1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentZFThread.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "memory/genOopClosures.inline.hpp"
  34 #include "memory/iterator.hpp"
  35 #include "oops/oop.inline.hpp"
  36 
  37 int HeapRegion::LogOfHRGrainBytes = 0;
  38 int HeapRegion::LogOfHRGrainWords = 0;
  39 int HeapRegion::GrainBytes        = 0;
  40 int HeapRegion::GrainWords        = 0;
  41 int HeapRegion::CardsPerRegion    = 0;
  42 
  43 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  44                                  HeapRegion* hr, OopClosure* cl,
  45                                  CardTableModRefBS::PrecisionStyle precision,
  46                                  FilterKind fk) :
  47   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  48   _hr(hr), _fk(fk), _g1(g1)
  49 {}
  50 
  51 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  52                                                    OopClosure* oc) :
  53   _r_bottom(r->bottom()), _r_end(r->end()),
  54   _oc(oc), _out_of_region(0)
  55 {}
  56 
  57 class VerifyLiveClosure: public OopClosure {
  58 private:
  59   G1CollectedHeap* _g1h;
  60   CardTableModRefBS* _bs;
  61   oop _containing_obj;
  62   bool _failures;
  63   int _n_failures;
  64   bool _use_prev_marking;
  65 public:
  66   // use_prev_marking == true  -> use "prev" marking information,
  67   // use_prev_marking == false -> use "next" marking information
  68   VerifyLiveClosure(G1CollectedHeap* g1h, bool use_prev_marking) :
  69     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
  70     _failures(false), _n_failures(0), _use_prev_marking(use_prev_marking)
  71   {
  72     BarrierSet* bs = _g1h->barrier_set();
  73     if (bs->is_a(BarrierSet::CardTableModRef))
  74       _bs = (CardTableModRefBS*)bs;
  75   }
  76 
  77   void set_containing_obj(oop obj) {
  78     _containing_obj = obj;
  79   }
  80 
  81   bool failures() { return _failures; }
  82   int n_failures() { return _n_failures; }
  83 
  84   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  85   virtual void do_oop(      oop* p) { do_oop_work(p); }
  86 
  87   void print_object(outputStream* out, oop obj) {
  88 #ifdef PRODUCT
  89     klassOop k = obj->klass();
  90     const char* class_name = instanceKlass::cast(k)->external_name();
  91     out->print_cr("class name %s", class_name);
  92 #else // PRODUCT
  93     obj->print_on(out);
  94 #endif // PRODUCT
  95   }
  96 
  97   template <class T> void do_oop_work(T* p) {
  98     assert(_containing_obj != NULL, "Precondition");
  99     assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
 100            "Precondition");
 101     T heap_oop = oopDesc::load_heap_oop(p);
 102     if (!oopDesc::is_null(heap_oop)) {
 103       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 104       bool failed = false;
 105       if (!_g1h->is_in_closed_subset(obj) ||
 106           _g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
 107         if (!_failures) {
 108           gclog_or_tty->print_cr("");
 109           gclog_or_tty->print_cr("----------");
 110         }
 111         if (!_g1h->is_in_closed_subset(obj)) {
 112           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 113           gclog_or_tty->print_cr("Field "PTR_FORMAT
 114                                  " of live obj "PTR_FORMAT" in region "
 115                                  "["PTR_FORMAT", "PTR_FORMAT")",
 116                                  p, (void*) _containing_obj,
 117                                  from->bottom(), from->end());
 118           print_object(gclog_or_tty, _containing_obj);
 119           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 120                                  (void*) obj);
 121         } else {
 122           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 123           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 124           gclog_or_tty->print_cr("Field "PTR_FORMAT
 125                                  " of live obj "PTR_FORMAT" in region "
 126                                  "["PTR_FORMAT", "PTR_FORMAT")",
 127                                  p, (void*) _containing_obj,
 128                                  from->bottom(), from->end());
 129           print_object(gclog_or_tty, _containing_obj);
 130           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 131                                  "["PTR_FORMAT", "PTR_FORMAT")",
 132                                  (void*) obj, to->bottom(), to->end());
 133           print_object(gclog_or_tty, obj);
 134         }
 135         gclog_or_tty->print_cr("----------");
 136         _failures = true;
 137         failed = true;
 138         _n_failures++;
 139       }
 140 
 141       if (!_g1h->full_collection()) {
 142         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 143         HeapRegion* to   = _g1h->heap_region_containing(obj);
 144         if (from != NULL && to != NULL &&
 145             from != to &&
 146             !to->isHumongous()) {
 147           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 148           jbyte cv_field = *_bs->byte_for_const(p);
 149           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 150 
 151           bool is_bad = !(from->is_young()
 152                           || to->rem_set()->contains_reference(p)
 153                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 154                               (_containing_obj->is_objArray() ?
 155                                   cv_field == dirty
 156                                : cv_obj == dirty || cv_field == dirty));
 157           if (is_bad) {
 158             if (!_failures) {
 159               gclog_or_tty->print_cr("");
 160               gclog_or_tty->print_cr("----------");
 161             }
 162             gclog_or_tty->print_cr("Missing rem set entry:");
 163             gclog_or_tty->print_cr("Field "PTR_FORMAT
 164                           " of obj "PTR_FORMAT
 165                           ", in region %d ["PTR_FORMAT
 166                           ", "PTR_FORMAT"),",
 167                           p, (void*) _containing_obj,
 168                           from->hrs_index(),
 169                           from->bottom(),
 170                           from->end());
 171             _containing_obj->print_on(gclog_or_tty);
 172             gclog_or_tty->print_cr("points to obj "PTR_FORMAT
 173                           " in region %d ["PTR_FORMAT
 174                           ", "PTR_FORMAT").",
 175                           (void*) obj, to->hrs_index(),
 176                           to->bottom(), to->end());
 177             obj->print_on(gclog_or_tty);
 178             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 179                           cv_obj, cv_field);
 180             gclog_or_tty->print_cr("----------");
 181             _failures = true;
 182             if (!failed) _n_failures++;
 183           }
 184         }
 185       }
 186     }
 187   }
 188 };
 189 
 190 template<class ClosureType>
 191 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
 192                                HeapRegion* hr,
 193                                HeapWord* cur, HeapWord* top) {
 194   oop cur_oop = oop(cur);
 195   int oop_size = cur_oop->size();
 196   HeapWord* next_obj = cur + oop_size;
 197   while (next_obj < top) {
 198     // Keep filtering the remembered set.
 199     if (!g1h->is_obj_dead(cur_oop, hr)) {
 200       // Bottom lies entirely below top, so we can call the
 201       // non-memRegion version of oop_iterate below.
 202       cur_oop->oop_iterate(cl);
 203     }
 204     cur = next_obj;
 205     cur_oop = oop(cur);
 206     oop_size = cur_oop->size();
 207     next_obj = cur + oop_size;
 208   }
 209   return cur;
 210 }
 211 
 212 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
 213                                               HeapWord* bottom,
 214                                               HeapWord* top,
 215                                               OopClosure* cl) {
 216   G1CollectedHeap* g1h = _g1;
 217 
 218   int oop_size;
 219 
 220   OopClosure* cl2 = cl;
 221   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
 222   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
 223   switch (_fk) {
 224   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
 225   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
 226   }
 227 
 228   // Start filtering what we add to the remembered set. If the object is
 229   // not considered dead, either because it is marked (in the mark bitmap)
 230   // or it was allocated after marking finished, then we add it. Otherwise
 231   // we can safely ignore the object.
 232   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 233     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 234   } else {
 235     oop_size = oop(bottom)->size();
 236   }
 237 
 238   bottom += oop_size;
 239 
 240   if (bottom < top) {
 241     // We replicate the loop below for several kinds of possible filters.
 242     switch (_fk) {
 243     case NoFilterKind:
 244       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 245       break;
 246     case IntoCSFilterKind: {
 247       FilterIntoCSClosure filt(this, g1h, cl);
 248       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 249       break;
 250     }
 251     case OutOfRegionFilterKind: {
 252       FilterOutOfRegionClosure filt(_hr, cl);
 253       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 254       break;
 255     }
 256     default:
 257       ShouldNotReachHere();
 258     }
 259 
 260     // Last object. Need to do dead-obj filtering here too.
 261     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 262       oop(bottom)->oop_iterate(cl2, mr);
 263     }
 264   }
 265 }
 266 
 267 // Minimum region size; we won't go lower than that.
 268 // We might want to decrease this in the future, to deal with small
 269 // heaps a bit more efficiently.
 270 #define MIN_REGION_SIZE  (      1024 * 1024 )
 271 
 272 // Maximum region size; we don't go higher than that. There's a good
 273 // reason for having an upper bound. We don't want regions to get too
 274 // large, otherwise cleanup's effectiveness would decrease as there
 275 // will be fewer opportunities to find totally empty regions after
 276 // marking.
 277 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 278 
 279 // The automatic region size calculation will try to have around this
 280 // many regions in the heap (based on the min heap size).
 281 #define TARGET_REGION_NUMBER          2048
 282 
 283 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 284   // region_size in bytes
 285   uintx region_size = G1HeapRegionSize;
 286   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 287     // We base the automatic calculation on the min heap size. This
 288     // can be problematic if the spread between min and max is quite
 289     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 290     // the max size, the region size might be way too large for the
 291     // min size. Either way, some users might have to set the region
 292     // size manually for some -Xms / -Xmx combos.
 293 
 294     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 295                        (uintx) MIN_REGION_SIZE);
 296   }
 297 
 298   int region_size_log = log2_long((jlong) region_size);
 299   // Recalculate the region size to make sure it's a power of
 300   // 2. This means that region_size is the largest power of 2 that's
 301   // <= what we've calculated so far.
 302   region_size = ((uintx)1 << region_size_log);
 303 
 304   // Now make sure that we don't go over or under our limits.
 305   if (region_size < MIN_REGION_SIZE) {
 306     region_size = MIN_REGION_SIZE;
 307   } else if (region_size > MAX_REGION_SIZE) {
 308     region_size = MAX_REGION_SIZE;
 309   }
 310 
 311   // And recalculate the log.
 312   region_size_log = log2_long((jlong) region_size);
 313 
 314   // Now, set up the globals.
 315   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 316   LogOfHRGrainBytes = region_size_log;
 317 
 318   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 319   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 320 
 321   guarantee(GrainBytes == 0, "we should only set it once");
 322   // The cast to int is safe, given that we've bounded region_size by
 323   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 324   GrainBytes = (int) region_size;
 325 
 326   guarantee(GrainWords == 0, "we should only set it once");
 327   GrainWords = GrainBytes >> LogHeapWordSize;
 328   guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
 329 
 330   guarantee(CardsPerRegion == 0, "we should only set it once");
 331   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 332 }
 333 
 334 void HeapRegion::reset_after_compaction() {
 335   G1OffsetTableContigSpace::reset_after_compaction();
 336   // After a compaction the mark bitmap is invalid, so we must
 337   // treat all objects as being inside the unmarked area.
 338   zero_marked_bytes();
 339   init_top_at_mark_start();
 340 }
 341 
 342 DirtyCardToOopClosure*
 343 HeapRegion::new_dcto_closure(OopClosure* cl,
 344                              CardTableModRefBS::PrecisionStyle precision,
 345                              HeapRegionDCTOC::FilterKind fk) {
 346   return new HeapRegionDCTOC(G1CollectedHeap::heap(),
 347                              this, cl, precision, fk);
 348 }
 349 
 350 void HeapRegion::hr_clear(bool par, bool clear_space) {
 351   _humongous_type = NotHumongous;
 352   _humongous_start_region = NULL;
 353   _in_collection_set = false;
 354   _is_gc_alloc_region = false;
 355 
 356   // Age stuff (if parallel, this will be done separately, since it needs
 357   // to be sequential).
 358   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 359 
 360   set_young_index_in_cset(-1);
 361   uninstall_surv_rate_group();
 362   set_young_type(NotYoung);
 363 
 364   // In case it had been the start of a humongous sequence, reset its end.
 365   set_end(_orig_end);
 366 
 367   if (!par) {
 368     // If this is parallel, this will be done later.
 369     HeapRegionRemSet* hrrs = rem_set();
 370     if (hrrs != NULL) hrrs->clear();
 371     _claimed = InitialClaimValue;
 372   }
 373   zero_marked_bytes();
 374   set_sort_index(-1);
 375 
 376   _offsets.resize(HeapRegion::GrainWords);
 377   init_top_at_mark_start();
 378   if (clear_space) clear(SpaceDecorator::Mangle);
 379 }
 380 
 381 // <PREDICTION>
 382 void HeapRegion::calc_gc_efficiency() {
 383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 384   _gc_efficiency = (double) garbage_bytes() /
 385                             g1h->predict_region_elapsed_time_ms(this, false);
 386 }
 387 // </PREDICTION>
 388 
 389 void HeapRegion::set_startsHumongous() {
 390   _humongous_type = StartsHumongous;
 391   _humongous_start_region = this;
 392   assert(end() == _orig_end, "Should be normal before alloc.");
 393 }
 394 
 395 bool HeapRegion::claimHeapRegion(jint claimValue) {
 396   jint current = _claimed;
 397   if (current != claimValue) {
 398     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 399     if (res == current) {
 400       return true;
 401     }
 402   }
 403   return false;
 404 }
 405 
 406 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 407   HeapWord* low = addr;
 408   HeapWord* high = end();
 409   while (low < high) {
 410     size_t diff = pointer_delta(high, low);
 411     // Must add one below to bias toward the high amount.  Otherwise, if
 412   // "high" were at the desired value, and "low" were one less, we
 413     // would not converge on "high".  This is not symmetric, because
 414     // we set "high" to a block start, which might be the right one,
 415     // which we don't do for "low".
 416     HeapWord* middle = low + (diff+1)/2;
 417     if (middle == high) return high;
 418     HeapWord* mid_bs = block_start_careful(middle);
 419     if (mid_bs < addr) {
 420       low = middle;
 421     } else {
 422       high = mid_bs;
 423     }
 424   }
 425   assert(low == high && low >= addr, "Didn't work.");
 426   return low;
 427 }
 428 
 429 void HeapRegion::set_next_on_unclean_list(HeapRegion* r) {
 430   assert(r == NULL || r->is_on_unclean_list(), "Malformed unclean list.");
 431   _next_in_special_set = r;
 432 }
 433 
 434 void HeapRegion::set_on_unclean_list(bool b) {
 435   _is_on_unclean_list = b;
 436 }
 437 
 438 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 439   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
 440   hr_clear(false/*par*/, clear_space);
 441 }
 442 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 443 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 444 #endif // _MSC_VER
 445 
 446 
 447 HeapRegion::
 448 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
 449                      MemRegion mr, bool is_zeroed)
 450   : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
 451     _next_fk(HeapRegionDCTOC::NoFilterKind),
 452     _hrs_index(-1),
 453     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 454     _in_collection_set(false), _is_gc_alloc_region(false),
 455     _is_on_free_list(false), _is_on_unclean_list(false),
 456     _next_in_special_set(NULL), _orig_end(NULL),
 457     _claimed(InitialClaimValue), _evacuation_failed(false),
 458     _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
 459     _young_type(NotYoung), _next_young_region(NULL),
 460     _next_dirty_cards_region(NULL),
 461     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 462     _rem_set(NULL), _zfs(NotZeroFilled),
 463     _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 464     _predicted_bytes_to_copy(0)
 465 {
 466   _orig_end = mr.end();
 467   // Note that initialize() will set the start of the unmarked area of the
 468   // region.
 469   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
 470   set_top(bottom());
 471   set_saved_mark();
 472 
 473   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
 474 
 475   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 476   // In case the region is allocated during a pause, note the top.
 477   // We haven't done any counting on a brand new region.
 478   _top_at_conc_mark_count = bottom();
 479 }
 480 
 481 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
 482   const HeapRegion* _target;
 483   bool _target_seen;
 484   HeapRegion* _last;
 485   CompactibleSpace* _res;
 486 public:
 487   NextCompactionHeapRegionClosure(const HeapRegion* target) :
 488     _target(target), _target_seen(false), _res(NULL) {}
 489   bool doHeapRegion(HeapRegion* cur) {
 490     if (_target_seen) {
 491       if (!cur->isHumongous()) {
 492         _res = cur;
 493         return true;
 494       }
 495     } else if (cur == _target) {
 496       _target_seen = true;
 497     }
 498     return false;
 499   }
 500   CompactibleSpace* result() { return _res; }
 501 };
 502 
 503 CompactibleSpace* HeapRegion::next_compaction_space() const {
 504   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 505   // cast away const-ness
 506   HeapRegion* r = (HeapRegion*) this;
 507   NextCompactionHeapRegionClosure blk(r);
 508   g1h->heap_region_iterate_from(r, &blk);
 509   return blk.result();
 510 }
 511 
 512 void HeapRegion::set_continuesHumongous(HeapRegion* start) {
 513   // The order is important here.
 514   start->add_continuingHumongousRegion(this);
 515   _humongous_type = ContinuesHumongous;
 516   _humongous_start_region = start;
 517 }
 518 
 519 void HeapRegion::add_continuingHumongousRegion(HeapRegion* cont) {
 520   // Must join the blocks of the current H region seq with the block of the
 521   // added region.
