICTION>
 254 
 255   int index;
 256   if (ParallelGCThreads == 0)
 257     index = 0;
 258   else if (ParallelGCThreads > 8)
 259     index = 7;
 260   else
 261     index = ParallelGCThreads - 1;
 262 
 263   _pending_card_diff_seq->add(0.0);
 264   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 265   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 266   _fully_young_cards_per_entry_ratio_seq->add(
 267                             fully_young_cards_per_entry_ratio_defaults[index]);
 268   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 269   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 270   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 271   _young_other_cost_per_region_ms_seq->add(
 272                                young_other_cost_per_region_ms_defaults[index]);
 273   _non_young_other_cost_per_region_ms_seq->add(
 274                            non_young_other_cost_per_region_ms_defaults[index]);
 275 
 276   // </NEW PREDICTION>
 277 
 278   // Below, we might need to calculate the pause time target based on
 279   // the pause interval. When we do so we are going to give G1 maximum
 280   // flexibility and allow it to do pauses when it needs to. So, we'll
 281   // arrange that the pause interval to be pause time target + 1 to
 282   // ensure that a) the pause time target is maximized with respect to
 283   // the pause interval and b) we maintain the invariant that pause
 284   // time target < pause interval. If the user does not want this
 285   // maximum flexibility, they will have to set the pause interval
 286   // explicitly.
 287 
 288   // First make sure that, if either parameter is set, its value is
 289   // reasonable.
 290   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 291     if (MaxGCPauseMillis < 1) {
 292       vm_exit_during_initialization("MaxGCPauseMillis should be "
 293                                     "greater than 0");
 294     }
 295   }
 296   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 297     if (GCPauseIntervalMillis < 1) {
 298       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 299                                     "greater than 0");
 300     }
 301   }
 302 
 303   // Then, if the pause time target parameter was not set, set it to
 304   // the default value.
 305   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 306     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 307       // The default pause time target in G1 is 200ms
 308       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 309     } else {
 310       // We do not allow the pause interval to be set without the
 311       // pause time target
 312       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 313                                     "without setting MaxGCPauseMillis");
 314     }
 315   }
 316 
 317   // Then, if the interval parameter was not set, set it according to
 318   // the pause time target (this will also deal with the case when the
 319   // pause time target is the default value).
 320   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 321     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 322   }
 323 
 324   // Finally, make sure that the two parameters are consistent.
 325   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 326     char buffer[256];
 327     jio_snprintf(buffer, 256,
 328                  "MaxGCPauseMillis (%u) should be less than "
 329                  "GCPauseIntervalMillis (%u)",
 330                  MaxGCPauseMillis, GCPauseIntervalMillis);
 331     vm_exit_during_initialization(buffer);
 332   }
 333 
 334   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 335   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 336   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 337   _sigma = (double) G1ConfidencePercent / 100.0;
 338 
 339   // start conservatively (around 50ms is about right)
 340   _concurrent_mark_init_times_ms->add(0.05);
 341   _concurrent_mark_remark_times_ms->add(0.05);
 342   _concurrent_mark_cleanup_times_ms->add(0.20);
 343   _tenuring_threshold = MaxTenuringThreshold;
 344 
 345   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
 346   // fixed, then _max_survivor_regions will be calculated at
 347   // calculate_young_list_target_length during initialization
 348   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
 349 
 350   assert(GCTimeRatio > 0,
 351          "we should have set it to a default value set_g1_gc_flags() "
 352          "if a user set it to 0");
 353   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 354 
 355   initialize_all();
 356 }
 357 
 358 // Increment "i", mod "len"
 359 static void inc_mod(int& i, int len) {
 360   i++; if (i == len) i = 0;
 361 }
 362 
 363 void G1CollectorPolicy::initialize_flags() {
 364   set_min_alignment(HeapRegion::GrainBytes);
 365   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 366   if (SurvivorRatio < 1) {
 367     vm_exit_during_initialization("Invalid survivor ratio specified");
 368   }
 369   CollectorPolicy::initialize_flags();
 370 }
 371 
 372 // The easiest way to deal with the parsing of the NewSize /
 373 // MaxNewSize / etc. parameteres is to re-use the code in the
 374 // TwoGenerationCollectorPolicy class. This is similar to what
 375 // ParallelScavenge does with its GenerationSizer class (see
 376 // ParallelScavengeHeap::initialize()). We might change this in the
 377 // future, but it's a good start.
 378 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
 379   size_t size_to_region_num(size_t byte_size) {
 380     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
 381   }
 382 
 383 public:
 384   G1YoungGenSizer() {
 385     initialize_flags();
 386     initialize_size_info();
 387   }
 388 
 389   size_t min_young_region_num() {
 390     return size_to_region_num(_min_gen0_size);
 391   }
 392   size_t initial_young_region_num() {
 393     return size_to_region_num(_initial_gen0_size);
 394   }
 395   size_t max_young_region_num() {
 396     return size_to_region_num(_max_gen0_size);
 397   }
 398 };
 399 
 400 void G1CollectorPolicy::init() {
 401   // Set aside an initial future to_space.
 402   _g1 = G1CollectedHeap::heap();
 403 
 404   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 405 
 406   initialize_gc_policy_counters();
 407 
 408   if (G1Gen) {
 409     _in_young_gc_mode = true;
 410 
 411     G1YoungGenSizer sizer;
 412     size_t initial_region_num = sizer.initial_young_region_num();
 413 
 414     if (UseAdaptiveSizePolicy) {
 415       set_adaptive_young_list_length(true);
 416       _young_list_fixed_length = 0;
 417     } else {
 418       set_adaptive_young_list_length(false);
 419       _young_list_fixed_length = initial_region_num;
 420     }
 421     _free_regions_at_end_of_collection = _g1->free_regions();
 422     calculate_young_list_min_length();
 423     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
 424     calculate_young_list_target_length();
 425   } else {
 426      _young_list_fixed_length = 0;
 427     _in_young_gc_mode = false;
 428   }
 429 
 430   // We may immediately start allocating regions and placing them on the
 431   // collection set list. Initialize the per-collection set info
 432   start_incremental_cset_building();
 433 }
 434 
 435 // Create the jstat counters for the policy.
 436 void G1CollectorPolicy::initialize_gc_policy_counters()
 437 {
 438   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
 439 }
 440 
 441 void G1CollectorPolicy::calculate_young_list_min_length() {
 442   _young_list_min_length = 0;
 443 
 444   if (!adaptive_young_list_length())
 445     return;
 446 
 447   if (_alloc_rate_ms_seq->num() > 3) {
 448     double now_sec = os::elapsedTime();
 449     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 450     double alloc_rate_ms = predict_alloc_rate_ms();
 451     int min_regions = (int) ceil(alloc_rate_ms * when_ms);
 452     int current_region_num = (int) _g1->young_list()->length();
 453     _young_list_min_length = min_regions + current_region_num;
 454   }
 455 }
 456 
 457 void G1CollectorPolicy::calculate_young_list_target_length() {
 458   if (adaptive_young_list_length()) {
 459     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 460     calculate_young_list_target_length(rs_lengths);
 461   } else {
 462     if (full_young_gcs())
 463       _young_list_target_length = _young_list_fixed_length;
 464     else
 465       _young_list_target_length = _young_list_fixed_length / 2;
 466 
 467     _young_list_target_length = MAX2(_young_list_target_length, (size_t)1);
 468   }
 469   calculate_survivors_policy();
 470 }
 471 
 472 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
 473   guarantee( adaptive_young_list_length(), "pre-condition" );
 474   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
 475 
 476   double start_time_sec = os::elapsedTime();
 477   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
 478   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
 479   size_t reserve_regions =
 480     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
 481 
 482   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
 483     // we are in fully-young mode and there are free regions in the heap
 484 
 485     double survivor_regions_evac_time =
 486         predict_survivor_regions_evac_time();
 487 
 488     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 489     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 490     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 491     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 492     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
 493                           + survivor_regions_evac_time;
 494 
 495     // the result
 496     size_t final_young_length = 0;
 497 
 498     size_t init_free_regions =
 499       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
 500 
 501     // if we're still under the pause target...
 502     if (base_time_ms <= target_pause_time_ms) {
 503       // We make sure that the shortest young length that makes sense
 504       // fits within the target pause time.
 505       size_t min_young_length = 1;
 506 
 507       if (predict_will_fit(min_young_length, base_time_ms,
 508                                      init_free_regions, target_pause_time_ms)) {
 509         // The shortest young length will fit within the target pause time;
 510         // we'll now check whether the absolute maximum number of young
 511         // regions will fit in the target pause time. If not, we'll do
 512         // a binary search between min_young_length and max_young_length
 513         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
 514         size_t max_young_length = abs_max_young_length;
 515 
 516         if (max_young_length > min_young_length) {
 517           // Let's check if the initial max young length will fit within the
 518           // target pause. If so then there is no need to search for a maximal
 519           // young length - we'll return the initial maximum
 520 
 521           if (predict_will_fit(max_young_length, base_time_ms,
 522                                 init_free_regions, target_pause_time_ms)) {
 523             // The maximum young length will satisfy the target pause time.
 524             // We are done so set min young length to this maximum length.
 525             // The code after the loop will then set final_young_length using
 526             // the value cached in the minimum length.
 527             min_young_length = max_young_length;
 528           } else {
 529             // The maximum possible number of young regions will not fit within
 530             // the target pause time so let's search....
 531 
 532             size_t diff = (max_young_length - min_young_length) / 2;
 533             max_young_length = min_young_length + diff;
 534 
 535             while (max_young_length > min_young_length) {
 536               if (predict_will_fit(max_young_length, base_time_ms,
 537                                         init_free_regions, target_pause_time_ms)) {
 538 
 539                 // The current max young length will fit within the target
 540                 // pause time. Note we do not exit the loop here. By setting
 541                 // min = max, and then increasing the max below means that
 542                 // we will continue searching for an upper bound in the
 543                 // range [max..max+diff]
 544                 min_young_length = max_young_length;
 545               }
 546               diff = (max_young_length - min_young_length) / 2;
 547               max_young_length = min_young_length + diff;
 548             }
 549             // the above loop found a maximal young length that will fit
 550             // within the target pause time.
 551           }
 552           assert(min_young_length <= abs_max_young_length, "just checking");
 553         }
 554         final_young_length = min_young_length;
 555       }
 556     }
 557     // and we're done!
 558 
 559     // we should have at least one region in the target young length
 560     _young_list_target_length =
 561         MAX2((size_t) 1, final_young_length + _recorded_survivor_regions);
 562 
 563     // let's keep an eye of how long we spend on this calculation
 564     // right now, I assume that we'll print it when we need it; we
 565     // should really adde it to the breakdown of a pause
 566     double end_time_sec = os::elapsedTime();
 567     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
 568 
 569 #ifdef TRACE_CALC_YOUNG_LENGTH
 570     // leave this in for debugging, just in case
 571     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
 572                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
 573                            target_pause_time_ms,
 574                            _young_list_target_length
 575                            elapsed_time_ms,
 576                            full_young_gcs() ? "full" : "partial",
 577                            during_initial_mark_pause() ? " i-m" : "",
 578                            _in_marking_window,
 579                            _in_marking_window_im);
 580 #endif // TRACE_CALC_YOUNG_LENGTH
 581 
 582     if (_young_list_target_length < _young_list_min_length) {
 583       // bummer; this means that, if we do a pause when the maximal
 584       // length dictates, we'll violate the pause spacing target (the
 585       // min length was calculate based on the application's current
 586       // alloc rate);
 587 
 588       // so, we have to bite the bullet, and allocate the minimum
 589       // number. We'll violate our target, but we just can't meet it.
