1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122 
 123 #ifndef PRODUCT
 124   // Card Table Count Cache stats
 125   double _min_clear_cc_time_ms;         // min
 126   double _max_clear_cc_time_ms;         // max
 127   double _cur_clear_cc_time_ms;         // clearing time during current pause
 128   double _cum_clear_cc_time_ms;         // cummulative clearing time
 129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 130 #endif
 131 
 132   double _cur_CH_strong_roots_end_sec;
 133   double _cur_CH_strong_roots_dur_ms;
 134   double _cur_G1_strong_roots_end_sec;
 135   double _cur_G1_strong_roots_dur_ms;
 136 
 137   // Statistics for recent GC pauses.  See below for how indexed.
 138   TruncatedSeq* _recent_CH_strong_roots_times_ms;
 139   TruncatedSeq* _recent_G1_strong_roots_times_ms;
 140   TruncatedSeq* _recent_evac_times_ms;
 141   // These exclude marking times.
 142   TruncatedSeq* _recent_pause_times_ms;
 143   TruncatedSeq* _recent_gc_times_ms;
 144 
 145   TruncatedSeq* _recent_CS_bytes_used_before;
 146   TruncatedSeq* _recent_CS_bytes_surviving;
 147 
 148   TruncatedSeq* _recent_rs_sizes;
 149 
 150   TruncatedSeq* _concurrent_mark_init_times_ms;
 151   TruncatedSeq* _concurrent_mark_remark_times_ms;
 152   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 153 
 154   Summary*           _summary;
 155 
 156   NumberSeq* _all_pause_times_ms;
 157   NumberSeq* _all_full_gc_times_ms;
 158   double _stop_world_start;
 159   NumberSeq* _all_stop_world_times_ms;
 160   NumberSeq* _all_yield_times_ms;
 161 
 162   size_t     _region_num_young;
 163   size_t     _region_num_tenured;
 164   size_t     _prev_region_num_young;
 165   size_t     _prev_region_num_tenured;
 166 
 167   NumberSeq* _all_mod_union_times_ms;
 168 
 169   int        _aux_num;
 170   NumberSeq* _all_aux_times_ms;
 171   double*    _cur_aux_start_times_ms;
 172   double*    _cur_aux_times_ms;
 173   bool*      _cur_aux_times_set;
 174 
 175   double* _par_last_gc_worker_start_times_ms;
 176   double* _par_last_ext_root_scan_times_ms;
 177   double* _par_last_mark_stack_scan_times_ms;
 178   double* _par_last_update_rs_times_ms;
 179   double* _par_last_update_rs_processed_buffers;
 180   double* _par_last_scan_rs_times_ms;
 181   double* _par_last_obj_copy_times_ms;
 182   double* _par_last_termination_times_ms;
 183   double* _par_last_termination_attempts;
 184   double* _par_last_gc_worker_end_times_ms;
 185 
 186   // indicates that we are in young GC mode
 187   bool _in_young_gc_mode;
 188 
 189   // indicates whether we are in full young or partially young GC mode
 190   bool _full_young_gcs;
 191 
 192   // if true, then it tries to dynamically adjust the length of the
 193   // young list
 194   bool _adaptive_young_list_length;
 195   size_t _young_list_min_length;
 196   size_t _young_list_target_length;
 197   size_t _young_list_fixed_length;
 198 
 199   size_t _young_cset_length;
 200   bool   _last_young_gc_full;
 201 
 202   unsigned              _full_young_pause_num;
 203   unsigned              _partial_young_pause_num;
 204 
 205   bool                  _during_marking;
 206   bool                  _in_marking_window;
 207   bool                  _in_marking_window_im;
 208 
 209   SurvRateGroup*        _short_lived_surv_rate_group;
 210   SurvRateGroup*        _survivor_surv_rate_group;
 211   // add here any more surv rate groups
 212 
 213   double                _gc_overhead_perc;
 214 
 215   bool during_marking() {
 216     return _during_marking;
 217   }
 218 
 219   // <NEW PREDICTION>
 220 
 221 private:
 222   enum PredictionConstants {
 223     TruncatedSeqLength = 10
 224   };
 225 
 226   TruncatedSeq* _alloc_rate_ms_seq;
 227   double        _prev_collection_pause_end_ms;
 228 
 229   TruncatedSeq* _pending_card_diff_seq;
 230   TruncatedSeq* _rs_length_diff_seq;
 231   TruncatedSeq* _cost_per_card_ms_seq;
 232   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 233   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 234   TruncatedSeq* _cost_per_entry_ms_seq;
 235   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 236   TruncatedSeq* _cost_per_byte_ms_seq;
 237   TruncatedSeq* _constant_other_time_ms_seq;
 238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 240 
 241   TruncatedSeq* _pending_cards_seq;
 242   TruncatedSeq* _scanned_cards_seq;
 243   TruncatedSeq* _rs_lengths_seq;
 244 
 245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 246 
 247   TruncatedSeq* _young_gc_eff_seq;
 248 
 249   TruncatedSeq* _max_conc_overhead_seq;
 250 
 251   size_t _recorded_young_regions;
 252   size_t _recorded_non_young_regions;
 253   size_t _recorded_region_num;
 254 
 255   size_t _free_regions_at_end_of_collection;
 256 
 257   size_t _recorded_rs_lengths;
 258   size_t _max_rs_lengths;
 259 
 260   size_t _recorded_marked_bytes;
 261   size_t _recorded_young_bytes;
 262 
 263   size_t _predicted_pending_cards;
 264   size_t _predicted_cards_scanned;
 265   size_t _predicted_rs_lengths;
 266   size_t _predicted_bytes_to_copy;
 267 
 268   double _predicted_survival_ratio;
 269   double _predicted_rs_update_time_ms;
 270   double _predicted_rs_scan_time_ms;
 271   double _predicted_object_copy_time_ms;
 272   double _predicted_constant_other_time_ms;
 273   double _predicted_young_other_time_ms;
 274   double _predicted_non_young_other_time_ms;
 275   double _predicted_pause_time_ms;
 276 
 277   double _vtime_diff_ms;
 278 
 279   double _recorded_young_free_cset_time_ms;
 280   double _recorded_non_young_free_cset_time_ms;
 281 
