1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SERIALGC
  26 
  27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  28 // can be collected independently.
  29 
  30 // NOTE: Although a HeapRegion is a Space, its
  31 // Space::initDirtyCardClosure method must not be called.
  32 // The problem is that the existence of this method breaks
  33 // the independence of barrier sets from remembered sets.
  34 // The solution is to remove this method from the definition
  35 // of a Space.
  36 
  37 class CompactibleSpace;
  38 class ContiguousSpace;
  39 class HeapRegionRemSet;
  40 class HeapRegionRemSetIterator;
  41 class HeapRegion;
  42 
  43 // A dirty card to oop closure for heap regions. It
  44 // knows how to get the G1 heap and how to use the bitmap
  45 // in the concurrent marker used by G1 to filter remembered
  46 // sets.
  47 
  48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
  49 public:
  50   // Specification of possible DirtyCardToOopClosure filtering.
  51   enum FilterKind {
  52     NoFilterKind,
  53     IntoCSFilterKind,
  54     OutOfRegionFilterKind
  55   };
  56 
  57 protected:
  58   HeapRegion* _hr;
  59   FilterKind _fk;
  60   G1CollectedHeap* _g1;
  61 
  62   void walk_mem_region_with_cl(MemRegion mr,
  63                                HeapWord* bottom, HeapWord* top,
  64                                OopClosure* cl);
  65 
  66   // We don't specialize this for FilteringClosure; filtering is handled by
  67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  68   // warning.
  69   void walk_mem_region_with_cl(MemRegion mr,
  70                                HeapWord* bottom, HeapWord* top,
  71                                FilteringClosure* cl) {
  72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
  73                                                        (OopClosure*)cl);
  74   }
  75 
  76   // Get the actual top of the area on which the closure will
  77   // operate, given where the top is assumed to be (the end of the
  78   // memory region passed to do_MemRegion) and where the object
  79   // at the top is assumed to start. For example, an object may
  80   // start at the top but actually extend past the assumed top,
  81   // in which case the top becomes the end of the object.
  82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
  83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
  84   }
  85 
  86   // Walk the given memory region from bottom to (actual) top
  87   // looking for objects and applying the oop closure (_cl) to
  88   // them. The base implementation of this treats the area as
  89   // blocks, where a block may or may not be an object. Sub-
  90   // classes should override this to provide more accurate
  91   // or possibly more efficient walking.
  92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
  93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
  94   }
  95 
  96 public:
  97   HeapRegionDCTOC(G1CollectedHeap* g1,
  98                   HeapRegion* hr, OopClosure* cl,
  99                   CardTableModRefBS::PrecisionStyle precision,
 100                   FilterKind fk);
 101 };
 102 
 103 
 104 // The complicating factor is that BlockOffsetTable diverged
 105 // significantly, and we need functionality that is only in the G1 version.
 106 // So I copied that code, which led to an alternate G1 version of
 107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 108 // be reconciled, then G1OffsetTableContigSpace could go away.
 109 
 110 // The idea behind time stamps is the following. Doing a save_marks on
 111 // all regions at every GC pause is time consuming (if I remember
 112 // well, 10ms or so). So, we would like to do that only for regions
 113 // that are GC alloc regions. To achieve this, we use time
 114 // stamps. For every evacuation pause, G1CollectedHeap generates a
 115 // unique time stamp (essentially a counter that gets
 116 // incremented). Every time we want to call save_marks on a region,
 117 // we set the saved_mark_word to top and also copy the current GC
 118 // time stamp to the time stamp field of the space. Reading the
 119 // saved_mark_word involves checking the time stamp of the
 120 // region. If it is the same as the current GC time stamp, then we
 121 // can safely read the saved_mark_word field, as it is valid. If the
 122 // time stamp of the region is not the same as the current GC time
 123 // stamp, then we instead read top, as the saved_mark_word field is
 124 // invalid. Time stamps (on the regions and also on the
 125 // G1CollectedHeap) are reset at every cleanup (we iterate over
 126 // the regions anyway) and at the end of a Full GC. The current scheme
 127 // that uses sequential unsigned ints will fail only if we have 4b
 128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 129 
 130 class G1OffsetTableContigSpace: public ContiguousSpace {
 131   friend class VMStructs;
 132  protected:
 133   G1BlockOffsetArrayContigSpace _offsets;
 134   Mutex _par_alloc_lock;
 135   volatile unsigned _gc_time_stamp;
 136 
 137  public:
 138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
 139   // assumed to contain zeros.