 590 
 591 #ifdef TRACE_CALC_YOUNG_LENGTH
 592       // leave this in for debugging, just in case
 593       gclog_or_tty->print_cr("adjusted target length from "
 594                              SIZE_FORMAT " to " SIZE_FORMAT,
 595                              _young_list_target_length, _young_list_min_length);
 596 #endif // TRACE_CALC_YOUNG_LENGTH
 597 
 598       _young_list_target_length = _young_list_min_length;
 599     }
 600   } else {
 601     // we are in a partially-young mode or we've run out of regions (due
 602     // to evacuation failure)
 603 
 604 #ifdef TRACE_CALC_YOUNG_LENGTH
 605     // leave this in for debugging, just in case
 606     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
 607                            _young_list_min_length);
 608 #endif // TRACE_CALC_YOUNG_LENGTH
 609     // we'll do the pause as soon as possible by choosing the minimum
 610     _young_list_target_length =
 611       MAX2(_young_list_min_length, (size_t) 1);
 612   }
 613 
 614   _rs_lengths_prediction = rs_lengths;
 615 }
 616 
 617 // This is used by: calculate_young_list_target_length(rs_length). It
 618 // returns true iff:
 619 //   the predicted pause time for the given young list will not overflow
 620 //   the target pause time
 621 // and:
 622 //   the predicted amount of surviving data will not overflow the
 623 //   the amount of free space available for survivor regions.
 624 //
 625 bool
 626 G1CollectorPolicy::predict_will_fit(size_t young_length,
 627                                     double base_time_ms,
 628                                     size_t init_free_regions,
 629                                     double target_pause_time_ms) {
 630 
 631   if (young_length >= init_free_regions)
 632     // end condition 1: not enough space for the young regions
 633     return false;
 634 
 635   double accum_surv_rate_adj = 0.0;
 636   double accum_surv_rate =
 637     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
 638 
 639   size_t bytes_to_copy =
 640     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 641 
 642   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 643 
 644   double young_other_time_ms =
 645                        predict_young_other_time_ms(young_length);
 646 
 647   double pause_time_ms =
 648                    base_time_ms + copy_time_ms + young_other_time_ms;
 649 
 650   if (pause_time_ms > target_pause_time_ms)
 651     // end condition 2: over the target pause time
 652     return false;
 653 
 654   size_t free_bytes =
 655                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
 656 
 657   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
 658     // end condition 3: out of to-space (conservatively)
 659     return false;
 660 
 661   // success!
 662   return true;
 663 }
 664 
 665 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 666   double survivor_regions_evac_time = 0.0;
 667   for (HeapRegion * r = _recorded_survivor_head;
 668        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 669        r = r->get_next_young_region()) {
 670     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 671   }
 672   return survivor_regions_evac_time;
 673 }
 674 
 675 void G1CollectorPolicy::check_prediction_validity() {
 676   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 677 
 678   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 679   if (rs_lengths > _rs_lengths_prediction) {
 680     // add 10% to avoid having to recalculate often
 681     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 682     calculate_young_list_target_length(rs_lengths_prediction);
 683   }
 684 }
 685 
 686 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 687                                                bool is_tlab,
 688                                                bool* gc_overhead_limit_was_exceeded) {
 689   guarantee(false, "Not using this policy feature yet.");
 690   return NULL;
 691 }
 692 
 693 // This method controls how a collector handles one or more
 694 // of its generations being fully allocated.
 695 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 696                                                        bool is_tlab) {
 697   guarantee(false, "Not using this policy feature yet.");
 698   return NULL;
 699 }
 700 
 701 
 702 #ifndef PRODUCT
 703 bool G1CollectorPolicy::verify_young_ages() {
 704   HeapRegion* head = _g1->young_list()->first_region();
 705   return
 706     verify_young_ages(head, _short_lived_surv_rate_group);
 707   // also call verify_young_ages on any additional surv rate groups
 708 }
 709 
 710 bool
 711 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 712                                      SurvRateGroup *surv_rate_group) {
 713   guarantee( surv_rate_group != NULL, "pre-condition" );
 714 
 715   const char* name = surv_rate_group->name();
 716   bool ret = true;
 717   int prev_age = -1;
 718 
 719   for (HeapRegion* curr = head;
 720        curr != NULL;
 721        curr = curr->get_next_young_region()) {
 722     SurvRateGroup* group = curr->surv_rate_group();
 723     if (group == NULL && !curr->is_survivor()) {
 724       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 725       ret = false;
 726     }
 727 
 728     if (surv_rate_group == group) {
 729       int age = curr->age_in_surv_rate_group();
 730 
 731       if (age < 0) {
 732         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 733         ret = false;
 734       }
 735 
 736       if (age <= prev_age) {
 737         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 738                                "(%d, %d)", name, age, prev_age);
 739         ret = false;
 740       }
 741       prev_age = age;
 742     }
 743   }
 744 
 745   return ret;
 746 }
 747 #endif // PRODUCT
 748 
 749 void G1CollectorPolicy::record_full_collection_start() {
 750   _cur_collection_start_sec = os::elapsedTime();
 751   // Release the future to-space so that it is available for compaction into.
 752   _g1->set_full_collection();
 753 }
 754 
 755 void G1CollectorPolicy::record_full_collection_end() {
 756   // Consider this like a collection pause for the purposes of allocation
 757   // since last pause.
 758   double end_sec = os::elapsedTime();
 759   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 760   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 761 
 762   _all_full_gc_times_ms->add(full_gc_time_ms);
 763 
 764   update_recent_gc_times(end_sec, full_gc_time_ms);
 765 
 766   _g1->clear_full_collection();
 767 
 768   // "Nuke" the heuristics that control the fully/partially young GC
 769   // transitions and make sure we start with fully young GCs after the
 770   // Full GC.
 771   set_full_young_gcs(true);
 772   _last_full_young_gc = false;
 773   _should_revert_to_full_young_gcs = false;
 774   clear_initiate_conc_mark_if_possible();
 775   clear_during_initial_mark_pause();
 776   _known_garbage_bytes = 0;
 777   _known_garbage_ratio = 0.0;
 778   _in_marking_window = false;
 779   _in_marking_window_im = false;
 780 
 781   _short_lived_surv_rate_group->start_adding_regions();
 782   // also call this on any additional surv rate groups
 783 
 784   record_survivor_regions(0, NULL, NULL);
 785 
 786   _prev_region_num_young   = _region_num_young;
 787   _prev_region_num_tenured = _region_num_tenured;
 788 
 789   _free_regions_at_end_of_collection = _g1->free_regions();
 790   // Reset survivors SurvRateGroup.
 791   _survivor_surv_rate_group->reset();
 792   calculate_young_list_min_length();
 793   calculate_young_list_target_length();
 794  }
 795 
 796 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
 797   _bytes_in_to_space_before_gc += bytes;
 798 }
 799 
 800 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
 801   _bytes_in_to_space_after_gc += bytes;
 802 }
 803 
 804 void G1CollectorPolicy::record_stop_world_start() {
 805   _stop_world_start = os::elapsedTime();
 806 }
 807 
 808 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 809                                                       size_t start_used) {
 810   if (PrintGCDetails) {
 811     gclog_or_tty->stamp(PrintGCTimeStamps);
 812     gclog_or_tty->print("[GC pause");
 813     if (in_young_gc_mode())
 814       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
 815   }
 816 
 817   assert(_g1->used_regions() == _g1->recalculate_used_regions(),
 818          "sanity");
 819   assert(_g1->used() == _g1->recalculate_used(), "sanity");
 820 
 821   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 822   _all_stop_world_times_ms->add(s_w_t_ms);
 823   _stop_world_start = 0.0;
 824 
 825   _cur_collection_start_sec = start_time_sec;
 826   _cur_collection_pause_used_at_start_bytes = start_used;
 827   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 828   _pending_cards = _g1->pending_card_num();
 829   _max_pending_cards = _g1->max_pending_card_num();
 830 
 831   _bytes_in_to_space_before_gc = 0;
 832   _bytes_in_to_space_after_gc = 0;
 833   _bytes_in_collection_set_before_gc = 0;
 834 
 835 #ifdef DEBUG
 836   // initialise these to something well known so that we can spot
 837   // if they are not set properly
 838 
 839   for (int i = 0; i < _parallel_gc_threads; ++i) {
 840     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 841     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 842     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 843     _par_last_update_rs_times_ms[i] = -1234.0;
 844     _par_last_update_rs_processed_buffers[i] = -1234.0;
 845     _par_last_scan_rs_times_ms[i] = -1234.0;
 846     _par_last_obj_copy_times_ms[i] = -1234.0;
 847     _par_last_termination_times_ms[i] = -1234.0;
 848     _par_last_termination_attempts[i] = -1234.0;
 849     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 850   }
 851 #endif
 852 
 853   for (int i = 0; i < _aux_num; ++i) {
 854     _cur_aux_times_ms[i] = 0.0;
 855     _cur_aux_times_set[i] = false;
 856   }
 857 
 858   _satb_drain_time_set = false;
 859   _last_satb_drain_processed_buffers = -1;
 860 
 861   if (in_young_gc_mode())
 862     _last_young_gc_full = false;
 863 
 864   // do that for any other surv rate groups
 865   _short_lived_surv_rate_group->stop_adding_regions();
 866   _survivors_age_table.clear();
 867 
 868   assert( verify_young_ages(), "region age verification" );
 869 }
 870 
 871 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
 872   _mark_closure_time_ms = mark_closure_time_ms;
 873 }
 874 
 875 void G1CollectorPolicy::record_concurrent_mark_init_start() {
 876   _mark_init_start_sec = os::elapsedTime();
 877   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
 878 }
 879 
 880 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
 881                                                    mark_init_elapsed_time_ms) {
 882   _during_marking = true;
 883   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 884   clear_during_initial_mark_pause();
 885   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 886 }
 887 
 888 void G1CollectorPolicy::record_concurrent_mark_init_end() {
 889   double end_time_sec = os::elapsedTime();
 890   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
 891   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
 892   record_concurrent_mark_init_end_pre(elapsed_time_ms);
 893 
 894   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
 895 }
 896 
 897 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 898   _mark_remark_start_sec = os::elapsedTime();
 899   _during_marking = false;
 900 }
 901 
 902 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 903   double end_time_sec = os::elapsedTime();
 904   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 905   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 906   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 907   _prev_collection_pause_end_ms += elapsed_time_ms;
 908 
 909   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 910 }
 911 
 912 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 913   _mark_cleanup_start_sec = os::elapsedTime();
 914 }
 915 
 916 void
 917 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
 918                                                       size_t max_live_bytes) {
 919   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
 920   record_concurrent_mark_cleanup_end_work2();
 921 }
 922 
 923 void
 924 G1CollectorPolicy::
 925 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 926                                          size_t max_live_bytes) {
 927   if (_n_marks < 2) _n_marks++;
 928   if (G1PolicyVerbose > 0)
 929     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
 930                            " (of " SIZE_FORMAT " MB heap).",
 931                            max_live_bytes/M, _g1->capacity()/M);
 932 }
 933 
 934 // The important thing about this is that it includes "os::elapsedTime".
 935 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
 936   double end_time_sec = os::elapsedTime();
 937   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
 938   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
 939   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 940   _prev_collection_pause_end_ms += elapsed_time_ms;
 941 
 942   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
 943 
 944   _num_markings++;
 945 
 946   // We did a marking, so reset the "since_last_mark" variables.
 947   double considerConcMarkCost = 1.0;
 948   // If there are available processors, concurrent activity is free...