 282   double _sigma;
 283   double _expensive_region_limit_ms;
 284 
 285   size_t _rs_lengths_prediction;
 286 
 287   size_t _known_garbage_bytes;
 288   double _known_garbage_ratio;
 289 
 290   double sigma() {
 291     return _sigma;
 292   }
 293 
 294   // A function that prevents us putting too much stock in small sample
 295   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 296   // of samples.  5 or more samples yields one; fewer scales linearly from
 297   // 2.0 at 1 sample to 1.0 at 5.
 298   double confidence_factor(int samples) {
 299     if (samples > 4) return 1.0;
 300     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 301   }
 302 
 303   double get_new_neg_prediction(TruncatedSeq* seq) {
 304     return seq->davg() - sigma() * seq->dsd();
 305   }
 306 
 307 #ifndef PRODUCT
 308   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 309 #endif // PRODUCT
 310 
 311   void adjust_concurrent_refinement(double update_rs_time,
 312                                     double update_rs_processed_buffers,
 313                                     double goal_ms);
 314 
 315 protected:
 316   double _pause_time_target_ms;
 317   double _recorded_young_cset_choice_time_ms;
 318   double _recorded_non_young_cset_choice_time_ms;
 319   bool   _within_target;
 320   size_t _pending_cards;
 321   size_t _max_pending_cards;
 322 
 323 public:
 324 
 325   void set_region_short_lived(HeapRegion* hr) {
 326     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 327   }
 328 
 329   void set_region_survivors(HeapRegion* hr) {
 330     hr->install_surv_rate_group(_survivor_surv_rate_group);
 331   }
 332 
 333 #ifndef PRODUCT
 334   bool verify_young_ages();
 335 #endif // PRODUCT
 336 
 337   double get_new_prediction(TruncatedSeq* seq) {
 338     return MAX2(seq->davg() + sigma() * seq->dsd(),
 339                 seq->davg() * confidence_factor(seq->num()));
 340   }
 341 
 342   size_t young_cset_length() {
 343     return _young_cset_length;
 344   }
 345 
 346   void record_max_rs_lengths(size_t rs_lengths) {
 347     _max_rs_lengths = rs_lengths;
 348   }
 349 
 350   size_t predict_pending_card_diff() {
 351     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 352     if (prediction < 0.00001)
 353       return 0;
 354     else
 355       return (size_t) prediction;
 356   }
 357 
 358   size_t predict_pending_cards() {
 359     size_t max_pending_card_num = _g1->max_pending_card_num();
 360     size_t diff = predict_pending_card_diff();
 361     size_t prediction;
 362     if (diff > max_pending_card_num)
 363       prediction = max_pending_card_num;
 364     else
 365       prediction = max_pending_card_num - diff;
 366 
 367     return prediction;
 368   }
 369 
 370   size_t predict_rs_length_diff() {
 371     return (size_t) get_new_prediction(_rs_length_diff_seq);
 372   }
 373 
 374   double predict_alloc_rate_ms() {
 375     return get_new_prediction(_alloc_rate_ms_seq);
 376   }
 377 
 378   double predict_cost_per_card_ms() {
 379     return get_new_prediction(_cost_per_card_ms_seq);
 380   }
 381 
 382   double predict_rs_update_time_ms(size_t pending_cards) {
 383     return (double) pending_cards * predict_cost_per_card_ms();
 384   }
 385 
 386   double predict_fully_young_cards_per_entry_ratio() {
 387     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 388   }
 389 
 390   double predict_partially_young_cards_per_entry_ratio() {
 391     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 392       return predict_fully_young_cards_per_entry_ratio();
 393     else
 394       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 395   }
 396 
 397   size_t predict_young_card_num(size_t rs_length) {
 398     return (size_t) ((double) rs_length *
 399                      predict_fully_young_cards_per_entry_ratio());
 400   }
 401 
 402   size_t predict_non_young_card_num(size_t rs_length) {
 403     return (size_t) ((double) rs_length *
 404                      predict_partially_young_cards_per_entry_ratio());
 405   }
 406 
 407   double predict_rs_scan_time_ms(size_t card_num) {
 408     if (full_young_gcs())
 409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 410     else
 411       return predict_partially_young_rs_scan_time_ms(card_num);
 412   }
 413 
 414   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 415     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 416       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 417     else
 418       return (double) card_num *
 419         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 420   }
 421 
 422   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 423     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 424       return 1.1 * (double) bytes_to_copy *
 425         get_new_prediction(_cost_per_byte_ms_seq);
 426     else
 427       return (double) bytes_to_copy *
 428         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 429   }
 430 
 431   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 432     if (_in_marking_window && !_in_marking_window_im)
 433       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 434     else
 435       return (double) bytes_to_copy *
 436         get_new_prediction(_cost_per_byte_ms_seq);
 437   }
 438 
 439   double predict_constant_other_time_ms() {
 440     return get_new_prediction(_constant_other_time_ms_seq);
 441   }
 442 
 443   double predict_young_other_time_ms(size_t young_num) {
 444     return
 445       (double) young_num *
 446       get_new_prediction(_young_other_cost_per_region_ms_seq);
 447   }
 448 
 449   double predict_non_young_other_time_ms(size_t non_young_num) {
 450     return
 451       (double) non_young_num *
 452       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 453   }
 454 
 455   void check_if_region_is_too_expensive(double predicted_time_ms);
 456 
 457   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 458   double predict_base_elapsed_time_ms(size_t pending_cards);
 459   double predict_base_elapsed_time_ms(size_t pending_cards,
 460                                       size_t scanned_cards);
 461   size_t predict_bytes_to_copy(HeapRegion* hr);
 462   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 463 
 464     // for use by: calculate_young_list_target_length(rs_length)
 465   bool predict_will_fit(size_t young_region_num,
 466                         double base_time_ms,
 467                         size_t init_free_regions,
 468                         double target_pause_time_ms);
 469 
 470   void start_recording_regions();
 471   void record_cset_region_info(HeapRegion* hr, bool young);
 472   void record_non_young_cset_region(HeapRegion* hr);
 473 
 474   void set_recorded_young_regions(size_t n_regions);
 475   void set_recorded_young_bytes(size_t bytes);
 476   void set_recorded_rs_lengths(size_t rs_lengths);
 477   void set_predicted_bytes_to_copy(size_t bytes);
 478 
 479   void end_recording_regions();
 480 
 481   void record_vtime_diff_ms(double vtime_diff_ms) {
 482     _vtime_diff_ms = vtime_diff_ms;
 483   }
 484 
 485   void record_young_free_cset_time_ms(double time_ms) {
 486     _recorded_young_free_cset_time_ms = time_ms;
 487   }
 488 
 489   void record_non_young_free_cset_time_ms(double time_ms) {
 490     _recorded_non_young_free_cset_time_ms = time_ms;
 491   }
 492 
 493   double predict_young_gc_eff() {
 494     return get_new_neg_prediction(_young_gc_eff_seq);
 495   }
 496 
 497   double predict_survivor_regions_evac_time();
 498 
 499   // </NEW PREDICTION>
 500 
 501 public:
 502   void cset_regions_freed() {
 503     bool propagate = _last_young_gc_full && !_in_marking_window;
 504     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 505     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 506     // also call it on any more surv rate groups
 507   }
 508 
 509   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 510     _known_garbage_bytes = known_garbage_bytes;
 511     size_t heap_bytes = _g1->capacity();
 512     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 513   }
 514 
 515   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 516     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 517 
 518     _known_garbage_bytes -= known_garbage_bytes;
 519     size_t heap_bytes = _g1->capacity();
 520     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 521   }
 522 
 523   G1MMUTracker* mmu_tracker() {
 524     return _mmu_tracker;
 525   }
 526 
 527   double max_pause_time_ms() {
 528     return _mmu_tracker->max_gc_time() * 1000.0;
 529   }
 530 
 531   double predict_init_time_ms() {
 532     return get_new_prediction(_concurrent_mark_init_times_ms);
 533   }
 534 
 535   double predict_remark_time_ms() {
 536     return get_new_prediction(_concurrent_mark_remark_times_ms);
 537   }
 538 
 539   double predict_cleanup_time_ms() {
 540     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 541   }
 542 
 543   // Returns an estimate of the survival rate of the region at yg-age
 544   // "yg_age".
 545   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 546     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 547     if (seq->num() == 0)
 548       gclog_or_tty->print("BARF! age is %d", age);
 549     guarantee( seq->num() > 0, "invariant" );
 550     double pred = get_new_prediction(seq);
 551     if (pred > 1.0)
 552       pred = 1.0;
 553     return pred;
 554   }
 555 
 556   double predict_yg_surv_rate(int age) {
 557     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 558   }
 559 
 560   double accum_yg_surv_rate_pred(int age) {
 561     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 562   }
 563 
 564 protected:
 565   void print_stats(int level, const char* str, double value);
 566   void print_stats(int level, const char* str, int value);
 567 
 568   void print_par_stats(int level, const char* str, double* data) {
 569     print_par_stats(level, str, data, true);
 570   }
 571   void print_par_stats(int level, const char* str, double* data, bool summary);
 572   void print_par_sizes(int level, const char* str, double* data, bool summary);
 573 
 574   void check_other_times(int level,
 575                          NumberSeq* other_times_ms,
 576                          NumberSeq* calc_other_times_ms) const;
 577 
 578   void print_summary (PauseSummary* stats) const;
 579 
 580   void print_summary (int level, const char* str, NumberSeq* seq) const;
 581   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 582 
 583   double avg_value (double* data);
 584   double max_value (double* data);
 585   double sum_of_values (double* data);
 586   double max_sum (double* data1, double* data2);
 587 
 588   int _last_satb_drain_processed_buffers;
 589   int _last_update_rs_processed_buffers;
 590   double _last_pause_time_ms;
 591 
 592   size_t _bytes_in_to_space_before_gc;
 593   size_t _bytes_in_to_space_after_gc;
 594   size_t bytes_in_to_space_during_gc() {
 595     return
 596       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
 597   }
 598   size_t _bytes_in_collection_set_before_gc;
 599   // Used to count used bytes in CS.
