1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_psParallelCompact.cpp.incl"
  27 
  28 #include <math.h>
  29 
  30 // All sizes are in HeapWords.
  31 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
  32 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  33 const size_t ParallelCompactData::RegionSizeBytes =
  34   RegionSize << LogHeapWordSize;
  35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  37 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
  38 
  39 const ParallelCompactData::RegionData::region_sz_t
  40 ParallelCompactData::RegionData::dc_shift = 27;
  41 
  42 const ParallelCompactData::RegionData::region_sz_t
  43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  44 
  45 const ParallelCompactData::RegionData::region_sz_t
  46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  47 
  48 const ParallelCompactData::RegionData::region_sz_t
  49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
  50 
  51 const ParallelCompactData::RegionData::region_sz_t
  52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
  53 
  54 const ParallelCompactData::RegionData::region_sz_t
  55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
  56 
  57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
  58 bool      PSParallelCompact::_print_phases = false;
  59 
  60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
  61 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
  62 
  63 double PSParallelCompact::_dwl_mean;
  64 double PSParallelCompact::_dwl_std_dev;
  65 double PSParallelCompact::_dwl_first_term;
  66 double PSParallelCompact::_dwl_adjustment;
  67 #ifdef  ASSERT
  68 bool   PSParallelCompact::_dwl_initialized = false;
  69 #endif  // #ifdef ASSERT
  70 
  71 #ifdef VALIDATE_MARK_SWEEP
  72 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
  73 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
  74 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
  75 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
  76 size_t                  PSParallelCompact::_live_oops_index = 0;
  77 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
  78 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
  79 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
  80 bool                    PSParallelCompact::_pointer_tracking = false;
  81 bool                    PSParallelCompact::_root_tracking = true;
  82 
  83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
  84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
  85 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
  86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
  87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
  88 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
  89 #endif
  90 
  91 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
  92                        HeapWord* destination)
  93 {
  94   assert(src_region_idx != 0, "invalid src_region_idx");
  95   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
  96   assert(destination != NULL, "invalid destination argument");
  97 
  98   _src_region_idx = src_region_idx;
  99   _partial_obj_size = partial_obj_size;
 100   _destination = destination;
 101 
 102   // These fields may not be updated below, so make sure they're clear.
 103   assert(_dest_region_addr == NULL, "should have been cleared");
 104   assert(_first_src_addr == NULL, "should have been cleared");
 105 
 106   // Determine the number of destination regions for the partial object.
 107   HeapWord* const last_word = destination + partial_obj_size - 1;
 108   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 109   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 110   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 111 
 112   if (beg_region_addr == end_region_addr) {
 113     // One destination region.
 114     _destination_count = 1;
 115     if (end_region_addr == destination) {
 116       // The destination falls on a region boundary, thus the first word of the
 117       // partial object will be the first word copied to the destination region.
 118       _dest_region_addr = end_region_addr;
 119       _first_src_addr = sd.region_to_addr(src_region_idx);
 120     }
 121   } else {
 122     // Two destination regions.  When copied, the partial object will cross a
 123     // destination region boundary, so a word somewhere within the partial
 124     // object will be the first word copied to the second destination region.
 125     _destination_count = 2;
 126     _dest_region_addr = end_region_addr;
 127     const size_t ofs = pointer_delta(end_region_addr, destination);
 128     assert(ofs < _partial_obj_size, "sanity");
 129     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 130   }
 131 }
 132 
 133 void SplitInfo::clear()
 134 {
 135   _src_region_idx = 0;
 136   _partial_obj_size = 0;
 137   _destination = NULL;
 138   _destination_count = 0;
 139   _dest_region_addr = NULL;
 140   _first_src_addr = NULL;
 141   assert(!is_valid(), "sanity");
 142 }
 143 
 144 #ifdef  ASSERT
 145 void SplitInfo::verify_clear()
 146 {
 147   assert(_src_region_idx == 0, "not clear");
 148   assert(_partial_obj_size == 0, "not clear");
 149   assert(_destination == NULL, "not clear");
 150   assert(_destination_count == 0, "not clear");
 151   assert(_dest_region_addr == NULL, "not clear");
 152   assert(_first_src_addr == NULL, "not clear");
 153 }
 154 #endif  // #ifdef ASSERT
 155 
 156 
 157 #ifndef PRODUCT
 158 const char* PSParallelCompact::space_names[] = {
 159   "perm", "old ", "eden", "from", "to  "
 160 };
 161 
 162 void PSParallelCompact::print_region_ranges()
 163 {
 164   tty->print_cr("space  bottom     top        end        new_top");
 165   tty->print_cr("------ ---------- ---------- ---------- ----------");
 166 
 167   for (unsigned int id = 0; id < last_space_id; ++id) {
 168     const MutableSpace* space = _space_info[id].space();
 169     tty->print_cr("%u %s "
 170                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 171                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 172                   id, space_names[id],
 173                   summary_data().addr_to_region_idx(space->bottom()),
 174                   summary_data().addr_to_region_idx(space->top()),
 175                   summary_data().addr_to_region_idx(space->end()),
 176                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 177   }
 178 }
 179 
 180 void
 181 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 182 {
 183 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 184 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 185 
 186   ParallelCompactData& sd = PSParallelCompact::summary_data();
 187   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 188   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 189                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 190                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 191                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 192                 i, c->data_location(), dci, c->destination(),
 193                 c->partial_obj_size(), c->live_obj_size(),
 194                 c->data_size(), c->source_region(), c->destination_count());
 195 
 196 #undef  REGION_IDX_FORMAT
 197 #undef  REGION_DATA_FORMAT
 198 }
 199 
 200 void
 201 print_generic_summary_data(ParallelCompactData& summary_data,
 202                            HeapWord* const beg_addr,
 203                            HeapWord* const end_addr)
 204 {
 205   size_t total_words = 0;
 206   size_t i = summary_data.addr_to_region_idx(beg_addr);
 207   const size_t last = summary_data.addr_to_region_idx(end_addr);
 208   HeapWord* pdest = 0;
 209 
 210   while (i <= last) {
 211     ParallelCompactData::RegionData* c = summary_data.region(i);
 212     if (c->data_size() != 0 || c->destination() != pdest) {
 213       print_generic_summary_region(i, c);
 214       total_words += c->data_size();
 215       pdest = c->destination();
 216     }
 217     ++i;
 218   }
 219 
 220   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 221 }
 222 
 223 void
 224 print_generic_summary_data(ParallelCompactData& summary_data,
 225                            SpaceInfo* space_info)
 226 {
 227   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 228     const MutableSpace* space = space_info[id].space();
 229     print_generic_summary_data(summary_data, space->bottom(),
 230                                MAX2(space->top(), space_info[id].new_top()));
 231   }
 232 }
 233 
 234 void
 235 print_initial_summary_region(size_t i,
 236                              const ParallelCompactData::RegionData* c,
 237                              bool newline = true)
 238 {
 239   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 240              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 241              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 242              i, c->destination(),
 243              c->partial_obj_size(), c->live_obj_size(),
 244              c->data_size(), c->source_region(), c->destination_count());
 245   if (newline) tty->cr();
 246 }
 247 
 248 void
 249 print_initial_summary_data(ParallelCompactData& summary_data,
 250                            const MutableSpace* space) {
 251   if (space->top() == space->bottom()) {
 252     return;
 253   }
 254 
 255   const size_t region_size = ParallelCompactData::RegionSize;
 256   typedef ParallelCompactData::RegionData RegionData;
 257   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 258   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 259   const RegionData* c = summary_data.region(end_region - 1);
 260   HeapWord* end_addr = c->destination() + c->data_size();
 261   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 262 
 263   // Print (and count) the full regions at the beginning of the space.
 264   size_t full_region_count = 0;
 265   size_t i = summary_data.addr_to_region_idx(space->bottom());
 266   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 267     print_initial_summary_region(i, summary_data.region(i));
 268     ++full_region_count;
 269     ++i;
 270   }
 271 
 272   size_t live_to_right = live_in_space - full_region_count * region_size;
 273 
 274   double max_reclaimed_ratio = 0.0;
 275   size_t max_reclaimed_ratio_region = 0;
 276   size_t max_dead_to_right = 0;
 277   size_t max_live_to_right = 0;
 278 
 279   // Print the 'reclaimed ratio' for regions while there is something live in
 280   // the region or to the right of it.  The remaining regions are empty (and
 281   // uninteresting), and computing the ratio will result in division by 0.
 282   while (i < end_region && live_to_right > 0) {
 283     c = summary_data.region(i);
 284     HeapWord* const region_addr = summary_data.region_to_addr(i);
 285     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 286     const size_t dead_to_right = used_to_right - live_to_right;
 287     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 288 
 289     if (reclaimed_ratio > max_reclaimed_ratio) {
 290             max_reclaimed_ratio = reclaimed_ratio;
 291             max_reclaimed_ratio_region = i;
 292             max_dead_to_right = dead_to_right;
 293             max_live_to_right = live_to_right;
 294     }
 295 
 296     print_initial_summary_region(i, c, false);
 297     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 298                   reclaimed_ratio, dead_to_right, live_to_right);
 299 
 300     live_to_right -= c->data_size();
 301     ++i;
 302   }
 303 
 304   // Any remaining regions are empty.  Print one more if there is one.
 305   if (i < end_region) {
 306     print_initial_summary_region(i, summary_data.region(i));
 307   }
 308 
 309   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 310                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 311                 max_reclaimed_ratio_region, max_dead_to_right,
 312                 max_live_to_right, max_reclaimed_ratio);
 313 }
 314 
 315 void
 316 print_initial_summary_data(ParallelCompactData& summary_data,
 317                            SpaceInfo* space_info) {
 318   unsigned int id = PSParallelCompact::perm_space_id;
 319   const MutableSpace* space;
 320   do {
 321     space = space_info[id].space();
 322     print_initial_summary_data(summary_data, space);
 323   } while (++id < PSParallelCompact::eden_space_id);
 324 
 325   do {
 326     space = space_info[id].space();
 327     print_generic_summary_data(summary_data, space->bottom(), space->top());
 328   } while (++id < PSParallelCompact::last_space_id);
 329 }
 330 #endif  // #ifndef PRODUCT
 331 
 332 #ifdef  ASSERT
 333 size_t add_obj_count;
 334 size_t add_obj_size;
 335 size_t mark_bitmap_count;
 336 size_t mark_bitmap_size;
 337 #endif  // #ifdef ASSERT
 338 
 339 ParallelCompactData::ParallelCompactData()
 340 {
 341   _region_start = 0;
 342 
 343   _region_vspace = 0;
 344   _region_data = 0;
 345   _region_count = 0;
 346 }
 347 
 348 bool ParallelCompactData::initialize(MemRegion covered_region)
 349 {
 350   _region_start = covered_region.start();
 351   const size_t region_size = covered_region.word_size();
 352   DEBUG_ONLY(_region_end = _region_start + region_size;)
 353 
 354   assert(region_align_down(_region_start) == _region_start,
 355          "region start not aligned");
 356   assert((region_size & RegionSizeOffsetMask) == 0,
 357          "region size not a multiple of RegionSize");
 358 
 359   bool result = initialize_region_data(region_size);
 360 
 361   return result;
 362 }
 363 
 364 PSVirtualSpace*
 365 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 366 {
 367   const size_t raw_bytes = count * element_size;
 368   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
 369   const size_t granularity = os::vm_allocation_granularity();
 370   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 371 
 372   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 373     MAX2(page_sz, granularity);
 374   ReservedSpace rs(bytes, rs_align, rs_align > 0);
 375   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 376                        rs.size());
 377   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 378   if (vspace != 0) {
 379     if (vspace->expand_by(bytes)) {
 380       return vspace;
 381     }
 382     delete vspace;
 383     // Release memory reserved in the space.
 384     rs.release();
 385   }
 386 
 387   return 0;
 388 }
 389 
 390 bool ParallelCompactData::initialize_region_data(size_t region_size)
 391 {
 392   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 393   _region_vspace = create_vspace(count, sizeof(RegionData));
 394   if (_region_vspace != 0) {
 395     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 396     _region_count = count;
 397     return true;
 398   }
 399   return false;
 400 }
 401 
 402 void ParallelCompactData::clear()
 403 {
 404   memset(_region_data, 0, _region_vspace->committed_size());
 405 }
 406 
 407 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 408   assert(beg_region <= _region_count, "beg_region out of range");
 409   assert(end_region <= _region_count, "end_region out of range");
 410 
 411   const size_t region_cnt = end_region - beg_region;
 412   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 413 }
 414 
 415 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 416 {
 417   const RegionData* cur_cp = region(region_idx);
 418   const RegionData* const end_cp = region(region_count() - 1);
 419 
 420   HeapWord* result = region_to_addr(region_idx);
 421   if (cur_cp < end_cp) {
 422     do {
 423       result += cur_cp->partial_obj_size();
 424     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 425   }
 426   return result;
 427 }
 428 
 429 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 430 {
 431   const size_t obj_ofs = pointer_delta(addr, _region_start);
 432   const size_t beg_region = obj_ofs >> Log2RegionSize;
 433   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 434 
 435   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 436   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 437 
 438   if (beg_region == end_region) {
 439     // All in one region.
 440     _region_data[beg_region].add_live_obj(len);
 441     return;
 442   }
 443 
 444   // First region.
 445   const size_t beg_ofs = region_offset(addr);
 446   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 447 
 448   klassOop klass = ((oop)addr)->klass();
 449   // Middle regions--completely spanned by this object.
 450   for (size_t region = beg_region + 1; region < end_region; ++region) {
 451     _region_data[region].set_partial_obj_size(RegionSize);
 452     _region_data[region].set_partial_obj_addr(addr);
 453   }
 454 
 455   // Last region.
 456   const size_t end_ofs = region_offset(addr + len - 1);
 457   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 458   _region_data[end_region].set_partial_obj_addr(addr);
 459 }
 460 
 461 void
 462 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 463 {
 464   assert(region_offset(beg) == 0, "not RegionSize aligned");
 465   assert(region_offset(end) == 0, "not RegionSize aligned");
 466 
 467   size_t cur_region = addr_to_region_idx(beg);
 468   const size_t end_region = addr_to_region_idx(end);
 469   HeapWord* addr = beg;
 470   while (cur_region < end_region) {
 471     _region_data[cur_region].set_destination(addr);
 472     _region_data[cur_region].set_destination_count(0);
 473     _region_data[cur_region].set_source_region(cur_region);
 474     _region_data[cur_region].set_data_location(addr);
 475 
 476     // Update live_obj_size so the region appears completely full.