 949   if (Threads::number_of_non_daemon_threads() * 2 <
 950       os::active_processor_count()) {
 951     considerConcMarkCost = 0.0;
 952   }
 953   _n_pauses_at_mark_end = _n_pauses;
 954   _n_marks_since_last_pause++;
 955 }
 956 
 957 void
 958 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 959   if (in_young_gc_mode()) {
 960     _should_revert_to_full_young_gcs = false;
 961     _last_full_young_gc = true;
 962     _in_marking_window = false;
 963     if (adaptive_young_list_length())
 964       calculate_young_list_target_length();
 965   }
 966 }
 967 
 968 void G1CollectorPolicy::record_concurrent_pause() {
 969   if (_stop_world_start > 0.0) {
 970     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 971     _all_yield_times_ms->add(yield_ms);
 972   }
 973 }
 974 
 975 void G1CollectorPolicy::record_concurrent_pause_end() {
 976 }
 977 
 978 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
 979   _cur_CH_strong_roots_end_sec = os::elapsedTime();
 980   _cur_CH_strong_roots_dur_ms =
 981     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
 982 }
 983 
 984 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
 985   _cur_G1_strong_roots_end_sec = os::elapsedTime();
 986   _cur_G1_strong_roots_dur_ms =
 987     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
 988 }
 989 
 990 template<class T>
 991 T sum_of(T* sum_arr, int start, int n, int N) {
 992   T sum = (T)0;
 993   for (int i = 0; i < n; i++) {
 994     int j = (start + i) % N;
 995     sum += sum_arr[j];
 996   }
 997   return sum;
 998 }
 999 
1000 void G1CollectorPolicy::print_par_stats(int level,
1001                                         const char* str,
1002                                         double* data,
1003                                          bool summary) {
1004   double min = data[0], max = data[0];
1005   double total = 0.0;
1006   int j;
1007   for (j = 0; j < level; ++j)
1008     gclog_or_tty->print("   ");
1009   gclog_or_tty->print("[%s (ms):", str);
1010   for (uint i = 0; i < ParallelGCThreads; ++i) {
1011     double val = data[i];
1012     if (val < min)
1013       min = val;
1014     if (val > max)
1015       max = val;
1016     total += val;
1017     gclog_or_tty->print("  %3.1lf", val);
1018   }
1019   if (summary) {
1020     gclog_or_tty->print_cr("");
1021     double avg = total / (double) ParallelGCThreads;
1022     gclog_or_tty->print(" ");
1023     for (j = 0; j < level; ++j)
1024       gclog_or_tty->print("   ");
1025     gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
1026                         avg, min, max);
1027   }
1028   gclog_or_tty->print_cr("]");
1029 }
1030 
1031 void G1CollectorPolicy::print_par_sizes(int level,
1032                                         const char* str,
1033                                         double* data,
1034                                         bool summary) {
1035   double min = data[0], max = data[0];
1036   double total = 0.0;
1037   int j;
1038   for (j = 0; j < level; ++j)
1039     gclog_or_tty->print("   ");
1040   gclog_or_tty->print("[%s :", str);
1041   for (uint i = 0; i < ParallelGCThreads; ++i) {
1042     double val = data[i];
1043     if (val < min)
1044       min = val;
1045     if (val > max)
1046       max = val;
1047     total += val;
1048     gclog_or_tty->print(" %d", (int) val);
1049   }
1050   if (summary) {
1051     gclog_or_tty->print_cr("");
1052     double avg = total / (double) ParallelGCThreads;
1053     gclog_or_tty->print(" ");
1054     for (j = 0; j < level; ++j)
1055       gclog_or_tty->print("   ");
1056     gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
1057                (int)total, (int)avg, (int)min, (int)max);
1058   }
1059   gclog_or_tty->print_cr("]");
1060 }
1061 
1062 void G1CollectorPolicy::print_stats (int level,
1063                                      const char* str,
1064                                      double value) {
1065   for (int j = 0; j < level; ++j)
1066     gclog_or_tty->print("   ");
1067   gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
1068 }
1069 
1070 void G1CollectorPolicy::print_stats (int level,
1071                                      const char* str,
1072                                      int value) {
1073   for (int j = 0; j < level; ++j)
1074     gclog_or_tty->print("   ");
1075   gclog_or_tty->print_cr("[%s: %d]", str, value);
1076 }
1077 
1078 double G1CollectorPolicy::avg_value (double* data) {
1079   if (G1CollectedHeap::use_parallel_gc_threads()) {
1080     double ret = 0.0;
1081     for (uint i = 0; i < ParallelGCThreads; ++i)
1082       ret += data[i];
1083     return ret / (double) ParallelGCThreads;
1084   } else {
1085     return data[0];
1086   }
1087 }
1088 
1089 double G1CollectorPolicy::max_value (double* data) {
1090   if (G1CollectedHeap::use_parallel_gc_threads()) {
1091     double ret = data[0];
1092     for (uint i = 1; i < ParallelGCThreads; ++i)
1093       if (data[i] > ret)
1094         ret = data[i];
1095     return ret;
1096   } else {
1097     return data[0];
1098   }
1099 }
1100 
1101 double G1CollectorPolicy::sum_of_values (double* data) {
1102   if (G1CollectedHeap::use_parallel_gc_threads()) {
1103     double sum = 0.0;
1104     for (uint i = 0; i < ParallelGCThreads; i++)
1105       sum += data[i];
1106     return sum;
1107   } else {
1108     return data[0];
1109   }
1110 }
1111 
1112 double G1CollectorPolicy::max_sum (double* data1,
1113                                    double* data2) {
1114   double ret = data1[0] + data2[0];
1115 
1116   if (G1CollectedHeap::use_parallel_gc_threads()) {
1117     for (uint i = 1; i < ParallelGCThreads; ++i) {
1118       double data = data1[i] + data2[i];
1119       if (data > ret)
1120         ret = data;
1121     }
1122   }
1123   return ret;
1124 }
1125 
1126 // Anything below that is considered to be zero
1127 #define MIN_TIMER_GRANULARITY 0.0000001
1128 
1129 void G1CollectorPolicy::record_collection_pause_end() {
1130   double end_time_sec = os::elapsedTime();
1131   double elapsed_ms = _last_pause_time_ms;
1132   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1133   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
1134   size_t rs_size =
1135     _cur_collection_pause_used_regions_at_start - collection_set_size();
1136   size_t cur_used_bytes = _g1->used();
1137   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1138   bool last_pause_included_initial_mark = false;
1139   bool update_stats = !_g1->evacuation_failed();
1140 
1141 #ifndef PRODUCT
1142   if (G1YoungSurvRateVerbose) {
1143     gclog_or_tty->print_cr("");
1144     _short_lived_surv_rate_group->print();
1145     // do that for any other surv rate groups too
1146   }
1147 #endif // PRODUCT
1148 
1149   if (in_young_gc_mode()) {
1150     last_pause_included_initial_mark = during_initial_mark_pause();
1151     if (last_pause_included_initial_mark)
1152       record_concurrent_mark_init_end_pre(0.0);
1153 
1154     size_t min_used_targ =
1155       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1156 
1157 
1158     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
1159       assert(!last_pause_included_initial_mark, "invariant");
1160       if (cur_used_bytes > min_used_targ &&
1161           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1162         assert(!during_initial_mark_pause(), "we should not see this here");
1163 
1164         // Note: this might have already been set, if during the last
1165         // pause we decided to start a cycle but at the beginning of
1166         // this pause we decided to postpone it. That's OK.
1167         set_initiate_conc_mark_if_possible();
1168       }
1169     }
1170 
1171     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1172   }
1173 
1174   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1175                           end_time_sec, false);
1176 
1177   guarantee(_cur_collection_pause_used_regions_at_start >=
1178             collection_set_size(),
1179             "Negative RS size?");
1180 
1181   // This assert is exempted when we're doing parallel collection pauses,
1182   // because the fragmentation caused by the parallel GC allocation buffers
1183   // can lead to more memory being used during collection than was used
1184   // before. Best leave this out until the fragmentation problem is fixed.
1185   // Pauses in which evacuation failed can also lead to negative
1186   // collections, since no space is reclaimed from a region containing an
1187   // object whose evacuation failed.
1188   // Further, we're now always doing parallel collection.  But I'm still
1189   // leaving this here as a placeholder for a more precise assertion later.
1190   // (DLD, 10/05.)
1191   assert((true || parallel) // Always using GC LABs now.
1192          || _g1->evacuation_failed()
1193          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1194          "Negative collection");
1195 
1196   size_t freed_bytes =
1197     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1198   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1199 
1200   double survival_fraction =
1201     (double)surviving_bytes/
1202     (double)_collection_set_bytes_used_before;
1203 
1204   _n_pauses++;
1205 
1206   if (update_stats) {
1207     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
1208     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
1209     _recent_evac_times_ms->add(evac_ms);
1210     _recent_pause_times_ms->add(elapsed_ms);
1211 
1212     _recent_rs_sizes->add(rs_size);
1213 
1214     // We exempt parallel collection from this check because Alloc Buffer
1215     // fragmentation can produce negative collections.  Same with evac
1216     // failure.
1217     // Further, we're now always doing parallel collection.  But I'm still
1218     // leaving this here as a placeholder for a more precise assertion later.
1219     // (DLD, 10/05.
1220     assert((true || parallel)
1221            || _g1->evacuation_failed()
1222            || surviving_bytes <= _collection_set_bytes_used_before,
1223            "Or else negative collection!");
1224     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
1225     _recent_CS_bytes_surviving->add(surviving_bytes);
1226 
1227     // this is where we update the allocation rate of the application
1228     double app_time_ms =
1229       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1230     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1231       // This usually happens due to the timer not having the required
1232       // granularity. Some Linuxes are the usual culprits.
1233       // We'll just set it to something (arbitrarily) small.
1234       app_time_ms = 1.0;
1235     }
1236     size_t regions_allocated =
1237       (_region_num_young - _prev_region_num_young) +
1238       (_region_num_tenured - _prev_region_num_tenured);
1239     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1240     _alloc_rate_ms_seq->add(alloc_rate_ms);
1241     _prev_region_num_young   = _region_num_young;
1242     _prev_region_num_tenured = _region_num_tenured;
1243 
1244     double interval_ms =
1245       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1246     update_recent_gc_times(end_time_sec, elapsed_ms);
1247     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1248     if (recent_avg_pause_time_ratio() < 0.0 ||
1249         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1250 #ifndef PRODUCT
1251       // Dump info to allow post-facto debugging
1252       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1253       gclog_or_tty->print_cr("-------------------------------------------");
1254       gclog_or_tty->print_cr("Recent GC Times (ms):");
1255       _recent_gc_times_ms->dump();
1256       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1257       _recent_prev_end_times_for_all_gcs_sec->dump();
1258       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1259                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1260       // In debug mode, terminate the JVM if the user wants to debug at this point.