 140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 141                            MemRegion mr, bool is_zeroed = false);
 142 
 143   void set_bottom(HeapWord* value);
 144   void set_end(HeapWord* value);
 145 
 146   virtual HeapWord* saved_mark_word() const;
 147   virtual void set_saved_mark();
 148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 149 
 150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 151   virtual void clear(bool mangle_space);
 152 
 153   HeapWord* block_start(const void* p);
 154   HeapWord* block_start_const(const void* p) const;
 155 
 156   // Add offset table update.
 157   virtual HeapWord* allocate(size_t word_size);
 158   HeapWord* par_allocate(size_t word_size);
 159 
 160   // MarkSweep support phase3
 161   virtual HeapWord* initialize_threshold();
 162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 163 
 164   virtual void print() const;
 165 };
 166 
 167 class HeapRegion: public G1OffsetTableContigSpace {
 168   friend class VMStructs;
 169  private:
 170 
 171   enum HumongousType {
 172     NotHumongous = 0,
 173     StartsHumongous,
 174     ContinuesHumongous
 175   };
 176 
 177   // The next filter kind that should be used for a "new_dcto_cl" call with
 178   // the "traditional" signature.
 179   HeapRegionDCTOC::FilterKind _next_fk;
 180 
 181   // Requires that the region "mr" be dense with objects, and begin and end
 182   // with an object.
 183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
 184 
 185   // The remembered set for this region.
 186   // (Might want to make this "inline" later, to avoid some alloc failure
 187   // issues.)
 188   HeapRegionRemSet* _rem_set;
 189 
 190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 191 
 192  protected:
 193   // If this region is a member of a HeapRegionSeq, the index in that
 194   // sequence, otherwise -1.
 195   int  _hrs_index;
 196 
 197   HumongousType _humongous_type;
 198   // For a humongous region, region in which it starts.
 199   HeapRegion* _humongous_start_region;
 200   // For the start region of a humongous sequence, it's original end().
 201   HeapWord* _orig_end;
 202 
 203   // True iff the region is in current collection_set.
 204   bool _in_collection_set;
 205 
 206     // True iff the region is on the unclean list, waiting to be zero filled.
 207   bool _is_on_unclean_list;
 208 
 209   // True iff the region is on the free list, ready for allocation.
 210   bool _is_on_free_list;
 211 
 212   // Is this or has it been an allocation region in the current collection
 213   // pause.
 214   bool _is_gc_alloc_region;
 215 
 216   // True iff an attempt to evacuate an object in the region failed.
 217   bool _evacuation_failed;
 218 
 219   // A heap region may be a member one of a number of special subsets, each
 220   // represented as linked lists through the field below.  Currently, these
 221   // sets include:
 222   //   The collection set.
 223   //   The set of allocation regions used in a collection pause.
 224   //   Spaces that may contain gray objects.
 225   HeapRegion* _next_in_special_set;
 226 
 227   // next region in the young "generation" region set
 228   HeapRegion* _next_young_region;
 229 
 230   // Next region whose cards need cleaning
 231   HeapRegion* _next_dirty_cards_region;
 232 
 233   // For parallel heapRegion traversal.
 234   jint _claimed;
 235 
 236   // We use concurrent marking to determine the amount of live data
 237   // in each heap region.
 238   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 239   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 240 
 241   // See "sort_index" method.  -1 means is not in the array.
 242   int _sort_index;
 243 
 244   // <PREDICTION>
 245   double _gc_efficiency;
 246   // </PREDICTION>
 247 
 248   enum YoungType {
 249     NotYoung,                   // a region is not young
 250     Young,                      // a region is young
 251     Survivor                    // a region is young and it contains
 252                                 // survivor
 253   };
 254 
 255   volatile YoungType _young_type;
 256   int  _young_index_in_cset;
 257   SurvRateGroup* _surv_rate_group;
 258   int  _age_index;
 259 
 260   // The start of the unmarked area. The unmarked area extends from this
 261   // word until the top and/or end of the region, and is the part
 262   // of the region for which no marking was done, i.e. objects may
 263   // have been allocated in this part since the last mark phase.