 477     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 478     _region_data[cur_region].set_live_obj_size(live_size);
 479 
 480     ++cur_region;
 481     addr += RegionSize;
 482   }
 483 }
 484 
 485 // Find the point at which a space can be split and, if necessary, record the
 486 // split point.
 487 //
 488 // If the current src region (which overflowed the destination space) doesn't
 489 // have a partial object, the split point is at the beginning of the current src
 490 // region (an "easy" split, no extra bookkeeping required).
 491 //
 492 // If the current src region has a partial object, the split point is in the
 493 // region where that partial object starts (call it the split_region).  If
 494 // split_region has a partial object, then the split point is just after that
 495 // partial object (a "hard" split where we have to record the split data and
 496 // zero the partial_obj_size field).  With a "hard" split, we know that the
 497 // partial_obj ends within split_region because the partial object that caused
 498 // the overflow starts in split_region.  If split_region doesn't have a partial
 499 // obj, then the split is at the beginning of split_region (another "easy"
 500 // split).
 501 HeapWord*
 502 ParallelCompactData::summarize_split_space(size_t src_region,
 503                                            SplitInfo& split_info,
 504                                            HeapWord* destination,
 505                                            HeapWord* target_end,
 506                                            HeapWord** target_next)
 507 {
 508   assert(destination <= target_end, "sanity");
 509   assert(destination + _region_data[src_region].data_size() > target_end,
 510     "region should not fit into target space");
 511   assert(is_region_aligned(target_end), "sanity");
 512 
 513   size_t split_region = src_region;
 514   HeapWord* split_destination = destination;
 515   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 516 
 517   if (destination + partial_obj_size > target_end) {
 518     // The split point is just after the partial object (if any) in the
 519     // src_region that contains the start of the object that overflowed the
 520     // destination space.
 521     //
 522     // Find the start of the "overflow" object and set split_region to the
 523     // region containing it.
 524     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 525     split_region = addr_to_region_idx(overflow_obj);
 526 
 527     // Clear the source_region field of all destination regions whose first word
 528     // came from data after the split point (a non-null source_region field
 529     // implies a region must be filled).
 530     //
 531     // An alternative to the simple loop below:  clear during post_compact(),
 532     // which uses memcpy instead of individual stores, and is easy to
 533     // parallelize.  (The downside is that it clears the entire RegionData
 534     // object as opposed to just one field.)
 535     //
 536     // post_compact() would have to clear the summary data up to the highest
 537     // address that was written during the summary phase, which would be
 538     //
 539     //         max(top, max(new_top, clear_top))
 540     //
 541     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 542     // to target_end.
 543     const RegionData* const sr = region(split_region);
 544     const size_t beg_idx =
 545       addr_to_region_idx(region_align_up(sr->destination() +
 546                                          sr->partial_obj_size()));
 547     const size_t end_idx = addr_to_region_idx(target_end);
 548 
 549     if (TraceParallelOldGCSummaryPhase) {
 550         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 551                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 552                                beg_idx, end_idx);
 553     }
 554     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 555       _region_data[idx].set_source_region(0);
 556     }
 557 
 558     // Set split_destination and partial_obj_size to reflect the split region.
 559     split_destination = sr->destination();
 560     partial_obj_size = sr->partial_obj_size();
 561   }
 562 
 563   // The split is recorded only if a partial object extends onto the region.
 564   if (partial_obj_size != 0) {
 565     _region_data[split_region].set_partial_obj_size(0);
 566     split_info.record(split_region, partial_obj_size, split_destination);
 567   }
 568 
 569   // Setup the continuation addresses.
 570   *target_next = split_destination + partial_obj_size;
 571   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 572 
 573   if (TraceParallelOldGCSummaryPhase) {
 574     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 575     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 576                            " pos=" SIZE_FORMAT,
 577                            split_type, source_next, split_region,
 578                            partial_obj_size);
 579     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 580                            " tn=" PTR_FORMAT,
 581                            split_type, split_destination,
 582                            addr_to_region_idx(split_destination),
 583                            *target_next);
 584 
 585     if (partial_obj_size != 0) {
 586       HeapWord* const po_beg = split_info.destination();
 587       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 588       gclog_or_tty->print_cr("%s split:  "
 589                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 590                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 591                              split_type,
 592                              po_beg, addr_to_region_idx(po_beg),
 593                              po_end, addr_to_region_idx(po_end));
 594     }
 595   }
 596 
 597   return source_next;
 598 }
 599 
 600 bool ParallelCompactData::summarize(SplitInfo& split_info,
 601                                     HeapWord* source_beg, HeapWord* source_end,
 602                                     HeapWord** source_next,
 603                                     HeapWord* target_beg, HeapWord* target_end,
 604                                     HeapWord** target_next)
 605 {
 606   if (TraceParallelOldGCSummaryPhase) {
 607     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 608     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 609                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 610                   source_beg, source_end, source_next_val,
 611                   target_beg, target_end, *target_next);
 612   }
 613 
 614   size_t cur_region = addr_to_region_idx(source_beg);
 615   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 616 
 617   HeapWord *dest_addr = target_beg;
 618   while (cur_region < end_region) {
 619     // The destination must be set even if the region has no data.
 620     _region_data[cur_region].set_destination(dest_addr);
 621 
 622     size_t words = _region_data[cur_region].data_size();
 623     if (words > 0) {
 624       // If cur_region does not fit entirely into the target space, find a point
 625       // at which the source space can be 'split' so that part is copied to the
 626       // target space and the rest is copied elsewhere.
 627       if (dest_addr + words > target_end) {
 628         assert(source_next != NULL, "source_next is NULL when splitting");
 629         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 630                                              target_end, target_next);
 631         return false;
 632       }
 633 
 634       // Compute the destination_count for cur_region, and if necessary, update
 635       // source_region for a destination region.  The source_region field is
 636       // updated if cur_region is the first (left-most) region to be copied to a
 637       // destination region.
 638       //
 639       // The destination_count calculation is a bit subtle.  A region that has
 640       // data that compacts into itself does not count itself as a destination.
 641       // This maintains the invariant that a zero count means the region is
 642       // available and can be claimed and then filled.
 643       uint destination_count = 0;
 644       if (split_info.is_split(cur_region)) {
 645         // The current region has been split:  the partial object will be copied
 646         // to one destination space and the remaining data will be copied to
 647         // another destination space.  Adjust the initial destination_count and,
 648         // if necessary, set the source_region field if the partial object will
 649         // cross a destination region boundary.
 650         destination_count = split_info.destination_count();
 651         if (destination_count == 2) {
 652           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 653           _region_data[dest_idx].set_source_region(cur_region);
 654         }
 655       }
 656 
 657       HeapWord* const last_addr = dest_addr + words - 1;
 658       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 659       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 660 
 661       // Initially assume that the destination regions will be the same and
 662       // adjust the value below if necessary.  Under this assumption, if
 663       // cur_region == dest_region_2, then cur_region will be compacted
 664       // completely into itself.
 665       destination_count += cur_region == dest_region_2 ? 0 : 1;
 666       if (dest_region_1 != dest_region_2) {
 667         // Destination regions differ; adjust destination_count.
 668         destination_count += 1;
 669         // Data from cur_region will be copied to the start of dest_region_2.
 670         _region_data[dest_region_2].set_source_region(cur_region);
 671       } else if (region_offset(dest_addr) == 0) {
 672         // Data from cur_region will be copied to the start of the destination
 673         // region.
 674         _region_data[dest_region_1].set_source_region(cur_region);
 675       }
 676 
 677       _region_data[cur_region].set_destination_count(destination_count);
 678       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 679       dest_addr += words;
 680     }
 681 
 682     ++cur_region;
 683   }
 684 
 685   *target_next = dest_addr;
 686   return true;
 687 }
 688 
 689 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 690   assert(addr != NULL, "Should detect NULL oop earlier");
 691   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
 692 #ifdef ASSERT
 693   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
 694     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
 695   }
 696 #endif
 697   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
 698 
 699   // Region covering the object.
 700   size_t region_index = addr_to_region_idx(addr);
 701   const RegionData* const region_ptr = region(region_index);
 702   HeapWord* const region_addr = region_align_down(addr);
 703 
 704   assert(addr < region_addr + RegionSize, "Region does not cover object");
 705   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
 706 
 707   HeapWord* result = region_ptr->destination();
 708 
 709   // If all the data in the region is live, then the new location of the object
 710   // can be calculated from the destination of the region plus the offset of the
 711   // object in the region.
 712   if (region_ptr->data_size() == RegionSize) {
 713     result += pointer_delta(addr, region_addr);
 714     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 715     return result;
 716   }
 717 
 718   // The new location of the object is
 719   //    region destination +
 720   //    size of the partial object extending onto the region +
 721   //    sizes of the live objects in the Region that are to the left of addr
 722   const size_t partial_obj_size = region_ptr->partial_obj_size();
 723   HeapWord* const search_start = region_addr + partial_obj_size;
 724 
 725   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 726   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
 727 
 728   result += partial_obj_size + live_to_left;
 729   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 730   return result;
 731 }
 732 
 733 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
 734   klassOop updated_klass;
 735   if (PSParallelCompact::should_update_klass(old_klass)) {
 736     updated_klass = (klassOop) calc_new_pointer(old_klass);
 737   } else {
 738     updated_klass = old_klass;
 739   }
 740 
 741   return updated_klass;
 742 }
 743 
 744 #ifdef  ASSERT
 745 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 746 {
 747   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 748   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 749   for (const size_t* p = beg; p < end; ++p) {
 750     assert(*p == 0, "not zero");
 751   }
 752 }
 753 
 754 void ParallelCompactData::verify_clear()
 755 {
 756   verify_clear(_region_vspace);
 757 }
 758 #endif  // #ifdef ASSERT
 759 
 760 #ifdef NOT_PRODUCT
 761 ParallelCompactData::RegionData* debug_region(size_t region_index) {
 762   ParallelCompactData& sd = PSParallelCompact::summary_data();
 763   return sd.region(region_index);
 764 }
 765 #endif
 766 
 767 elapsedTimer        PSParallelCompact::_accumulated_time;
 768 unsigned int        PSParallelCompact::_total_invocations = 0;
 769 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 770 jlong               PSParallelCompact::_time_of_last_gc = 0;
 771 CollectorCounters*  PSParallelCompact::_counters = NULL;
 772 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 773 ParallelCompactData PSParallelCompact::_summary_data;
 774 
 775 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 776 
 777 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
 778 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 779 
 780 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 781 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 782 
 783 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
 784 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
 785 
 786 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
 787 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
 788 
 789 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
 790 
 791 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
 792 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
 793 
 794 void PSParallelCompact::post_initialize() {
 795   ParallelScavengeHeap* heap = gc_heap();
 796   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 797 
 798   MemRegion mr = heap->reserved_region();
 799   _ref_processor = ReferenceProcessor::create_ref_processor(
 800     mr,                         // span
 801     true,                       // atomic_discovery
 802     true,                       // mt_discovery
 803     &_is_alive_closure,
 804     ParallelGCThreads,
 805     ParallelRefProcEnabled);
 806   _counters = new CollectorCounters("PSParallelCompact", 1);
 807 
 808   // Initialize static fields in ParCompactionManager.
 809   ParCompactionManager::initialize(mark_bitmap());
 810 }
 811 
 812 bool PSParallelCompact::initialize() {
 813   ParallelScavengeHeap* heap = gc_heap();
 814   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 815   MemRegion mr = heap->reserved_region();
 816 
 817   // Was the old gen get allocated successfully?
 818   if (!heap->old_gen()->is_allocated()) {
 819     return false;
 820   }
 821 
 822   initialize_space_info();
 823   initialize_dead_wood_limiter();
 824 
 825   if (!_mark_bitmap.initialize(mr)) {
 826     vm_shutdown_during_initialization("Unable to allocate bit map for "
 827       "parallel garbage collection for the requested heap size.");
 828     return false;
 829   }
 830 
 831   if (!_summary_data.initialize(mr)) {
 832     vm_shutdown_during_initialization("Unable to allocate tables for "
 833       "parallel garbage collection for the requested heap size.");
 834     return false;
 835   }
 836 
 837   return true;
 838 }
 839 
 840 void PSParallelCompact::initialize_space_info()
 841 {
 842   memset(&_space_info, 0, sizeof(_space_info));
 843 
 844   ParallelScavengeHeap* heap = gc_heap();
 845   PSYoungGen* young_gen = heap->young_gen();
 846   MutableSpace* perm_space = heap->perm_gen()->object_space();
 847 
 848   _space_info[perm_space_id].set_space(perm_space);
 849   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 850   _space_info[eden_space_id].set_space(young_gen->eden_space());
 851   _space_info[from_space_id].set_space(young_gen->from_space());
 852   _space_info[to_space_id].set_space(young_gen->to_space());
 853 
 854   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
 855   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 856 
 857   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
 858   if (TraceParallelOldGCDensePrefix) {
 859     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
 860                   _space_info[perm_space_id].min_dense_prefix());
 861   }
 862 }
 863 
 864 void PSParallelCompact::initialize_dead_wood_limiter()
 865 {
 866   const size_t max = 100;
 867   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 868   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 869   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 870   DEBUG_ONLY(_dwl_initialized = true;)
 871   _dwl_adjustment = normal_distribution(1.0);
 872 }
 873 
 874 // Simple class for storing info about the heap at the start of GC, to be used
 875 // after GC for comparison/printing.
 876 class PreGCValues {
 877 public:
 878   PreGCValues() { }
 879   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 880 
 881   void fill(ParallelScavengeHeap* heap) {
 882     _heap_used      = heap->used();
 883     _young_gen_used = heap->young_gen()->used_in_bytes();
 884     _old_gen_used   = heap->old_gen()->used_in_bytes();
 885     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
 886   };
 887 
 888   size_t heap_used() const      { return _heap_used; }
 889   size_t young_gen_used() const { return _young_gen_used; }
 890   size_t old_gen_used() const   { return _old_gen_used; }
 891   size_t perm_gen_used() const  { return _perm_gen_used; }
 892 
 893 private:
 894   size_t _heap_used;
 895   size_t _young_gen_used;
 896   size_t _old_gen_used;
 897   size_t _perm_gen_used;
 898 };
 899 
 900 void
 901 PSParallelCompact::clear_data_covering_space(SpaceId id)
 902 {
 903   // At this point, top is the value before GC, new_top() is the value that will
 904   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 905   // should be marked above top.  The summary data is cleared to the larger of
 906   // top & new_top.
 907   MutableSpace* const space = _space_info[id].space();
 908   HeapWord* const bot = space->bottom();
 909   HeapWord* const top = space->top();
 910   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 911 
 912   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 913   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 914   _mark_bitmap.clear_range(beg_bit, end_bit);
 915 
 916   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 917   const size_t end_region =
 918     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 919   _summary_data.clear_range(beg_region, end_region);
 920 
 921   // Clear the data used to 'split' regions.
 922   SplitInfo& split_info = _space_info[id].split_info();
 923   if (split_info.is_valid()) {
 924     split_info.clear();
 925   }
 926   DEBUG_ONLY(split_info.verify_clear();)
 927 }
 928 
 929 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 930 {
 931   // Update the from & to space pointers in space_info, since they are swapped
 932   // at each young gen gc.  Do the update unconditionally (even though a
 933   // promotion failure does not swap spaces) because an unknown number of minor
 934   // collections will have swapped the spaces an unknown number of times.
 935   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
 936   ParallelScavengeHeap* heap = gc_heap();
 937   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 938   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 939 
 940   pre_gc_values->fill(heap);
 941 
 942   ParCompactionManager::reset();
 943   NOT_PRODUCT(_mark_bitmap.reset_counters());
 944   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 945   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 946 
 947   // Increment the invocation count
 948   heap->increment_total_collections(true);
 949 
 950   // We need to track unique mark sweep invocations as well.
 951   _total_invocations++;
 952 
 953   if (PrintHeapAtGC) {
 954     Universe::print_heap_before_gc();
 955   }
 956 
 957   // Fill in TLABs
 958   heap->accumulate_statistics_all_tlabs();
 959   heap->ensure_parsability(true);  // retire TLABs
 960 
 961   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 962     HandleMark hm;  // Discard invalid handles created during verification
 963     gclog_or_tty->print(" VerifyBeforeGC:");
 964     Universe::verify(true);
 965   }
 966 
 967   // Verify object start arrays
 968   if (VerifyObjectStartArray &&
 969       VerifyBeforeGC) {
 970     heap->old_gen()->verify_object_start_array();
 971     heap->perm_gen()->verify_object_start_array();
 972   }
 973 
 974   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 975   DEBUG_ONLY(summary_data().verify_clear();)
 976 
 977   // Have worker threads release resources the next time they run a task.
 978   gc_task_manager()->release_all_resources();
 979 }
 980 
 981 void PSParallelCompact::post_compact()
 982 {
 983   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
 984 
 985   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
 986     // Clear the marking bitmap, summary data and split info.
 987     clear_data_covering_space(SpaceId(id));
 988     // Update top().  Must be done after clearing the bitmap and summary data.
 989     _space_info[id].publish_new_top();
 990   }
 991 
 992   MutableSpace* const eden_space = _space_info[eden_space_id].space();
 993   MutableSpace* const from_space = _space_info[from_space_id].space();
 994   MutableSpace* const to_space   = _space_info[to_space_id].space();
 995 
 996   ParallelScavengeHeap* heap = gc_heap();
 997   bool eden_empty = eden_space->is_empty();
 998   if (!eden_empty) {
 999     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1000                                             heap->young_gen(), heap->old_gen());
1001   }
1002 
1003   // Update heap occupancy information which is used as input to the soft ref
1004   // clearing policy at the next gc.
1005   Universe::update_heap_info_at_gc();
1006 
1007   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1008     to_space->is_empty();
1009 
1010   BarrierSet* bs = heap->barrier_set();
1011   if (bs->is_a(BarrierSet::ModRef)) {
1012     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
1013     MemRegion old_mr = heap->old_gen()->reserved();
1014     MemRegion perm_mr = heap->perm_gen()->reserved();
1015     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
1016 
1017     if (young_gen_empty) {
1018       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
1019     } else {
1020       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
1021     }
1022   }
1023 
1024   Threads::gc_epilogue();
1025   CodeCache::gc_epilogue();
1026 
1027   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1028 
1029   ref_processor()->enqueue_discovered_references(NULL);
1030 
1031   if (ZapUnusedHeapArea) {
1032     heap->gen_mangle_unused_area();
1033   }
1034 
1035   // Update time of last GC
1036   reset_millis_since_last_gc();
1037 }
1038 
1039 HeapWord*
1040 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1041                                                     bool maximum_compaction)
1042 {
1043   const size_t region_size = ParallelCompactData::RegionSize;
1044   const ParallelCompactData& sd = summary_data();
1045 
1046   const MutableSpace* const space = _space_info[id].space();
1047   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1048   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1049   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1050 
1051   // Skip full regions at the beginning of the space--they are necessarily part
1052   // of the dense prefix.
1053   size_t full_count = 0;
1054   const RegionData* cp;
1055   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1056     ++full_count;
1057   }
1058 
1059   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1060   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1061   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1062   if (maximum_compaction || cp == end_cp || interval_ended) {
1063     _maximum_compaction_gc_num = total_invocations();
1064     return sd.region_to_addr(cp);
1065   }
1066 
1067   HeapWord* const new_top = _space_info[id].new_top();
1068   const size_t space_live = pointer_delta(new_top, space->bottom());
1069   const size_t space_used = space->used_in_words();
1070   const size_t space_capacity = space->capacity_in_words();
1071 
1072   const double cur_density = double(space_live) / space_capacity;
1073   const double deadwood_density =
1074     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1075   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1076 
1077   if (TraceParallelOldGCDensePrefix) {
1078     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1079                   cur_density, deadwood_density, deadwood_goal);
1080     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1081                   "space_cap=" SIZE_FORMAT,
1082                   space_live, space_used,
1083                   space_capacity);
1084   }
1085 
1086   // XXX - Use binary search?
1087   HeapWord* dense_prefix = sd.region_to_addr(cp);
1088   const RegionData* full_cp = cp;
1089   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1090   while (cp < end_cp) {
1091     HeapWord* region_destination = cp->destination();
1092     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1093     if (TraceParallelOldGCDensePrefix && Verbose) {
1094       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1095                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1096                     sd.region(cp), region_destination,
1097                     dense_prefix, cur_deadwood);
1098     }
1099 
1100     if (cur_deadwood >= deadwood_goal) {
1101       // Found the region that has the correct amount of deadwood to the left.
1102       // This typically occurs after crossing a fairly sparse set of regions, so
1103       // iterate backwards over those sparse regions, looking for the region
1104       // that has the lowest density of live objects 'to the right.'
1105       size_t space_to_left = sd.region(cp) * region_size;
1106       size_t live_to_left = space_to_left - cur_deadwood;
1107       size_t space_to_right = space_capacity - space_to_left;
1108       size_t live_to_right = space_live - live_to_left;
1109       double density_to_right = double(live_to_right) / space_to_right;
1110       while (cp > full_cp) {
1111         --cp;
1112         const size_t prev_region_live_to_right = live_to_right -
1113           cp->data_size();
1114         const size_t prev_region_space_to_right = space_to_right + region_size;
1115         double prev_region_density_to_right =
1116           double(prev_region_live_to_right) / prev_region_space_to_right;
1117         if (density_to_right <= prev_region_density_to_right) {
1118           return dense_prefix;
1119         }
1120         if (TraceParallelOldGCDensePrefix && Verbose) {
1121           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1122                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1123                         prev_region_density_to_right);
1124         }
1125         dense_prefix -= region_size;
1126         live_to_right = prev_region_live_to_right;
1127         space_to_right = prev_region_space_to_right;
1128         density_to_right = prev_region_density_to_right;
1129       }
1130       return dense_prefix;
1131     }
1132 
1133     dense_prefix += region_size;
1134     ++cp;
1135   }
1136 
1137   return dense_prefix;
1138 }
1139 
1140 #ifndef PRODUCT
1141 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1142                                                  const SpaceId id,
1143                                                  const bool maximum_compaction,
1144                                                  HeapWord* const addr)
1145 {
1146   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1147   RegionData* const cp = summary_data().region(region_idx);
1148   const MutableSpace* const space = _space_info[id].space();
1149   HeapWord* const new_top = _space_info[id].new_top();
1150 
1151   const size_t space_live = pointer_delta(new_top, space->bottom());
1152   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1153   const size_t space_cap = space->capacity_in_words();
1154   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1155   const size_t live_to_right = new_top - cp->destination();
1156   const size_t dead_to_right = space->top() - addr - live_to_right;
1157 
1158   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1159                 "spl=" SIZE_FORMAT " "
1160                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1161                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1162                 " ratio=%10.8f",
1163                 algorithm, addr, region_idx,
1164                 space_live,
1165                 dead_to_left, dead_to_left_pct,
1166                 dead_to_right, live_to_right,
1167                 double(dead_to_right) / live_to_right);
1168 }
1169 #endif  // #ifndef PRODUCT
1170 
1171 // Return a fraction indicating how much of the generation can be treated as
1172 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1173 // based on the density of live objects in the generation to determine a limit,
1174 // which is then adjusted so the return value is min_percent when the density is
1175 // 1.
1176 //
1177 // The following table shows some return values for a different values of the
1178 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1179 // min_percent is 1.
1180 //
1181 //                          fraction allowed as dead wood
1182 //         -----------------------------------------------------------------
1183 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1184 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1185 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1186 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1187 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1188 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1189 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1190 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1191 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1192 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1193 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1194 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1195 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1196 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1197 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1198 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1199 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1200 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1201 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1202 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1203 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1204 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1205 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1206 
1207 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1208 {
1209   assert(_dwl_initialized, "uninitialized");
1210 
1211   // The raw limit is the value of the normal distribution at x = density.
1212   const double raw_limit = normal_distribution(density);
1213 
1214   // Adjust the raw limit so it becomes the minimum when the density is 1.
1215   //
1216   // First subtract the adjustment value (which is simply the precomputed value
1217   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1218   // Then add the minimum value, so the minimum is returned when the density is
1219   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1220   const double min = double(min_percent) / 100.0;
1221   const double limit = raw_limit - _dwl_adjustment + min;
1222   return MAX2(limit, 0.0);
1223 }
1224 
1225 ParallelCompactData::RegionData*
1226 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1227                                            const RegionData* end)
1228 {
1229   const size_t region_size = ParallelCompactData::RegionSize;
1230   ParallelCompactData& sd = summary_data();
1231   size_t left = sd.region(beg);
1232   size_t right = end > beg ? sd.region(end) - 1 : left;
1233 
1234   // Binary search.
1235   while (left < right) {
1236     // Equivalent to (left + right) / 2, but does not overflow.
1237     const size_t middle = left + (right - left) / 2;
1238     RegionData* const middle_ptr = sd.region(middle);
1239     HeapWord* const dest = middle_ptr->destination();
1240     HeapWord* const addr = sd.region_to_addr(middle);
1241     assert(dest != NULL, "sanity");
1242     assert(dest <= addr, "must move left");
1243 
1244     if (middle > left && dest < addr) {
1245       right = middle - 1;
1246     } else if (middle < right && middle_ptr->data_size() == region_size) {
1247       left = middle + 1;
1248     } else {
1249       return middle_ptr;
1250     }
1251   }
1252   return sd.region(left);
1253 }
1254 
1255 ParallelCompactData::RegionData*
1256 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1257                                           const RegionData* end,
1258                                           size_t dead_words)
1259 {
1260   ParallelCompactData& sd = summary_data();
1261   size_t left = sd.region(beg);
1262   size_t right = end > beg ? sd.region(end) - 1 : left;
1263 
1264   // Binary search.
1265   while (left < right) {
1266     // Equivalent to (left + right) / 2, but does not overflow.
1267     const size_t middle = left + (right - left) / 2;
1268     RegionData* const middle_ptr = sd.region(middle);
1269     HeapWord* const dest = middle_ptr->destination();
1270     HeapWord* const addr = sd.region_to_addr(middle);
1271     assert(dest != NULL, "sanity");
1272     assert(dest <= addr, "must move left");
1273 
1274     const size_t dead_to_left = pointer_delta(addr, dest);
1275     if (middle > left && dead_to_left > dead_words) {
1276       right = middle - 1;
1277     } else if (middle < right && dead_to_left < dead_words) {
1278       left = middle + 1;
1279     } else {
1280       return middle_ptr;
1281     }
1282   }
1283   return sd.region(left);
1284 }
1285 
1286 // The result is valid during the summary phase, after the initial summarization
1287 // of each space into itself, and before final summarization.
1288 inline double
1289 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1290                                    HeapWord* const bottom,
1291                                    HeapWord* const top,
1292                                    HeapWord* const new_top)
1293 {
1294   ParallelCompactData& sd = summary_data();
1295 
1296   assert(cp != NULL, "sanity");
1297   assert(bottom != NULL, "sanity");
1298   assert(top != NULL, "sanity");
1299   assert(new_top != NULL, "sanity");
1300   assert(top >= new_top, "summary data problem?");
1301   assert(new_top > bottom, "space is empty; should not be here");
1302   assert(new_top >= cp->destination(), "sanity");
1303   assert(top >= sd.region_to_addr(cp), "sanity");
1304 
1305   HeapWord* const destination = cp->destination();
1306   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1307   const size_t compacted_region_live = pointer_delta(new_top, destination);
1308   const size_t compacted_region_used = pointer_delta(top,
1309                                                      sd.region_to_addr(cp));
1310   const size_t reclaimable = compacted_region_used - compacted_region_live;
1311 
1312   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1313   return double(reclaimable) / divisor;
1314 }
1315 
1316 // Return the address of the end of the dense prefix, a.k.a. the start of the
1317 // compacted region.  The address is always on a region boundary.
1318 //
1319 // Completely full regions at the left are skipped, since no compaction can
1320 // occur in those regions.  Then the maximum amount of dead wood to allow is
1321 // computed, based on the density (amount live / capacity) of the generation;
1322 // the region with approximately that amount of dead space to the left is
1323 // identified as the limit region.  Regions between the last completely full
1324 // region and the limit region are scanned and the one that has the best
1325 // (maximum) reclaimed_ratio() is selected.
1326 HeapWord*
1327 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1328                                         bool maximum_compaction)
1329 {
1330   if (ParallelOldGCSplitALot) {
1331     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1332       // The value was chosen to provoke splitting a young gen space; use it.
1333       return _space_info[id].dense_prefix();
1334     }
1335   }
1336 
1337   const size_t region_size = ParallelCompactData::RegionSize;
1338   const ParallelCompactData& sd = summary_data();
1339 
1340   const MutableSpace* const space = _space_info[id].space();
1341   HeapWord* const top = space->top();
1342   HeapWord* const top_aligned_up = sd.region_align_up(top);
1343   HeapWord* const new_top = _space_info[id].new_top();
1344   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1345   HeapWord* const bottom = space->bottom();
1346   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1347   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1348   const RegionData* const new_top_cp =
1349     sd.addr_to_region_ptr(new_top_aligned_up);
1350 
1351   // Skip full regions at the beginning of the space--they are necessarily part
1352   // of the dense prefix.
1353   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1354   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1355          space->is_empty(), "no dead space allowed to the left");
1356   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1357          "region must have dead space");
1358 
1359   // The gc number is saved whenever a maximum compaction is done, and used to
1360   // determine when the maximum compaction interval has expired.  This avoids
1361   // successive max compactions for different reasons.
1362   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1363   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1364   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1365     total_invocations() == HeapFirstMaximumCompactionCount;
1366   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1367     _maximum_compaction_gc_num = total_invocations();
1368     return sd.region_to_addr(full_cp);
1369   }
1370 
1371   const size_t space_live = pointer_delta(new_top, bottom);
1372   const size_t space_used = space->used_in_words();
1373   const size_t space_capacity = space->capacity_in_words();
1374 
1375   const double density = double(space_live) / double(space_capacity);
1376   const size_t min_percent_free =
1377           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
1378   const double limiter = dead_wood_limiter(density, min_percent_free);
1379   const size_t dead_wood_max = space_used - space_live;
1380   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1381                                       dead_wood_max);
1382 
1383   if (TraceParallelOldGCDensePrefix) {
1384     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1385                   "space_cap=" SIZE_FORMAT,
1386                   space_live, space_used,
1387                   space_capacity);
1388     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
1389                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1390                   density, min_percent_free, limiter,
1391                   dead_wood_max, dead_wood_limit);
1392   }
1393 
1394   // Locate the region with the desired amount of dead space to the left.
1395   const RegionData* const limit_cp =
1396     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1397 
1398   // Scan from the first region with dead space to the limit region and find the
1399   // one with the best (largest) reclaimed ratio.
1400   double best_ratio = 0.0;
1401   const RegionData* best_cp = full_cp;
1402   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1403     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1404     if (tmp_ratio > best_ratio) {
1405       best_cp = cp;
1406       best_ratio = tmp_ratio;
1407     }
1408   }
1409 
1410 #if     0
1411   // Something to consider:  if the region with the best ratio is 'close to' the
1412   // first region w/free space, choose the first region with free space
1413   // ("first-free").  The first-free region is usually near the start of the
1414   // heap, which means we are copying most of the heap already, so copy a bit
1415   // more to get complete compaction.
1416   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1417     _maximum_compaction_gc_num = total_invocations();
1418     best_cp = full_cp;
1419   }
1420 #endif  // #if 0
1421 
1422   return sd.region_to_addr(best_cp);
1423 }
1424 
1425 #ifndef PRODUCT
1426 void
1427 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1428                                           size_t words)
1429 {
1430   if (TraceParallelOldGCSummaryPhase) {
1431     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1432                   SIZE_FORMAT, start, start + words, words);
1433   }
1434 
1435   ObjectStartArray* const start_array = _space_info[id].start_array();
1436   CollectedHeap::fill_with_objects(start, words);
1437   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1438     _mark_bitmap.mark_obj(p, words);
1439     _summary_data.add_obj(p, words);
1440     start_array->allocate_block(p);
1441   }
1442 }
1443 
1444 void
1445 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1446 {
1447   ParallelCompactData& sd = summary_data();
1448   MutableSpace* space = _space_info[id].space();
1449 
1450   // Find the source and destination start addresses.
1451   HeapWord* const src_addr = sd.region_align_down(start);
1452   HeapWord* dst_addr;
1453   if (src_addr < start) {
1454     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1455   } else if (src_addr > space->bottom()) {
1456     // The start (the original top() value) is aligned to a region boundary so
1457     // the associated region does not have a destination.  Compute the
1458     // destination from the previous region.
1459     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1460     dst_addr = cp->destination() + cp->data_size();
1461   } else {
1462     // Filling the entire space.
1463     dst_addr = space->bottom();
1464   }
1465   assert(dst_addr != NULL, "sanity");
1466 
1467   // Update the summary data.
1468   bool result = _summary_data.summarize(_space_info[id].split_info(),
1469                                         src_addr, space->top(), NULL,
1470                                         dst_addr, space->end(),
1471                                         _space_info[id].new_top_addr());
1472   assert(result, "should not fail:  bad filler object size");
1473 }
1474 
1475 void
1476 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1477 {
1478   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1479     return;
1480   }
1481 
1482   MutableSpace* const space = _space_info[id].space();
1483   if (space->is_empty()) {
1484     HeapWord* b = space->bottom();
1485     HeapWord* t = b + space->capacity_in_words() / 2;
1486     space->set_top(t);
1487     if (ZapUnusedHeapArea) {
1488       space->set_top_for_allocations();
1489     }
1490 
1491     size_t min_size = CollectedHeap::min_fill_size();
1492     size_t obj_len = min_size;
1493     while (b + obj_len <= t) {
1494       CollectedHeap::fill_with_object(b, obj_len);
1495       mark_bitmap()->mark_obj(b, obj_len);
1496       summary_data().add_obj(b, obj_len);
1497       b += obj_len;
1498       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1499     }
1500     if (b < t) {
1501       // The loop didn't completely fill to t (top); adjust top downward.
1502       space->set_top(b);
1503       if (ZapUnusedHeapArea) {
1504         space->set_top_for_allocations();
1505       }
1506     }
1507 
1508     HeapWord** nta = _space_info[id].new_top_addr();
1509     bool result = summary_data().summarize(_space_info[id].split_info(),
1510                                            space->bottom(), space->top(), NULL,
1511                                            space->bottom(), space->end(), nta);
1512     assert(result, "space must fit into itself");
1513   }
1514 }
1515 
1516 void
1517 PSParallelCompact::provoke_split(bool & max_compaction)
1518 {
1519   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1520     return;
1521   }
1522 
1523   const size_t region_size = ParallelCompactData::RegionSize;
1524   ParallelCompactData& sd = summary_data();
1525 
1526   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1527   MutableSpace* const from_space = _space_info[from_space_id].space();
1528   const size_t eden_live = pointer_delta(eden_space->top(),
1529                                          _space_info[eden_space_id].new_top());
1530   const size_t from_live = pointer_delta(from_space->top(),
1531                                          _space_info[from_space_id].new_top());
1532 
1533   const size_t min_fill_size = CollectedHeap::min_fill_size();
1534   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1535   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1536   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1537   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1538 
1539   // Choose the space to split; need at least 2 regions live (or fillable).
1540   SpaceId id;
1541   MutableSpace* space;
1542   size_t live_words;
1543   size_t fill_words;
1544   if (eden_live + eden_fillable >= region_size * 2) {
1545     id = eden_space_id;
1546     space = eden_space;
1547     live_words = eden_live;
1548     fill_words = eden_fillable;
1549   } else if (from_live + from_fillable >= region_size * 2) {
1550     id = from_space_id;
1551     space = from_space;
1552     live_words = from_live;
1553     fill_words = from_fillable;
1554   } else {
1555     return; // Give up.
1556   }
1557   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1558 
1559   if (live_words < region_size * 2) {
1560     // Fill from top() to end() w/live objects of mixed sizes.
1561     HeapWord* const fill_start = space->top();
1562     live_words += fill_words;
1563 
1564     space->set_top(fill_start + fill_words);
1565     if (ZapUnusedHeapArea) {
1566       space->set_top_for_allocations();
1567     }
1568 
1569     HeapWord* cur_addr = fill_start;
1570     while (fill_words > 0) {
1571       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1572       size_t cur_size = MIN2(align_object_size_(r), fill_words);
1573       if (fill_words - cur_size < min_fill_size) {
1574         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1575       }
1576 
1577       CollectedHeap::fill_with_object(cur_addr, cur_size);
1578       mark_bitmap()->mark_obj(cur_addr, cur_size);
1579       sd.add_obj(cur_addr, cur_size);
1580 
1581       cur_addr += cur_size;
1582       fill_words -= cur_size;
1583     }
1584 
1585     summarize_new_objects(id, fill_start);
1586   }
1587 
1588   max_compaction = false;
1589 
1590   // Manipulate the old gen so that it has room for about half of the live data
1591   // in the target young gen space (live_words / 2).
1592   id = old_space_id;
1593   space = _space_info[id].space();
1594   const size_t free_at_end = space->free_in_words();
1595   const size_t free_target = align_object_size(live_words / 2);
1596   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1597 
1598   if (free_at_end >= free_target + min_fill_size) {
1599     // Fill space above top() and set the dense prefix so everything survives.
1600     HeapWord* const fill_start = space->top();
1601     const size_t fill_size = free_at_end - free_target;
1602     space->set_top(space->top() + fill_size);
1603     if (ZapUnusedHeapArea) {
1604       space->set_top_for_allocations();
1605     }
1606     fill_with_live_objects(id, fill_start, fill_size);
1607     summarize_new_objects(id, fill_start);
1608     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1609   } else if (dead + free_at_end > free_target) {
1610     // Find a dense prefix that makes the right amount of space available.
1611     HeapWord* cur = sd.region_align_down(space->top());
1612     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1613     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1614     while (dead_to_right < free_target) {
1615       cur -= region_size;
1616       cur_destination = sd.addr_to_region_ptr(cur)->destination();
1617       dead_to_right = pointer_delta(space->end(), cur_destination);
1618     }
1619     _space_info[id].set_dense_prefix(cur);
1620   }
1621 }
1622 #endif // #ifndef PRODUCT
1623 
1624 void PSParallelCompact::summarize_spaces_quick()
1625 {
1626   for (unsigned int i = 0; i < last_space_id; ++i) {
1627     const MutableSpace* space = _space_info[i].space();
1628     HeapWord** nta = _space_info[i].new_top_addr();
1629     bool result = _summary_data.summarize(_space_info[i].split_info(),
1630                                           space->bottom(), space->top(), NULL,
1631                                           space->bottom(), space->end(), nta);
1632     assert(result, "space must fit into itself");
1633     _space_info[i].set_dense_prefix(space->bottom());
1634   }
1635 
1636 #ifndef PRODUCT
1637   if (ParallelOldGCSplitALot) {
1638     provoke_split_fill_survivor(to_space_id);
1639   }
1640 #endif // #ifndef PRODUCT
1641 }
1642 
1643 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1644 {
1645   HeapWord* const dense_prefix_end = dense_prefix(id);
1646   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1647   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1648   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1649     // Only enough dead space is filled so that any remaining dead space to the
1650     // left is larger than the minimum filler object.  (The remainder is filled
1651     // during the copy/update phase.)
1652     //
1653     // The size of the dead space to the right of the boundary is not a
1654     // concern, since compaction will be able to use whatever space is
1655     // available.
1656     //
1657     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1658     // surrounds the space to be filled with an object.
1659     //
1660     // In the 32-bit VM, each bit represents two 32-bit words:
1661     //                              +---+
1662     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1663     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1664     //                              +---+
1665     //
1666     // In the 64-bit VM, each bit represents one 64-bit word:
1667     //                              +------------+
1668     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1669     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1670     //                              +------------+
1671     //                          +-------+
1672     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1673     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1674     //                          +-------+
1675     //                      +-----------+
1676     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1677     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1678     //                      +-----------+
1679     //                          +-------+
1680     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1681     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1682     //                          +-------+
1683 
1684     // Initially assume case a, c or e will apply.
1685     size_t obj_len = CollectedHeap::min_fill_size();
1686     HeapWord* obj_beg = dense_prefix_end - obj_len;
1687 
1688 #ifdef  _LP64
1689     if (MinObjAlignment > 1) { // object alignment > heap word size
1690       // Cases a, c or e.
1691     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1692       // Case b above.
1693       obj_beg = dense_prefix_end - 1;
1694     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1695                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1696       // Case d above.
1697       obj_beg = dense_prefix_end - 3;
1698       obj_len = 3;
1699     }
1700 #endif  // #ifdef _LP64
1701 
1702     CollectedHeap::fill_with_object(obj_beg, obj_len);
1703     _mark_bitmap.mark_obj(obj_beg, obj_len);
1704     _summary_data.add_obj(obj_beg, obj_len);
1705     assert(start_array(id) != NULL, "sanity");
1706     start_array(id)->allocate_block(obj_beg);
1707   }
1708 }
1709 
1710 void
1711 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1712 {
1713   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1714   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1715   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1716   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1717     cur->set_source_region(0);
1718   }
1719 }
1720 
1721 void
1722 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1723 {
1724   assert(id < last_space_id, "id out of range");
1725   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1726          ParallelOldGCSplitALot && id == old_space_id,
1727          "should have been reset in summarize_spaces_quick()");
1728 
1729   const MutableSpace* space = _space_info[id].space();
1730   if (_space_info[id].new_top() != space->bottom()) {
1731     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1732     _space_info[id].set_dense_prefix(dense_prefix_end);
1733 
1734 #ifndef PRODUCT
1735     if (TraceParallelOldGCDensePrefix) {
1736       print_dense_prefix_stats("ratio", id, maximum_compaction,
1737                                dense_prefix_end);
1738       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1739       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1740     }
1741 #endif  // #ifndef PRODUCT
1742 
1743     // Recompute the summary data, taking into account the dense prefix.  If
1744     // every last byte will be reclaimed, then the existing summary data which
1745     // compacts everything can be left in place.
1746     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1747       // If dead space crosses the dense prefix boundary, it is (at least
1748       // partially) filled with a dummy object, marked live and added to the
1749       // summary data.  This simplifies the copy/update phase and must be done
1750       // before the final locations of objects are determined, to prevent
1751       // leaving a fragment of dead space that is too small to fill.
1752       fill_dense_prefix_end(id);
1753 
1754       // Compute the destination of each Region, and thus each object.
1755       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1756       _summary_data.summarize(_space_info[id].split_info(),
1757                               dense_prefix_end, space->top(), NULL,
1758                               dense_prefix_end, space->end(),
1759                               _space_info[id].new_top_addr());
1760     }
1761   }
1762 
1763   if (TraceParallelOldGCSummaryPhase) {
1764     const size_t region_size = ParallelCompactData::RegionSize;
1765     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1766     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1767     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1768     HeapWord* const new_top = _space_info[id].new_top();
1769     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1770     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1771     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1772                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1773                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1774                   id, space->capacity_in_words(), dense_prefix_end,
1775                   dp_region, dp_words / region_size,
1776                   cr_words / region_size, new_top);
1777   }
1778 }
1779 
1780 #ifndef PRODUCT
1781 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1782                                           HeapWord* dst_beg, HeapWord* dst_end,
1783                                           SpaceId src_space_id,
1784                                           HeapWord* src_beg, HeapWord* src_end)
1785 {
1786   if (TraceParallelOldGCSummaryPhase) {
1787     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1788                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1789                   SIZE_FORMAT "-" SIZE_FORMAT " "
1790                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1791                   SIZE_FORMAT "-" SIZE_FORMAT,
1792                   src_space_id, space_names[src_space_id],
1793                   dst_space_id, space_names[dst_space_id],
1794                   src_beg, src_end,
1795                   _summary_data.addr_to_region_idx(src_beg),
1796                   _summary_data.addr_to_region_idx(src_end),
1797                   dst_beg, dst_end,
1798                   _summary_data.addr_to_region_idx(dst_beg),
1799                   _summary_data.addr_to_region_idx(dst_end));
1800   }
1801 }
1802 #endif  // #ifndef PRODUCT
1803 
1804 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1805                                       bool maximum_compaction)
1806 {
1807   EventMark m("2 summarize");
1808   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
1809   // trace("2");
1810 
1811 #ifdef  ASSERT
1812   if (TraceParallelOldGCMarkingPhase) {
1813     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1814                   "add_obj_bytes=" SIZE_FORMAT,
1815                   add_obj_count, add_obj_size * HeapWordSize);
1816     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1817                   "mark_bitmap_bytes=" SIZE_FORMAT,
1818                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1819   }
1820 #endif  // #ifdef ASSERT
1821 
1822   // Quick summarization of each space into itself, to see how much is live.
1823   summarize_spaces_quick();
1824 
1825   if (TraceParallelOldGCSummaryPhase) {
1826     tty->print_cr("summary_phase:  after summarizing each space to self");
1827     Universe::print();
1828     NOT_PRODUCT(print_region_ranges());
1829     if (Verbose) {
1830       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1831     }
1832   }
1833 
1834   // The amount of live data that will end up in old space (assuming it fits).
1835   size_t old_space_total_live = 0;
1836   assert(perm_space_id < old_space_id, "should not count perm data here");
1837   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1838     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1839                                           _space_info[id].space()->bottom());
1840   }
1841 
1842   MutableSpace* const old_space = _space_info[old_space_id].space();
1843   const size_t old_capacity = old_space->capacity_in_words();
1844   if (old_space_total_live > old_capacity) {
1845     // XXX - should also try to expand
1846     maximum_compaction = true;
1847   }
1848 #ifndef PRODUCT
1849   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1850     provoke_split(maximum_compaction);
1851   }
1852 #endif // #ifndef PRODUCT
1853 
1854   // Permanent and Old generations.
1855   summarize_space(perm_space_id, maximum_compaction);
1856   summarize_space(old_space_id, maximum_compaction);
1857 
1858   // Summarize the remaining spaces in the young gen.  The initial target space
1859   // is the old gen.  If a space does not fit entirely into the target, then the
1860   // remainder is compacted into the space itself and that space becomes the new
1861   // target.
1862   SpaceId dst_space_id = old_space_id;
1863   HeapWord* dst_space_end = old_space->end();
1864   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1865   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1866     const MutableSpace* space = _space_info[id].space();
1867     const size_t live = pointer_delta(_space_info[id].new_top(),
1868                                       space->bottom());
1869     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1870 
1871     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1872                                   SpaceId(id), space->bottom(), space->top());)
1873     if (live > 0 && live <= available) {
1874       // All the live data will fit.
1875       bool done = _summary_data.summarize(_space_info[id].split_info(),
1876                                           space->bottom(), space->top(),
1877                                           NULL,
1878                                           *new_top_addr, dst_space_end,
1879                                           new_top_addr);
1880       assert(done, "space must fit into old gen");
1881 
1882       // Reset the new_top value for the space.
1883       _space_info[id].set_new_top(space->bottom());
1884     } else if (live > 0) {
1885       // Attempt to fit part of the source space into the target space.
1886       HeapWord* next_src_addr = NULL;
1887       bool done = _summary_data.summarize(_space_info[id].split_info(),
1888                                           space->bottom(), space->top(),
1889                                           &next_src_addr,
1890                                           *new_top_addr, dst_space_end,
1891                                           new_top_addr);
1892       assert(!done, "space should not fit into old gen");
1893       assert(next_src_addr != NULL, "sanity");
1894 
1895       // The source space becomes the new target, so the remainder is compacted
1896       // within the space itself.
1897       dst_space_id = SpaceId(id);
1898       dst_space_end = space->end();
1899       new_top_addr = _space_info[id].new_top_addr();
1900       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1901                                     space->bottom(), dst_space_end,
1902                                     SpaceId(id), next_src_addr, space->top());)
1903       done = _summary_data.summarize(_space_info[id].split_info(),
1904                                      next_src_addr, space->top(),
1905                                      NULL,
1906                                      space->bottom(), dst_space_end,
1907                                      new_top_addr);
1908       assert(done, "space must fit when compacted into itself");
1909       assert(*new_top_addr <= space->top(), "usage should not grow");
1910     }
1911   }
1912 
1913   if (TraceParallelOldGCSummaryPhase) {
1914     tty->print_cr("summary_phase:  after final summarization");
1915     Universe::print();
1916     NOT_PRODUCT(print_region_ranges());
1917     if (Verbose) {
1918       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1919     }
1920   }
1921 }
1922 
1923 // This method should contain all heap-specific policy for invoking a full
1924 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1925 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1926 // before full gc, or any other specialized behavior, it needs to be added here.
1927 //
1928 // Note that this method should only be called from the vm_thread while at a
1929 // safepoint.
1930 //
1931 // Note that the all_soft_refs_clear flag in the collector policy
1932 // may be true because this method can be called without intervening
1933 // activity.  For example when the heap space is tight and full measure
1934 // are being taken to free space.
1935 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1936   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1937   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1938          "should be in vm thread");
1939 
1940   ParallelScavengeHeap* heap = gc_heap();
1941   GCCause::Cause gc_cause = heap->gc_cause();
1942   assert(!heap->is_gc_active(), "not reentrant");
1943 
1944   PSAdaptiveSizePolicy* policy = heap->size_policy();
1945   IsGCActiveMark mark;
1946 
1947   if (ScavengeBeforeFullGC) {
1948     PSScavenge::invoke_no_policy();
1949   }
1950 
1951   const bool clear_all_soft_refs =
1952     heap->collector_policy()->should_clear_all_soft_refs();
1953 
1954   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1955                                       maximum_heap_compaction);
1956 }
1957 
1958 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
1959   size_t addr_region_index = addr_to_region_idx(addr);
1960   return region_index == addr_region_index;
1961 }
1962 
1963 // This method contains no policy. You should probably
1964 // be calling invoke() instead.
1965 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1966   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1967   assert(ref_processor() != NULL, "Sanity");
1968 
1969   if (GC_locker::check_active_before_gc()) {
1970     return;
1971   }
1972 
1973   TimeStamp marking_start;
1974   TimeStamp compaction_start;
1975   TimeStamp collection_exit;
1976 
1977   ParallelScavengeHeap* heap = gc_heap();
1978   GCCause::Cause gc_cause = heap->gc_cause();
1979   PSYoungGen* young_gen = heap->young_gen();
1980   PSOldGen* old_gen = heap->old_gen();
1981   PSPermGen* perm_gen = heap->perm_gen();
1982   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1983 
1984   // The scope of casr should end after code that can change
1985   // CollectorPolicy::_should_clear_all_soft_refs.
1986   ClearedAllSoftRefs casr(maximum_heap_compaction,
1987                           heap->collector_policy());
1988 
1989   if (ZapUnusedHeapArea) {
1990     // Save information needed to minimize mangling
1991     heap->record_gen_tops_before_GC();
1992   }
1993 
1994   heap->pre_full_gc_dump();
1995 
1996   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
1997 
1998   // Make sure data structures are sane, make the heap parsable, and do other
1999   // miscellaneous bookkeeping.
2000   PreGCValues pre_gc_values;
2001   pre_compact(&pre_gc_values);
2002 
2003   // Get the compaction manager reserved for the VM thread.
2004   ParCompactionManager* const vmthread_cm =
2005     ParCompactionManager::manager_array(gc_task_manager()->workers());
2006 
2007   // Place after pre_compact() where the number of invocations is incremented.
2008   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2009 
2010   {
2011     ResourceMark rm;
2012     HandleMark hm;
2013 
2014     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
2015 
2016     // This is useful for debugging but don't change the output the
2017     // the customer sees.
2018     const char* gc_cause_str = "Full GC";
2019     if (is_system_gc && PrintGCDetails) {
2020       gc_cause_str = "Full GC (System)";
2021     }
2022     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2023     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2024     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
2025     TraceCollectorStats tcs(counters());
2026     TraceMemoryManagerStats tms(true /* Full GC */);
2027 
2028     if (TraceGen1Time) accumulated_time()->start();
2029 
2030     // Let the size policy know we're starting
2031     size_policy->major_collection_begin();
2032 
2033     // When collecting the permanent generation methodOops may be moving,
2034     // so we either have to flush all bcp data or convert it into bci.
2035     CodeCache::gc_prologue();
2036     Threads::gc_prologue();
2037 
2038     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2039     COMPILER2_PRESENT(DerivedPointerTable::clear());
2040 
2041     ref_processor()->enable_discovery();
2042     ref_processor()->setup_policy(maximum_heap_compaction);
2043 
2044     bool marked_for_unloading = false;
2045 
2046     marking_start.update();
2047     marking_phase(vmthread_cm, maximum_heap_compaction);
2048 
2049 #ifndef PRODUCT
2050     if (TraceParallelOldGCMarkingPhase) {
2051       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
2052         "cas_by_another %d",
2053         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
2054         mark_bitmap()->cas_by_another());
2055     }
2056 #endif  // #ifndef PRODUCT
2057 
2058     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
2059     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2060 
2061     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2062     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2063 
2064     // adjust_roots() updates Universe::_intArrayKlassObj which is
2065     // needed by the compaction for filling holes in the dense prefix.
2066     adjust_roots();
2067 
2068     compaction_start.update();
2069     // Does the perm gen always have to be done serially because
2070     // klasses are used in the update of an object?
2071     compact_perm(vmthread_cm);
2072 
2073     if (UseParallelOldGCCompacting) {
2074       compact();
2075     } else {
2076       compact_serial(vmthread_cm);
2077     }
2078 
2079     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2080     // done before resizing.
2081     post_compact();
2082 
2083     // Let the size policy know we're done
2084     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2085 
2086     if (UseAdaptiveSizePolicy) {
2087       if (PrintAdaptiveSizePolicy) {
2088         gclog_or_tty->print("AdaptiveSizeStart: ");
2089         gclog_or_tty->stamp();
2090         gclog_or_tty->print_cr(" collection: %d ",
2091                        heap->total_collections());
2092         if (Verbose) {
2093           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
2094             " perm_gen_capacity: %d ",
2095             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
2096             perm_gen->capacity_in_bytes());
2097         }
2098       }
2099 
2100       // Don't check if the size_policy is ready here.  Let
2101       // the size_policy check that internally.
2102       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2103           ((gc_cause != GCCause::_java_lang_system_gc) ||
2104             UseAdaptiveSizePolicyWithSystemGC)) {
2105         // Calculate optimal free space amounts
2106         assert(young_gen->max_size() >
2107           young_gen->from_space()->capacity_in_bytes() +
2108           young_gen->to_space()->capacity_in_bytes(),
2109           "Sizes of space in young gen are out-of-bounds");
2110         size_t max_eden_size = young_gen->max_size() -
2111           young_gen->from_space()->capacity_in_bytes() -
2112           young_gen->to_space()->capacity_in_bytes();
2113         size_policy->compute_generation_free_space(
2114                               young_gen->used_in_bytes(),
2115                               young_gen->eden_space()->used_in_bytes(),
2116                               old_gen->used_in_bytes(),
2117                               perm_gen->used_in_bytes(),
2118                               young_gen->eden_space()->capacity_in_bytes(),
2119                               old_gen->max_gen_size(),
2120                               max_eden_size,
2121                               true /* full gc*/,
2122                               gc_cause,
2123                               heap->collector_policy());
2124 
2125         heap->resize_old_gen(
2126           size_policy->calculated_old_free_size_in_bytes());
2127 
2128         // Don't resize the young generation at an major collection.  A
2129         // desired young generation size may have been calculated but
2130         // resizing the young generation complicates the code because the
2131         // resizing of the old generation may have moved the boundary
2132         // between the young generation and the old generation.  Let the
2133         // young generation resizing happen at the minor collections.
2134       }
2135       if (PrintAdaptiveSizePolicy) {
2136         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2137                        heap->total_collections());
2138       }
2139     }
2140 
2141     if (UsePerfData) {
2142       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2143       counters->update_counters();
2144       counters->update_old_capacity(old_gen->capacity_in_bytes());
2145       counters->update_young_capacity(young_gen->capacity_in_bytes());
2146     }
2147 
2148     heap->resize_all_tlabs();
2149 
2150     // We collected the perm gen, so we'll resize it here.
2151     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
2152 
2153     if (TraceGen1Time) accumulated_time()->stop();
2154 
2155     if (PrintGC) {
2156       if (PrintGCDetails) {
2157         // No GC timestamp here.  This is after GC so it would be confusing.
2158         young_gen->print_used_change(pre_gc_values.young_gen_used());
2159         old_gen->print_used_change(pre_gc_values.old_gen_used());
2160         heap->print_heap_change(pre_gc_values.heap_used());
2161         // Print perm gen last (print_heap_change() excludes the perm gen).
2162         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
2163       } else {
2164         heap->print_heap_change(pre_gc_values.heap_used());
2165       }
2166     }
2167 
2168     // Track memory usage and detect low memory
2169     MemoryService::track_memory_usage();
2170     heap->update_counters();
2171   }
2172 
2173 #ifdef ASSERT
2174   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2175     ParCompactionManager* const cm =
2176       ParCompactionManager::manager_array(int(i));
2177     assert(cm->marking_stack()->is_empty(),       "should be empty");
2178     assert(cm->region_stack()->is_empty(),        "should be empty");
2179     assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
2180   }
2181 #endif // ASSERT
2182 
2183   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2184     HandleMark hm;  // Discard invalid handles created during verification
2185     gclog_or_tty->print(" VerifyAfterGC:");
2186     Universe::verify(false);
2187   }
2188 
2189   // Re-verify object start arrays
2190   if (VerifyObjectStartArray &&
2191       VerifyAfterGC) {
2192     old_gen->verify_object_start_array();
2193     perm_gen->verify_object_start_array();
2194   }
2195 
2196   if (ZapUnusedHeapArea) {
2197     old_gen->object_space()->check_mangled_unused_area_complete();
2198     perm_gen->object_space()->check_mangled_unused_area_complete();
2199   }
2200 
2201   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2202 
2203   collection_exit.update();
2204 
2205   if (PrintHeapAtGC) {
2206     Universe::print_heap_after_gc();
2207   }
2208   if (PrintGCTaskTimeStamps) {
2209     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
2210                            INT64_FORMAT,
2211                            marking_start.ticks(), compaction_start.ticks(),
2212                            collection_exit.ticks());
2213     gc_task_manager()->print_task_time_stamps();
2214   }
2215 
2216   heap->post_full_gc_dump();
2217 
2218 #ifdef TRACESPINNING
2219   ParallelTaskTerminator::print_termination_counts();
2220 #endif
2221 }
2222 
2223 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2224                                              PSYoungGen* young_gen,
2225                                              PSOldGen* old_gen) {
2226   MutableSpace* const eden_space = young_gen->eden_space();
2227   assert(!eden_space->is_empty(), "eden must be non-empty");
2228   assert(young_gen->virtual_space()->alignment() ==
2229          old_gen->virtual_space()->alignment(), "alignments do not match");
2230 
2231   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2232     return false;
2233   }
2234 
2235   // Both generations must be completely committed.
2236   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2237     return false;
2238   }
2239   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2240     return false;
2241   }
2242 
2243   // Figure out how much to take from eden.  Include the average amount promoted
2244   // in the total; otherwise the next young gen GC will simply bail out to a
2245   // full GC.
2246   const size_t alignment = old_gen->virtual_space()->alignment();
2247   const size_t eden_used = eden_space->used_in_bytes();
2248   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2249   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2250   const size_t eden_capacity = eden_space->capacity_in_bytes();
2251 
2252   if (absorb_size >= eden_capacity) {
2253     return false; // Must leave some space in eden.
2254   }
2255 
2256   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2257   if (new_young_size < young_gen->min_gen_size()) {
2258     return false; // Respect young gen minimum size.
2259   }
2260 
2261   if (TraceAdaptiveGCBoundary && Verbose) {
2262     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2263                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2264                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2265                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2266                         absorb_size / K,
2267                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2268                         young_gen->from_space()->used_in_bytes() / K,
2269                         young_gen->to_space()->used_in_bytes() / K,
2270                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2271   }
2272 
2273   // Fill the unused part of the old gen.
2274   MutableSpace* const old_space = old_gen->object_space();
2275   HeapWord* const unused_start = old_space->top();
2276   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2277 
2278   if (unused_words > 0) {
2279     if (unused_words < CollectedHeap::min_fill_size()) {
2280       return false;  // If the old gen cannot be filled, must give up.
2281     }
2282     CollectedHeap::fill_with_objects(unused_start, unused_words);
2283   }
2284 
2285   // Take the live data from eden and set both top and end in the old gen to
2286   // eden top.  (Need to set end because reset_after_change() mangles the region
2287   // from end to virtual_space->high() in debug builds).
2288   HeapWord* const new_top = eden_space->top();
2289   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2290                                         absorb_size);
2291   young_gen->reset_after_change();
2292   old_space->set_top(new_top);
2293   old_space->set_end(new_top);
2294   old_gen->reset_after_change();
2295 
2296   // Update the object start array for the filler object and the data from eden.
2297   ObjectStartArray* const start_array = old_gen->start_array();
2298   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2299     start_array->allocate_block(p);
2300   }
2301 
2302   // Could update the promoted average here, but it is not typically updated at
2303   // full GCs and the value to use is unclear.  Something like
2304   //
2305   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2306 
2307   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2308   return true;
2309 }
2310 
2311 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2312   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2313     "shouldn't return NULL");
2314   return ParallelScavengeHeap::gc_task_manager();
2315 }
2316 
2317 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2318                                       bool maximum_heap_compaction) {
2319   // Recursively traverse all live objects and mark them
2320   EventMark m("1 mark object");
2321   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
2322 
2323   ParallelScavengeHeap* heap = gc_heap();
2324   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2325   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2326   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
2327 
2328   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2329   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2330 
2331   {
2332     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2333     ParallelScavengeHeap::ParStrongRootsScope psrs;
2334 
2335     GCTaskQueue* q = GCTaskQueue::create();
2336 
2337     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2338     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2339     // We scan the thread roots in parallel
2340     Threads::create_thread_roots_marking_tasks(q);
2341     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2342     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2343     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2344     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2345     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2346     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
2347     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2348 
2349     if (parallel_gc_threads > 1) {
2350       for (uint j = 0; j < parallel_gc_threads; j++) {
2351         q->enqueue(new StealMarkingTask(&terminator));
2352       }
2353     }
2354 
2355     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
2356     q->enqueue(fin);
2357 
2358     gc_task_manager()->add_list(q);
2359 
2360     fin->wait_for();
2361 
2362     // We have to release the barrier tasks!
2363     WaitForBarrierGCTask::destroy(fin);
2364   }
2365 
2366   // Process reference objects found during marking
2367   {
2368     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
2369     if (ref_processor()->processing_is_mt()) {
2370       RefProcTaskExecutor task_executor;
2371       ref_processor()->process_discovered_references(
2372         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2373         &task_executor);
2374     } else {
2375       ref_processor()->process_discovered_references(
2376         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
2377     }
2378   }
2379 
2380   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
2381   // Follow system dictionary roots and unload classes.
2382   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2383 
2384   // Follow code cache roots.
2385   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
2386                           purged_class);
2387   cm->follow_marking_stacks(); // Flush marking stack.
2388 
2389   // Update subklass/sibling/implementor links of live klasses
2390   // revisit_klass_stack is used in follow_weak_klass_links().
2391   follow_weak_klass_links();
2392 
2393   // Revisit memoized MDO's and clear any unmarked weak refs
2394   follow_mdo_weak_refs();
2395 
2396   // Visit symbol and interned string tables and delete unmarked oops
2397   SymbolTable::unlink(is_alive_closure());
2398   StringTable::unlink(is_alive_closure());
2399 
2400   assert(cm->marking_stacks_empty(), "marking stacks should be empty");
2401 }
2402 
2403 // This should be moved to the shared markSweep code!
2404 class PSAlwaysTrueClosure: public BoolObjectClosure {
2405 public:
2406   void do_object(oop p) { ShouldNotReachHere(); }
2407   bool do_object_b(oop p) { return true; }
2408 };
2409 static PSAlwaysTrueClosure always_true;
2410 
2411 void PSParallelCompact::adjust_roots() {
2412   // Adjust the pointers to reflect the new locations
2413   EventMark m("3 adjust roots");
2414   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
2415 
2416   // General strong roots.
2417   Universe::oops_do(adjust_root_pointer_closure());
2418   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
2419   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
2420   Threads::oops_do(adjust_root_pointer_closure(), NULL);
2421   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
2422   FlatProfiler::oops_do(adjust_root_pointer_closure());
2423   Management::oops_do(adjust_root_pointer_closure());
2424   JvmtiExport::oops_do(adjust_root_pointer_closure());
2425   // SO_AllClasses
2426   SystemDictionary::oops_do(adjust_root_pointer_closure());
2427   vmSymbols::oops_do(adjust_root_pointer_closure());
2428 
2429   // Now adjust pointers in remaining weak roots.  (All of which should
2430   // have been cleared if they pointed to non-surviving objects.)
2431   // Global (weak) JNI handles
2432   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
2433 
2434   CodeCache::oops_do(adjust_pointer_closure());
2435   SymbolTable::oops_do(adjust_root_pointer_closure());
2436   StringTable::oops_do(adjust_root_pointer_closure());
2437   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
2438   // Roots were visited so references into the young gen in roots
2439   // may have been scanned.  Process them also.
2440   // Should the reference processor have a span that excludes
2441   // young gen objects?
2442   PSScavenge::reference_processor()->weak_oops_do(
2443                                               adjust_root_pointer_closure());
2444 }
2445 
2446 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
2447   EventMark m("4 compact perm");
2448   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
2449   // trace("4");
2450 
2451   gc_heap()->perm_gen()->start_array()->reset();
2452   move_and_update(cm, perm_space_id);
2453 }
2454 
2455 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2456                                                       uint parallel_gc_threads)
2457 {
2458   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
2459 
2460   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
2461   for (unsigned int j = 0; j < task_count; j++) {
2462     q->enqueue(new DrainStacksCompactionTask(j));
2463   }
2464 
2465   // Find all regions that are available (can be filled immediately) and
2466   // distribute them to the thread stacks.  The iteration is done in reverse
2467   // order (high to low) so the regions will be removed in ascending order.
2468 
2469   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2470 
2471   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2472   unsigned int which = 0;       // The worker thread number.
2473 
2474   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
2475     SpaceInfo* const space_info = _space_info + id;
2476     MutableSpace* const space = space_info->space();
2477     HeapWord* const new_top = space_info->new_top();
2478 
2479     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2480     const size_t end_region =
2481       sd.addr_to_region_idx(sd.region_align_up(new_top));
2482     assert(end_region > 0, "perm gen cannot be empty");
2483 
2484     for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
2485       if (sd.region(cur)->claim_unsafe()) {
2486         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2487         cm->push_region(cur);
2488 
2489         if (TraceParallelOldGCCompactionPhase && Verbose) {
2490           const size_t count_mod_8 = fillable_regions & 7;
2491           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2492           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2493           if (count_mod_8 == 7) gclog_or_tty->cr();
2494         }
2495 
2496         NOT_PRODUCT(++fillable_regions;)
2497 
2498         // Assign regions to threads in round-robin fashion.
2499         if (++which == task_count) {
2500           which = 0;
2501         }
2502       }
2503     }
2504   }
2505 
2506   if (TraceParallelOldGCCompactionPhase) {
2507     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2508     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
2509   }
2510 }
2511 
2512 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2513 
2514 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2515                                                     uint parallel_gc_threads) {
2516   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
2517 
2518   ParallelCompactData& sd = PSParallelCompact::summary_data();
2519 
2520   // Iterate over all the spaces adding tasks for updating
2521   // regions in the dense prefix.  Assume that 1 gc thread
2522   // will work on opening the gaps and the remaining gc threads
2523   // will work on the dense prefix.
2524   unsigned int space_id;
2525   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2526     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2527     const MutableSpace* const space = _space_info[space_id].space();
2528 
2529     if (dense_prefix_end == space->bottom()) {
2530       // There is no dense prefix for this space.
2531       continue;
2532     }
2533 
2534     // The dense prefix is before this region.
2535     size_t region_index_end_dense_prefix =
2536         sd.addr_to_region_idx(dense_prefix_end);
2537     RegionData* const dense_prefix_cp =
2538       sd.region(region_index_end_dense_prefix);
2539     assert(dense_prefix_end == space->end() ||
2540            dense_prefix_cp->available() ||
2541            dense_prefix_cp->claimed(),
2542            "The region after the dense prefix should always be ready to fill");
2543 
2544     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2545 
2546     // Is there dense prefix work?
2547     size_t total_dense_prefix_regions =
2548       region_index_end_dense_prefix - region_index_start;
2549     // How many regions of the dense prefix should be given to
2550     // each thread?
2551     if (total_dense_prefix_regions > 0) {
2552       uint tasks_for_dense_prefix = 1;
2553       if (UseParallelDensePrefixUpdate) {
2554         if (total_dense_prefix_regions <=
2555             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2556           // Don't over partition.  This assumes that
2557           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2558           // so there are not many regions to process.
2559           tasks_for_dense_prefix = parallel_gc_threads;
2560         } else {
2561           // Over partition
2562           tasks_for_dense_prefix = parallel_gc_threads *
2563             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2564         }
2565       }
2566       size_t regions_per_thread = total_dense_prefix_regions /
2567         tasks_for_dense_prefix;
2568       // Give each thread at least 1 region.
2569       if (regions_per_thread == 0) {
2570         regions_per_thread = 1;
2571       }
2572 
2573       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2574         if (region_index_start >= region_index_end_dense_prefix) {
2575           break;
2576         }
2577         // region_index_end is not processed
2578         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2579                                        region_index_end_dense_prefix);
2580         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2581                                              region_index_start,
2582                                              region_index_end));
2583         region_index_start = region_index_end;
2584       }
2585     }
2586     // This gets any part of the dense prefix that did not
2587     // fit evenly.
2588     if (region_index_start < region_index_end_dense_prefix) {
2589       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2590                                            region_index_start,
2591                                            region_index_end_dense_prefix));
2592     }
2593   }
2594 }
2595 
2596 void PSParallelCompact::enqueue_region_stealing_tasks(
2597                                      GCTaskQueue* q,
2598                                      ParallelTaskTerminator* terminator_ptr,
2599                                      uint parallel_gc_threads) {
2600   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
2601 
2602   // Once a thread has drained it's stack, it should try to steal regions from
2603   // other threads.
2604   if (parallel_gc_threads > 1) {
2605     for (uint j = 0; j < parallel_gc_threads; j++) {
2606       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2607     }
2608   }
2609 }
2610 
2611 void PSParallelCompact::compact() {
2612   EventMark m("5 compact");
2613   // trace("5");
2614   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
2615 
2616   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2617   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2618   PSOldGen* old_gen = heap->old_gen();
2619   old_gen->start_array()->reset();
2620   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2621   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2622   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
2623 
2624   GCTaskQueue* q = GCTaskQueue::create();
2625   enqueue_region_draining_tasks(q, parallel_gc_threads);
2626   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
2627   enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
2628 
2629   {
2630     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
2631 
2632     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
2633     q->enqueue(fin);
2634 
2635     gc_task_manager()->add_list(q);
2636 
2637     fin->wait_for();
2638 
2639     // We have to release the barrier tasks!
2640     WaitForBarrierGCTask::destroy(fin);
2641 
2642 #ifdef  ASSERT
2643     // Verify that all regions have been processed before the deferred updates.
2644     // Note that perm_space_id is skipped; this type of verification is not
2645     // valid until the perm gen is compacted by regions.
2646     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2647       verify_complete(SpaceId(id));
2648     }
2649 #endif
2650   }
2651 
2652   {
2653     // Update the deferred objects, if any.  Any compaction manager can be used.
2654     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
2655     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2656     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2657       update_deferred_objects(cm, SpaceId(id));
2658     }
2659   }
2660 }
2661 
2662 #ifdef  ASSERT
2663 void PSParallelCompact::verify_complete(SpaceId space_id) {
2664   // All Regions between space bottom() to new_top() should be marked as filled
2665   // and all Regions between new_top() and top() should be available (i.e.,
2666   // should have been emptied).
2667   ParallelCompactData& sd = summary_data();
2668   SpaceInfo si = _space_info[space_id];
2669   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2670   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2671   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2672   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2673   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2674 
2675   bool issued_a_warning = false;
2676 
2677   size_t cur_region;
2678   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2679     const RegionData* const c = sd.region(cur_region);
2680     if (!c->completed()) {
2681       warning("region " SIZE_FORMAT " not filled:  "
2682               "destination_count=" SIZE_FORMAT,
2683               cur_region, c->destination_count());
2684       issued_a_warning = true;
2685     }
2686   }
2687 
2688   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2689     const RegionData* const c = sd.region(cur_region);
2690     if (!c->available()) {
2691       warning("region " SIZE_FORMAT " not empty:   "
2692               "destination_count=" SIZE_FORMAT,
2693               cur_region, c->destination_count());
2694       issued_a_warning = true;
2695     }
2696   }
2697 
2698   if (issued_a_warning) {
2699     print_region_ranges();
2700   }
2701 }
2702 #endif  // #ifdef ASSERT
2703 
2704 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
2705   EventMark m("5 compact serial");
2706   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
2707 
2708   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2709   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2710 
2711   PSYoungGen* young_gen = heap->young_gen();
2712   PSOldGen* old_gen = heap->old_gen();
2713 
2714   old_gen->start_array()->reset();
2715   old_gen->move_and_update(cm);
2716   young_gen->move_and_update(cm);
2717 }
2718 
2719 void
2720 PSParallelCompact::follow_weak_klass_links() {
2721   // All klasses on the revisit stack are marked at this point.
2722   // Update and follow all subklass, sibling and implementor links.
2723   if (PrintRevisitStats) {
2724     gclog_or_tty->print_cr("#classes in system dictionary = %d",
2725                            SystemDictionary::number_of_classes());
2726   }
2727   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
2728     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
2729     KeepAliveClosure keep_alive_closure(cm);
2730     Stack<Klass*>* const rks = cm->revisit_klass_stack();
2731     if (PrintRevisitStats) {
2732       gclog_or_tty->print_cr("Revisit klass stack[%u] length = " SIZE_FORMAT,
2733                              i, rks->size());
2734     }
2735     while (!rks->is_empty()) {
2736       Klass* const k = rks->pop();
2737       k->follow_weak_klass_links(is_alive_closure(), &keep_alive_closure);
2738     }
2739 
2740     cm->follow_marking_stacks();
2741   }
2742 }
2743 
2744 void
2745 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
2746   cm->revisit_klass_stack()->push(k);
2747 }
2748 
2749 void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
2750   cm->revisit_mdo_stack()->push(p);
2751 }
2752 
2753 void PSParallelCompact::follow_mdo_weak_refs() {
2754   // All strongly reachable oops have been marked at this point;
2755   // we can visit and clear any weak references from MDO's which
2756   // we memoized during the strong marking phase.
2757   if (PrintRevisitStats) {
2758     gclog_or_tty->print_cr("#classes in system dictionary = %d",
2759                            SystemDictionary::number_of_classes());
2760   }
2761   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
2762     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
2763     Stack<DataLayout*>* rms = cm->revisit_mdo_stack();
2764     if (PrintRevisitStats) {
2765       gclog_or_tty->print_cr("Revisit MDO stack[%u] size = " SIZE_FORMAT,
2766                              i, rms->size());
2767     }
2768     while (!rms->is_empty()) {
2769       rms->pop()->follow_weak_refs(is_alive_closure());
2770     }
2771 
2772     cm->follow_marking_stacks();
2773   }
2774 }
2775 
2776 
2777 #ifdef VALIDATE_MARK_SWEEP
2778 
2779 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
2780   if (!ValidateMarkSweep)
2781     return;
2782 
2783   if (!isroot) {
2784     if (_pointer_tracking) {
2785       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
2786       _adjusted_pointers->remove(p);
2787     }
2788   } else {
2789     ptrdiff_t index = _root_refs_stack->find(p);
2790     if (index != -1) {
2791       int l = _root_refs_stack->length();
2792       if (l > 0 && l - 1 != index) {
2793         void* last = _root_refs_stack->pop();
2794         assert(last != p, "should be different");
2795         _root_refs_stack->at_put(index, last);
2796       } else {
2797         _root_refs_stack->remove(p);
2798       }
2799     }
2800   }
2801 }
2802 
2803 
2804 void PSParallelCompact::check_adjust_pointer(void* p) {
2805   _adjusted_pointers->push(p);
2806 }
2807 
2808 
2809 class AdjusterTracker: public OopClosure {
2810  public:
2811   AdjusterTracker() {};
2812   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
2813   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
2814 };
2815 
2816 
2817 void PSParallelCompact::track_interior_pointers(oop obj) {
2818   if (ValidateMarkSweep) {
2819     _adjusted_pointers->clear();
2820     _pointer_tracking = true;
2821 
2822     AdjusterTracker checker;
2823     obj->oop_iterate(&checker);
2824   }
2825 }
2826 
2827 
2828 void PSParallelCompact::check_interior_pointers() {
2829   if (ValidateMarkSweep) {
2830     _pointer_tracking = false;
2831     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
2832   }
2833 }
2834 
2835 
2836 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
2837   if (ValidateMarkSweep) {
2838     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
2839     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
2840   }
2841 }
2842 
2843 
2844 void PSParallelCompact::register_live_oop(oop p, size_t size) {
2845   if (ValidateMarkSweep) {
2846     _live_oops->push(p);
2847     _live_oops_size->push(size);
2848     _live_oops_index++;
2849   }
2850 }
2851 
2852 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
2853   if (ValidateMarkSweep) {
2854     oop obj = _live_oops->at((int)_live_oops_index);
2855     guarantee(obj == p, "should be the same object");
2856     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
2857     _live_oops_index++;
2858   }
2859 }
2860 
2861 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
2862                                   HeapWord* compaction_top) {
2863   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
2864          "should be moved to forwarded location");
2865   if (ValidateMarkSweep) {
2866     PSParallelCompact::validate_live_oop(oop(q), size);
2867     _live_oops_moved_to->push(oop(compaction_top));
2868   }
2869   if (RecordMarkSweepCompaction) {
2870     _cur_gc_live_oops->push(q);
2871     _cur_gc_live_oops_moved_to->push(compaction_top);
2872     _cur_gc_live_oops_size->push(size);
2873   }
2874 }
2875 
2876 
2877 void PSParallelCompact::compaction_complete() {
2878   if (RecordMarkSweepCompaction) {
2879     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
2880     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
2881     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
2882 
2883     _cur_gc_live_oops           = _last_gc_live_oops;
2884     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
2885     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
2886     _last_gc_live_oops          = _tmp_live_oops;
2887     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
2888     _last_gc_live_oops_size     = _tmp_live_oops_size;
2889   }
2890 }
2891 
2892 
2893 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
2894   if (!RecordMarkSweepCompaction) {
2895     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
2896     return;
2897   }
2898 
2899   if (_last_gc_live_oops == NULL) {
2900     tty->print_cr("No compaction information gathered yet");
2901     return;
2902   }
2903 
2904   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
2905     HeapWord* old_oop = _last_gc_live_oops->at(i);
2906     size_t    sz      = _last_gc_live_oops_size->at(i);
2907     if (old_oop <= q && q < (old_oop + sz)) {
2908       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
2909       size_t offset = (q - old_oop);
2910       tty->print_cr("Address " PTR_FORMAT, q);
2911       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
2912       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
2913       return;
2914     }
2915   }
2916 
2917   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
2918 }
2919 #endif //VALIDATE_MARK_SWEEP
2920 
2921 // Update interior oops in the ranges of regions [beg_region, end_region).
2922 void
2923 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2924                                                        SpaceId space_id,
2925                                                        size_t beg_region,
2926                                                        size_t end_region) {
2927   ParallelCompactData& sd = summary_data();
2928   ParMarkBitMap* const mbm = mark_bitmap();
2929 
2930   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2931   HeapWord* const end_addr = sd.region_to_addr(end_region);
2932   assert(beg_region <= end_region, "bad region range");
2933   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2934 
2935 #ifdef  ASSERT
2936   // Claim the regions to avoid triggering an assert when they are marked as
2937   // filled.
2938   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2939     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2940   }
2941 #endif  // #ifdef ASSERT
2942 
2943   if (beg_addr != space(space_id)->bottom()) {
2944     // Find the first live object or block of dead space that *starts* in this
2945     // range of regions.  If a partial object crosses onto the region, skip it;
2946     // it will be marked for 'deferred update' when the object head is
2947     // processed.  If dead space crosses onto the region, it is also skipped; it
2948     // will be filled when the prior region is processed.  If neither of those
2949     // apply, the first word in the region is the start of a live object or dead
2950     // space.
2951     assert(beg_addr > space(space_id)->bottom(), "sanity");
2952     const RegionData* const cp = sd.region(beg_region);
2953     if (cp->partial_obj_size() != 0) {
2954       beg_addr = sd.partial_obj_end(beg_region);
2955     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2956       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2957     }
2958   }
2959 
2960   if (beg_addr < end_addr) {
2961     // A live object or block of dead space starts in this range of Regions.
2962      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2963 
2964     // Create closures and iterate.
2965     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2966     FillClosure fill_closure(cm, space_id);
2967     ParMarkBitMap::IterationStatus status;
2968     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2969                           dense_prefix_end);
2970     if (status == ParMarkBitMap::incomplete) {
2971       update_closure.do_addr(update_closure.source());
2972     }
2973   }
2974 
2975   // Mark the regions as filled.
2976   RegionData* const beg_cp = sd.region(beg_region);
2977   RegionData* const end_cp = sd.region(end_region);
2978   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2979     cp->set_completed();
2980   }
2981 }
2982 
2983 // Return the SpaceId for the space containing addr.  If addr is not in the
2984 // heap, last_space_id is returned.  In debug mode it expects the address to be
2985 // in the heap and asserts such.
2986 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2987   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
2988 
2989   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
2990     if (_space_info[id].space()->contains(addr)) {
2991       return SpaceId(id);
2992     }
2993   }
2994 
2995   assert(false, "no space contains the addr");
2996   return last_space_id;
2997 }
2998 
2999 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
3000                                                 SpaceId id) {
3001   assert(id < last_space_id, "bad space id");
3002 
3003   ParallelCompactData& sd = summary_data();
3004   const SpaceInfo* const space_info = _space_info + id;
3005   ObjectStartArray* const start_array = space_info->start_array();
3006 
3007   const MutableSpace* const space = space_info->space();
3008   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
3009   HeapWord* const beg_addr = space_info->dense_prefix();
3010   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
3011 
3012   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
3013   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
3014   const RegionData* cur_region;
3015   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
3016     HeapWord* const addr = cur_region->deferred_obj_addr();
3017     if (addr != NULL) {
3018       if (start_array != NULL) {
3019         start_array->allocate_block(addr);
3020       }
3021       oop(addr)->update_contents(cm);
3022       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
3023     }
3024   }
3025 }
3026 
3027 // Skip over count live words starting from beg, and return the address of the
3028 // next live word.  Unless marked, the word corresponding to beg is assumed to
3029 // be dead.  Callers must either ensure beg does not correspond to the middle of
3030 // an object, or account for those live words in some other way.  Callers must
3031 // also ensure that there are enough live words in the range [beg, end) to skip.
3032 HeapWord*
3033 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
3034 {
3035   assert(count > 0, "sanity");
3036 
3037   ParMarkBitMap* m = mark_bitmap();
3038   idx_t bits_to_skip = m->words_to_bits(count);
3039   idx_t cur_beg = m->addr_to_bit(beg);
3040   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
3041 
3042   do {
3043     cur_beg = m->find_obj_beg(cur_beg, search_end);
3044     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
3045     const size_t obj_bits = cur_end - cur_beg + 1;
3046     if (obj_bits > bits_to_skip) {
3047       return m->bit_to_addr(cur_beg + bits_to_skip);
3048     }
3049     bits_to_skip -= obj_bits;
3050     cur_beg = cur_end + 1;
3051   } while (bits_to_skip > 0);
3052 
3053   // Skipping the desired number of words landed just past the end of an object.
3054   // Find the start of the next object.
3055   cur_beg = m->find_obj_beg(cur_beg, search_end);
3056   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
3057   return m->bit_to_addr(cur_beg);
3058 }
3059 
3060 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
3061                                             SpaceId src_space_id,
3062                                             size_t src_region_idx)
3063 {
3064   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
3065 
3066   const SplitInfo& split_info = _space_info[src_space_id].split_info();
3067   if (split_info.dest_region_addr() == dest_addr) {
3068     // The partial object ending at the split point contains the first word to
3069     // be copied to dest_addr.
3070     return split_info.first_src_addr();
3071   }
3072 
3073   const ParallelCompactData& sd = summary_data();
3074   ParMarkBitMap* const bitmap = mark_bitmap();
3075   const size_t RegionSize = ParallelCompactData::RegionSize;
3076 
3077   assert(sd.is_region_aligned(dest_addr), "not aligned");
3078   const RegionData* const src_region_ptr = sd.region(src_region_idx);
3079   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
3080   HeapWord* const src_region_destination = src_region_ptr->destination();
3081 
3082   assert(dest_addr >= src_region_destination, "wrong src region");
3083   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
3084 
3085   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
3086   HeapWord* const src_region_end = src_region_beg + RegionSize;
3087 
3088   HeapWord* addr = src_region_beg;
3089   if (dest_addr == src_region_destination) {
3090     // Return the first live word in the source region.
3091     if (partial_obj_size == 0) {
3092       addr = bitmap->find_obj_beg(addr, src_region_end);
3093       assert(addr < src_region_end, "no objects start in src region");
3094     }
3095     return addr;
3096   }
3097 
3098   // Must skip some live data.
3099   size_t words_to_skip = dest_addr - src_region_destination;
3100   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
3101 
3102   if (partial_obj_size >= words_to_skip) {
3103     // All the live words to skip are part of the partial object.
3104     addr += words_to_skip;
3105     if (partial_obj_size == words_to_skip) {
3106       // Find the first live word past the partial object.
3107       addr = bitmap->find_obj_beg(addr, src_region_end);
3108       assert(addr < src_region_end, "wrong src region");
3109     }
3110     return addr;
3111   }
3112 
3113   // Skip over the partial object (if any).
3114   if (partial_obj_size != 0) {
3115     words_to_skip -= partial_obj_size;
3116     addr += partial_obj_size;
3117   }
3118 
3119   // Skip over live words due to objects that start in the region.
3120   addr = skip_live_words(addr, src_region_end, words_to_skip);
3121   assert(addr < src_region_end, "wrong src region");
3122   return addr;
3123 }
3124 
3125 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
3126                                                      SpaceId src_space_id,
3127                                                      size_t beg_region,
3128                                                      HeapWord* end_addr)
3129 {
3130   ParallelCompactData& sd = summary_data();
3131 
3132 #ifdef ASSERT
3133   MutableSpace* const src_space = _space_info[src_space_id].space();
3134   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
3135   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
3136          "src_space_id does not match beg_addr");
3137   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
3138          "src_space_id does not match end_addr");
3139 #endif // #ifdef ASSERT
3140 
3141   RegionData* const beg = sd.region(beg_region);
3142   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
3143 
3144   // Regions up to new_top() are enqueued if they become available.
3145   HeapWord* const new_top = _space_info[src_space_id].new_top();
3146   RegionData* const enqueue_end =
3147     sd.addr_to_region_ptr(sd.region_align_up(new_top));
3148 
3149   for (RegionData* cur = beg; cur < end; ++cur) {
3150     assert(cur->data_size() > 0, "region must have live data");
3151     cur->decrement_destination_count();
3152     if (cur < enqueue_end && cur->available() && cur->claim()) {
3153       cm->push_region(sd.region(cur));
3154     }
3155   }
3156 }
3157 
3158 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
3159                                           SpaceId& src_space_id,
3160                                           HeapWord*& src_space_top,
3161                                           HeapWord* end_addr)
3162 {
3163   typedef ParallelCompactData::RegionData RegionData;
3164 
3165   ParallelCompactData& sd = PSParallelCompact::summary_data();
3166   const size_t region_size = ParallelCompactData::RegionSize;
3167 
3168   size_t src_region_idx = 0;
3169 
3170   // Skip empty regions (if any) up to the top of the space.
3171   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3172   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3173   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3174   const RegionData* const top_region_ptr =
3175     sd.addr_to_region_ptr(top_aligned_up);
3176   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3177     ++src_region_ptr;
3178   }
3179 
3180   if (src_region_ptr < top_region_ptr) {
3181     // The next source region is in the current space.  Update src_region_idx
3182     // and the source address to match src_region_ptr.
3183     src_region_idx = sd.region(src_region_ptr);
3184     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3185     if (src_region_addr > closure.source()) {
3186       closure.set_source(src_region_addr);
3187     }
3188     return src_region_idx;
3189   }
3190 
3191   // Switch to a new source space and find the first non-empty region.
3192   unsigned int space_id = src_space_id + 1;
3193   assert(space_id < last_space_id, "not enough spaces");
3194 
3195   HeapWord* const destination = closure.destination();
3196 
3197   do {
3198     MutableSpace* space = _space_info[space_id].space();
3199     HeapWord* const bottom = space->bottom();
3200     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3201 
3202     // Iterate over the spaces that do not compact into themselves.
3203     if (bottom_cp->destination() != bottom) {
3204       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3205       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3206 
3207       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3208         if (src_cp->live_obj_size() > 0) {
3209           // Found it.
3210           assert(src_cp->destination() == destination,
3211                  "first live obj in the space must match the destination");
3212           assert(src_cp->partial_obj_size() == 0,
3213                  "a space cannot begin with a partial obj");
3214 
3215           src_space_id = SpaceId(space_id);
3216           src_space_top = space->top();
3217           const size_t src_region_idx = sd.region(src_cp);
3218           closure.set_source(sd.region_to_addr(src_region_idx));
3219           return src_region_idx;
3220         } else {
3221           assert(src_cp->data_size() == 0, "sanity");
3222         }
3223       }
3224     }
3225   } while (++space_id < last_space_id);
3226 
3227   assert(false, "no source region was found");
3228   return 0;
3229 }
3230 
3231 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3232 {
3233   typedef ParMarkBitMap::IterationStatus IterationStatus;
3234   const size_t RegionSize = ParallelCompactData::RegionSize;
3235   ParMarkBitMap* const bitmap = mark_bitmap();
3236   ParallelCompactData& sd = summary_data();
3237   RegionData* const region_ptr = sd.region(region_idx);
3238 
3239   // Get the items needed to construct the closure.
3240   HeapWord* dest_addr = sd.region_to_addr(region_idx);
3241   SpaceId dest_space_id = space_id(dest_addr);
3242   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3243   HeapWord* new_top = _space_info[dest_space_id].new_top();
3244   assert(dest_addr < new_top, "sanity");
3245   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3246 
3247   // Get the source region and related info.
3248   size_t src_region_idx = region_ptr->source_region();
3249   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3250   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3251 
3252   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3253   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3254 
3255   // Adjust src_region_idx to prepare for decrementing destination counts (the
3256   // destination count is not decremented when a region is copied to itself).
3257   if (src_region_idx == region_idx) {
3258     src_region_idx += 1;
3259   }
3260 
3261   if (bitmap->is_unmarked(closure.source())) {
3262     // The first source word is in the middle of an object; copy the remainder
3263     // of the object or as much as will fit.  The fact that pointer updates were
3264     // deferred will be noted when the object header is processed.
3265     HeapWord* const old_src_addr = closure.source();
3266     closure.copy_partial_obj();
3267     if (closure.is_full()) {
3268       decrement_destination_counts(cm, src_space_id, src_region_idx,
3269                                    closure.source());
3270       region_ptr->set_deferred_obj_addr(NULL);
3271       region_ptr->set_completed();
3272       return;
3273     }
3274 
3275     HeapWord* const end_addr = sd.region_align_down(closure.source());
3276     if (sd.region_align_down(old_src_addr) != end_addr) {
3277       // The partial object was copied from more than one source region.
3278       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3279 
3280       // Move to the next source region, possibly switching spaces as well.  All
3281       // args except end_addr may be modified.
3282       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3283                                        end_addr);
3284     }
3285   }
3286 
3287   do {
3288     HeapWord* const cur_addr = closure.source();
3289     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3290                                     src_space_top);
3291     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3292 
3293     if (status == ParMarkBitMap::incomplete) {
3294       // The last obj that starts in the source region does not end in the
3295       // region.
3296       assert(closure.source() < end_addr, "sanity");
3297       HeapWord* const obj_beg = closure.source();
3298       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3299                                        src_space_top);
3300       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3301       if (obj_end < range_end) {
3302         // The end was found; the entire object will fit.
3303         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3304         assert(status != ParMarkBitMap::would_overflow, "sanity");
3305       } else {
3306         // The end was not found; the object will not fit.
3307         assert(range_end < src_space_top, "obj cannot cross space boundary");
3308         status = ParMarkBitMap::would_overflow;
3309       }
3310     }
3311 
3312     if (status == ParMarkBitMap::would_overflow) {
3313       // The last object did not fit.  Note that interior oop updates were
3314       // deferred, then copy enough of the object to fill the region.
3315       region_ptr->set_deferred_obj_addr(closure.destination());
3316       status = closure.copy_until_full(); // copies from closure.source()
3317 
3318       decrement_destination_counts(cm, src_space_id, src_region_idx,
3319                                    closure.source());
3320       region_ptr->set_completed();
3321       return;
3322     }
3323 
3324     if (status == ParMarkBitMap::full) {
3325       decrement_destination_counts(cm, src_space_id, src_region_idx,
3326                                    closure.source());
3327       region_ptr->set_deferred_obj_addr(NULL);
3328       region_ptr->set_completed();
3329       return;
3330     }
3331 
3332     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3333 
3334     // Move to the next source region, possibly switching spaces as well.  All
3335     // args except end_addr may be modified.
3336     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3337                                      end_addr);
3338   } while (true);
3339 }
3340 
3341 void
3342 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3343   const MutableSpace* sp = space(space_id);
3344   if (sp->is_empty()) {
3345     return;
3346   }
3347 
3348   ParallelCompactData& sd = PSParallelCompact::summary_data();
3349   ParMarkBitMap* const bitmap = mark_bitmap();
3350   HeapWord* const dp_addr = dense_prefix(space_id);
3351   HeapWord* beg_addr = sp->bottom();
3352   HeapWord* end_addr = sp->top();
3353 
3354 #ifdef ASSERT
3355   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3356   if (cm->should_verify_only()) {
3357     VerifyUpdateClosure verify_update(cm, sp);
3358     bitmap->iterate(&verify_update, beg_addr, end_addr);
3359     return;
3360   }
3361 
3362   if (cm->should_reset_only()) {
3363     ResetObjectsClosure reset_objects(cm);
3364     bitmap->iterate(&reset_objects, beg_addr, end_addr);
3365     return;
3366   }
3367 #endif
3368 
3369   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3370   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3371   if (beg_region < dp_region) {
3372     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3373   }
3374 
3375   // The destination of the first live object that starts in the region is one
3376   // past the end of the partial object entering the region (if any).
3377   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3378   HeapWord* const new_top = _space_info[space_id].new_top();
3379   assert(new_top >= dest_addr, "bad new_top value");
3380   const size_t words = pointer_delta(new_top, dest_addr);
3381 
3382   if (words > 0) {
3383     ObjectStartArray* start_array = _space_info[space_id].start_array();
3384     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3385 
3386     ParMarkBitMap::IterationStatus status;
3387     status = bitmap->iterate(&closure, dest_addr, end_addr);
3388     assert(status == ParMarkBitMap::full, "iteration not complete");
3389     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3390            "live objects skipped because closure is full");
3391   }
3392 }
3393 
3394 jlong PSParallelCompact::millis_since_last_gc() {
3395   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
3396   // XXX See note in genCollectedHeap::millis_since_last_gc().
3397   if (ret_val < 0) {
3398     NOT_PRODUCT(warning("time warp: %d", ret_val);)
3399     return 0;
3400   }
3401   return ret_val;
3402 }
3403 
3404 void PSParallelCompact::reset_millis_since_last_gc() {
3405   _time_of_last_gc = os::javaTimeMillis();
3406 }
3407 
3408 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3409 {
3410   if (source() != destination()) {
3411     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3412     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3413   }
3414   update_state(words_remaining());
3415   assert(is_full(), "sanity");
3416   return ParMarkBitMap::full;
3417 }
3418 
3419 void MoveAndUpdateClosure::copy_partial_obj()
3420 {
3421   size_t words = words_remaining();
3422 
3423   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3424   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3425   if (end_addr < range_end) {
3426     words = bitmap()->obj_size(source(), end_addr);
3427   }
3428 
3429   // This test is necessary; if omitted, the pointer updates to a partial object
3430   // that crosses the dense prefix boundary could be overwritten.
3431   if (source() != destination()) {
3432     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3433     Copy::aligned_conjoint_words(source(), destination(), words);
3434   }
3435   update_state(words);
3436 }
3437 
3438 ParMarkBitMapClosure::IterationStatus
3439 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3440   assert(destination() != NULL, "sanity");
3441   assert(bitmap()->obj_size(addr) == words, "bad size");
3442 
3443   _source = addr;
3444   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3445          destination(), "wrong destination");
3446 
3447   if (words > words_remaining()) {
3448     return ParMarkBitMap::would_overflow;
3449   }
3450 
3451   // The start_array must be updated even if the object is not moving.
3452   if (_start_array != NULL) {
3453     _start_array->allocate_block(destination());
3454   }
3455 
3456   if (destination() != source()) {
3457     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3458     Copy::aligned_conjoint_words(source(), destination(), words);
3459   }
3460 
3461   oop moved_oop = (oop) destination();
3462   moved_oop->update_contents(compaction_manager());
3463   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
3464 
3465   update_state(words);
3466   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3467   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3468 }
3469 
3470 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3471                                      ParCompactionManager* cm,
3472                                      PSParallelCompact::SpaceId space_id) :
3473   ParMarkBitMapClosure(mbm, cm),
3474   _space_id(space_id),
3475   _start_array(PSParallelCompact::start_array(space_id))
3476 {
3477 }
3478 
3479 // Updates the references in the object to their new values.
3480 ParMarkBitMapClosure::IterationStatus
3481 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3482   do_addr(addr);
3483   return ParMarkBitMap::incomplete;
3484 }
3485 
3486 // Verify the new location using the forwarding pointer
3487 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
3488 // to the initial value.
3489 ParMarkBitMapClosure::IterationStatus
3490 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3491   // The second arg (words) is not used.
3492   oop obj = (oop) addr;
3493   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
3494   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
3495   if (forwarding_ptr == NULL) {
3496     // The object is dead or not moving.
3497     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
3498            "Object liveness is wrong.");
3499     return ParMarkBitMap::incomplete;
3500   }
3501   assert(UseParallelOldGCDensePrefix ||
3502          (HeapMaximumCompactionInterval > 1) ||
3503          (MarkSweepAlwaysCompactCount > 1) ||
3504          (forwarding_ptr == new_pointer),
3505     "Calculation of new location is incorrect");
3506   return ParMarkBitMap::incomplete;
3507 }
3508 
3509 // Reset objects modified for debug checking.
3510 ParMarkBitMapClosure::IterationStatus
3511 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
3512   // The second arg (words) is not used.
3513   oop obj = (oop) addr;
3514   obj->init_mark();
3515   return ParMarkBitMap::incomplete;
3516 }
3517 
3518 // Prepare for compaction.  This method is executed once
3519 // (i.e., by a single thread) before compaction.
3520 // Save the updated location of the intArrayKlassObj for
3521 // filling holes in the dense prefix.
3522 void PSParallelCompact::compact_prologue() {
3523   _updated_int_array_klass_obj = (klassOop)
3524     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
3525 }
3526