 522   offsets()->join_blocks(bottom(), cont->bottom());
 523   arrayOop obj = (arrayOop)(bottom());
 524   obj->set_length((int) (obj->length() + cont->capacity()/jintSize));
 525   set_end(cont->end());
 526   set_top(cont->end());
 527 }
 528 
 529 void HeapRegion::save_marks() {
 530   set_saved_mark();
 531 }
 532 
 533 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
 534   HeapWord* p = mr.start();
 535   HeapWord* e = mr.end();
 536   oop obj;
 537   while (p < e) {
 538     obj = oop(p);
 539     p += obj->oop_iterate(cl);
 540   }
 541   assert(p == e, "bad memregion: doesn't end on obj boundary");
 542 }
 543 
 544 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 545 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 546   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 547 }
 548 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 549 
 550 
 551 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
 552   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 553 }
 554 
 555 #ifdef DEBUG
 556 HeapWord* HeapRegion::allocate(size_t size) {
 557   jint state = zero_fill_state();
 558   assert(!G1CollectedHeap::heap()->allocs_are_zero_filled() ||
 559          zero_fill_is_allocated(),
 560          "When ZF is on, only alloc in ZF'd regions");
 561   return G1OffsetTableContigSpace::allocate(size);
 562 }
 563 #endif
 564 
 565 void HeapRegion::set_zero_fill_state_work(ZeroFillState zfs) {
 566   assert(ZF_mon->owned_by_self() ||
 567          Universe::heap()->is_gc_active(),
 568          "Must hold the lock or be a full GC to modify.");
 569 #ifdef ASSERT
 570   if (top() != bottom() && zfs != Allocated) {
 571     ResourceMark rm;
 572     stringStream region_str;
 573     print_on(&region_str);
 574     assert(top() == bottom() || zfs == Allocated,
 575            err_msg("Region must be empty, or we must be setting it to allocated. "
 576                    "_zfs=%d, zfs=%d, region: %s", _zfs, zfs, region_str.as_string()));
 577   }
 578 #endif
 579   _zfs = zfs;
 580 }
 581 
 582 void HeapRegion::set_zero_fill_complete() {
 583   set_zero_fill_state_work(ZeroFilled);
 584   if (ZF_mon->owned_by_self()) {
 585     ZF_mon->notify_all();
 586   }
 587 }
 588 
 589 
 590 void HeapRegion::ensure_zero_filled() {
 591   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
 592   ensure_zero_filled_locked();
 593 }
 594 
 595 void HeapRegion::ensure_zero_filled_locked() {
 596   assert(ZF_mon->owned_by_self(), "Precondition");
 597   bool should_ignore_zf = SafepointSynchronize::is_at_safepoint();
 598   assert(should_ignore_zf || Heap_lock->is_locked(),
 599          "Either we're in a GC or we're allocating a region.");
 600   switch (zero_fill_state()) {
 601   case HeapRegion::NotZeroFilled:
 602     set_zero_fill_in_progress(Thread::current());
 603     {
 604       ZF_mon->unlock();
 605       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
 606       ZF_mon->lock_without_safepoint_check();
 607     }
 608     // A trap.
 609     guarantee(zero_fill_state() == HeapRegion::ZeroFilling
 610               && zero_filler() == Thread::current(),
 611               "AHA!  Tell Dave D if you see this...");
 612     set_zero_fill_complete();
 613     // gclog_or_tty->print_cr("Did sync ZF.");
 614     ConcurrentZFThread::note_sync_zfs();
 615     break;
 616   case HeapRegion::ZeroFilling:
 617     if (should_ignore_zf) {
 618       // We can "break" the lock and take over the work.
 619       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
 620       set_zero_fill_complete();
 621       ConcurrentZFThread::note_sync_zfs();
 622       break;
 623     } else {
 624       ConcurrentZFThread::wait_for_ZF_completed(this);
 625     }
 626   case HeapRegion::ZeroFilled:
 627     // Nothing to do.
 628     break;
 629   case HeapRegion::Allocated:
 630     guarantee(false, "Should not call on allocated regions.");
 631   }
 632   assert(zero_fill_state() == HeapRegion::ZeroFilled, "Post");
 633 }
 634 
 635 HeapWord*
 636 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 637                                                  ObjectClosure* cl) {
 638   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 639   // We used to use "block_start_careful" here.  But we're actually happy
 640   // to update the BOT while we do this...
 641   HeapWord* cur = block_start(mr.start());
 642   mr = mr.intersection(used_region());
 643   if (mr.is_empty()) return NULL;
 644   // Otherwise, find the obj that extends onto mr.start().