 264   // "prev" is the top at the start of the last completed marking.
 265   // "next" is the top at the start of the in-progress marking (if any.)
 266   HeapWord* _prev_top_at_mark_start;
 267   HeapWord* _next_top_at_mark_start;
 268   // If a collection pause is in progress, this is the top at the start
 269   // of that pause.
 270 
 271   // We've counted the marked bytes of objects below here.
 272   HeapWord* _top_at_conc_mark_count;
 273 
 274   void init_top_at_mark_start() {
 275     assert(_prev_marked_bytes == 0 &&
 276            _next_marked_bytes == 0,
 277            "Must be called after zero_marked_bytes.");
 278     HeapWord* bot = bottom();
 279     _prev_top_at_mark_start = bot;
 280     _next_top_at_mark_start = bot;
 281     _top_at_conc_mark_count = bot;
 282   }
 283 
 284   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
 285   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
 286                         // made it so.
 287 
 288   void set_young_type(YoungType new_type) {
 289     //assert(_young_type != new_type, "setting the same type" );
 290     // TODO: add more assertions here
 291     _young_type = new_type;
 292   }
 293 
 294   // Cached attributes used in the collection set policy information
 295 
 296   // The RSet length that was added to the total value
 297   // for the collection set.
 298   size_t _recorded_rs_length;
 299 
 300   // The predicted elapsed time that was added to total value
 301   // for the collection set.
 302   double _predicted_elapsed_time_ms;
 303 
 304   // The predicted number of bytes to copy that was added to
 305   // the total value for the collection set.
 306   size_t _predicted_bytes_to_copy;
 307 
 308  public:
 309   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
 310   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
 311              MemRegion mr, bool is_zeroed);
 312 
 313   static int LogOfHRGrainBytes;
 314   static int LogOfHRGrainWords;
 315   // The normal type of these should be size_t. However, they used to
 316   // be members of an enum before and they are assumed by the
 317   // compilers to be ints. To avoid going and fixing all their uses,
 318   // I'm declaring them as ints. I'm not anticipating heap region
 319   // sizes to reach anywhere near 2g, so using an int here is safe.
 320   static int GrainBytes;
 321   static int GrainWords;
 322   static int CardsPerRegion;
 323 
 324   // It sets up the heap region size (GrainBytes / GrainWords), as
 325   // well as other related fields that are based on the heap region
 326   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 327   // CardsPerRegion). All those fields are considered constant
 328   // throughout the JVM's execution, therefore they should only be set
 329   // up once during initialization time.
 330   static void setup_heap_region_size(uintx min_heap_size);
 331 
 332   enum ClaimValues {
 333     InitialClaimValue     = 0,
 334     FinalCountClaimValue  = 1,
 335     NoteEndClaimValue     = 2,
 336     ScrubRemSetClaimValue = 3,
 337     ParVerifyClaimValue   = 4,
 338     RebuildRSClaimValue   = 5
 339   };
 340 
 341   // Concurrent refinement requires contiguous heap regions (in which TLABs
 342   // might be allocated) to be zero-filled.  Each region therefore has a
 343   // zero-fill-state.
 344   enum ZeroFillState {
 345     NotZeroFilled,
 346     ZeroFilling,
 347     ZeroFilled,
 348     Allocated
 349   };
 350 
 351   // If this region is a member of a HeapRegionSeq, the index in that
 352   // sequence, otherwise -1.
 353   int hrs_index() const { return _hrs_index; }
 354   void set_hrs_index(int index) { _hrs_index = index; }
 355 
 356   // The number of bytes marked live in the region in the last marking phase.
 357   size_t marked_bytes()    { return _prev_marked_bytes; }
 358   // The number of bytes counted in the next marking.
 359   size_t next_marked_bytes() { return _next_marked_bytes; }
 360   // The number of bytes live wrt the next marking.
 361   size_t next_live_bytes() {
 362     return (top() - next_top_at_mark_start())
 363       * HeapWordSize
 364       + next_marked_bytes();
 365   }
 366 
 367   // A lower bound on the amount of garbage bytes in the region.