1261       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1262 #endif  // !PRODUCT
1263       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1264       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1265       if (_recent_avg_pause_time_ratio < 0.0) {
1266         _recent_avg_pause_time_ratio = 0.0;
1267       } else {
1268         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1269         _recent_avg_pause_time_ratio = 1.0;
1270       }
1271     }
1272   }
1273 
1274   if (G1PolicyVerbose > 1) {
1275     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
1276   }
1277 
1278   PauseSummary* summary = _summary;
1279 
1280   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1281   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1282   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1283   double update_rs_processed_buffers =
1284     sum_of_values(_par_last_update_rs_processed_buffers);
1285   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1286   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1287   double termination_time = avg_value(_par_last_termination_times_ms);
1288 
1289   double parallel_other_time = _cur_collection_par_time_ms -
1290     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
1291      scan_rs_time + obj_copy_time + termination_time);
1292   if (update_stats) {
1293     MainBodySummary* body_summary = summary->main_body_summary();
1294     guarantee(body_summary != NULL, "should not be null!");
1295 
1296     if (_satb_drain_time_set)
1297       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1298     else
1299       body_summary->record_satb_drain_time_ms(0.0);
1300     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1301     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1302     body_summary->record_update_rs_time_ms(update_rs_time);
1303     body_summary->record_scan_rs_time_ms(scan_rs_time);
1304     body_summary->record_obj_copy_time_ms(obj_copy_time);
1305     if (parallel) {
1306       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1307       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1308       body_summary->record_termination_time_ms(termination_time);
1309       body_summary->record_parallel_other_time_ms(parallel_other_time);
1310     }
1311     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1312   }
1313 
1314   if (G1PolicyVerbose > 1) {
1315     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
1316                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
1317                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
1318                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
1319                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
1320                            "      |RS|: " SIZE_FORMAT,
1321                            elapsed_ms, recent_avg_time_for_pauses_ms(),
1322                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
1323                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
1324                            evac_ms, recent_avg_time_for_evac_ms(),
1325                            scan_rs_time,
1326                            recent_avg_time_for_pauses_ms() -
1327                            recent_avg_time_for_G1_strong_ms(),
1328                            rs_size);
1329 
1330     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
1331                            "       At end " SIZE_FORMAT "K\n"
1332                            "       garbage      : " SIZE_FORMAT "K"
1333                            "       of     " SIZE_FORMAT "K\n"
1334                            "       survival     : %6.2f%%  (%6.2f%% avg)",
1335                            _cur_collection_pause_used_at_start_bytes/K,
1336                            _g1->used()/K, freed_bytes/K,
1337                            _collection_set_bytes_used_before/K,
1338                            survival_fraction*100.0,
1339                            recent_avg_survival_fraction()*100.0);
1340     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
1341                            recent_avg_pause_time_ratio() * 100.0);
1342   }
1343 
1344   double other_time_ms = elapsed_ms;
1345 
1346   if (_satb_drain_time_set) {
1347     other_time_ms -= _cur_satb_drain_time_ms;
1348   }
1349 
1350   if (parallel) {
1351     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
1352   } else {
1353     other_time_ms -=
1354       update_rs_time +
1355       ext_root_scan_time + mark_stack_scan_time +
1356       scan_rs_time + obj_copy_time;
1357   }
1358 
1359   if (PrintGCDetails) {
1360     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1361                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1362                            elapsed_ms / 1000.0);
1363 
1364     if (_satb_drain_time_set) {
1365       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1366     }
1367     if (_last_satb_drain_processed_buffers >= 0) {
1368       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
1369     }
1370     if (parallel) {
1371       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1372       print_par_stats(2, "GC Worker Start Time",
1373                       _par_last_gc_worker_start_times_ms, false);
1374       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1375       print_par_sizes(3, "Processed Buffers",
1376                       _par_last_update_rs_processed_buffers, true);
1377       print_par_stats(2, "Ext Root Scanning",
1378                       _par_last_ext_root_scan_times_ms);
1379       print_par_stats(2, "Mark Stack Scanning",
1380                       _par_last_mark_stack_scan_times_ms);
1381       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1382       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1383       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1384       print_par_sizes(3, "Termination Attempts",
1385                       _par_last_termination_attempts, true);
1386       print_par_stats(2, "GC Worker End Time",
1387                       _par_last_gc_worker_end_times_ms, false);
1388       print_stats(2, "Other", parallel_other_time);
1389       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1390     } else {
1391       print_stats(1, "Update RS", update_rs_time);
1392       print_stats(2, "Processed Buffers",
1393                   (int)update_rs_processed_buffers);
1394       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1395       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1396       print_stats(1, "Scan RS", scan_rs_time);
1397       print_stats(1, "Object Copying", obj_copy_time);
1398     }
1399 #ifndef PRODUCT
1400     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1401     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1402     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1403     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1404     if (_num_cc_clears > 0) {
1405       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1406     }
1407 #endif
1408     print_stats(1, "Other", other_time_ms);
1409     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1410 
1411     for (int i = 0; i < _aux_num; ++i) {
1412       if (_cur_aux_times_set[i]) {
1413         char buffer[96];
1414         sprintf(buffer, "Aux%d", i);
1415         print_stats(1, buffer, _cur_aux_times_ms[i]);
1416       }
1417     }
1418   }
1419   if (PrintGCDetails)
1420     gclog_or_tty->print("   [");
1421   if (PrintGC || PrintGCDetails)
1422     _g1->print_size_transition(gclog_or_tty,
1423                                _cur_collection_pause_used_at_start_bytes,
1424                                _g1->used(), _g1->capacity());
1425   if (PrintGCDetails)
1426     gclog_or_tty->print_cr("]");
1427 
1428   _all_pause_times_ms->add(elapsed_ms);
1429   if (update_stats) {
1430     summary->record_total_time_ms(elapsed_ms);
1431     summary->record_other_time_ms(other_time_ms);
1432   }
1433   for (int i = 0; i < _aux_num; ++i)
1434     if (_cur_aux_times_set[i])
1435       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1436 
1437   // Reset marks-between-pauses counter.
1438   _n_marks_since_last_pause = 0;
1439 
1440   // Update the efficiency-since-mark vars.
1441   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1442   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1443     // This usually happens due to the timer not having the required
1444     // granularity. Some Linuxes are the usual culprits.
1445     // We'll just set it to something (arbitrarily) small.
1446     proc_ms = 1.0;
1447   }
1448   double cur_efficiency = (double) freed_bytes / proc_ms;
1449 
1450   bool new_in_marking_window = _in_marking_window;
1451   bool new_in_marking_window_im = false;
1452   if (during_initial_mark_pause()) {
1453     new_in_marking_window = true;
1454     new_in_marking_window_im = true;
1455   }
1456 
1457   if (in_young_gc_mode()) {
1458     if (_last_full_young_gc) {
1459       set_full_young_gcs(false);
1460       _last_full_young_gc = false;
1461     }
1462 
1463     if ( !_last_young_gc_full ) {
1464       if ( _should_revert_to_full_young_gcs ||
1465            _known_garbage_ratio < 0.05 ||
1466            (adaptive_young_list_length() &&
1467            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
1468         set_full_young_gcs(true);
1469       }
1470     }
1471     _should_revert_to_full_young_gcs = false;
1472 
1473     if (_last_young_gc_full && !_during_marking)
1474       _young_gc_eff_seq->add(cur_efficiency);
1475   }
1476 
1477   _short_lived_surv_rate_group->start_adding_regions();
1478   // do that for any other surv rate groupsx
1479 
1480   // <NEW PREDICTION>
1481 
1482   if (update_stats) {
1483     double pause_time_ms = elapsed_ms;
1484 
1485     size_t diff = 0;
1486     if (_max_pending_cards >= _pending_cards)
1487       diff = _max_pending_cards - _pending_cards;
1488     _pending_card_diff_seq->add((double) diff);
1489 
1490     double cost_per_card_ms = 0.0;
1491     if (_pending_cards > 0) {
1492       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1493       _cost_per_card_ms_seq->add(cost_per_card_ms);
1494     }
1495 
1496     size_t cards_scanned = _g1->cards_scanned();
1497 
1498     double cost_per_entry_ms = 0.0;
1499     if (cards_scanned > 10) {
1500       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1501       if (_last_young_gc_full)
1502         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1503       else
1504         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1505     }
1506 
1507     if (_max_rs_lengths > 0) {
1508       double cards_per_entry_ratio =
1509         (double) cards_scanned / (double) _max_rs_lengths;
1510       if (_last_young_gc_full)
1511         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1512       else
1513         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1514     }
1515 
1516     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1517     if (rs_length_diff >= 0)
1518       _rs_length_diff_seq->add((double) rs_length_diff);
1519 
1520     size_t copied_bytes = surviving_bytes;
1521     double cost_per_byte_ms = 0.0;
1522     if (copied_bytes > 0) {
1523       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1524       if (_in_marking_window)
1525         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1526       else
1527         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1528     }
1529 
1530     double all_other_time_ms = pause_time_ms -
1531       (update_rs_time + scan_rs_time + obj_copy_time +
1532        _mark_closure_time_ms + termination_time);
1533 
1534     double young_other_time_ms = 0.0;
1535     if (_recorded_young_regions > 0) {
1536       young_other_time_ms =
1537         _recorded_young_cset_choice_time_ms +
1538         _recorded_young_free_cset_time_ms;
1539       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1540                                              (double) _recorded_young_regions);
1541     }
1542     double non_young_other_time_ms = 0.0;
1543     if (_recorded_non_young_regions > 0) {
1544       non_young_other_time_ms =
1545         _recorded_non_young_cset_choice_time_ms +
1546         _recorded_non_young_free_cset_time_ms;
1547 
1548       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1549                                          (double) _recorded_non_young_regions);
1550     }
1551 
1552     double constant_other_time_ms = all_other_time_ms -
1553       (young_other_time_ms + non_young_other_time_ms);
1554     _constant_other_time_ms_seq->add(constant_other_time_ms);
1555 
1556     double survival_ratio = 0.0;
1557     if (_bytes_in_collection_set_before_gc > 0) {
1558       survival_ratio = (double) bytes_in_to_space_during_gc() /
1559         (double) _bytes_in_collection_set_before_gc;
1560     }
1561 
1562     _pending_cards_seq->add((double) _pending_cards);
1563     _scanned_cards_seq->add((double) cards_scanned);
1564     _rs_lengths_seq->add((double) _max_rs_lengths);
1565 
1566     double expensive_region_limit_ms =
1567       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1568     if (expensive_region_limit_ms < 0.0) {
1569       // this means that the other time was predicted to be longer than
1570       // than the max pause time
1571       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1572     }
1573     _expensive_region_limit_ms = expensive_region_limit_ms;
1574 
1575     if (PREDICTIONS_VERBOSE) {
1576       gclog_or_tty->print_cr("");
1577       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1578                     "REGIONS %d %d %d "
1579                     "PENDING_CARDS %d %d "
1580                     "CARDS_SCANNED %d %d "
1581                     "RS_LENGTHS %d %d "
1582                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
1583                     "SURVIVAL_RATIO %1.6lf %1.6lf "
1584                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
1585                     "OTHER_YOUNG %1.6lf %1.6lf "
1586                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
1587                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
1588                     "ELAPSED %1.6lf %1.6lf ",
1589                     _cur_collection_start_sec,
1590                     (!_last_young_gc_full) ? 2 :
1591                     (last_pause_included_initial_mark) ? 1 : 0,
1592                     _recorded_region_num,
1593                     _recorded_young_regions,
1594                     _recorded_non_young_regions,
1595                     _predicted_pending_cards, _pending_cards,
1596                     _predicted_cards_scanned, cards_scanned,
1597                     _predicted_rs_lengths, _max_rs_lengths,
1598                     _predicted_rs_update_time_ms, update_rs_time,
1599                     _predicted_rs_scan_time_ms, scan_rs_time,
1600                     _predicted_survival_ratio, survival_ratio,
1601                     _predicted_object_copy_time_ms, obj_copy_time,
1602                     _predicted_constant_other_time_ms, constant_other_time_ms,
1603                     _predicted_young_other_time_ms, young_other_time_ms,
1604                     _predicted_non_young_other_time_ms,
1605                     non_young_other_time_ms,
1606                     _vtime_diff_ms, termination_time,
1607                     _predicted_pause_time_ms, elapsed_ms);
1608     }
1609 
1610     if (G1PolicyVerbose > 0) {
1611       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
1612                     _predicted_pause_time_ms,
1613                     (_within_target) ? "within" : "outside",
1614                     elapsed_ms);
1615     }
1616 
1617   }
1618 
1619   _in_marking_window = new_in_marking_window;
1620   _in_marking_window_im = new_in_marking_window_im;
1621   _free_regions_at_end_of_collection = _g1->free_regions();
1622   calculate_young_list_min_length();
1623   calculate_young_list_target_length();
1624 
1625   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1626   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1627   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1628   // </NEW PREDICTION>
1629 }
1630 
1631 // <NEW PREDICTION>
1632 
1633 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1634                                                      double update_rs_processed_buffers,
1635                                                      double goal_ms) {
1636   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1637   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1638 
1639   if (G1UseAdaptiveConcRefinement) {
1640     const int k_gy = 3, k_gr = 6;
1641     const double inc_k = 1.1, dec_k = 0.9;
1642 
1643     int g = cg1r->green_zone();
1644     if (update_rs_time > goal_ms) {
1645       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1646     } else {
1647       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1648         g = (int)MAX2(g * inc_k, g + 1.0);
1649       }
1650     }
1651     // Change the refinement threads params
1652     cg1r->set_green_zone(g);
1653     cg1r->set_yellow_zone(g * k_gy);
1654     cg1r->set_red_zone(g * k_gr);
1655     cg1r->reinitialize_threads();
1656 
1657     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1658     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1659                                     cg1r->yellow_zone());
1660     // Change the barrier params
1661     dcqs.set_process_completed_threshold(processing_threshold);
1662     dcqs.set_max_completed_queue(cg1r->red_zone());
1663   }
1664 
1665   int curr_queue_size = dcqs.completed_buffers_num();
1666   if (curr_queue_size >= cg1r->yellow_zone()) {
1667     dcqs.set_completed_queue_padding(curr_queue_size);
1668   } else {
1669     dcqs.set_completed_queue_padding(0);
1670   }
1671   dcqs.notify_if_necessary();
1672 }
1673 
1674 double
1675 G1CollectorPolicy::
1676 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1677   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1678 
1679   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1680   size_t young_num = g1h->young_list()->length();
1681   if (young_num == 0)
1682     return 0.0;
1683 
1684   young_num += adjustment;
1685   size_t pending_cards = predict_pending_cards();
1686   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1687                       predict_rs_length_diff();
1688   size_t card_num;
1689   if (full_young_gcs())
1690     card_num = predict_young_card_num(rs_lengths);
1691   else
1692     card_num = predict_non_young_card_num(rs_lengths);
1693   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1694   double accum_yg_surv_rate =
1695     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1696 
1697   size_t bytes_to_copy =
1698     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1699 
1700   return
1701     predict_rs_update_time_ms(pending_cards) +
1702     predict_rs_scan_time_ms(card_num) +
1703     predict_object_copy_time_ms(bytes_to_copy) +
1704     predict_young_other_time_ms(young_num) +
1705     predict_constant_other_time_ms();
1706 }
1707 
1708 double
1709 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1710   size_t rs_length = predict_rs_length_diff();
1711   size_t card_num;
1712   if (full_young_gcs())
1713     card_num = predict_young_card_num(rs_length);
1714   else
1715     card_num = predict_non_young_card_num(rs_length);
1716   return predict_base_elapsed_time_ms(pending_cards, card_num);
1717 }
1718 
1719 double
1720 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1721                                                 size_t scanned_cards) {
1722   return
1723     predict_rs_update_time_ms(pending_cards) +
1724     predict_rs_scan_time_ms(scanned_cards) +
1725     predict_constant_other_time_ms();
1726 }
1727 
1728 double
1729 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1730                                                   bool young) {
1731   size_t rs_length = hr->rem_set()->occupied();
1732   size_t card_num;
1733   if (full_young_gcs())
1734     card_num = predict_young_card_num(rs_length);
1735   else
1736     card_num = predict_non_young_card_num(rs_length);
1737   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1738 
1739   double region_elapsed_time_ms =
1740     predict_rs_scan_time_ms(card_num) +
1741     predict_object_copy_time_ms(bytes_to_copy);
1742 
1743   if (young)
1744     region_elapsed_time_ms += predict_young_other_time_ms(1);
1745   else
1746     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1747 
1748   return region_elapsed_time_ms;
1749 }
1750 
1751 size_t
1752 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1753   size_t bytes_to_copy;
1754   if (hr->is_marked())
1755     bytes_to_copy = hr->max_live_bytes();
1756   else {
1757     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1758                "invariant" );
1759     int age = hr->age_in_surv_rate_group();
1760     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1761     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1762   }
1763 
1764   return bytes_to_copy;
1765 }
1766 
1767 void
1768 G1CollectorPolicy::start_recording_regions() {
1769   _recorded_rs_lengths            = 0;
1770   _recorded_young_regions         = 0;
1771   _recorded_non_young_regions     = 0;
1772 
1773 #if PREDICTIONS_VERBOSE
1774   _recorded_marked_bytes          = 0;
1775   _recorded_young_bytes           = 0;
1776   _predicted_bytes_to_copy        = 0;
1777   _predicted_rs_lengths           = 0;
1778   _predicted_cards_scanned        = 0;
1779 #endif // PREDICTIONS_VERBOSE
1780 }
1781 
1782 void
1783 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1784 #if PREDICTIONS_VERBOSE
1785   if (!young) {
1786     _recorded_marked_bytes += hr->max_live_bytes();
1787   }
1788   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
1789 #endif // PREDICTIONS_VERBOSE
1790 
1791   size_t rs_length = hr->rem_set()->occupied();
1792   _recorded_rs_lengths += rs_length;
1793 }
1794 
1795 void
1796 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
1797   assert(!hr->is_young(), "should not call this");
1798   ++_recorded_non_young_regions;
1799   record_cset_region_info(hr, false);
1800 }
1801 
1802 void
1803 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
1804   _recorded_young_regions = n_regions;
1805 }
1806 
1807 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
1808 #if PREDICTIONS_VERBOSE
1809   _recorded_young_bytes = bytes;
1810 #endif // PREDICTIONS_VERBOSE
1811 }
1812 
1813 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1814   _recorded_rs_lengths = rs_lengths;
1815 }
1816 
1817 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
1818   _predicted_bytes_to_copy = bytes;
1819 }
1820 
1821 void
1822 G1CollectorPolicy::end_recording_regions() {
1823   // The _predicted_pause_time_ms field is referenced in code
1824   // not under PREDICTIONS_VERBOSE. Let's initialize it.
1825   _predicted_pause_time_ms = -1.0;
1826 
1827 #if PREDICTIONS_VERBOSE
1828   _predicted_pending_cards = predict_pending_cards();
1829   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
1830   if (full_young_gcs())
1831     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
1832   else
1833     _predicted_cards_scanned +=
1834       predict_non_young_card_num(_predicted_rs_lengths);
1835   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
1836 
1837   _predicted_rs_update_time_ms =
1838     predict_rs_update_time_ms(_g1->pending_card_num());
1839   _predicted_rs_scan_time_ms =
1840     predict_rs_scan_time_ms(_predicted_cards_scanned);
1841   _predicted_object_copy_time_ms =
1842     predict_object_copy_time_ms(_predicted_bytes_to_copy);
1843   _predicted_constant_other_time_ms =
1844     predict_constant_other_time_ms();
1845   _predicted_young_other_time_ms =
1846     predict_young_other_time_ms(_recorded_young_regions);
1847   _predicted_non_young_other_time_ms =
1848     predict_non_young_other_time_ms(_recorded_non_young_regions);
1849 
1850   _predicted_pause_time_ms =
1851     _predicted_rs_update_time_ms +
1852     _predicted_rs_scan_time_ms +
1853     _predicted_object_copy_time_ms +
1854     _predicted_constant_other_time_ms +
1855     _predicted_young_other_time_ms +
1856     _predicted_non_young_other_time_ms;
1857 #endif // PREDICTIONS_VERBOSE
1858 }
1859 
1860 void G1CollectorPolicy::check_if_region_is_too_expensive(double
1861                                                            predicted_time_ms) {
1862   // I don't think we need to do this when in young GC mode since
1863   // marking will be initiated next time we hit the soft limit anyway...
1864   if (predicted_time_ms > _expensive_region_limit_ms) {
1865     if (!in_young_gc_mode()) {
1866         set_full_young_gcs(true);
1867         // We might want to do something different here. However,
1868         // right now we don't support the non-generational G1 mode
1869         // (and in fact we are planning to remove the associated code,
1870         // see CR 6814390). So, let's leave it as is and this will be
1871         // removed some time in the future
1872         ShouldNotReachHere();
1873         set_during_initial_mark_pause();
1874     } else
1875       // no point in doing another partial one
1876       _should_revert_to_full_young_gcs = true;
1877   }
1878 }
1879 
1880 // </NEW PREDICTION>
1881 
1882 
1883 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1884                                                double elapsed_ms) {
1885   _recent_gc_times_ms->add(elapsed_ms);
1886   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1887   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1888 }
1889 
1890 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
1891   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
1892   else return _recent_pause_times_ms->avg();
1893 }
1894 
1895 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
1896   if (_recent_CH_strong_roots_times_ms->num() == 0)
1897     return (double)MaxGCPauseMillis/3.0;
1898   else return _recent_CH_strong_roots_times_ms->avg();
1899 }
1900 
1901 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
1902   if (_recent_G1_strong_roots_times_ms->num() == 0)
1903     return (double)MaxGCPauseMillis/3.0;
1904   else return _recent_G1_strong_roots_times_ms->avg();
1905 }
1906 
1907 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
1908   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
1909   else return _recent_evac_times_ms->avg();
1910 }
1911 
1912 int G1CollectorPolicy::number_of_recent_gcs() {
1913   assert(_recent_CH_strong_roots_times_ms->num() ==
1914          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
1915   assert(_recent_G1_strong_roots_times_ms->num() ==
1916          _recent_evac_times_ms->num(), "Sequence out of sync");
1917   assert(_recent_evac_times_ms->num() ==
1918          _recent_pause_times_ms->num(), "Sequence out of sync");
1919   assert(_recent_pause_times_ms->num() ==
1920          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
1921   assert(_recent_CS_bytes_used_before->num() ==
1922          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
1923   return _recent_pause_times_ms->num();
1924 }
1925 
1926 double G1CollectorPolicy::recent_avg_survival_fraction() {
1927   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
1928                                            _recent_CS_bytes_used_before);
1929 }
1930 
1931 double G1CollectorPolicy::last_survival_fraction() {
1932   return last_survival_fraction_work(_recent_CS_bytes_surviving,
1933                                      _recent_CS_bytes_used_before);
1934 }
1935 
1936 double
1937 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
1938                                                      TruncatedSeq* before) {
1939   assert(surviving->num() == before->num(), "Sequence out of sync");
1940   if (before->sum() > 0.0) {
1941       double recent_survival_rate = surviving->sum() / before->sum();
1942       // We exempt parallel collection from this check because Alloc Buffer
1943       // fragmentation can produce negative collections.
1944       // Further, we're now always doing parallel collection.  But I'm still
1945       // leaving this here as a placeholder for a more precise assertion later.
1946       // (DLD, 10/05.)
1947       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1948              _g1->evacuation_failed() ||
1949              recent_survival_rate <= 1.0, "Or bad frac");
1950       return recent_survival_rate;
1951   } else {
1952     return 1.0; // Be conservative.
1953   }
1954 }
1955 
1956 double
1957 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
1958                                                TruncatedSeq* before) {
1959   assert(surviving->num() == before->num(), "Sequence out of sync");
1960   if (surviving->num() > 0 && before->last() > 0.0) {
1961     double last_survival_rate = surviving->last() / before->last();
1962     // We exempt parallel collection from this check because Alloc Buffer
1963     // fragmentation can produce negative collections.
1964     // Further, we're now always doing parallel collection.  But I'm still
1965     // leaving this here as a placeholder for a more precise assertion later.
1966     // (DLD, 10/05.)
1967     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1968            last_survival_rate <= 1.0, "Or bad frac");
1969     return last_survival_rate;
1970   } else {
1971     return 1.0;
1972   }
1973 }
1974 
1975 static const int survival_min_obs = 5;
1976 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
1977 static const double min_survival_rate = 0.1;
1978 
1979 double
1980 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
1981                                                            double latest) {
1982   double res = avg;
1983   if (number_of_recent_gcs() < survival_min_obs) {
1984     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
1985   }
1986   res = MAX2(res, latest);
1987   res = MAX2(res, min_survival_rate);
1988   // In the parallel case, LAB fragmentation can produce "negative
1989   // collections"; so can evac failure.  Cap at 1.0
1990   res = MIN2(res, 1.0);
1991   return res;
1992 }
1993 
1994 size_t G1CollectorPolicy::expansion_amount() {
1995   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
1996     // We will double the existing space, or take
1997     // G1ExpandByPercentOfAvailable % of the available expansion
1998     // space, whichever is smaller, bounded below by a minimum
1999     // expansion (unless that's all that's left.)
2000     const size_t min_expand_bytes = 1*M;
2001     size_t reserved_bytes = _g1->g1_reserved_obj_bytes();
2002     size_t committed_bytes = _g1->capacity();
2003     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
2004     size_t expand_bytes;
2005     size_t expand_bytes_via_pct =
2006       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2007     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
2008     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
2009     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2010     if (G1PolicyVerbose > 1) {
2011       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
2012                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
2013                  "                   Answer = %d.\n",
2014                  recent_avg_pause_time_ratio(),
2015                  byte_size_in_proper_unit(committed_bytes),
2016                  proper_unit_for_byte_size(committed_bytes),
2017                  byte_size_in_proper_unit(uncommitted_bytes),
2018                  proper_unit_for_byte_size(uncommitted_bytes),
2019                  byte_size_in_proper_unit(expand_bytes_via_pct),
2020                  proper_unit_for_byte_size(expand_bytes_via_pct),
2021                  byte_size_in_proper_unit(expand_bytes),
2022                  proper_unit_for_byte_size(expand_bytes));
2023     }
2024     return expand_bytes;
2025   } else {
2026     return 0;
2027   }
2028 }
2029 
2030 void G1CollectorPolicy::note_start_of_mark_thread() {
2031   _mark_thread_startup_sec = os::elapsedTime();
2032 }
2033 
2034 class CountCSClosure: public HeapRegionClosure {
2035   G1CollectorPolicy* _g1_policy;
2036 public:
2037   CountCSClosure(G1CollectorPolicy* g1_policy) :
2038     _g1_policy(g1_policy) {}
2039   bool doHeapRegion(HeapRegion* r) {
2040     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
2041     return false;
2042   }
2043 };
2044 
2045 void G1CollectorPolicy::count_CS_bytes_used() {
2046   CountCSClosure cs_closure(this);
2047   _g1->collection_set_iterate(&cs_closure);
2048 }
2049 
2050 static void print_indent(int level) {
2051   for (int j = 0; j < level+1; ++j)
2052     gclog_or_tty->print("   ");
2053 }
2054 
2055 void G1CollectorPolicy::print_summary (int level,
2056                                        const char* str,
2057                                        NumberSeq* seq) const {
2058   double sum = seq->sum();
2059   print_indent(level);
2060   gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2061                 str, sum / 1000.0, seq->avg());
2062 }
2063 
2064 void G1CollectorPolicy::print_summary_sd (int level,
2065                                           const char* str,
2066                                           NumberSeq* seq) const {
2067   print_summary(level, str, seq);
2068   print_indent(level + 5);
2069   gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2070                 seq->num(), seq->sd(), seq->maximum());
2071 }
2072 
2073 void G1CollectorPolicy::check_other_times(int level,
2074                                         NumberSeq* other_times_ms,
2075                                         NumberSeq* calc_other_times_ms) const {
2076   bool should_print = false;
2077 
2078   double max_sum = MAX2(fabs(other_times_ms->sum()),
2079                         fabs(calc_other_times_ms->sum()));
2080   double min_sum = MIN2(fabs(other_times_ms->sum()),
2081                         fabs(calc_other_times_ms->sum()));
2082   double sum_ratio = max_sum / min_sum;
2083   if (sum_ratio > 1.1) {
2084     should_print = true;
2085     print_indent(level + 1);
2086     gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2087   }
2088 
2089   double max_avg = MAX2(fabs(other_times_ms->avg()),
2090                         fabs(calc_other_times_ms->avg()));
2091   double min_avg = MIN2(fabs(other_times_ms->avg()),
2092                         fabs(calc_other_times_ms->avg()));
2093   double avg_ratio = max_avg / min_avg;
2094   if (avg_ratio > 1.1) {
2095     should_print = true;
2096     print_indent(level + 1);
2097     gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2098   }
2099 
2100   if (other_times_ms->sum() < -0.01) {
2101     print_indent(level + 1);
2102     gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2103   }
2104 
2105   if (other_times_ms->avg() < -0.01) {
2106     print_indent(level + 1);
2107     gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2108   }
2109 
2110   if (calc_other_times_ms->sum() < -0.01) {
2111     should_print = true;
2112     print_indent(level + 1);
2113     gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2114   }
2115 
2116   if (calc_other_times_ms->avg() < -0.01) {
2117     should_print = true;
2118     print_indent(level + 1);
2119     gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2120   }
2121 
2122   if (should_print)
2123     print_summary(level, "Other(Calc)", calc_other_times_ms);
2124 }
2125 
2126 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2127   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2128   MainBodySummary*    body_summary = summary->main_body_summary();
2129   if (summary->get_total_seq()->num() > 0) {
2130     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2131     if (body_summary != NULL) {
2132       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
2133       if (parallel) {
2134         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
2135         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
2136         print_summary(2, "Ext Root Scanning",
2137                       body_summary->get_ext_root_scan_seq());
2138         print_summary(2, "Mark Stack Scanning",
2139                       body_summary->get_mark_stack_scan_seq());
2140         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
2141         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
2142         print_summary(2, "Termination", body_summary->get_termination_seq());
2143         print_summary(2, "Other", body_summary->get_parallel_other_seq());
2144         {
2145           NumberSeq* other_parts[] = {
2146             body_summary->get_update_rs_seq(),
2147             body_summary->get_ext_root_scan_seq(),
2148             body_summary->get_mark_stack_scan_seq(),
2149             body_summary->get_scan_rs_seq(),
2150             body_summary->get_obj_copy_seq(),
2151             body_summary->get_termination_seq()
2152           };
2153           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2154                                         6, other_parts);
2155           check_other_times(2, body_summary->get_parallel_other_seq(),
2156                             &calc_other_times_ms);
2157         }
2158         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2159         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2160       } else {
2161         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2162         print_summary(1, "Ext Root Scanning",
2163                       body_summary->get_ext_root_scan_seq());
2164         print_summary(1, "Mark Stack Scanning",
2165                       body_summary->get_mark_stack_scan_seq());
2166         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2167         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2168       }
2169     }
2170     print_summary(1, "Other", summary->get_other_seq());
2171     {
2172       if (body_summary != NULL) {
2173         NumberSeq calc_other_times_ms;
2174         if (parallel) {
2175           // parallel
2176           NumberSeq* other_parts[] = {
2177             body_summary->get_satb_drain_seq(),
2178             body_summary->get_parallel_seq(),
2179             body_summary->get_clear_ct_seq()
2180           };
2181           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2182                                                 3, other_parts);
2183         } else {
2184           // serial
2185           NumberSeq* other_parts[] = {
2186             body_summary->get_satb_drain_seq(),
2187             body_summary->get_update_rs_seq(),
2188             body_summary->get_ext_root_scan_seq(),
2189             body_summary->get_mark_stack_scan_seq(),
2190             body_summary->get_scan_rs_seq(),
2191             body_summary->get_obj_copy_seq()
2192           };
2193           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2194                                                 6, other_parts);
2195         }
2196         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2197       }
2198     }
2199   } else {
2200     print_indent(0);
2201     gclog_or_tty->print_cr("none");
2202   }
2203   gclog_or_tty->print_cr("");
2204 }
2205 
2206 void G1CollectorPolicy::print_tracing_info() const {
2207   if (TraceGen0Time) {
2208     gclog_or_tty->print_cr("ALL PAUSES");
2209     print_summary_sd(0, "Total", _all_pause_times_ms);
2210     gclog_or_tty->print_cr("");
2211     gclog_or_tty->print_cr("");
2212     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
2213     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
2214     gclog_or_tty->print_cr("");
2215 
2216     gclog_or_tty->print_cr("EVACUATION PAUSES");
2217     print_summary(_summary);
2218 
2219     gclog_or_tty->print_cr("MISC");
2220     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2221     print_summary_sd(0, "Yields", _all_yield_times_ms);
2222     for (int i = 0; i < _aux_num; ++i) {
2223       if (_all_aux_times_ms[i].num() > 0) {
2224         char buffer[96];
2225         sprintf(buffer, "Aux%d", i);
2226         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2227       }
2228     }
2229 
2230     size_t all_region_num = _region_num_young + _region_num_tenured;
2231     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
2232                "Tenured %8d (%6.2lf%%)",
2233                all_region_num,
2234                _region_num_young,
2235                (double) _region_num_young / (double) all_region_num * 100.0,
2236                _region_num_tenured,
2237                (double) _region_num_tenured / (double) all_region_num * 100.0);
2238   }
2239   if (TraceGen1Time) {
2240     if (_all_full_gc_times_ms->num() > 0) {
2241       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2242                  _all_full_gc_times_ms->num(),
2243                  _all_full_gc_times_ms->sum() / 1000.0);
2244       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2245       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2246                     _all_full_gc_times_ms->sd(),
2247                     _all_full_gc_times_ms->maximum());
2248     }
2249   }
2250 }
2251 
2252 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2253 #ifndef PRODUCT
2254   _short_lived_surv_rate_group->print_surv_rate_summary();
2255   // add this call for any other surv rate groups
2256 #endif // PRODUCT
2257 }
2258 
2259 bool
2260 G1CollectorPolicy::should_add_next_region_to_young_list() {
2261   assert(in_young_gc_mode(), "should be in young GC mode");
2262   bool ret;
2263   size_t young_list_length = _g1->young_list()->length();
2264   size_t young_list_max_length = _young_list_target_length;
2265   if (G1FixedEdenSize) {
2266     young_list_max_length -= _max_survivor_regions;
2267   }
2268   if (young_list_length < young_list_max_length) {
2269     ret = true;
2270     ++_region_num_young;
2271   } else {
2272     ret = false;
2273     ++_region_num_tenured;
2274   }
2275 
2276   return ret;
2277 }
2278 
2279 #ifndef PRODUCT
2280 // for debugging, bit of a hack...
2281 static char*
2282 region_num_to_mbs(int length) {
2283   static char buffer[64];
2284   double bytes = (double) (length * HeapRegion::GrainBytes);
2285   double mbs = bytes / (double) (1024 * 1024);
2286   sprintf(buffer, "%7.2lfMB", mbs);
2287   return buffer;
2288 }
2289 #endif // PRODUCT
2290 
2291 size_t G1CollectorPolicy::max_regions(int purpose) {
2292   switch (purpose) {
2293     case GCAllocForSurvived:
2294       return _max_survivor_regions;
2295     case GCAllocForTenured:
2296       return REGIONS_UNLIMITED;
2297     default:
2298       ShouldNotReachHere();
2299       return REGIONS_UNLIMITED;
2300   };
2301 }
2302 
2303 // Calculates survivor space parameters.
