1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
  27 
  28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
  29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
  30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  31 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
  32 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "utilities/ostream.hpp"
  36 
  37 class AdjoiningGenerations;
  38 class GCTaskManager;
  39 class PSAdaptiveSizePolicy;
  40 class GenerationSizer;
  41 class CollectorPolicy;
  42 
  43 class ParallelScavengeHeap : public CollectedHeap {
  44   friend class VMStructs;
  45  private:
  46   static PSYoungGen* _young_gen;
  47   static PSOldGen*   _old_gen;
  48   static PSPermGen*  _perm_gen;
  49 
  50   // Sizing policy for entire heap
  51   static PSAdaptiveSizePolicy* _size_policy;
  52   static PSGCAdaptivePolicyCounters*   _gc_policy_counters;
  53 
  54   static ParallelScavengeHeap* _psh;
  55 
  56   size_t _perm_gen_alignment;
  57   size_t _young_gen_alignment;
  58   size_t _old_gen_alignment;
  59 
  60   GenerationSizer* _collector_policy;
  61 
  62   inline size_t set_alignment(size_t& var, size_t val);
  63 
  64   // Collection of generations that are adjacent in the
  65   // space reserved for the heap.
  66   AdjoiningGenerations* _gens;
  67 
  68   static GCTaskManager*          _gc_task_manager;      // The task manager.
  69 
  70  protected:
  71   static inline size_t total_invocations();
  72   HeapWord* allocate_new_tlab(size_t size);
  73 
  74  public:
  75   ParallelScavengeHeap() : CollectedHeap() {
  76     set_alignment(_perm_gen_alignment, intra_heap_alignment());
  77     set_alignment(_young_gen_alignment, intra_heap_alignment());
  78     set_alignment(_old_gen_alignment, intra_heap_alignment());
  79   }
  80 
  81   // For use by VM operations
  82   enum CollectionType {
  83     Scavenge,
  84     MarkSweep
  85   };
  86 
  87   ParallelScavengeHeap::Name kind() const {
  88     return CollectedHeap::ParallelScavengeHeap;
  89   }
  90 
  91 CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
  92   // GenerationSizer* collector_policy() const { return _collector_policy; }
  93 
  94   static PSYoungGen* young_gen()     { return _young_gen; }
  95   static PSOldGen* old_gen()         { return _old_gen; }
  96   static PSPermGen* perm_gen()       { return _perm_gen; }
  97 
  98   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
  99 
 100   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
 101 
 102   static ParallelScavengeHeap* heap();
 103 
 104   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
 105 
 106   AdjoiningGenerations* gens() { return _gens; }
 107 
 108   // Returns JNI_OK on success
 109   virtual jint initialize();
 110 
 111   void post_initialize();
 112   void update_counters();
 113   // The alignment used for the various generations.
 114   size_t perm_gen_alignment()  const { return _perm_gen_alignment; }
 115   size_t young_gen_alignment() const { return _young_gen_alignment; }
 116   size_t old_gen_alignment()  const { return _old_gen_alignment; }
 117 
 118   // The alignment used for eden and survivors within the young gen
 119   // and for boundary between young gen and old gen.
 120   size_t intra_heap_alignment() const { return 64 * K; }
 121 
 122   size_t capacity() const;
 123   size_t used() const;
 124 
 125   // Return "true" if all generations (but perm) have reached the
 126   // maximal committed limit that they can reach, without a garbage
 127   // collection.
 128   virtual bool is_maximal_no_gc() const;
 129 
 130   // Does this heap support heap inspection? (+PrintClassHistogram)
 131   bool supports_heap_inspection() const { return true; }
 132 
 133   size_t permanent_capacity() const;
 134   size_t permanent_used() const;
 135 
 136   size_t max_capacity() const;
 137 
 138   // Whether p is in the allocated part of the heap
 139   bool is_in(const void* p) const;
 140 
 141   bool is_in_reserved(const void* p) const;
 142   bool is_in_permanent(const void *p) const {    // reserved part
 143     return perm_gen()->reserved().contains(p);
 144   }
 145 
 146   bool is_permanent(const void *p) const {    // committed part
 147     return perm_gen()->is_in(p);
 148   }
 149 
 150   inline bool is_in_young(oop p);        // reserved part
 151   inline bool is_in_old_or_perm(oop p);  // reserved part
 152 
 153   // Memory allocation.   "gc_time_limit_was_exceeded" will
 154   // be set to true if the adaptive size policy determine that
 155   // an excessive amount of time is being spent doing collections
 156   // and caused a NULL to be returned.  If a NULL is not returned,
 157   // "gc_time_limit_was_exceeded" has an undefined meaning.