 368   size_t garbage_bytes() {
 369     size_t used_at_mark_start_bytes =
 370       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 371     assert(used_at_mark_start_bytes >= marked_bytes(),
 372            "Can't mark more than we have.");
 373     return used_at_mark_start_bytes - marked_bytes();
 374   }
 375 
 376   // An upper bound on the number of live bytes in the region.
 377   size_t max_live_bytes() { return used() - garbage_bytes(); }
 378 
 379   void add_to_marked_bytes(size_t incr_bytes) {
 380     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 381     guarantee( _next_marked_bytes <= used(), "invariant" );
 382   }
 383 
 384   void zero_marked_bytes()      {
 385     _prev_marked_bytes = _next_marked_bytes = 0;
 386   }
 387 
 388   bool isHumongous() const { return _humongous_type != NotHumongous; }
 389   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 390   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 391   // For a humongous region, region in which it starts.
 392   HeapRegion* humongous_start_region() const {
 393     return _humongous_start_region;
 394   }
 395 
 396   // Causes the current region to represent a humongous object spanning "n"
 397   // regions.
 398   virtual void set_startsHumongous();
 399 
 400   // The regions that continue a humongous sequence should be added using
 401   // this method, in increasing address order.
 402   void set_continuesHumongous(HeapRegion* start);
 403 
 404   void add_continuingHumongousRegion(HeapRegion* cont);
 405 
 406   // If the region has a remembered set, return a pointer to it.
 407   HeapRegionRemSet* rem_set() const {
 408     return _rem_set;
 409   }
 410 
 411   // True iff the region is in current collection_set.
 412   bool in_collection_set() const {
 413     return _in_collection_set;
 414   }
 415   void set_in_collection_set(bool b) {
 416     _in_collection_set = b;
 417   }
 418   HeapRegion* next_in_collection_set() {
 419     assert(in_collection_set(), "should only invoke on member of CS.");
 420     assert(_next_in_special_set == NULL ||
 421            _next_in_special_set->in_collection_set(),
 422            "Malformed CS.");
 423     return _next_in_special_set;
 424   }
 425   void set_next_in_collection_set(HeapRegion* r) {
 426     assert(in_collection_set(), "should only invoke on member of CS.");
 427     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 428     _next_in_special_set = r;
 429   }
 430 
 431   // True iff it is or has been an allocation region in the current
 432   // collection pause.
 433   bool is_gc_alloc_region() const {
 434     return _is_gc_alloc_region;
 435   }
 436   void set_is_gc_alloc_region(bool b) {
 437     _is_gc_alloc_region = b;
 438   }
 439   HeapRegion* next_gc_alloc_region() {
 440     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
 441     assert(_next_in_special_set == NULL ||
 442            _next_in_special_set->is_gc_alloc_region(),
 443            "Malformed CS.");
 444     return _next_in_special_set;
 445   }
 446   void set_next_gc_alloc_region(HeapRegion* r) {
 447     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
 448     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
 449     _next_in_special_set = r;
 450   }
 451 
 452   bool is_on_free_list() {
 453     return _is_on_free_list;
 454   }
 455 
 456   void set_on_free_list(bool b) {
 457     _is_on_free_list = b;
 458   }
 459 
 460   HeapRegion* next_from_free_list() {
 461     assert(is_on_free_list(),
 462            "Should only invoke on free space.");
 463     assert(_next_in_special_set == NULL ||
 464            _next_in_special_set->is_on_free_list(),
 465            "Malformed Free List.");
 466     return _next_in_special_set;
 467   }
 468 
 469   void set_next_on_free_list(HeapRegion* r) {
 470     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
 471     _next_in_special_set = r;
 472   }
 473 
 474   bool is_on_unclean_list() {
 475     return _is_on_unclean_list;
 476   }
 477 
 478   void set_on_unclean_list(bool b);
 479 
 480   HeapRegion* next_from_unclean_list() {
 481     assert(is_on_unclean_list(),
 482            "Should only invoke on unclean space.");
 483     assert(_next_in_special_set == NULL ||
 484            _next_in_special_set->is_on_unclean_list(),
 485            "Malformed unclean List.");
 486     return _next_in_special_set;
 487   }
 488 
 489   void set_next_on_unclean_list(HeapRegion* r);
 490 
 491   HeapRegion* get_next_young_region() { return _next_young_region; }
 492   void set_next_young_region(HeapRegion* hr) {
 493     _next_young_region = hr;
 494   }
 495 
 496   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 497   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 498   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 499   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 500 
 501   // Allows logical separation between objects allocated before and after.