2304 void G1CollectorPolicy::calculate_survivors_policy()
2305 {
2306   if (G1FixedSurvivorSpaceSize == 0) {
2307     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
2308   } else {
2309     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
2310   }
2311 
2312   if (G1FixedTenuringThreshold) {
2313     _tenuring_threshold = MaxTenuringThreshold;
2314   } else {
2315     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2316         HeapRegion::GrainWords * _max_survivor_regions);
2317   }
2318 }
2319 
2320 bool
2321 G1CollectorPolicy_BestRegionsFirst::should_do_collection_pause(size_t
2322                                                                word_size) {
2323   assert(_g1->regions_accounted_for(), "Region leakage!");
2324   double max_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
2325 
2326   size_t young_list_length = _g1->young_list()->length();
2327   size_t young_list_max_length = _young_list_target_length;
2328   if (G1FixedEdenSize) {
2329     young_list_max_length -= _max_survivor_regions;
2330   }
2331   bool reached_target_length = young_list_length >= young_list_max_length;
2332 
2333   if (in_young_gc_mode()) {
2334     if (reached_target_length) {
2335       assert( young_list_length > 0 && _g1->young_list()->length() > 0,
2336               "invariant" );
2337       return true;
2338     }
2339   } else {
2340     guarantee( false, "should not reach here" );
2341   }
2342 
2343   return false;
2344 }
2345 
2346 #ifndef PRODUCT
2347 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2348   CollectionSetChooser* _chooser;
2349 public:
2350   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2351     _chooser(chooser) {}
2352 
2353   bool doHeapRegion(HeapRegion* r) {
2354     if (!r->continuesHumongous()) {
2355       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2356     }
2357     return false;
2358   }
2359 };
2360 
2361 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
2362   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2363   _g1->heap_region_iterate(&cl);
2364   return true;
2365 }
2366 #endif
2367 
2368 bool
2369 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
2370   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2371   if (!during_cycle) {
2372     set_initiate_conc_mark_if_possible();
2373     return true;
2374   } else {
2375     return false;
2376   }
2377 }
2378 
2379 void
2380 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2381   // We are about to decide on whether this pause will be an
2382   // initial-mark pause.
2383 
2384   // First, during_initial_mark_pause() should not be already set. We
2385   // will set it here if we have to. However, it should be cleared by
2386   // the end of the pause (it's only set for the duration of an
2387   // initial-mark pause).
2388   assert(!during_initial_mark_pause(), "pre-condition");
2389 
2390   if (initiate_conc_mark_if_possible()) {
2391     // We had noticed on a previous pause that the heap occupancy has
2392     // gone over the initiating threshold and we should start a
2393     // concurrent marking cycle. So we might initiate one.
2394 
2395     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2396     if (!during_cycle) {
2397       // The concurrent marking thread is not "during a cycle", i.e.,
2398       // it has completed the last one. So we can go ahead and
2399       // initiate a new cycle.
2400 
2401       set_during_initial_mark_pause();
2402 
2403       // And we can now clear initiate_conc_mark_if_possible() as
2404       // we've already acted on it.
2405       clear_initiate_conc_mark_if_possible();
2406     } else {
2407       // The concurrent marking thread is still finishing up the
2408       // previous cycle. If we start one right now the two cycles
2409       // overlap. In particular, the concurrent marking thread might
2410       // be in the process of clearing the next marking bitmap (which
2411       // we will use for the next cycle if we start one). Starting a
2412       // cycle now will be bad given that parts of the marking
2413       // information might get cleared by the marking thread. And we
2414       // cannot wait for the marking thread to finish the cycle as it
2415       // periodically yields while clearing the next marking bitmap
2416       // and, if it's in a yield point, it's waiting for us to
2417       // finish. So, at this point we will not start a cycle and we'll
2418       // let the concurrent marking thread complete the last one.
2419     }
2420   }
2421 }
2422 
2423 void
2424 G1CollectorPolicy_BestRegionsFirst::
2425 record_collection_pause_start(double start_time_sec, size_t start_used) {
2426   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
2427 }
2428 
2429 class NextNonCSElemFinder: public HeapRegionClosure {
2430   HeapRegion* _res;
2431 public:
2432   NextNonCSElemFinder(): _res(NULL) {}
2433   bool doHeapRegion(HeapRegion* r) {
2434     if (!r->in_collection_set()) {
2435       _res = r;
2436       return true;
2437     } else {
2438       return false;
2439     }
2440   }
2441   HeapRegion* res() { return _res; }
2442 };
2443 
2444 class KnownGarbageClosure: public HeapRegionClosure {
2445   CollectionSetChooser* _hrSorted;
2446 
2447 public:
2448   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2449     _hrSorted(hrSorted)
2450   {}
2451 
2452   bool doHeapRegion(HeapRegion* r) {
2453     // We only include humongous regions in collection
2454     // sets when concurrent mark shows that their contained object is
2455     // unreachable.
2456 
2457     // Do we have any marking information for this region?
2458     if (r->is_marked()) {
2459       // We don't include humongous regions in collection
2460       // sets because we collect them immediately at the end of a marking
2461       // cycle.  We also don't include young regions because we *must*
2462       // include them in the next collection pause.
2463       if (!r->isHumongous() && !r->is_young()) {
2464         _hrSorted->addMarkedHeapRegion(r);
2465       }
2466     }
2467     return false;
2468   }
2469 };
2470 
2471 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2472   CollectionSetChooser* _hrSorted;
2473   jint _marked_regions_added;
2474   jint _chunk_size;
2475   jint _cur_chunk_idx;
2476   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2477   int _worker;
2478   int _invokes;
2479 
2480   void get_new_chunk() {
2481     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2482     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2483   }
2484   void add_region(HeapRegion* r) {
2485     if (_cur_chunk_idx == _cur_chunk_end) {
2486       get_new_chunk();
2487     }
2488     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2489     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2490     _marked_regions_added++;
2491     _cur_chunk_idx++;
2492   }
2493 
2494 public:
2495   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2496                            jint chunk_size,
2497                            int worker) :
2498     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2499     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2500     _invokes(0)
2501   {}
2502 
2503   bool doHeapRegion(HeapRegion* r) {
2504     // We only include humongous regions in collection
2505     // sets when concurrent mark shows that their contained object is
2506     // unreachable.
2507     _invokes++;
2508 
2509     // Do we have any marking information for this region?
2510     if (r->is_marked()) {
2511       // We don't include humongous regions in collection
2512       // sets because we collect them immediately at the end of a marking
2513       // cycle.
2514       // We also do not include young regions in collection sets
2515       if (!r->isHumongous() && !r->is_young()) {
2516         add_region(r);
2517       }
2518     }
2519     return false;
2520   }
2521   jint marked_regions_added() { return _marked_regions_added; }
2522   int invokes() { return _invokes; }
2523 };
2524 
2525 class ParKnownGarbageTask: public AbstractGangTask {
2526   CollectionSetChooser* _hrSorted;
2527   jint _chunk_size;
2528   G1CollectedHeap* _g1;
2529 public:
2530   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2531     AbstractGangTask("ParKnownGarbageTask"),
2532     _hrSorted(hrSorted), _chunk_size(chunk_size),
2533     _g1(G1CollectedHeap::heap())
2534   {}
2535 
2536   void work(int i) {
2537     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2538     // Back to zero for the claim value.
2539     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2540                                          HeapRegion::InitialClaimValue);
2541     jint regions_added = parKnownGarbageCl.marked_regions_added();
2542     _hrSorted->incNumMarkedHeapRegions(regions_added);
2543     if (G1PrintParCleanupStats) {
2544       gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
2545                  i, parKnownGarbageCl.invokes(), regions_added);
2546     }
2547   }
2548 };
2549 
2550 void
2551 G1CollectorPolicy_BestRegionsFirst::
2552 record_concurrent_mark_cleanup_end(size_t freed_bytes,
2553                                    size_t max_live_bytes) {
2554   double start;
2555   if (G1PrintParCleanupStats) start = os::elapsedTime();
2556   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
2557 
2558   _collectionSetChooser->clearMarkedHeapRegions();
2559   double clear_marked_end;
2560   if (G1PrintParCleanupStats) {
2561     clear_marked_end = os::elapsedTime();
2562     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
2563                   (clear_marked_end - start)*1000.0);
2564   }
2565   if (G1CollectedHeap::use_parallel_gc_threads()) {
2566     const size_t OverpartitionFactor = 4;
2567     const size_t MinWorkUnit = 8;
2568     const size_t WorkUnit =
2569       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2570            MinWorkUnit);
2571     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2572                                                              WorkUnit);
2573     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2574                                             (int) WorkUnit);
2575     _g1->workers()->run_task(&parKnownGarbageTask);
2576 
2577     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2578            "sanity check");
2579   } else {
2580     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2581     _g1->heap_region_iterate(&knownGarbagecl);
2582   }
2583   double known_garbage_end;
2584   if (G1PrintParCleanupStats) {
2585     known_garbage_end = os::elapsedTime();
2586     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2587                   (known_garbage_end - clear_marked_end)*1000.0);
2588   }
2589   _collectionSetChooser->sortMarkedHeapRegions();
2590   double sort_end;
2591   if (G1PrintParCleanupStats) {
2592     sort_end = os::elapsedTime();
2593     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2594                   (sort_end - known_garbage_end)*1000.0);
2595   }
2596 
2597   record_concurrent_mark_cleanup_end_work2();
2598   double work2_end;
2599   if (G1PrintParCleanupStats) {
2600     work2_end = os::elapsedTime();
2601     gclog_or_tty->print_cr("  work2: %8.3f ms.",
2602                   (work2_end - sort_end)*1000.0);
2603   }
2604 }
2605 
2606 // Add the heap region at the head of the non-incremental collection set
2607 void G1CollectorPolicy::
2608 add_to_collection_set(HeapRegion* hr) {
2609   assert(_inc_cset_build_state == Active, "Precondition");
2610   assert(!hr->is_young(), "non-incremental add of young region");
2611 
2612   if (G1PrintHeapRegions) {
2613     gclog_or_tty->print_cr("added region to cset "
2614                            "%d:["PTR_FORMAT", "PTR_FORMAT"], "
2615                            "top "PTR_FORMAT", %s",
2616                            hr->hrs_index(), hr->bottom(), hr->end(),
2617                            hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
2618   }
2619 
2620   if (_g1->mark_in_progress())
2621     _g1->concurrent_mark()->registerCSetRegion(hr);
2622 
2623   assert(!hr->in_collection_set(), "should not already be in the CSet");
2624   hr->set_in_collection_set(true);
2625   hr->set_next_in_collection_set(_collection_set);
2626   _collection_set = hr;
2627   _collection_set_size++;
2628   _collection_set_bytes_used_before += hr->used();
2629   _g1->register_region_with_in_cset_fast_test(hr);
2630 }
2631 
2632 // Initialize the per-collection-set information
2633 void G1CollectorPolicy::start_incremental_cset_building() {
2634   assert(_inc_cset_build_state == Inactive, "Precondition");
2635 
2636   _inc_cset_head = NULL;
2637   _inc_cset_tail = NULL;
2638   _inc_cset_size = 0;
2639   _inc_cset_bytes_used_before = 0;
2640 
2641   if (in_young_gc_mode()) {
2642     _inc_cset_young_index = 0;
2643   }
2644 
2645   _inc_cset_max_finger = 0;
2646   _inc_cset_recorded_young_bytes = 0;
2647   _inc_cset_recorded_rs_lengths = 0;
2648   _inc_cset_predicted_elapsed_time_ms = 0;
2649   _inc_cset_predicted_bytes_to_copy = 0;
2650   _inc_cset_build_state = Active;
2651 }
2652 
2653 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2654   // This routine is used when:
2655   // * adding survivor regions to the incremental cset at the end of an
2656   //   evacuation pause,
2657   // * adding the current allocation region to the incremental cset
2658   //   when it is retired, and
2659   // * updating existing policy information for a region in the
2660   //   incremental cset via young list RSet sampling.
2661   // Therefore this routine may be called at a safepoint by the
2662   // VM thread, or in-between safepoints by mutator threads (when
2663   // retiring the current allocation region) or a concurrent
2664   // refine thread (RSet sampling).
2665 
2666   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2667   size_t used_bytes = hr->used();
2668 
2669   _inc_cset_recorded_rs_lengths += rs_length;
2670   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2671 
2672   _inc_cset_bytes_used_before += used_bytes;
2673 
2674   // Cache the values we have added to the aggregated informtion
2675   // in the heap region in case we have to remove this region from
2676   // the incremental collection set, or it is updated by the
2677   // rset sampling code
2678   hr->set_recorded_rs_length(rs_length);
2679   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2680 
2681 #if PREDICTIONS_VERBOSE
2682   size_t bytes_to_copy = predict_bytes_to_copy(hr);
2683   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
2684 
2685   // Record the number of bytes used in this region
2686   _inc_cset_recorded_young_bytes += used_bytes;
2687 
2688   // Cache the values we have added to the aggregated informtion
2689   // in the heap region in case we have to remove this region from
2690   // the incremental collection set, or it is updated by the
2691   // rset sampling code
2692   hr->set_predicted_bytes_to_copy(bytes_to_copy);
2693 #endif // PREDICTIONS_VERBOSE
2694 }
2695 
2696 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2697   // This routine is currently only called as part of the updating of
2698   // existing policy information for regions in the incremental cset that
2699   // is performed by the concurrent refine thread(s) as part of young list
2700   // RSet sampling. Therefore we should not be at a safepoint.