 600   friend class CountCSClosure;
 601 
 602   // Statistics kept per GC stoppage, pause or full.
 603   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 604 
 605   // We track markings.
 606   int _num_markings;
 607   double _mark_thread_startup_sec;       // Time at startup of marking thread
 608 
 609   // Add a new GC of the given duration and end time to the record.
 610   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 611 
 612   // The head of the list (via "next_in_collection_set()") representing the
 613   // current collection set. Set from the incrementally built collection
 614   // set at the start of the pause.
 615   HeapRegion* _collection_set;
 616 
 617   // The number of regions in the collection set. Set from the incrementally
 618   // built collection set at the start of an evacuation pause.
 619   size_t _collection_set_size;
 620 
 621   // The number of bytes in the collection set before the pause. Set from
 622   // the incrementally built collection set at the start of an evacuation
 623   // pause.
 624   size_t _collection_set_bytes_used_before;
 625 
 626   // The associated information that is maintained while the incremental
 627   // collection set is being built with young regions. Used to populate
 628   // the recorded info for the evacuation pause.
 629 
 630   enum CSetBuildType {
 631     Active,             // We are actively building the collection set
 632     Inactive            // We are not actively building the collection set
 633   };
 634 
 635   CSetBuildType _inc_cset_build_state;
 636 
 637   // The head of the incrementally built collection set.
 638   HeapRegion* _inc_cset_head;
 639 
 640   // The tail of the incrementally built collection set.
 641   HeapRegion* _inc_cset_tail;
 642 
 643   // The number of regions in the incrementally built collection set.
 644   // Used to set _collection_set_size at the start of an evacuation
 645   // pause.
 646   size_t _inc_cset_size;
 647 
 648   // Used as the index in the surving young words structure
 649   // which tracks the amount of space, for each young region,
 650   // that survives the pause.
 651   size_t _inc_cset_young_index;
 652 
 653   // The number of bytes in the incrementally built collection set.
 654   // Used to set _collection_set_bytes_used_before at the start of
 655   // an evacuation pause.
 656   size_t _inc_cset_bytes_used_before;
 657 
 658   // Used to record the highest end of heap region in collection set
 659   HeapWord* _inc_cset_max_finger;
 660 
 661   // The number of recorded used bytes in the young regions
 662   // of the collection set. This is the sum of the used() bytes
 663   // of retired young regions in the collection set.
 664   size_t _inc_cset_recorded_young_bytes;
 665 
 666   // The RSet lengths recorded for regions in the collection set
 667   // (updated by the periodic sampling of the regions in the
 668   // young list/collection set).
 669   size_t _inc_cset_recorded_rs_lengths;
 670 
 671   // The predicted elapsed time it will take to collect the regions
 672   // in the collection set (updated by the periodic sampling of the
 673   // regions in the young list/collection set).
 674   double _inc_cset_predicted_elapsed_time_ms;
 675 
 676   // The predicted bytes to copy for the regions in the collection
 677   // set (updated by the periodic sampling of the regions in the
 678   // young list/collection set).
 679   size_t _inc_cset_predicted_bytes_to_copy;
 680 
 681   // Info about marking.
 682   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 683 
 684   // The number of collection pauses at the end of the last mark.
 685   size_t _n_pauses_at_mark_end;
 686 
 687   // Stash a pointer to the g1 heap.
 688   G1CollectedHeap* _g1;
 689 
 690   // The average time in ms per collection pause, averaged over recent pauses.
 691   double recent_avg_time_for_pauses_ms();
 692 
 693   // The average time in ms for processing CollectedHeap strong roots, per
 694   // collection pause, averaged over recent pauses.
 695   double recent_avg_time_for_CH_strong_ms();
 696 
 697   // The average time in ms for processing the G1 remembered set, per
 698   // pause, averaged over recent pauses.
 699   double recent_avg_time_for_G1_strong_ms();
 700 
 701   // The average time in ms for "evacuating followers", per pause, averaged
 702   // over recent pauses.
 703   double recent_avg_time_for_evac_ms();
 704 
 705   // The number of "recent" GCs recorded in the number sequences
 706   int number_of_recent_gcs();
 707 
 708   // The average survival ratio, computed by the total number of bytes
 709   // suriviving / total number of bytes before collection over the last
 710   // several recent pauses.