 502   void save_marks();
 503 
 504   // Reset HR stuff to default values.
 505   void hr_clear(bool par, bool clear_space);
 506 
 507   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 508 
 509   // Ensure that "this" is zero-filled.
 510   void ensure_zero_filled();
 511   // This one requires that the calling thread holds ZF_mon.
 512   void ensure_zero_filled_locked();
 513 
 514   // Get the start of the unmarked area in this region.
 515   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 516   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 517 
 518   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
 519   // allocated in the current region before the last call to "save_mark".
 520   void oop_before_save_marks_iterate(OopClosure* cl);
 521 
 522   // This call determines the "filter kind" argument that will be used for
 523   // the next call to "new_dcto_cl" on this region with the "traditional"
 524   // signature (i.e., the call below.)  The default, in the absence of a
 525   // preceding call to this method, is "NoFilterKind", and a call to this
 526   // method is necessary for each such call, or else it reverts to the
 527   // default.
 528   // (This is really ugly, but all other methods I could think of changed a
 529   // lot of main-line code for G1.)
 530   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
 531     _next_fk = nfk;
 532   }
 533 
 534   DirtyCardToOopClosure*
 535   new_dcto_closure(OopClosure* cl,
 536                    CardTableModRefBS::PrecisionStyle precision,
 537                    HeapRegionDCTOC::FilterKind fk);
 538 
 539 #if WHASSUP
 540   DirtyCardToOopClosure*
 541   new_dcto_closure(OopClosure* cl,
 542                    CardTableModRefBS::PrecisionStyle precision,
 543                    HeapWord* boundary) {
 544     assert(boundary == NULL, "This arg doesn't make sense here.");
 545     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
 546     _next_fk = HeapRegionDCTOC::NoFilterKind;
 547     return res;
 548   }
 549 #endif
 550 
 551   //
 552   // Note the start or end of marking. This tells the heap region
 553   // that the collector is about to start or has finished (concurrently)
 554   // marking the heap.
 555   //
 556 
 557   // Note the start of a marking phase. Record the
 558   // start of the unmarked area of the region here.
 559   void note_start_of_marking(bool during_initial_mark) {
 560     init_top_at_conc_mark_count();
 561     _next_marked_bytes = 0;
 562     if (during_initial_mark && is_young() && !is_survivor())
 563       _next_top_at_mark_start = bottom();
 564     else
 565       _next_top_at_mark_start = top();
 566   }
 567 
 568   // Note the end of a marking phase. Install the start of
 569   // the unmarked area that was captured at start of marking.
 570   void note_end_of_marking() {
 571     _prev_top_at_mark_start = _next_top_at_mark_start;
 572     _prev_marked_bytes = _next_marked_bytes;
 573     _next_marked_bytes = 0;
 574 
 575     guarantee(_prev_marked_bytes <=
 576               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
 577               "invariant");
 578   }
 579 
 580   // After an evacuation, we need to update _next_top_at_mark_start
 581   // to be the current top.  Note this is only valid if we have only
 582   // ever evacuated into this region.  If we evacuate, allocate, and
 583   // then evacuate we are in deep doodoo.
 584   void note_end_of_copying() {
 585     assert(top() >= _next_top_at_mark_start, "Increase only");
 586     _next_top_at_mark_start = top();
 587   }
 588 
 589   // Returns "false" iff no object in the region was allocated when the
 590   // last mark phase ended.
 591   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 592 
 593   // If "is_marked()" is true, then this is the index of the region in
 594   // an array constructed at the end of marking of the regions in a
 595   // "desirability" order.
 596   int sort_index() {
 597     return _sort_index;
 598   }
 599   void set_sort_index(int i) {
 600     _sort_index = i;
 601   }
 602 
 603   void init_top_at_conc_mark_count() {
 604     _top_at_conc_mark_count = bottom();
 605   }
 606 
 607   void set_top_at_conc_mark_count(HeapWord *cur) {
 608     assert(bottom() <= cur && cur <= end(), "Sanity.");
 609     _top_at_conc_mark_count = cur;
 610   }
 611 
 612   HeapWord* top_at_conc_mark_count() {
 613     return _top_at_conc_mark_count;
 614   }
 615 
 616   void reset_during_compaction() {
 617     guarantee( isHumongous() && startsHumongous(),
 618                "should only be called for humongous regions");
 619 
 620     zero_marked_bytes();
 621     init_top_at_mark_start();
 622   }
 623 
 624   // <PREDICTION>
 625   void calc_gc_efficiency(void);
 626   double gc_efficiency() { return _gc_efficiency;}
 627   // </PREDICTION>
 628 
 629   bool is_young() const     { return _young_type != NotYoung; }
 630   bool is_survivor() const  { return _young_type == Survivor; }
 631 
 632   int  young_index_in_cset() const { return _young_index_in_cset; }
 633   void set_young_index_in_cset(int index) {
 634     assert( (index == -1) || is_young(), "pre-condition" );
 635     _young_index_in_cset = index;
 636   }
 637 
 638   int age_in_surv_rate_group() {
 639     assert( _surv_rate_group != NULL, "pre-condition" );
 640     assert( _age_index > -1, "pre-condition" );
 641     return _surv_rate_group->age_in_group(_age_index);
 642   }
 643 
 644   void record_surv_words_in_group(size_t words_survived) {
 645     assert( _surv_rate_group != NULL, "pre-condition" );
 646     assert( _age_index > -1, "pre-condition" );
 647     int age_in_group = age_in_surv_rate_group();
 648     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 649   }
 650 
 651   int age_in_surv_rate_group_cond() {
 652     if (_surv_rate_group != NULL)
 653       return age_in_surv_rate_group();
 654     else
 655       return -1;
 656   }
 657 
 658   SurvRateGroup* surv_rate_group() {
 659     return _surv_rate_group;
 660   }
 661 
 662   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 663     assert( surv_rate_group != NULL, "pre-condition" );
 664     assert( _surv_rate_group == NULL, "pre-condition" );
 665     assert( is_young(), "pre-condition" );
 666 
 667     _surv_rate_group = surv_rate_group;
 668     _age_index = surv_rate_group->next_age_index();
 669   }
 670 
 671   void uninstall_surv_rate_group() {
 672     if (_surv_rate_group != NULL) {
 673       assert( _age_index > -1, "pre-condition" );
 674       assert( is_young(), "pre-condition" );
 675 
 676       _surv_rate_group = NULL;
 677       _age_index = -1;
 678     } else {
 679       assert( _age_index == -1, "pre-condition" );
 680     }
 681   }
 682 
 683   void set_young() { set_young_type(Young); }
 684 
 685   void set_survivor() { set_young_type(Survivor); }
 686 
 687   void set_not_young() { set_young_type(NotYoung); }
 688 
 689   // Determine if an object has been allocated since the last
 690   // mark performed by the collector. This returns true iff the object
 691   // is within the unmarked area of the region.
 692   bool obj_allocated_since_prev_marking(oop obj) const {
 693     return (HeapWord *) obj >= prev_top_at_mark_start();
 694   }
 695   bool obj_allocated_since_next_marking(oop obj) const {
 696     return (HeapWord *) obj >= next_top_at_mark_start();
 697   }
 698 
 699   // For parallel heapRegion traversal.
 700   bool claimHeapRegion(int claimValue);
 701   jint claim_value() { return _claimed; }
 702   // Use this carefully: only when you're sure no one is claiming...
 703   void set_claim_value(int claimValue) { _claimed = claimValue; }
 704 
 705   // Returns the "evacuation_failed" property of the region.
 706   bool evacuation_failed() { return _evacuation_failed; }
 707 
 708   // Sets the "evacuation_failed" property of the region.
 709   void set_evacuation_failed(bool b) {
 710     _evacuation_failed = b;
 711 
 712     if (b) {
 713       init_top_at_conc_mark_count();
 714       _next_marked_bytes = 0;
 715     }
 716   }
 717 
 718   // Requires that "mr" be entirely within the region.
 719   // Apply "cl->do_object" to all objects that intersect with "mr".
 720   // If the iteration encounters an unparseable portion of the region,
 721   // or if "cl->abort()" is true after a closure application,
 722   // terminate the iteration and return the address of the start of the
 723   // subregion that isn't done.  (The two can be distinguished by querying
 724   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 725   // completed.
 726   HeapWord*
 727   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 728 
 729   // In this version - if filter_young is true and the region
 730   // is a young region then we skip the iteration.
 731   HeapWord*
 732   oops_on_card_seq_iterate_careful(MemRegion mr,
 733                                    FilterOutOfRegionClosure* cl,
 734                                    bool filter_young);
 735 
 736   // The region "mr" is entirely in "this", and starts and ends at block
 737   // boundaries. The caller declares that all the contained blocks are
 738   // coalesced into one.
 739   void declare_filled_region_to_BOT(MemRegion mr) {
 740     _offsets.single_block(mr.start(), mr.end());
 741   }
 742 
 743   // A version of block start that is guaranteed to find *some* block
 744   // boundary at or before "p", but does not object iteration, and may
 745   // therefore be used safely when the heap is unparseable.
 746   HeapWord* block_start_careful(const void* p) const {
 747     return _offsets.block_start_careful(p);
 748   }
 749 
 750   // Requires that "addr" is within the region.  Returns the start of the
 751   // first ("careful") block that starts at or after "addr", or else the
 752   // "end" of the region if there is no such block.
 753   HeapWord* next_block_start_careful(HeapWord* addr);
 754 
 755   // Returns the zero-fill-state of the current region.
 756   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
 757   bool zero_fill_is_allocated() { return _zfs == Allocated; }
 758   Thread* zero_filler() { return _zero_filler; }
 759 
 760   // Indicate that the contents of the region are unknown, and therefore
 761   // might require zero-filling.
 762   void set_zero_fill_needed() {
 763     set_zero_fill_state_work(NotZeroFilled);
 764   }
 765   void set_zero_fill_in_progress(Thread* t) {
 766     set_zero_fill_state_work(ZeroFilling);
 767     _zero_filler = t;
 768   }
 769   void set_zero_fill_complete();
 770   void set_zero_fill_allocated() {
 771     set_zero_fill_state_work(Allocated);
 772   }
 773 
 774   void set_zero_fill_state_work(ZeroFillState zfs);
 775 
 776   // This is called when a full collection shrinks the heap.
 777   // We want to set the heap region to a value which says
 778   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
 779   // that role.
 780   void reset_zero_fill() {
 781     set_zero_fill_state_work(NotZeroFilled);
 782     _zero_filler = NULL;
 783   }
 784 
 785   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 786   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 787   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 788 
 789   void set_recorded_rs_length(size_t rs_length) {
 790     _recorded_rs_length = rs_length;
 791   }
 792 
 793   void set_predicted_elapsed_time_ms(double ms) {
 794     _predicted_elapsed_time_ms = ms;
 795   }
 796 
 797   void set_predicted_bytes_to_copy(size_t bytes) {
 798     _predicted_bytes_to_copy = bytes;
 799   }
 800 
 801 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 802   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 803   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
 804 
 805   CompactibleSpace* next_compaction_space() const;
 806 
 807   virtual void reset_after_compaction();
 808 
 809   void print() const;
 810   void print_on(outputStream* st) const;
 811 
 812   // use_prev_marking == true  -> use "prev" marking information,
 813   // use_prev_marking == false -> use "next" marking information
 814   // NOTE: Only the "prev" marking information is guaranteed to be
 815   // consistent most of the time, so most calls to this should use
 816   // use_prev_marking == true. Currently, there is only one case where
 817   // this is called with use_prev_marking == false, which is to verify
 818   // the "next" marking information at the end of remark.
 819   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
 820 
 821   // Override; it uses the "prev" marking information
 822   virtual void verify(bool allow_dirty) const;
 823 
 824 #ifdef DEBUG
 825   HeapWord* allocate(size_t size);
 826 #endif
 827 };
 828 
 829 // HeapRegionClosure is used for iterating over regions.
 830 // Terminates the iteration when the "doHeapRegion" method returns "true".
 831 class HeapRegionClosure : public StackObj {
 832   friend class HeapRegionSeq;
 833   friend class G1CollectedHeap;
 834 
 835   bool _complete;
 836   void incomplete() { _complete = false; }
 837 
 838  public:
 839   HeapRegionClosure(): _complete(true) {}
 840 
 841   // Typically called on each region until it returns true.
 842   virtual bool doHeapRegion(HeapRegion* r) = 0;
 843 
 844   // True after iteration if the closure was applied to all heap regions
 845   // and returned "false" in all cases.
 846   bool complete() { return _complete; }
 847 };
 848 
 849 // A linked lists of heap regions.  It leaves the "next" field
 850 // unspecified; that's up to subtypes.
 851 class RegionList VALUE_OBJ_CLASS_SPEC {
 852 protected:
 853   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
 854   virtual void set_next(HeapRegion* chr,
 855                         HeapRegion* new_next) = 0;
 856 
 857   HeapRegion* _hd;
 858   HeapRegion* _tl;
 859   size_t _sz;
 860 
 861   // Protected constructor because this type is only meaningful
 862   // when the _get/_set next functions are defined.
 863   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
 864 public:
 865   void reset() {
 866     _hd = NULL;
 867     _tl = NULL;
 868     _sz = 0;
 869   }
 870   HeapRegion* hd() { return _hd; }
 871   HeapRegion* tl() { return _tl; }
 872   size_t sz() { return _sz; }
 873   size_t length();
 874 
 875   bool well_formed() {
 876     return
 877       ((hd() == NULL && tl() == NULL && sz() == 0)
 878        || (hd() != NULL && tl() != NULL && sz() > 0))
 879       && (sz() == length());
 880   }
 881   virtual void insert_before_head(HeapRegion* r);
 882   void prepend_list(RegionList* new_list);
 883   virtual HeapRegion* pop();
 884   void dec_sz() { _sz--; }
 885   // Requires that "r" is an element of the list, and is not the tail.
 886   void delete_after(HeapRegion* r);
 887 };
 888 
 889 class EmptyNonHRegionList: public RegionList {
 890 protected:
 891   // Protected constructor because this type is only meaningful
 892   // when the _get/_set next functions are defined.
 893   EmptyNonHRegionList() : RegionList() {}
 894 
 895 public:
 896   void insert_before_head(HeapRegion* r) {
 897     //    assert(r->is_empty(), "Better be empty");
 898     assert(!r->isHumongous(), "Better not be humongous.");
 899     RegionList::insert_before_head(r);
 900   }
 901   void prepend_list(EmptyNonHRegionList* new_list) {
 902     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
 903     //     "Better be empty");
 904     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
 905            "Better not be humongous.");
 906     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
 907     //     "Better be empty");
 908     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
 909            "Better not be humongous.");
 910     RegionList::prepend_list(new_list);
 911   }
 912 };
 913 
 914 class UncleanRegionList: public EmptyNonHRegionList {
 915 public:
 916   HeapRegion* get_next(HeapRegion* hr) {
 917     return hr->next_from_unclean_list();
 918   }
 919   void set_next(HeapRegion* hr, HeapRegion* new_next) {
 920     hr->set_next_on_unclean_list(new_next);
 921   }
 922 
 923   UncleanRegionList() : EmptyNonHRegionList() {}
 924 
 925   void insert_before_head(HeapRegion* r) {
 926     assert(!r->is_on_free_list(),
 927            "Better not already be on free list");
 928     assert(!r->is_on_unclean_list(),
 929            "Better not already be on unclean list");
 930     r->set_zero_fill_needed();
 931     r->set_on_unclean_list(true);
 932     EmptyNonHRegionList::insert_before_head(r);
 933   }
 934   void prepend_list(UncleanRegionList* new_list) {
 935     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
 936            "Better not already be on free list");
 937     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
 938            "Better already be marked as on unclean list");
 939     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
 940            "Better not already be on free list");
 941     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
 942            "Better already be marked as on unclean list");
 943     EmptyNonHRegionList::prepend_list(new_list);
 944   }
 945   HeapRegion* pop() {
 946     HeapRegion* res = RegionList::pop();
 947     if (res != NULL) res->set_on_unclean_list(false);
 948     return res;
 949   }
 950 };
 951 
 952 // Local Variables: ***
 953 // c-indentation-style: gnu ***
 954 // End: ***
 955 
 956 #endif // SERIALGC