 645 
 646   assert(cur <= mr.start()
 647          && (oop(cur)->klass_or_null() == NULL ||
 648              cur + oop(cur)->size() > mr.start()),
 649          "postcondition of block_start");
 650   oop obj;
 651   while (cur < mr.end()) {
 652     obj = oop(cur);
 653     if (obj->klass_or_null() == NULL) {
 654       // Ran into an unparseable point.
 655       return cur;
 656     } else if (!g1h->is_obj_dead(obj)) {
 657       cl->do_object(obj);
 658     }
 659     if (cl->abort()) return cur;
 660     // The check above must occur before the operation below, since an
 661     // abort might invalidate the "size" operation.
 662     cur += obj->size();
 663   }
 664   return NULL;
 665 }
 666 
 667 HeapWord*
 668 HeapRegion::
 669 oops_on_card_seq_iterate_careful(MemRegion mr,
 670                                  FilterOutOfRegionClosure* cl,
 671                                  bool filter_young) {
 672   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 673 
 674   // If we're within a stop-world GC, then we might look at a card in a
 675   // GC alloc region that extends onto a GC LAB, which may not be
 676   // parseable.  Stop such at the "saved_mark" of the region.
 677   if (G1CollectedHeap::heap()->is_gc_active()) {
 678     mr = mr.intersection(used_region_at_save_marks());
 679   } else {
 680     mr = mr.intersection(used_region());
 681   }
 682   if (mr.is_empty()) return NULL;
 683   // Otherwise, find the obj that extends onto mr.start().
 684 
 685   // The intersection of the incoming mr (for the card) and the
 686   // allocated part of the region is non-empty. This implies that
 687   // we have actually allocated into this region. The code in
 688   // G1CollectedHeap.cpp that allocates a new region sets the
 689   // is_young tag on the region before allocating. Thus we
 690   // safely know if this region is young.
 691   if (is_young() && filter_young) {
 692     return NULL;
 693   }
 694 
 695   assert(!is_young(), "check value of filter_young");
 696 
 697   // We used to use "block_start_careful" here.  But we're actually happy
 698   // to update the BOT while we do this...
 699   HeapWord* cur = block_start(mr.start());
 700   assert(cur <= mr.start(), "Postcondition");
 701 
 702   while (cur <= mr.start()) {
 703     if (oop(cur)->klass_or_null() == NULL) {
 704       // Ran into an unparseable point.
 705       return cur;
 706     }
 707     // Otherwise...
 708     int sz = oop(cur)->size();
 709     if (cur + sz > mr.start()) break;
 710     // Otherwise, go on.
 711     cur = cur + sz;
 712   }
 713   oop obj;
 714   obj = oop(cur);
 715   // If we finish this loop...
 716   assert(cur <= mr.start()
 717          && obj->klass_or_null() != NULL
 718          && cur + obj->size() > mr.start(),
 719          "Loop postcondition");
 720   if (!g1h->is_obj_dead(obj)) {
 721     obj->oop_iterate(cl, mr);
 722   }
 723 
 724   HeapWord* next;
 725   while (cur < mr.end()) {
 726     obj = oop(cur);
 727     if (obj->klass_or_null() == NULL) {
 728       // Ran into an unparseable point.
 729       return cur;
 730     };
 731     // Otherwise:
 732     next = (cur + obj->size());
 733     if (!g1h->is_obj_dead(obj)) {
 734       if (next < mr.end()) {
 735         obj->oop_iterate(cl);
 736       } else {
 737         // this obj spans the boundary.  If it's an array, stop at the
 738         // boundary.
 739         if (obj->is_objArray()) {
 740           obj->oop_iterate(cl, mr);
 741         } else {
 742           obj->oop_iterate(cl);
 743         }
 744       }
 745     }
 746     cur = next;
 747   }
 748   return NULL;
 749 }
 750 
 751 void HeapRegion::print() const { print_on(gclog_or_tty); }
 752 void HeapRegion::print_on(outputStream* st) const {
 753   if (isHumongous()) {
 754     if (startsHumongous())
 755       st->print(" HS");
 756     else
 757       st->print(" HC");
 758   } else {
 759     st->print("   ");
 760   }
 761   if (in_collection_set())
 762     st->print(" CS");
 763   else if (is_gc_alloc_region())
 764     st->print(" A ");
 765   else
 766     st->print("   ");
 767   if (is_young())
 768     st->print(is_survivor() ? " SU" : " Y ");
 769   else
 770     st->print("   ");
 771   if (is_empty())
 772     st->print(" F");
 773   else
 774     st->print("  ");
 775   st->print(" %5d", _gc_time_stamp);
 776   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 777             prev_top_at_mark_start(), next_top_at_mark_start());
 778   G1OffsetTableContigSpace::print_on(st);
 779 }
 780 
 781 void HeapRegion::verify(bool allow_dirty) const {
 782   bool dummy = false;
 783   verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
 784 }
 785 
 786 #define OBJ_SAMPLE_INTERVAL 0
 787 #define BLOCK_SAMPLE_INTERVAL 100
 788 
 789 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 790 // We would need a mechanism to make that code skip dead objects.
 791 
 792 void HeapRegion::verify(bool allow_dirty,
 793                         bool use_prev_marking,
 794                         bool* failures) const {
 795   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 796   *failures = false;
 797   HeapWord* p = bottom();
 798   HeapWord* prev_p = NULL;
 799   int objs = 0;
 800   int blocks = 0;
 801   VerifyLiveClosure vl_cl(g1, use_prev_marking);
 802   bool is_humongous = isHumongous();
 803   size_t object_num = 0;
 804   while (p < top()) {
 805     size_t size = oop(p)->size();
 806     if (is_humongous != g1->isHumongous(size)) {
 807       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 808                              SIZE_FORMAT" words) in a %shumongous region",
 809                              p, g1->isHumongous(size) ? "" : "non-",
 810                              size, is_humongous ? "" : "non-");
 811        *failures = true;
 812     }
 813     object_num += 1;
 814     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 815       HeapWord* res = block_start_const(p + (size/2));
 816       if (p != res) {
 817         gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
 818                                SIZE_FORMAT" returned "PTR_FORMAT,
 819                                p, size, res);
 820         *failures = true;
 821         return;
 822       }
 823       blocks = 0;
 824     } else {
 825       blocks++;
 826     }
 827     if (objs == OBJ_SAMPLE_INTERVAL) {
 828       oop obj = oop(p);
 829       if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
 830         if (obj->is_oop()) {
 831           klassOop klass = obj->klass();
 832           if (!klass->is_perm()) {
 833             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 834                                    "not in perm", klass, obj);
 835             *failures = true;
 836             return;
 837           } else if (!klass->is_klass()) {
 838             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 839                                    "not a klass", klass, obj);
 840             *failures = true;
 841             return;
 842           } else {
 843             vl_cl.set_containing_obj(obj);
 844             obj->oop_iterate(&vl_cl);
 845             if (vl_cl.failures()) {
 846               *failures = true;
 847             }
 848             if (G1MaxVerifyFailures >= 0 &&
 849                 vl_cl.n_failures() >= G1MaxVerifyFailures) {
 850               return;
 851             }
 852           }
 853         } else {
 854           gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 855           *failures = true;
 856           return;
 857         }
 858       }
 859       objs = 0;
 860     } else {
 861       objs++;
 862     }
 863     prev_p = p;
 864     p += size;
 865   }
 866   HeapWord* rend = end();
 867   HeapWord* rtop = top();
 868   if (rtop < rend) {
 869     HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
 870     if (res != rtop) {
 871         gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
 872                                PTR_FORMAT" returned "PTR_FORMAT,
 873                                rtop, rend, res);
 874         *failures = true;
 875         return;
 876     }
 877   }
 878 
 879   if (is_humongous && object_num > 1) {
 880     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 881                            "but has "SIZE_FORMAT", objects",
 882                            bottom(), end(), object_num);
 883     *failures = true;
 884   }
 885 
 886   if (p != top()) {
 887     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 888                            "does not match top "PTR_FORMAT, p, top());
 889     *failures = true;
 890     return;
 891   }
 892 }
 893 
 894 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 895 // away eventually.
 896 
 897 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 898   // false ==> we'll do the clearing if there's clearing to be done.
 899   ContiguousSpace::initialize(mr, false, mangle_space);
 900   _offsets.zero_bottom_entry();
 901   _offsets.initialize_threshold();
 902   if (clear_space) clear(mangle_space);
 903 }
 904 
 905 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 906   ContiguousSpace::clear(mangle_space);
 907   _offsets.zero_bottom_entry();
 908   _offsets.initialize_threshold();
 909 }
 910 
 911 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 912   Space::set_bottom(new_bottom);
 913   _offsets.set_bottom(new_bottom);
 914 }
 915 
 916 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 917   Space::set_end(new_end);
 918   _offsets.resize(new_end - bottom());
 919 }
 920 
 921 void G1OffsetTableContigSpace::print() const {
 922   print_short();
 923   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 924                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 925                 bottom(), top(), _offsets.threshold(), end());
 926 }
 927 
 928 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 929   return _offsets.initialize_threshold();
 930 }
 931 
 932 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 933                                                     HeapWord* end) {
 934   _offsets.alloc_block(start, end);
 935   return _offsets.threshold();
 936 }
 937 
 938 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
 939   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 940   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
 941   if (_gc_time_stamp < g1h->get_gc_time_stamp())
 942     return top();
 943   else
 944     return ContiguousSpace::saved_mark_word();
 945 }
 946 
 947 void G1OffsetTableContigSpace::set_saved_mark() {
 948   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 949   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 950 
 951   if (_gc_time_stamp < curr_gc_time_stamp) {
 952     // The order of these is important, as another thread might be
 953     // about to start scanning this region. If it does so after
 954     // set_saved_mark and before _gc_time_stamp = ..., then the latter
 955     // will be false, and it will pick up top() as the high water mark
 956     // of region. If it does so after _gc_time_stamp = ..., then it
 957     // will pick up the right saved_mark_word() as the high water mark
 958     // of the region. Either way, the behaviour will be correct.
 959     ContiguousSpace::set_saved_mark();
 960     OrderAccess::storestore();
 961     _gc_time_stamp = curr_gc_time_stamp;
 962     // The following fence is to force a flush of the writes above, but
 963     // is strictly not needed because when an allocating worker thread
 964     // calls set_saved_mark() it does so under the ParGCRareEvent_lock;
 965     // when the lock is released, the write will be flushed.
 966     // OrderAccess::fence();
 967   }
 968 }
 969 
 970 G1OffsetTableContigSpace::
 971 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 972                          MemRegion mr, bool is_zeroed) :
 973   _offsets(sharedOffsetArray, mr),
 974   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 975   _gc_time_stamp(0)
 976 {
 977   _offsets.set_space(this);
 978   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
 979 }
 980 
 981 size_t RegionList::length() {
 982   size_t len = 0;
 983   HeapRegion* cur = hd();
 984   DEBUG_ONLY(HeapRegion* last = NULL);
 985   while (cur != NULL) {
 986     len++;
 987     DEBUG_ONLY(last = cur);
 988     cur = get_next(cur);
 989   }
 990   assert(last == tl(), "Invariant");
 991   return len;
 992 }
 993 
 994 void RegionList::insert_before_head(HeapRegion* r) {
 995   assert(well_formed(), "Inv");
 996   set_next(r, hd());
 997   _hd = r;
 998   _sz++;
 999   if (tl() == NULL) _tl = r;
1000   assert(well_formed(), "Inv");
1001 }
1002 
1003 void RegionList::prepend_list(RegionList* new_list) {
1004   assert(well_formed(), "Precondition");
1005   assert(new_list->well_formed(), "Precondition");
1006   HeapRegion* new_tl = new_list->tl();
1007   if (new_tl != NULL) {
1008     set_next(new_tl, hd());
1009     _hd = new_list->hd();
1010     _sz += new_list->sz();
1011     if (tl() == NULL) _tl = new_list->tl();
1012   } else {
1013     assert(new_list->hd() == NULL && new_list->sz() == 0, "Inv");
1014   }
1015   assert(well_formed(), "Inv");
1016 }
1017 
1018 void RegionList::delete_after(HeapRegion* r) {
1019   assert(well_formed(), "Precondition");
1020   HeapRegion* next = get_next(r);
1021   assert(r != NULL, "Precondition");
1022   HeapRegion* next_tl = get_next(next);
1023   set_next(r, next_tl);
1024   dec_sz();
1025   if (next == tl()) {
1026     assert(next_tl == NULL, "Inv");
1027     _tl = r;
1028   }
1029   assert(well_formed(), "Inv");
1030 }
1031 
1032 HeapRegion* RegionList::pop() {
1033   assert(well_formed(), "Inv");
1034   HeapRegion* res = hd();
1035   if (res != NULL) {
1036     _hd = get_next(res);
1037     _sz--;
1038     set_next(res, NULL);
1039     if (sz() == 0) _tl = NULL;
1040   }
1041   assert(well_formed(), "Inv");
1042   return res;
1043 }