 711   double recent_avg_survival_fraction();
 712   // The survival fraction of the most recent pause; if there have been no
 713   // pauses, returns 1.0.
 714   double last_survival_fraction();
 715 
 716   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 717   // one that may be higher than "recent_avg_survival_fraction".
 718   // This is conservative in several ways:
 719   //   If there have been few pauses, it will assume a potential high
 720   //     variance, and err on the side of caution.
 721   //   It puts a lower bound (currently 0.1) on the value it will return.
 722   //   To try to detect phase changes, if the most recent pause ("latest") has a
 723   //     higher-than average ("avg") survival rate, it returns that rate.
 724   // "work" version is a utility function; young is restricted to young regions.
 725   double conservative_avg_survival_fraction_work(double avg,
 726                                                  double latest);
 727 
 728   // The arguments are the two sequences that keep track of the number of bytes
 729   //   surviving and the total number of bytes before collection, resp.,
 730   //   over the last evereal recent pauses
 731   // Returns the survival rate for the category in the most recent pause.
 732   // If there have been no pauses, returns 1.0.
 733   double last_survival_fraction_work(TruncatedSeq* surviving,
 734                                      TruncatedSeq* before);
 735 
 736   // The arguments are the two sequences that keep track of the number of bytes
 737   //   surviving and the total number of bytes before collection, resp.,
 738   //   over the last several recent pauses
 739   // Returns the average survival ration over the last several recent pauses
 740   // If there have been no pauses, return 1.0
 741   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 742                                            TruncatedSeq* before);
 743 
 744   double conservative_avg_survival_fraction() {
 745     double avg = recent_avg_survival_fraction();
 746     double latest = last_survival_fraction();
 747     return conservative_avg_survival_fraction_work(avg, latest);
 748   }
 749 
 750   // The ratio of gc time to elapsed time, computed over recent pauses.
 751   double _recent_avg_pause_time_ratio;
 752 
 753   double recent_avg_pause_time_ratio() {
 754     return _recent_avg_pause_time_ratio;
 755   }
 756 
 757   // Number of pauses between concurrent marking.
 758   size_t _pauses_btwn_concurrent_mark;
 759 
 760   size_t _n_marks_since_last_pause;
 761 
 762   // At the end of a pause we check the heap occupancy and we decide
 763   // whether we will start a marking cycle during the next pause. If
 764   // we decide that we want to do that, we will set this parameter to
 765   // true. So, this parameter will stay true between the end of a
 766   // pause and the beginning of a subsequent pause (not necessarily
 767   // the next one, see the comments on the next field) when we decide
 768   // that we will indeed start a marking cycle and do the initial-mark
 769   // work.
 770   volatile bool _initiate_conc_mark_if_possible;
 771 
 772   // If initiate_conc_mark_if_possible() is set at the beginning of a
 773   // pause, it is a suggestion that the pause should start a marking
 774   // cycle by doing the initial-mark work. However, it is possible
 775   // that the concurrent marking thread is still finishing up the
 776   // previous marking cycle (e.g., clearing the next marking
 777   // bitmap). If that is the case we cannot start a new cycle and
 778   // we'll have to wait for the concurrent marking thread to finish
 779   // what it is doing. In this case we will postpone the marking cycle
 780   // initiation decision for the next pause. When we eventually decide
 781   // to start a cycle, we will set _during_initial_mark_pause which
 782   // will stay true until the end of the initial-mark pause and it's
 783   // the condition that indicates that a pause is doing the
 784   // initial-mark work.
 785   volatile bool _during_initial_mark_pause;
 786 
 787   bool _should_revert_to_full_young_gcs;
 788   bool _last_full_young_gc;
 789 
 790   // This set of variables tracks the collector efficiency, in order to
 791   // determine whether we should initiate a new marking.
 792   double _cur_mark_stop_world_time_ms;
 793   double _mark_init_start_sec;
 794   double _mark_remark_start_sec;
 795   double _mark_cleanup_start_sec;
 796   double _mark_closure_time_ms;
 797 
 798   void   calculate_young_list_min_length();
 799   void   calculate_young_list_target_length();
 800   void   calculate_young_list_target_length(size_t rs_lengths);
 801 
 802 public:
 803 
 804   G1CollectorPolicy();
 805 
 806   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 807 
 808   virtual CollectorPolicy::Name kind() {
 809     return CollectorPolicy::G1CollectorPolicyKind;
 810   }
 811 
 812   void check_prediction_validity();
 813 
 814   size_t bytes_in_collection_set() {
 815     return _bytes_in_collection_set_before_gc;
 816   }
 817 
 818   size_t bytes_in_to_space() {
 819     return bytes_in_to_space_during_gc();
 820   }
 821 
 822   unsigned calc_gc_alloc_time_stamp() {
 823     return _all_pause_times_ms->num() + 1;
 824   }
 825 
 826 protected:
 827 
 828   // Count the number of bytes used in the CS.
 829   void count_CS_bytes_used();
 830 
 831   // Together these do the base cleanup-recording work.  Subclasses might
 832   // want to put something between them.
 833   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 834                                                 size_t max_live_bytes);
 835   void record_concurrent_mark_cleanup_end_work2();
 836 
 837 public:
 838 
 839   virtual void init();
 840 
 841   // Create jstat counters for the policy.