 158 
 159   HeapWord* mem_allocate(size_t size,
 160                          bool is_noref,
 161                          bool is_tlab,
 162                          bool* gc_overhead_limit_was_exceeded);
 163   HeapWord* failed_mem_allocate(size_t size, bool is_tlab);
 164 
 165   HeapWord* permanent_mem_allocate(size_t size);
 166   HeapWord* failed_permanent_mem_allocate(size_t size);
 167 
 168   // Support for System.gc()
 169   void collect(GCCause::Cause cause);
 170 
 171   // This interface assumes that it's being called by the
 172   // vm thread. It collects the heap assuming that the
 173   // heap lock is already held and that we are executing in
 174   // the context of the vm thread.
 175   void collect_as_vm_thread(GCCause::Cause cause);
 176 
 177   // These also should be called by the vm thread at a safepoint (e.g., from a
 178   // VM operation).
 179   //
 180   // The first collects the young generation only, unless the scavenge fails; it
 181   // will then attempt a full gc.  The second collects the entire heap; if
 182   // maximum_compaction is true, it will compact everything and clear all soft
 183   // references.
 184   inline void invoke_scavenge();
 185   inline void invoke_full_gc(bool maximum_compaction);
 186 
 187   size_t large_typearray_limit() { return FastAllocateSizeLimit; }
 188 
 189   bool supports_inline_contig_alloc() const { return !UseNUMA; }
 190 
 191   HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
 192   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
 193 
 194   void ensure_parsability(bool retire_tlabs);
 195   void accumulate_statistics_all_tlabs();
 196   void resize_all_tlabs();
 197 
 198   size_t unsafe_max_alloc();
 199 
 200   bool supports_tlab_allocation() const { return true; }
 201 
 202   size_t tlab_capacity(Thread* thr) const;
 203   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 204 
 205   // Can a compiler initialize a new object without store barriers?
 206   // This permission only extends from the creation of a new object
 207   // via a TLAB up to the first subsequent safepoint.
 208   virtual bool can_elide_tlab_store_barriers() const {
 209     return true;
 210   }
 211 
 212   virtual bool card_mark_must_follow_store() const {
 213     return false;
 214   }
 215 
 216   // Return true if we don't we need a store barrier for
 217   // initializing stores to an object at this address.
 218   virtual bool can_elide_initializing_store_barrier(oop new_obj);
 219 
 220   // Can a compiler elide a store barrier when it writes
 221   // a permanent oop into the heap?  Applies when the compiler
 222   // is storing x to the heap, where x->is_perm() is true.
 223   virtual bool can_elide_permanent_oop_store_barriers() const {
 224     return true;
 225   }
 226 
 227   void oop_iterate(OopClosure* cl);
 228   void object_iterate(ObjectClosure* cl);
 229   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
 230   void permanent_oop_iterate(OopClosure* cl);
 231   void permanent_object_iterate(ObjectClosure* cl);
 232 
 233   HeapWord* block_start(const void* addr) const;
 234   size_t block_size(const HeapWord* addr) const;
 235   bool block_is_obj(const HeapWord* addr) const;
 236 
 237   jlong millis_since_last_gc();
 238 
 239   void prepare_for_verify();
 240   void print() const;
 241   void print_on(outputStream* st) const;
 242   virtual void print_gc_threads_on(outputStream* st) const;
 243   virtual void gc_threads_do(ThreadClosure* tc) const;
 244   virtual void print_tracing_info() const;
 245 
 246   void verify(bool allow_dirty, bool silent, bool /* option */);
 247 
 248   void print_heap_change(size_t prev_used);
 249 
 250   // Resize the young generation.  The reserved space for the
 251   // generation may be expanded in preparation for the resize.
 252   void resize_young_gen(size_t eden_size, size_t survivor_size);
 253 
 254   // Resize the old generation.  The reserved space for the
 255   // generation may be expanded in preparation for the resize.
 256   void resize_old_gen(size_t desired_free_space);
 257 
 258   // Save the tops of the spaces in all generations
 259   void record_gen_tops_before_GC() PRODUCT_RETURN;
 260 
 261   // Mangle the unused parts of all spaces in the heap
 262   void gen_mangle_unused_area() PRODUCT_RETURN;
 263 
 264   // Call these in sequential code around the processing of strong roots.
 265   class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
 266   public:
 267     ParStrongRootsScope();
 268     ~ParStrongRootsScope();
 269   };
 270 };
 271 
 272 inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val)
 273 {
 274   assert(is_power_of_2((intptr_t)val), "must be a power of 2");
 275   var = round_to(val, intra_heap_alignment());
 276   return var;
 277 }
 278 
 279 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP