1 /*
   2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class oopDesc;
  26 class ParMarkBitMapClosure;
  27 
  28 class ParMarkBitMap: public CHeapObj
  29 {
  30 public:
  31   typedef BitMap::idx_t idx_t;
  32 
  33   // Values returned by the iterate() methods.
  34   enum IterationStatus { incomplete, complete, full, would_overflow };
  35 
  36   inline ParMarkBitMap();
  37   inline ParMarkBitMap(MemRegion covered_region);
  38   bool initialize(MemRegion covered_region);
  39 
  40   // Atomically mark an object as live.
  41   bool mark_obj(HeapWord* addr, size_t size);
  42   inline bool mark_obj(oop obj, int size);
  43   inline bool mark_obj(oop obj);
  44 
  45   // Return whether the specified begin or end bit is set.
  46   inline bool is_obj_beg(idx_t bit) const;
  47   inline bool is_obj_end(idx_t bit) const;
  48 
  49   // Traditional interface for testing whether an object is marked or not (these
  50   // test only the begin bits).
  51   inline bool is_marked(idx_t bit)      const;
  52   inline bool is_marked(HeapWord* addr) const;
  53   inline bool is_marked(oop obj)        const;
  54 
  55   inline bool is_unmarked(idx_t bit)      const;
  56   inline bool is_unmarked(HeapWord* addr) const;
  57   inline bool is_unmarked(oop obj)        const;
  58 
  59   // Convert sizes from bits to HeapWords and back.  An object that is n bits
  60   // long will be bits_to_words(n) words long.  An object that is m words long
  61   // will take up words_to_bits(m) bits in the bitmap.
  62   inline static size_t bits_to_words(idx_t bits);
  63   inline static idx_t  words_to_bits(size_t words);
  64 
  65   // Return the size in words of an object given a begin bit and an end bit, or
  66   // the equivalent beg_addr and end_addr.
  67   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
  68   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
  69 
  70   // Return the size in words of the object (a search is done for the end bit).
  71   inline size_t obj_size(idx_t beg_bit)  const;
  72   inline size_t obj_size(HeapWord* addr) const;
  73   inline size_t obj_size(oop obj)        const;
  74 
  75   // Synonyms for the above.
  76   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
  77   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
  78 
  79   // Apply live_closure to each live object that lies completely within the
  80   // range [live_range_beg, live_range_end).  This is used to iterate over the
  81   // compacted region of the heap.  Return values:
  82   //
  83   // incomplete         The iteration is not complete.  The last object that
  84   //                    begins in the range does not end in the range;
  85   //                    closure->source() is set to the start of that object.
  86   //
  87   // complete           The iteration is complete.  All objects in the range
  88   //                    were processed and the closure is not full;
  89   //                    closure->source() is set one past the end of the range.
  90   //
  91   // full               The closure is full; closure->source() is set to one
  92   //                    past the end of the last object processed.
  93   //
  94   // would_overflow     The next object in the range would overflow the closure;
  95   //                    closure->source() is set to the start of that object.
  96   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
  97                           idx_t range_beg, idx_t range_end) const;
  98   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
  99                                  HeapWord* range_beg,
 100                                  HeapWord* range_end) const;
 101 
 102   // Apply live closure as above and additionally apply dead_closure to all dead
 103   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
 104   // must be >= range_end.  This is used to iterate over the dense prefix.
 105   //
 106   // This method assumes that if the first bit in the range (range_beg) is not
 107   // marked, then dead space begins at that point and the dead_closure is
 108   // applied.  Thus callers must ensure that range_beg is not in the middle of a
 109   // live object.
 110   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 111                           ParMarkBitMapClosure* dead_closure,
 112                           idx_t range_beg, idx_t range_end,
 113                           idx_t dead_range_end) const;
 114   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 115                                  ParMarkBitMapClosure* dead_closure,
 116                                  HeapWord* range_beg,
 117                                  HeapWord* range_end,
 118                                  HeapWord* dead_range_end) const;
 119 
 120   // Return the number of live words in the range [beg_addr, end_addr) due to
 121   // objects that start in the range.  If a live object extends onto the range,
 122   // the caller must detect and account for any live words due to that object.
 123   // If a live object extends beyond the end of the range, only the words within
 124   // the range are included in the result.
 125   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
 126 
 127   // Same as the above, except the end of the range must be a live object, which
 128   // is the case when updating pointers.  This allows a branch to be removed
 129   // from inside the loop.
 130   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
 131 
 132   inline HeapWord* region_start() const;
 133   inline HeapWord* region_end() const;
 134   inline size_t    region_size() const;
 135   inline size_t    size() const;
 136 
 137   // Convert a heap address to/from a bit index.
 138   inline idx_t     addr_to_bit(HeapWord* addr) const;
 139   inline HeapWord* bit_to_addr(idx_t bit) const;
 140 
 141   // Return the bit index of the first marked object that begins (or ends,
 142   // respectively) in the range [beg, end).  If no object is found, return end.
 143   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
 144   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
 145 
 146   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
 147   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
 148 
 149   // Clear a range of bits or the entire bitmap (both begin and end bits are
 150   // cleared).
 151   inline void clear_range(idx_t beg, idx_t end);
 152   inline void clear() { clear_range(0, size()); }
 153 
 154   // Return the number of bits required to represent the specified number of
 155   // HeapWords, or the specified region.
 156   static inline idx_t bits_required(size_t words);
 157   static inline idx_t bits_required(MemRegion covered_region);
 158   static inline idx_t words_required(MemRegion covered_region);
 159 
 160 #ifndef PRODUCT
 161   // CAS statistics.
 162   size_t cas_tries() { return _cas_tries; }
 163   size_t cas_retries() { return _cas_retries; }
 164   size_t cas_by_another() { return _cas_by_another; }
 165 
 166   void reset_counters();
 167 #endif  // #ifndef PRODUCT
 168 
 169 #ifdef  ASSERT
 170   void verify_clear() const;
 171   inline void verify_bit(idx_t bit) const;
 172   inline void verify_addr(HeapWord* addr) const;
 173 #endif  // #ifdef ASSERT
 174 
 175 private:
 176   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
 177   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
 178   // granularity is 2, 64-bit is 1.
 179   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
 180   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
 181 
 182   HeapWord*       _region_start;
 183   size_t          _region_size;
 184   BitMap          _beg_bits;
 185   BitMap          _end_bits;
 186   PSVirtualSpace* _virtual_space;
 187 
 188 #ifndef PRODUCT
 189   size_t _cas_tries;
 190   size_t _cas_retries;
 191   size_t _cas_by_another;
 192 #endif  // #ifndef PRODUCT
 193 };
 194 
 195 inline ParMarkBitMap::ParMarkBitMap():
 196   _beg_bits(),
 197   _end_bits()
 198 {
 199   _region_start = 0;
 200   _virtual_space = 0;
 201 }
 202 
 203 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
 204   _beg_bits(),
 205   _end_bits()
 206 {
 207   initialize(covered_region);
 208 }
 209 
 210 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
 211 {
 212   _beg_bits.clear_range(beg, end);
 213   _end_bits.clear_range(beg, end);
 214 }
 215 
 216 inline ParMarkBitMap::idx_t
 217 ParMarkBitMap::bits_required(size_t words)
 218 {
 219   // Need two bits (one begin bit, one end bit) for each unit of 'object
 220   // granularity' in the heap.
 221   return words_to_bits(words * 2);
 222 }
 223 
 224 inline ParMarkBitMap::idx_t
 225 ParMarkBitMap::bits_required(MemRegion covered_region)
 226 {
 227   return bits_required(covered_region.word_size());
 228 }
 229 
 230 inline ParMarkBitMap::idx_t
 231 ParMarkBitMap::words_required(MemRegion covered_region)
 232 {
 233   return bits_required(covered_region) / BitsPerWord;
 234 }
 235 
 236 inline HeapWord*
 237 ParMarkBitMap::region_start() const
 238 {
 239   return _region_start;
 240 }
 241 
 242 inline HeapWord*
 243 ParMarkBitMap::region_end() const
 244 {
 245   return region_start() + region_size();
 246 }
 247 
 248 inline size_t
 249 ParMarkBitMap::region_size() const
 250 {
 251   return _region_size;
 252 }
 253 
 254 inline size_t
 255 ParMarkBitMap::size() const
 256 {
 257   return _beg_bits.size();
 258 }
 259 
 260 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
 261 {
 262   return _beg_bits.at(bit);
 263 }
 264 
 265 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
 266 {
 267   return _end_bits.at(bit);
 268 }
 269 
 270 inline bool ParMarkBitMap::is_marked(idx_t bit) const
 271 {
 272   return is_obj_beg(bit);
 273 }
 274 
 275 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
 276 {
 277   return is_marked(addr_to_bit(addr));
 278 }
 279 
 280 inline bool ParMarkBitMap::is_marked(oop obj) const
 281 {
 282   return is_marked((HeapWord*)obj);
 283 }
 284 
 285 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
 286 {
 287   return !is_marked(bit);
 288 }
 289 
 290 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
 291 {
 292   return !is_marked(addr);
 293 }
 294 
 295 inline bool ParMarkBitMap::is_unmarked(oop obj) const
 296 {
 297   return !is_marked(obj);
 298 }
 299 
 300 inline size_t
 301 ParMarkBitMap::bits_to_words(idx_t bits)
 302 {
 303   return bits << obj_granularity_shift();
 304 }
 305 
 306 inline ParMarkBitMap::idx_t
 307 ParMarkBitMap::words_to_bits(size_t words)
 308 {
 309   return words >> obj_granularity_shift();
 310 }
 311 
 312 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
 313 {
 314   DEBUG_ONLY(verify_bit(beg_bit);)
 315   DEBUG_ONLY(verify_bit(end_bit);)
 316   return bits_to_words(end_bit - beg_bit + 1);
 317 }
 318 
 319 inline size_t
 320 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
 321 {
 322   DEBUG_ONLY(verify_addr(beg_addr);)
 323   DEBUG_ONLY(verify_addr(end_addr);)
 324   return pointer_delta(end_addr, beg_addr) + obj_granularity();
 325 }
 326 
 327 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
 328 {
 329   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
 330   assert(is_marked(beg_bit), "obj not marked");
 331   assert(end_bit < size(), "end bit missing");
 332   return obj_size(beg_bit, end_bit);
 333 }
 334 
 335 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
 336 {
 337   return obj_size(addr_to_bit(addr));
 338 }
 339 
 340 inline size_t ParMarkBitMap::obj_size(oop obj) const
 341 {
 342   return obj_size((HeapWord*)obj);
 343 }
 344 
 345 inline ParMarkBitMap::IterationStatus
 346 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 347                        HeapWord* range_beg,
 348                        HeapWord* range_end) const
 349 {
 350   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
 351 }
 352 
 353 inline ParMarkBitMap::IterationStatus
 354 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 355                        ParMarkBitMapClosure* dead_closure,
 356                        HeapWord* range_beg,
 357                        HeapWord* range_end,
 358                        HeapWord* dead_range_end) const
 359 {
 360   return iterate(live_closure, dead_closure,
 361                  addr_to_bit(range_beg), addr_to_bit(range_end),
 362                  addr_to_bit(dead_range_end));
 363 }
 364 
 365 inline bool
 366 ParMarkBitMap::mark_obj(oop obj, int size)
 367 {
 368   return mark_obj((HeapWord*)obj, (size_t)size);
 369 }
 370 
 371 inline BitMap::idx_t
 372 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
 373 {
 374   DEBUG_ONLY(verify_addr(addr);)
 375   return words_to_bits(pointer_delta(addr, region_start()));
 376 }
 377 
 378 inline HeapWord*
 379 ParMarkBitMap::bit_to_addr(idx_t bit) const
 380 {
 381   DEBUG_ONLY(verify_bit(bit);)
 382   return region_start() + bits_to_words(bit);
 383 }
 384 
 385 inline ParMarkBitMap::idx_t
 386 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
 387 {
 388   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
 389 }
 390 
 391 inline ParMarkBitMap::idx_t
 392 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
 393 {
 394   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
 395 }
 396 
 397 inline HeapWord*
 398 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
 399 {
 400   const idx_t beg_bit = addr_to_bit(beg);
 401   const idx_t end_bit = addr_to_bit(end);
 402   const idx_t search_end = BitMap::word_align_up(end_bit);
 403   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
 404   return bit_to_addr(res_bit);
 405 }
 406 
 407 inline HeapWord*
 408 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
 409 {
 410   const idx_t beg_bit = addr_to_bit(beg);
 411   const idx_t end_bit = addr_to_bit(end);
 412   const idx_t search_end = BitMap::word_align_up(end_bit);
 413   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
 414   return bit_to_addr(res_bit);
 415 }
 416 
 417 #ifdef  ASSERT
 418 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
 419   // Allow one past the last valid bit; useful for loop bounds.
 420   assert(bit <= _beg_bits.size(), "bit out of range");
 421 }
 422 
 423 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
 424   // Allow one past the last valid address; useful for loop bounds.
 425   assert(addr >= region_start(), "addr too small");
 426   assert(addr <= region_start() + region_size(), "addr too big");
 427 }
 428 #endif  // #ifdef ASSERT