2701 
2702   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2703   assert(hr->is_young(), "it should be");
2704 
2705   size_t used_bytes = hr->used();
2706   size_t old_rs_length = hr->recorded_rs_length();
2707   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2708 
2709   // Subtract the old recorded/predicted policy information for
2710   // the given heap region from the collection set info.
2711   _inc_cset_recorded_rs_lengths -= old_rs_length;
2712   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2713 
2714   _inc_cset_bytes_used_before -= used_bytes;
2715 
2716   // Clear the values cached in the heap region
2717   hr->set_recorded_rs_length(0);
2718   hr->set_predicted_elapsed_time_ms(0);
2719 
2720 #if PREDICTIONS_VERBOSE
2721   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
2722   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
2723 
2724   // Subtract the number of bytes used in this region
2725   _inc_cset_recorded_young_bytes -= used_bytes;
2726 
2727   // Clear the values cached in the heap region
2728   hr->set_predicted_bytes_to_copy(0);
2729 #endif // PREDICTIONS_VERBOSE
2730 }
2731 
2732 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2733   // Update the collection set information that is dependent on the new RS length
2734   assert(hr->is_young(), "Precondition");
2735 
2736   remove_from_incremental_cset_info(hr);
2737   add_to_incremental_cset_info(hr, new_rs_length);
2738 }
2739 
2740 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2741   assert( hr->is_young(), "invariant");
2742   assert( hr->young_index_in_cset() == -1, "invariant" );
2743   assert(_inc_cset_build_state == Active, "Precondition");
2744 
2745   // We need to clear and set the cached recorded/cached collection set
2746   // information in the heap region here (before the region gets added
2747   // to the collection set). An individual heap region's cached values
2748   // are calculated, aggregated with the policy collection set info,
2749   // and cached in the heap region here (initially) and (subsequently)
2750   // by the Young List sampling code.
2751 
2752   size_t rs_length = hr->rem_set()->occupied();
2753   add_to_incremental_cset_info(hr, rs_length);
2754 
2755   HeapWord* hr_end = hr->end();
2756   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2757 
2758   assert(!hr->in_collection_set(), "invariant");
2759   hr->set_in_collection_set(true);
2760   assert( hr->next_in_collection_set() == NULL, "invariant");
2761 
2762   _inc_cset_size++;
2763   _g1->register_region_with_in_cset_fast_test(hr);
2764 
2765   hr->set_young_index_in_cset((int) _inc_cset_young_index);
2766   ++_inc_cset_young_index;
2767 }
2768 
2769 // Add the region at the RHS of the incremental cset
2770 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2771   // We should only ever be appending survivors at the end of a pause
2772   assert( hr->is_survivor(), "Logic");
2773 
2774   // Do the 'common' stuff
2775   add_region_to_incremental_cset_common(hr);
2776 
2777   // Now add the region at the right hand side
2778   if (_inc_cset_tail == NULL) {
2779     assert(_inc_cset_head == NULL, "invariant");
2780     _inc_cset_head = hr;
2781   } else {
2782     _inc_cset_tail->set_next_in_collection_set(hr);
2783   }
2784   _inc_cset_tail = hr;
2785 
2786   if (G1PrintHeapRegions) {
2787     gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
2788                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
2789                   "top "PTR_FORMAT", young %s",
2790                   hr->hrs_index(), hr->bottom(), hr->end(),
2791                   hr->top(), (hr->is_young()) ? "YES" : "NO");
2792   }
2793 }
2794 
2795 // Add the region to the LHS of the incremental cset
2796 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2797   // Survivors should be added to the RHS at the end of a pause
2798   assert(!hr->is_survivor(), "Logic");
2799 
2800   // Do the 'common' stuff
2801   add_region_to_incremental_cset_common(hr);
2802 
2803   // Add the region at the left hand side
2804   hr->set_next_in_collection_set(_inc_cset_head);
2805   if (_inc_cset_head == NULL) {
2806     assert(_inc_cset_tail == NULL, "Invariant");
2807     _inc_cset_tail = hr;
2808   }
2809   _inc_cset_head = hr;
2810 
2811   if (G1PrintHeapRegions) {
2812     gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
2813                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
2814                   "top "PTR_FORMAT", young %s",
2815                   hr->hrs_index(), hr->bottom(), hr->end(),
2816                   hr->top(), (hr->is_young()) ? "YES" : "NO");
2817   }
2818 }
2819 
2820 #ifndef PRODUCT
2821 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2822   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2823 
2824   st->print_cr("\nCollection_set:");
2825   HeapRegion* csr = list_head;
2826   while (csr != NULL) {
2827     HeapRegion* next = csr->next_in_collection_set();
2828     assert(csr->in_collection_set(), "bad CS");
2829     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2830                  "age: %4d, y: %d, surv: %d",
2831                         csr->bottom(), csr->end(),
2832                         csr->top(),
2833                         csr->prev_top_at_mark_start(),
2834                         csr->next_top_at_mark_start(),
2835                         csr->top_at_conc_mark_count(),
2836                         csr->age_in_surv_rate_group_cond(),
2837                         csr->is_young(),
2838                         csr->is_survivor());
2839     csr = next;
2840   }
2841 }
2842 #endif // !PRODUCT
2843 
2844 void
2845 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
2846                                                   double target_pause_time_ms) {
2847   // Set this here - in case we're not doing young collections.
2848   double non_young_start_time_sec = os::elapsedTime();
2849 
2850   start_recording_regions();
2851 
2852   guarantee(target_pause_time_ms > 0.0,
2853             err_msg("target_pause_time_ms = %1.6lf should be positive",
2854                     target_pause_time_ms));
2855   guarantee(_collection_set == NULL, "Precondition");
2856 
2857   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2858   double predicted_pause_time_ms = base_time_ms;
2859 
2860   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2861 
2862   // the 10% and 50% values are arbitrary...
2863   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
2864     time_remaining_ms = 0.50 * target_pause_time_ms;
2865     _within_target = false;
2866   } else {
2867     _within_target = true;
2868   }
2869 
2870   // We figure out the number of bytes available for future to-space.
2871   // For new regions without marking information, we must assume the
2872   // worst-case of complete survival.  If we have marking information for a
2873   // region, we can bound the amount of live data.  We can add a number of
2874   // such regions, as long as the sum of the live data bounds does not
2875   // exceed the available evacuation space.
2876   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
2877 
2878   size_t expansion_bytes =
2879     _g1->expansion_regions() * HeapRegion::GrainBytes;
2880 
2881   _collection_set_bytes_used_before = 0;
2882   _collection_set_size = 0;
2883 
2884   // Adjust for expansion and slop.
2885   max_live_bytes = max_live_bytes + expansion_bytes;
2886 
2887   assert(_g1->regions_accounted_for(), "Region leakage!");
2888 
2889   HeapRegion* hr;
2890   if (in_young_gc_mode()) {
2891     double young_start_time_sec = os::elapsedTime();
2892 
2893     if (G1PolicyVerbose > 0) {
2894       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
2895                     _g1->young_list()->length());
2896     }
2897 
2898     _young_cset_length  = 0;
2899     _last_young_gc_full = full_young_gcs() ? true : false;
2900 
2901     if (_last_young_gc_full)
2902       ++_full_young_pause_num;
2903     else
2904       ++_partial_young_pause_num;
2905 
2906     // The young list is laid with the survivor regions from the previous
2907     // pause are appended to the RHS of the young list, i.e.
2908     //   [Newly Young Regions ++ Survivors from last pause].
2909 
2910     hr = _g1->young_list()->first_survivor_region();
2911     while (hr != NULL) {
2912       assert(hr->is_survivor(), "badly formed young list");
2913       hr->set_young();
2914       hr = hr->get_next_young_region();
2915     }
2916 
2917     // Clear the fields that point to the survivor list - they are
2918     // all young now.
2919     _g1->young_list()->clear_survivors();
2920 
2921     if (_g1->mark_in_progress())
2922       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2923 
2924     _young_cset_length = _inc_cset_young_index;
2925     _collection_set = _inc_cset_head;
2926     _collection_set_size = _inc_cset_size;
2927     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2928 
2929     // For young regions in the collection set, we assume the worst
2930     // case of complete survival
2931     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
2932 
2933     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2934     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2935 
2936     // The number of recorded young regions is the incremental
2937     // collection set's current size
2938     set_recorded_young_regions(_inc_cset_size);
2939     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2940     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2941 #if PREDICTIONS_VERBOSE
2942     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
2943 #endif // PREDICTIONS_VERBOSE
2944 
2945     if (G1PolicyVerbose > 0) {
2946       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
2947                              _inc_cset_size);
2948       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2949                             max_live_bytes/K);
2950     }
2951 
2952     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
2953 
2954     double young_end_time_sec = os::elapsedTime();
2955     _recorded_young_cset_choice_time_ms =
2956       (young_end_time_sec - young_start_time_sec) * 1000.0;
2957 
2958     // We are doing young collections so reset this.
2959     non_young_start_time_sec = young_end_time_sec;
2960 
2961     // Note we can use either _collection_set_size or
2962     // _young_cset_length here
2963     if (_collection_set_size > 0 && _last_young_gc_full) {
2964       // don't bother adding more regions...
2965       goto choose_collection_set_end;
2966     }
2967   }
2968 
2969   if (!in_young_gc_mode() || !full_young_gcs()) {
2970     bool should_continue = true;
2971     NumberSeq seq;
2972     double avg_prediction = 100000000000000000.0; // something very large
2973 
2974     do {
2975       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
2976                                                       avg_prediction);
2977       if (hr != NULL) {
2978         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2979         time_remaining_ms -= predicted_time_ms;
2980         predicted_pause_time_ms += predicted_time_ms;
2981         add_to_collection_set(hr);
2982         record_non_young_cset_region(hr);
2983         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
2984         if (G1PolicyVerbose > 0) {
2985           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2986                         max_live_bytes/K);
2987         }
2988         seq.add(predicted_time_ms);
2989         avg_prediction = seq.avg() + seq.sd();
2990       }
2991       should_continue =
2992         ( hr != NULL) &&
2993         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
2994           : _collection_set_size < _young_list_fixed_length );
2995     } while (should_continue);
2996 
2997     if (!adaptive_young_list_length() &&
2998         _collection_set_size < _young_list_fixed_length)
2999       _should_revert_to_full_young_gcs  = true;
3000   }
3001 
3002 choose_collection_set_end:
3003   stop_incremental_cset_building();
3004 
3005   count_CS_bytes_used();
3006 
3007   end_recording_regions();
3008 
3009   double non_young_end_time_sec = os::elapsedTime();
3010   _recorded_non_young_cset_choice_time_ms =
3011     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
3012 }
3013 
3014 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
3015   G1CollectorPolicy::record_full_collection_end();
3016   _collectionSetChooser->updateAfterFullCollection();
3017 }
3018 
3019 void G1CollectorPolicy_BestRegionsFirst::
3020 expand_if_possible(size_t numRegions) {
3021   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
3022   _g1->expand(expansion_bytes);
3023 }
3024 
3025 void G1CollectorPolicy_BestRegionsFirst::
3026 record_collection_pause_end() {
3027   G1CollectorPolicy::record_collection_pause_end();
3028   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
3029 }