 842   virtual void initialize_gc_policy_counters();
 843 
 844   virtual HeapWord* mem_allocate_work(size_t size,
 845                                       bool is_tlab,
 846                                       bool* gc_overhead_limit_was_exceeded);
 847 
 848   // This method controls how a collector handles one or more
 849   // of its generations being fully allocated.
 850   virtual HeapWord* satisfy_failed_allocation(size_t size,
 851                                               bool is_tlab);
 852 
 853   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 854 
 855   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 856 
 857   // The number of collection pauses so far.
 858   long n_pauses() const { return _n_pauses; }
 859 
 860   // Update the heuristic info to record a collection pause of the given
 861   // start time, where the given number of bytes were used at the start.
 862   // This may involve changing the desired size of a collection set.
 863 
 864   virtual void record_stop_world_start();
 865 
 866   virtual void record_collection_pause_start(double start_time_sec,
 867                                              size_t start_used);
 868 
 869   // Must currently be called while the world is stopped.
 870   virtual void record_concurrent_mark_init_start();
 871   virtual void record_concurrent_mark_init_end();
 872   void record_concurrent_mark_init_end_pre(double
 873                                            mark_init_elapsed_time_ms);
 874 
 875   void record_mark_closure_time(double mark_closure_time_ms);
 876 
 877   virtual void record_concurrent_mark_remark_start();
 878   virtual void record_concurrent_mark_remark_end();
 879 
 880   virtual void record_concurrent_mark_cleanup_start();
 881   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 882                                                   size_t max_live_bytes);
 883   virtual void record_concurrent_mark_cleanup_completed();
 884 
 885   virtual void record_concurrent_pause();
 886   virtual void record_concurrent_pause_end();
 887 
 888   virtual void record_collection_pause_end_CH_strong_roots();
 889   virtual void record_collection_pause_end_G1_strong_roots();
 890 
 891   virtual void record_collection_pause_end();
 892 
 893   // Record the fact that a full collection occurred.
 894   virtual void record_full_collection_start();
 895   virtual void record_full_collection_end();
 896 
 897   void record_gc_worker_start_time(int worker_i, double ms) {
 898     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 899   }
 900 
 901   void record_ext_root_scan_time(int worker_i, double ms) {
 902     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 903   }
 904 
 905   void record_mark_stack_scan_time(int worker_i, double ms) {
 906     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 907   }
 908 
 909   void record_satb_drain_time(double ms) {
 910     _cur_satb_drain_time_ms = ms;
 911     _satb_drain_time_set    = true;
 912   }
 913 
 914   void record_satb_drain_processed_buffers (int processed_buffers) {
 915     _last_satb_drain_processed_buffers = processed_buffers;
 916   }
 917 
 918   void record_mod_union_time(double ms) {
 919     _all_mod_union_times_ms->add(ms);
 920   }
 921 
 922   void record_update_rs_time(int thread, double ms) {
 923     _par_last_update_rs_times_ms[thread] = ms;
 924   }
 925 
 926   void record_update_rs_processed_buffers (int thread,
 927                                            double processed_buffers) {
 928     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 929   }
 930 
 931   void record_scan_rs_time(int thread, double ms) {
 932     _par_last_scan_rs_times_ms[thread] = ms;
 933   }
 934 
 935   void reset_obj_copy_time(int thread) {
 936     _par_last_obj_copy_times_ms[thread] = 0.0;
 937   }
 938 
 939   void reset_obj_copy_time() {
 940     reset_obj_copy_time(0);
 941   }
 942 
 943   void record_obj_copy_time(int thread, double ms) {
 944     _par_last_obj_copy_times_ms[thread] += ms;
 945   }
 946 
 947   void record_termination(int thread, double ms, size_t attempts) {
 948     _par_last_termination_times_ms[thread] = ms;
 949     _par_last_termination_attempts[thread] = (double) attempts;
 950   }
 951 
 952   void record_gc_worker_end_time(int worker_i, double ms) {
 953     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 954   }
 955 
 956   void record_pause_time_ms(double ms) {
 957     _last_pause_time_ms = ms;
 958   }
 959 
 960   void record_clear_ct_time(double ms) {
 961     _cur_clear_ct_time_ms = ms;
 962   }
 963 
 964   void record_par_time(double ms) {
 965     _cur_collection_par_time_ms = ms;
 966   }
 967 
 968   void record_aux_start_time(int i) {
 969     guarantee(i < _aux_num, "should be within range");
 970     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 971   }
 972 
 973   void record_aux_end_time(int i) {
 974     guarantee(i < _aux_num, "should be within range");
 975     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 976     _cur_aux_times_set[i] = true;
 977     _cur_aux_times_ms[i] += ms;
 978   }
 979 
 980 #ifndef PRODUCT
 981   void record_cc_clear_time(double ms) {
 982     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 983       _min_clear_cc_time_ms = ms;
 984     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 985       _max_clear_cc_time_ms = ms;
 986     _cur_clear_cc_time_ms = ms;
 987     _cum_clear_cc_time_ms += ms;
 988     _num_cc_clears++;
 989   }
 990 #endif
 991 
 992   // Record the fact that "bytes" bytes allocated in a region.
 993   void record_before_bytes(size_t bytes);
 994   void record_after_bytes(size_t bytes);
 995 
 996   // Returns "true" if this is a good time to do a collection pause.
 997   // The "word_size" argument, if non-zero, indicates the size of an
 998   // allocation request that is prompting this query.
 999   virtual bool should_do_collection_pause(size_t word_size) = 0;
1000 
1001   // Choose a new collection set.  Marks the chosen regions as being
1002   // "in_collection_set", and links them together.  The head and number of
1003   // the collection set are available via access methods.
1004   virtual void choose_collection_set(double target_pause_time_ms) = 0;
1005 
1006   // The head of the list (via "next_in_collection_set()") representing the
1007   // current collection set.
1008   HeapRegion* collection_set() { return _collection_set; }
1009 
1010   void clear_collection_set() { _collection_set = NULL; }
1011 
1012   // The number of elements in the current collection set.
1013   size_t collection_set_size() { return _collection_set_size; }
1014 
1015   // Add "hr" to the CS.
1016   void add_to_collection_set(HeapRegion* hr);
1017 
1018   // Incremental CSet Support
1019 
1020   // The head of the incrementally built collection set.
1021   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1022 
1023   // The tail of the incrementally built collection set.
1024   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1025 
1026   // The number of elements in the incrementally built collection set.
1027   size_t inc_cset_size() { return _inc_cset_size; }
1028 
1029   // Initialize incremental collection set info.
1030   void start_incremental_cset_building();
1031 
1032   void clear_incremental_cset() {
1033     _inc_cset_head = NULL;
1034     _inc_cset_tail = NULL;
1035   }
1036 
1037   // Stop adding regions to the incremental collection set
1038   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1039 
1040   // Add/remove information about hr to the aggregated information
1041   // for the incrementally built collection set.
1042   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1043   void remove_from_incremental_cset_info(HeapRegion* hr);
1044 
1045   // Update information about hr in the aggregated information for
1046   // the incrementally built collection set.
1047   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1048 
1049 private:
1050   // Update the incremental cset information when adding a region
1051   // (should not be called directly).
1052   void add_region_to_incremental_cset_common(HeapRegion* hr);
1053 
1054 public:
1055   // Add hr to the LHS of the incremental collection set.
1056   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1057 
1058   // Add hr to the RHS of the incremental collection set.
1059   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1060 
1061 #ifndef PRODUCT
1062   void print_collection_set(HeapRegion* list_head, outputStream* st);
1063 #endif // !PRODUCT
1064 
1065   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1066   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1067   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1068 
1069   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1070   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1071   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1072 
1073   // This sets the initiate_conc_mark_if_possible() flag to start a
1074   // new cycle, as long as we are not already in one. It's best if it
1075   // is called during a safepoint when the test whether a cycle is in
1076   // progress or not is stable.
1077   bool force_initial_mark_if_outside_cycle();
1078 
1079   // This is called at the very beginning of an evacuation pause (it
1080   // has to be the first thing that the pause does). If
1081   // initiate_conc_mark_if_possible() is true, and the concurrent
1082   // marking thread has completed its work during the previous cycle,
1083   // it will set during_initial_mark_pause() to so that the pause does
1084   // the initial-mark work and start a marking cycle.
1085   void decide_on_conc_mark_initiation();
1086 
1087   // If an expansion would be appropriate, because recent GC overhead had
1088   // exceeded the desired limit, return an amount to expand by.
1089   virtual size_t expansion_amount();
1090 
1091   // note start of mark thread
1092   void note_start_of_mark_thread();
1093 
1094   // The marked bytes of the "r" has changed; reclassify it's desirability
1095   // for marking.  Also asserts that "r" is eligible for a CS.
1096   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1097 
1098 #ifndef PRODUCT
1099   // Check any appropriate marked bytes info, asserting false if
1100   // something's wrong, else returning "true".
1101   virtual bool assertMarkedBytesDataOK() = 0;
1102 #endif
1103 
1104   // Print tracing information.
1105   void print_tracing_info() const;
1106 
1107   // Print stats on young survival ratio
1108   void print_yg_surv_rate_info() const;
1109 
1110   void finished_recalculating_age_indexes(bool is_survivors) {
1111     if (is_survivors) {
1112       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1113     } else {
1114       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1115     }
1116     // do that for any other surv rate groups
1117   }
1118 
1119   bool should_add_next_region_to_young_list();
1120 
1121   bool in_young_gc_mode() {
1122     return _in_young_gc_mode;
1123   }
1124   void set_in_young_gc_mode(bool in_young_gc_mode) {
1125     _in_young_gc_mode = in_young_gc_mode;
1126   }
1127 
1128   bool full_young_gcs() {
1129     return _full_young_gcs;
1130   }
1131   void set_full_young_gcs(bool full_young_gcs) {
1132     _full_young_gcs = full_young_gcs;
1133   }
1134 
1135   bool adaptive_young_list_length() {
1136     return _adaptive_young_list_length;
1137   }
1138   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1139     _adaptive_young_list_length = adaptive_young_list_length;
1140   }
1141 
1142   inline double get_gc_eff_factor() {
1143     double ratio = _known_garbage_ratio;
1144 
1145     double square = ratio * ratio;
1146     // square = square * square;
1147     double ret = square * 9.0 + 1.0;
1148 #if 0
1149     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1150 #endif // 0
1151     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1152     return ret;
1153   }
1154 
1155   //
1156   // Survivor regions policy.
1157   //
1158 protected:
1159 
1160   // Current tenuring threshold, set to 0 if the collector reaches the
1161   // maximum amount of suvivors regions.
1162   int _tenuring_threshold;
1163 
1164   // The limit on the number of regions allocated for survivors.
1165   size_t _max_survivor_regions;
1166 
1167   // The amount of survor regions after a collection.
1168   size_t _recorded_survivor_regions;
1169   // List of survivor regions.
1170   HeapRegion* _recorded_survivor_head;
1171   HeapRegion* _recorded_survivor_tail;
1172 
1173   ageTable _survivors_age_table;
1174 
1175 public:
1176 
1177   inline GCAllocPurpose
1178     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1179       if (age < _tenuring_threshold && src_region->is_young()) {
1180         return GCAllocForSurvived;
1181       } else {
1182         return GCAllocForTenured;
1183       }
1184   }
1185 
1186   inline bool track_object_age(GCAllocPurpose purpose) {
1187     return purpose == GCAllocForSurvived;
1188   }
1189 
1190   inline GCAllocPurpose alternative_purpose(int purpose) {
1191     return GCAllocForTenured;
1192   }
1193 
1194   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1195 
1196   size_t max_regions(int purpose);
1197 
1198   // The limit on regions for a particular purpose is reached.
1199   void note_alloc_region_limit_reached(int purpose) {
1200     if (purpose == GCAllocForSurvived) {
1201       _tenuring_threshold = 0;
1202     }
1203   }
1204 
1205   void note_start_adding_survivor_regions() {
1206     _survivor_surv_rate_group->start_adding_regions();
1207   }
1208 
1209   void note_stop_adding_survivor_regions() {
1210     _survivor_surv_rate_group->stop_adding_regions();
1211   }
1212 
1213   void record_survivor_regions(size_t      regions,
1214                                HeapRegion* head,
1215                                HeapRegion* tail) {
1216     _recorded_survivor_regions = regions;
1217     _recorded_survivor_head    = head;
1218     _recorded_survivor_tail    = tail;
1219   }
1220 
1221   size_t recorded_survivor_regions() {
1222     return _recorded_survivor_regions;
1223   }
1224 
1225   void record_thread_age_table(ageTable* age_table)
1226   {
1227     _survivors_age_table.merge_par(age_table);
1228   }
1229 
1230   // Calculates survivor space parameters.
1231   void calculate_survivors_policy();
1232 
1233 };
1234 
1235 // This encapsulates a particular strategy for a g1 Collector.
1236 //
1237 //      Start a concurrent mark when our heap size is n bytes
1238 //            greater then our heap size was at the last concurrent
1239 //            mark.  Where n is a function of the CMSTriggerRatio
1240 //            and the MinHeapFreeRatio.
1241 //
1242 //      Start a g1 collection pause when we have allocated the
1243 //            average number of bytes currently being freed in
1244 //            a collection, but only if it is at least one region
1245 //            full
1246 //
1247 //      Resize Heap based on desired
1248 //      allocation space, where desired allocation space is
1249 //      a function of survival rate and desired future to size.
1250 //
1251 //      Choose collection set by first picking all older regions
1252 //      which have a survival rate which beats our projected young
1253 //      survival rate.  Then fill out the number of needed regions
1254 //      with young regions.
1255 
1256 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1257   CollectionSetChooser* _collectionSetChooser;
1258   // If the estimated is less then desirable, resize if possible.
1259   void expand_if_possible(size_t numRegions);
1260 
1261   virtual void choose_collection_set(double target_pause_time_ms);
1262   virtual void record_collection_pause_start(double start_time_sec,
1263                                              size_t start_used);
1264   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1265                                                   size_t max_live_bytes);
1266   virtual void record_full_collection_end();
1267 
1268 public:
1269   G1CollectorPolicy_BestRegionsFirst() {
1270     _collectionSetChooser = new CollectionSetChooser();
1271   }
1272   void record_collection_pause_end();
1273   bool should_do_collection_pause(size_t word_size);
1274   // This is not needed any more, after the CSet choosing code was
1275   // changed to use the pause prediction work. But let's leave the
1276   // hook in just in case.
1277   void note_change_in_marked_bytes(HeapRegion* r) { }
1278 #ifndef PRODUCT
1279   bool assertMarkedBytesDataOK();
1280 #endif
1281 };
1282 
1283 // This should move to some place more general...
1284 
1285 // If we have "n" measurements, and we've kept track of their "sum" and the
1286 // "sum_of_squares" of the measurements, this returns the variance of the
1287 // sequence.
1288 inline double variance(int n, double sum_of_squares, double sum) {
1289   double n_d = (double)n;
1290   double avg = sum/n_d;
1291   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1292 }
1293 
1294 // Local Variables: ***
1295 // c-indentation-style: gnu ***
1296 // End: ***
1297 
1298 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP