1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
  35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  39 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
  40 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  41 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  42 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/gcCause.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/referenceProcessor.hpp"
  48 #include "oops/methodDataOop.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/oop.pcgc.inline.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/safepoint.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/stack.inline.hpp"
  58 
  59 #include <math.h>
  60 
  61 // All sizes are in HeapWords.
  62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
  63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  64 const size_t ParallelCompactData::RegionSizeBytes =
  65   RegionSize << LogHeapWordSize;
  66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
  69 
  70 const ParallelCompactData::RegionData::region_sz_t
  71 ParallelCompactData::RegionData::dc_shift = 27;
  72 
  73 const ParallelCompactData::RegionData::region_sz_t
  74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  75 
  76 const ParallelCompactData::RegionData::region_sz_t
  77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  78 
  79 const ParallelCompactData::RegionData::region_sz_t
  80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
  81 
  82 const ParallelCompactData::RegionData::region_sz_t
  83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
  84 
  85 const ParallelCompactData::RegionData::region_sz_t
  86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
  87 
  88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
  89 bool      PSParallelCompact::_print_phases = false;
  90 
  91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
  92 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
  93 
  94 double PSParallelCompact::_dwl_mean;
  95 double PSParallelCompact::_dwl_std_dev;
  96 double PSParallelCompact::_dwl_first_term;
  97 double PSParallelCompact::_dwl_adjustment;
  98 #ifdef  ASSERT
  99 bool   PSParallelCompact::_dwl_initialized = false;
 100 #endif  // #ifdef ASSERT
 101 
 102 #ifdef VALIDATE_MARK_SWEEP
 103 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
 104 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
 105 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
 106 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
 107 size_t                  PSParallelCompact::_live_oops_index = 0;
 108 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
 109 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
 110 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
 111 bool                    PSParallelCompact::_pointer_tracking = false;
 112 bool                    PSParallelCompact::_root_tracking = true;
 113 
 114 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
 115 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
 116 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
 117 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
 118 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
 119 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
 120 #endif
 121 
 122 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 123                        HeapWord* destination)
 124 {
 125   assert(src_region_idx != 0, "invalid src_region_idx");
 126   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 127   assert(destination != NULL, "invalid destination argument");
 128 
 129   _src_region_idx = src_region_idx;
 130   _partial_obj_size = partial_obj_size;
 131   _destination = destination;
 132 
 133   // These fields may not be updated below, so make sure they're clear.
 134   assert(_dest_region_addr == NULL, "should have been cleared");
 135   assert(_first_src_addr == NULL, "should have been cleared");
 136 
 137   // Determine the number of destination regions for the partial object.
 138   HeapWord* const last_word = destination + partial_obj_size - 1;
 139   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 140   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 141   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 142 
 143   if (beg_region_addr == end_region_addr) {
 144     // One destination region.
 145     _destination_count = 1;
 146     if (end_region_addr == destination) {
 147       // The destination falls on a region boundary, thus the first word of the
 148       // partial object will be the first word copied to the destination region.
 149       _dest_region_addr = end_region_addr;
 150       _first_src_addr = sd.region_to_addr(src_region_idx);
 151     }
 152   } else {
 153     // Two destination regions.  When copied, the partial object will cross a
 154     // destination region boundary, so a word somewhere within the partial
 155     // object will be the first word copied to the second destination region.
 156     _destination_count = 2;
 157     _dest_region_addr = end_region_addr;
 158     const size_t ofs = pointer_delta(end_region_addr, destination);
 159     assert(ofs < _partial_obj_size, "sanity");
 160     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 161   }
 162 }
 163 
 164 void SplitInfo::clear()
 165 {
 166   _src_region_idx = 0;
 167   _partial_obj_size = 0;
 168   _destination = NULL;
 169   _destination_count = 0;
 170   _dest_region_addr = NULL;
 171   _first_src_addr = NULL;
 172   assert(!is_valid(), "sanity");
 173 }
 174 
 175 #ifdef  ASSERT
 176 void SplitInfo::verify_clear()
 177 {
 178   assert(_src_region_idx == 0, "not clear");
 179   assert(_partial_obj_size == 0, "not clear");
 180   assert(_destination == NULL, "not clear");
 181   assert(_destination_count == 0, "not clear");
 182   assert(_dest_region_addr == NULL, "not clear");
 183   assert(_first_src_addr == NULL, "not clear");
 184 }
 185 #endif  // #ifdef ASSERT
 186 
 187 
 188 #ifndef PRODUCT
 189 const char* PSParallelCompact::space_names[] = {
 190   "perm", "old ", "eden", "from", "to  "
 191 };
 192 
 193 void PSParallelCompact::print_region_ranges()
 194 {
 195   tty->print_cr("space  bottom     top        end        new_top");
 196   tty->print_cr("------ ---------- ---------- ---------- ----------");
 197 
 198   for (unsigned int id = 0; id < last_space_id; ++id) {
 199     const MutableSpace* space = _space_info[id].space();
 200     tty->print_cr("%u %s "
 201                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 202                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 203                   id, space_names[id],
 204                   summary_data().addr_to_region_idx(space->bottom()),
 205                   summary_data().addr_to_region_idx(space->top()),
 206                   summary_data().addr_to_region_idx(space->end()),
 207                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 208   }
 209 }
 210 
 211 void
 212 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 213 {
 214 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 215 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 216 
 217   ParallelCompactData& sd = PSParallelCompact::summary_data();
 218   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 219   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 220                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 221                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 222                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 223                 i, c->data_location(), dci, c->destination(),
 224                 c->partial_obj_size(), c->live_obj_size(),
 225                 c->data_size(), c->source_region(), c->destination_count());
 226 
 227 #undef  REGION_IDX_FORMAT
 228 #undef  REGION_DATA_FORMAT
 229 }
 230 
 231 void
 232 print_generic_summary_data(ParallelCompactData& summary_data,
 233                            HeapWord* const beg_addr,
 234                            HeapWord* const end_addr)
 235 {
 236   size_t total_words = 0;
 237   size_t i = summary_data.addr_to_region_idx(beg_addr);
 238   const size_t last = summary_data.addr_to_region_idx(end_addr);
 239   HeapWord* pdest = 0;
 240 
 241   while (i <= last) {
 242     ParallelCompactData::RegionData* c = summary_data.region(i);
 243     if (c->data_size() != 0 || c->destination() != pdest) {
 244       print_generic_summary_region(i, c);
 245       total_words += c->data_size();
 246       pdest = c->destination();
 247     }
 248     ++i;
 249   }
 250 
 251   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 252 }
 253 
 254 void
 255 print_generic_summary_data(ParallelCompactData& summary_data,
 256                            SpaceInfo* space_info)
 257 {
 258   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 259     const MutableSpace* space = space_info[id].space();
 260     print_generic_summary_data(summary_data, space->bottom(),
 261                                MAX2(space->top(), space_info[id].new_top()));
 262   }
 263 }
 264 
 265 void
 266 print_initial_summary_region(size_t i,
 267                              const ParallelCompactData::RegionData* c,
 268                              bool newline = true)
 269 {
 270   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 271              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 272              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 273              i, c->destination(),
 274              c->partial_obj_size(), c->live_obj_size(),
 275              c->data_size(), c->source_region(), c->destination_count());
 276   if (newline) tty->cr();
 277 }
 278 
 279 void
 280 print_initial_summary_data(ParallelCompactData& summary_data,
 281                            const MutableSpace* space) {
 282   if (space->top() == space->bottom()) {
 283     return;
 284   }
 285 
 286   const size_t region_size = ParallelCompactData::RegionSize;
 287   typedef ParallelCompactData::RegionData RegionData;
 288   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 289   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 290   const RegionData* c = summary_data.region(end_region - 1);
 291   HeapWord* end_addr = c->destination() + c->data_size();
 292   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 293 
 294   // Print (and count) the full regions at the beginning of the space.
 295   size_t full_region_count = 0;
 296   size_t i = summary_data.addr_to_region_idx(space->bottom());
 297   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 298     print_initial_summary_region(i, summary_data.region(i));
 299     ++full_region_count;
 300     ++i;
 301   }
 302 
 303   size_t live_to_right = live_in_space - full_region_count * region_size;
 304 
 305   double max_reclaimed_ratio = 0.0;
 306   size_t max_reclaimed_ratio_region = 0;
 307   size_t max_dead_to_right = 0;
 308   size_t max_live_to_right = 0;
 309 
 310   // Print the 'reclaimed ratio' for regions while there is something live in
 311   // the region or to the right of it.  The remaining regions are empty (and
 312   // uninteresting), and computing the ratio will result in division by 0.
 313   while (i < end_region && live_to_right > 0) {
 314     c = summary_data.region(i);
 315     HeapWord* const region_addr = summary_data.region_to_addr(i);
 316     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 317     const size_t dead_to_right = used_to_right - live_to_right;
 318     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 319 
 320     if (reclaimed_ratio > max_reclaimed_ratio) {
 321             max_reclaimed_ratio = reclaimed_ratio;
 322             max_reclaimed_ratio_region = i;
 323             max_dead_to_right = dead_to_right;
 324             max_live_to_right = live_to_right;
 325     }
 326 
 327     print_initial_summary_region(i, c, false);
 328     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 329                   reclaimed_ratio, dead_to_right, live_to_right);
 330 
 331     live_to_right -= c->data_size();
 332     ++i;
 333   }
 334 
 335   // Any remaining regions are empty.  Print one more if there is one.
 336   if (i < end_region) {
 337     print_initial_summary_region(i, summary_data.region(i));
 338   }
 339 
 340   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 341                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 342                 max_reclaimed_ratio_region, max_dead_to_right,
 343                 max_live_to_right, max_reclaimed_ratio);
 344 }
 345 
 346 void
 347 print_initial_summary_data(ParallelCompactData& summary_data,
 348                            SpaceInfo* space_info) {
 349   unsigned int id = PSParallelCompact::perm_space_id;
 350   const MutableSpace* space;
 351   do {
 352     space = space_info[id].space();
 353     print_initial_summary_data(summary_data, space);
 354   } while (++id < PSParallelCompact::eden_space_id);
 355 
 356   do {
 357     space = space_info[id].space();
 358     print_generic_summary_data(summary_data, space->bottom(), space->top());
 359   } while (++id < PSParallelCompact::last_space_id);
 360 }
 361 #endif  // #ifndef PRODUCT
 362 
 363 #ifdef  ASSERT
 364 size_t add_obj_count;
 365 size_t add_obj_size;
 366 size_t mark_bitmap_count;
 367 size_t mark_bitmap_size;
 368 #endif  // #ifdef ASSERT
 369 
 370 ParallelCompactData::ParallelCompactData()
 371 {
 372   _region_start = 0;
 373 
 374   _region_vspace = 0;
 375   _region_data = 0;
 376   _region_count = 0;
 377 }
 378 
 379 bool ParallelCompactData::initialize(MemRegion covered_region)
 380 {
 381   _region_start = covered_region.start();
 382   const size_t region_size = covered_region.word_size();
 383   DEBUG_ONLY(_region_end = _region_start + region_size;)
 384 
 385   assert(region_align_down(_region_start) == _region_start,
 386          "region start not aligned");
 387   assert((region_size & RegionSizeOffsetMask) == 0,
 388          "region size not a multiple of RegionSize");
 389 
 390   bool result = initialize_region_data(region_size);
 391 
 392   return result;
 393 }
 394 
 395 PSVirtualSpace*
 396 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 397 {
 398   const size_t raw_bytes = count * element_size;
 399   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
 400   const size_t granularity = os::vm_allocation_granularity();
 401   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 402 
 403   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 404     MAX2(page_sz, granularity);
 405   ReservedSpace rs(bytes, rs_align, rs_align > 0);
 406   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 407                        rs.size());
 408   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 409   if (vspace != 0) {
 410     if (vspace->expand_by(bytes)) {
 411       return vspace;
 412     }
 413     delete vspace;
 414     // Release memory reserved in the space.
 415     rs.release();
 416   }
 417 
 418   return 0;
 419 }
 420 
 421 bool ParallelCompactData::initialize_region_data(size_t region_size)
 422 {
 423   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 424   _region_vspace = create_vspace(count, sizeof(RegionData));
 425   if (_region_vspace != 0) {
 426     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 427     _region_count = count;
 428     return true;
 429   }
 430   return false;
 431 }
 432 
 433 void ParallelCompactData::clear()
 434 {
 435   memset(_region_data, 0, _region_vspace->committed_size());
 436 }
 437 
 438 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 439   assert(beg_region <= _region_count, "beg_region out of range");
 440   assert(end_region <= _region_count, "end_region out of range");
 441 
 442   const size_t region_cnt = end_region - beg_region;
 443   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 444 }
 445 
 446 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 447 {
 448   const RegionData* cur_cp = region(region_idx);
 449   const RegionData* const end_cp = region(region_count() - 1);
 450 
 451   HeapWord* result = region_to_addr(region_idx);
 452   if (cur_cp < end_cp) {
 453     do {
 454       result += cur_cp->partial_obj_size();
 455     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 456   }
 457   return result;
 458 }
 459 
 460 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 461 {
 462   const size_t obj_ofs = pointer_delta(addr, _region_start);
 463   const size_t beg_region = obj_ofs >> Log2RegionSize;
 464   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 465 
 466   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 467   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 468 
 469   if (beg_region == end_region) {
 470     // All in one region.
 471     _region_data[beg_region].add_live_obj(len);
 472     return;
 473   }
 474 
 475   // First region.
 476   const size_t beg_ofs = region_offset(addr);
 477   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 478 
 479   klassOop klass = ((oop)addr)->klass();
 480   // Middle regions--completely spanned by this object.
 481   for (size_t region = beg_region + 1; region < end_region; ++region) {
 482     _region_data[region].set_partial_obj_size(RegionSize);
 483     _region_data[region].set_partial_obj_addr(addr);
 484   }
 485 
 486   // Last region.
 487   const size_t end_ofs = region_offset(addr + len - 1);
 488   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 489   _region_data[end_region].set_partial_obj_addr(addr);
 490 }
 491 
 492 void
 493 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 494 {
 495   assert(region_offset(beg) == 0, "not RegionSize aligned");
 496   assert(region_offset(end) == 0, "not RegionSize aligned");
 497 
 498   size_t cur_region = addr_to_region_idx(beg);
 499   const size_t end_region = addr_to_region_idx(end);
 500   HeapWord* addr = beg;
 501   while (cur_region < end_region) {
 502     _region_data[cur_region].set_destination(addr);
 503     _region_data[cur_region].set_destination_count(0);
 504     _region_data[cur_region].set_source_region(cur_region);
 505     _region_data[cur_region].set_data_location(addr);
 506 
 507     // Update live_obj_size so the region appears completely full.
 508     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 509     _region_data[cur_region].set_live_obj_size(live_size);
 510 
 511     ++cur_region;
 512     addr += RegionSize;
 513   }
 514 }
 515 
 516 // Find the point at which a space can be split and, if necessary, record the
 517 // split point.
 518 //
 519 // If the current src region (which overflowed the destination space) doesn't
 520 // have a partial object, the split point is at the beginning of the current src
 521 // region (an "easy" split, no extra bookkeeping required).
 522 //
 523 // If the current src region has a partial object, the split point is in the
 524 // region where that partial object starts (call it the split_region).  If
 525 // split_region has a partial object, then the split point is just after that
 526 // partial object (a "hard" split where we have to record the split data and
 527 // zero the partial_obj_size field).  With a "hard" split, we know that the
 528 // partial_obj ends within split_region because the partial object that caused
 529 // the overflow starts in split_region.  If split_region doesn't have a partial
 530 // obj, then the split is at the beginning of split_region (another "easy"
 531 // split).
 532 HeapWord*
 533 ParallelCompactData::summarize_split_space(size_t src_region,
 534                                            SplitInfo& split_info,
 535                                            HeapWord* destination,
 536                                            HeapWord* target_end,
 537                                            HeapWord** target_next)
 538 {
 539   assert(destination <= target_end, "sanity");
 540   assert(destination + _region_data[src_region].data_size() > target_end,
 541     "region should not fit into target space");
 542   assert(is_region_aligned(target_end), "sanity");
 543 
 544   size_t split_region = src_region;
 545   HeapWord* split_destination = destination;
 546   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 547 
 548   if (destination + partial_obj_size > target_end) {
 549     // The split point is just after the partial object (if any) in the
 550     // src_region that contains the start of the object that overflowed the
 551     // destination space.
 552     //
 553     // Find the start of the "overflow" object and set split_region to the
 554     // region containing it.
 555     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 556     split_region = addr_to_region_idx(overflow_obj);
 557 
 558     // Clear the source_region field of all destination regions whose first word
 559     // came from data after the split point (a non-null source_region field
 560     // implies a region must be filled).
 561     //
 562     // An alternative to the simple loop below:  clear during post_compact(),
 563     // which uses memcpy instead of individual stores, and is easy to
 564     // parallelize.  (The downside is that it clears the entire RegionData
 565     // object as opposed to just one field.)
 566     //
 567     // post_compact() would have to clear the summary data up to the highest
 568     // address that was written during the summary phase, which would be
 569     //
 570     //         max(top, max(new_top, clear_top))
 571     //
 572     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 573     // to target_end.
 574     const RegionData* const sr = region(split_region);
 575     const size_t beg_idx =
 576       addr_to_region_idx(region_align_up(sr->destination() +
 577                                          sr->partial_obj_size()));
 578     const size_t end_idx = addr_to_region_idx(target_end);
 579 
 580     if (TraceParallelOldGCSummaryPhase) {
 581         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 582                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 583                                beg_idx, end_idx);
 584     }
 585     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 586       _region_data[idx].set_source_region(0);
 587     }
 588 
 589     // Set split_destination and partial_obj_size to reflect the split region.
 590     split_destination = sr->destination();
 591     partial_obj_size = sr->partial_obj_size();
 592   }
 593 
 594   // The split is recorded only if a partial object extends onto the region.
 595   if (partial_obj_size != 0) {
 596     _region_data[split_region].set_partial_obj_size(0);
 597     split_info.record(split_region, partial_obj_size, split_destination);
 598   }
 599 
 600   // Setup the continuation addresses.
 601   *target_next = split_destination + partial_obj_size;
 602   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 603 
 604   if (TraceParallelOldGCSummaryPhase) {
 605     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 606     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 607                            " pos=" SIZE_FORMAT,
 608                            split_type, source_next, split_region,
 609                            partial_obj_size);
 610     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 611                            " tn=" PTR_FORMAT,
 612                            split_type, split_destination,
 613                            addr_to_region_idx(split_destination),
 614                            *target_next);
 615 
 616     if (partial_obj_size != 0) {
 617       HeapWord* const po_beg = split_info.destination();
 618       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 619       gclog_or_tty->print_cr("%s split:  "
 620                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 621                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 622                              split_type,
 623                              po_beg, addr_to_region_idx(po_beg),
 624                              po_end, addr_to_region_idx(po_end));
 625     }
 626   }
 627 
 628   return source_next;
 629 }
 630 
 631 bool ParallelCompactData::summarize(SplitInfo& split_info,
 632                                     HeapWord* source_beg, HeapWord* source_end,
 633                                     HeapWord** source_next,
 634                                     HeapWord* target_beg, HeapWord* target_end,
 635                                     HeapWord** target_next)
 636 {
 637   if (TraceParallelOldGCSummaryPhase) {
 638     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 639     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 640                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 641                   source_beg, source_end, source_next_val,
 642                   target_beg, target_end, *target_next);
 643   }
 644 
 645   size_t cur_region = addr_to_region_idx(source_beg);
 646   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 647 
 648   HeapWord *dest_addr = target_beg;
 649   while (cur_region < end_region) {
 650     // The destination must be set even if the region has no data.
 651     _region_data[cur_region].set_destination(dest_addr);
 652 
 653     size_t words = _region_data[cur_region].data_size();
 654     if (words > 0) {
 655       // If cur_region does not fit entirely into the target space, find a point
 656       // at which the source space can be 'split' so that part is copied to the
 657       // target space and the rest is copied elsewhere.
 658       if (dest_addr + words > target_end) {
 659         assert(source_next != NULL, "source_next is NULL when splitting");
 660         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 661                                              target_end, target_next);
 662         return false;
 663       }
 664 
 665       // Compute the destination_count for cur_region, and if necessary, update
 666       // source_region for a destination region.  The source_region field is
 667       // updated if cur_region is the first (left-most) region to be copied to a
 668       // destination region.
 669       //
 670       // The destination_count calculation is a bit subtle.  A region that has
 671       // data that compacts into itself does not count itself as a destination.
 672       // This maintains the invariant that a zero count means the region is
 673       // available and can be claimed and then filled.
 674       uint destination_count = 0;
 675       if (split_info.is_split(cur_region)) {
 676         // The current region has been split:  the partial object will be copied
 677         // to one destination space and the remaining data will be copied to
 678         // another destination space.  Adjust the initial destination_count and,
 679         // if necessary, set the source_region field if the partial object will
 680         // cross a destination region boundary.
 681         destination_count = split_info.destination_count();
 682         if (destination_count == 2) {
 683           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 684           _region_data[dest_idx].set_source_region(cur_region);
 685         }
 686       }
 687 
 688       HeapWord* const last_addr = dest_addr + words - 1;
 689       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 690       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 691 
 692       // Initially assume that the destination regions will be the same and
 693       // adjust the value below if necessary.  Under this assumption, if
 694       // cur_region == dest_region_2, then cur_region will be compacted
 695       // completely into itself.
 696       destination_count += cur_region == dest_region_2 ? 0 : 1;
 697       if (dest_region_1 != dest_region_2) {
 698         // Destination regions differ; adjust destination_count.
 699         destination_count += 1;
 700         // Data from cur_region will be copied to the start of dest_region_2.
 701         _region_data[dest_region_2].set_source_region(cur_region);
 702       } else if (region_offset(dest_addr) == 0) {
 703         // Data from cur_region will be copied to the start of the destination
 704         // region.
 705         _region_data[dest_region_1].set_source_region(cur_region);
 706       }
 707 
 708       _region_data[cur_region].set_destination_count(destination_count);
 709       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 710       dest_addr += words;
 711     }
 712 
 713     ++cur_region;
 714   }
 715 
 716   *target_next = dest_addr;
 717   return true;
 718 }
 719 
 720 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 721   assert(addr != NULL, "Should detect NULL oop earlier");
 722   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
 723 #ifdef ASSERT
 724   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
 725     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
 726   }
 727 #endif
 728   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
 729 
 730   // Region covering the object.
 731   size_t region_index = addr_to_region_idx(addr);
 732   const RegionData* const region_ptr = region(region_index);
 733   HeapWord* const region_addr = region_align_down(addr);
 734 
 735   assert(addr < region_addr + RegionSize, "Region does not cover object");
 736   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
 737 
 738   HeapWord* result = region_ptr->destination();
 739 
 740   // If all the data in the region is live, then the new location of the object
 741   // can be calculated from the destination of the region plus the offset of the
 742   // object in the region.
 743   if (region_ptr->data_size() == RegionSize) {
 744     result += pointer_delta(addr, region_addr);
 745     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 746     return result;
 747   }
 748 
 749   // The new location of the object is
 750   //    region destination +
 751   //    size of the partial object extending onto the region +
 752   //    sizes of the live objects in the Region that are to the left of addr
 753   const size_t partial_obj_size = region_ptr->partial_obj_size();
 754   HeapWord* const search_start = region_addr + partial_obj_size;
 755 
 756   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 757   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
 758 
 759   result += partial_obj_size + live_to_left;
 760   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 761   return result;
 762 }
 763 
 764 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
 765   klassOop updated_klass;
 766   if (PSParallelCompact::should_update_klass(old_klass)) {
 767     updated_klass = (klassOop) calc_new_pointer(old_klass);
 768   } else {
 769     updated_klass = old_klass;
 770   }
 771 
 772   return updated_klass;
 773 }
 774 
 775 #ifdef  ASSERT
 776 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 777 {
 778   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 779   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 780   for (const size_t* p = beg; p < end; ++p) {
 781     assert(*p == 0, "not zero");
 782   }
 783 }
 784 
 785 void ParallelCompactData::verify_clear()
 786 {
 787   verify_clear(_region_vspace);
 788 }
 789 #endif  // #ifdef ASSERT
 790 
 791 #ifdef NOT_PRODUCT
 792 ParallelCompactData::RegionData* debug_region(size_t region_index) {
 793   ParallelCompactData& sd = PSParallelCompact::summary_data();
 794   return sd.region(region_index);
 795 }
 796 #endif
 797 
 798 elapsedTimer        PSParallelCompact::_accumulated_time;
 799 unsigned int        PSParallelCompact::_total_invocations = 0;
 800 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 801 jlong               PSParallelCompact::_time_of_last_gc = 0;
 802 CollectorCounters*  PSParallelCompact::_counters = NULL;
 803 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 804 ParallelCompactData PSParallelCompact::_summary_data;
 805 
 806 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 807 
 808 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
 809 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 810 
 811 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 812 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 813 
 814 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
 815 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
 816 
 817 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
 818 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
 819 
 820 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
 821 
 822 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
 823 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
 824 
 825 void PSParallelCompact::post_initialize() {
 826   ParallelScavengeHeap* heap = gc_heap();
 827   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 828 
 829   MemRegion mr = heap->reserved_region();
 830   _ref_processor = ReferenceProcessor::create_ref_processor(
 831     mr,                         // span
 832     true,                       // atomic_discovery
 833     true,                       // mt_discovery
 834     &_is_alive_closure,
 835     ParallelGCThreads,
 836     ParallelRefProcEnabled);
 837   _counters = new CollectorCounters("PSParallelCompact", 1);
 838 
 839   // Initialize static fields in ParCompactionManager.
 840   ParCompactionManager::initialize(mark_bitmap());
 841 }
 842 
 843 bool PSParallelCompact::initialize() {
 844   ParallelScavengeHeap* heap = gc_heap();
 845   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 846   MemRegion mr = heap->reserved_region();
 847 
 848   // Was the old gen get allocated successfully?
 849   if (!heap->old_gen()->is_allocated()) {
 850     return false;
 851   }
 852 
 853   initialize_space_info();
 854   initialize_dead_wood_limiter();
 855 
 856   if (!_mark_bitmap.initialize(mr)) {
 857     vm_shutdown_during_initialization("Unable to allocate bit map for "
 858       "parallel garbage collection for the requested heap size.");
 859     return false;
 860   }
 861 
 862   if (!_summary_data.initialize(mr)) {
 863     vm_shutdown_during_initialization("Unable to allocate tables for "
 864       "parallel garbage collection for the requested heap size.");
 865     return false;
 866   }
 867 
 868   return true;
 869 }
 870 
 871 void PSParallelCompact::initialize_space_info()
 872 {
 873   memset(&_space_info, 0, sizeof(_space_info));
 874 
 875   ParallelScavengeHeap* heap = gc_heap();
 876   PSYoungGen* young_gen = heap->young_gen();
 877   MutableSpace* perm_space = heap->perm_gen()->object_space();
 878 
 879   _space_info[perm_space_id].set_space(perm_space);
 880   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 881   _space_info[eden_space_id].set_space(young_gen->eden_space());
 882   _space_info[from_space_id].set_space(young_gen->from_space());
 883   _space_info[to_space_id].set_space(young_gen->to_space());
 884 
 885   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
 886   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 887 
 888   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
 889   if (TraceParallelOldGCDensePrefix) {
 890     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
 891                   _space_info[perm_space_id].min_dense_prefix());
 892   }
 893 }
 894 
 895 void PSParallelCompact::initialize_dead_wood_limiter()
 896 {
 897   const size_t max = 100;
 898   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 899   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 900   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 901   DEBUG_ONLY(_dwl_initialized = true;)
 902   _dwl_adjustment = normal_distribution(1.0);
 903 }
 904 
 905 // Simple class for storing info about the heap at the start of GC, to be used
 906 // after GC for comparison/printing.
 907 class PreGCValues {
 908 public:
 909   PreGCValues() { }
 910   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 911 
 912   void fill(ParallelScavengeHeap* heap) {
 913     _heap_used      = heap->used();
 914     _young_gen_used = heap->young_gen()->used_in_bytes();
 915     _old_gen_used   = heap->old_gen()->used_in_bytes();
 916     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
 917   };
 918 
 919   size_t heap_used() const      { return _heap_used; }
 920   size_t young_gen_used() const { return _young_gen_used; }
 921   size_t old_gen_used() const   { return _old_gen_used; }
 922   size_t perm_gen_used() const  { return _perm_gen_used; }
 923 
 924 private:
 925   size_t _heap_used;
 926   size_t _young_gen_used;
 927   size_t _old_gen_used;
 928   size_t _perm_gen_used;
 929 };
 930 
 931 void
 932 PSParallelCompact::clear_data_covering_space(SpaceId id)
 933 {
 934   // At this point, top is the value before GC, new_top() is the value that will
 935   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 936   // should be marked above top.  The summary data is cleared to the larger of
 937   // top & new_top.
 938   MutableSpace* const space = _space_info[id].space();
 939   HeapWord* const bot = space->bottom();
 940   HeapWord* const top = space->top();
 941   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 942 
 943   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 944   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 945   _mark_bitmap.clear_range(beg_bit, end_bit);
 946 
 947   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 948   const size_t end_region =
 949     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 950   _summary_data.clear_range(beg_region, end_region);
 951 
 952   // Clear the data used to 'split' regions.
 953   SplitInfo& split_info = _space_info[id].split_info();
 954   if (split_info.is_valid()) {
 955     split_info.clear();
 956   }
 957   DEBUG_ONLY(split_info.verify_clear();)
 958 }
 959 
 960 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 961 {
 962   // Update the from & to space pointers in space_info, since they are swapped
 963   // at each young gen gc.  Do the update unconditionally (even though a
 964   // promotion failure does not swap spaces) because an unknown number of minor
 965   // collections will have swapped the spaces an unknown number of times.
 966   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
 967   ParallelScavengeHeap* heap = gc_heap();
 968   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 969   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 970 
 971   pre_gc_values->fill(heap);
 972 
 973   ParCompactionManager::reset();
 974   NOT_PRODUCT(_mark_bitmap.reset_counters());
 975   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 976   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 977 
 978   // Increment the invocation count
 979   heap->increment_total_collections(true);
 980 
 981   // We need to track unique mark sweep invocations as well.
 982   _total_invocations++;
 983 
 984   if (PrintHeapAtGC) {
 985     Universe::print_heap_before_gc();
 986   }
 987 
 988   // Fill in TLABs
 989   heap->accumulate_statistics_all_tlabs();
 990   heap->ensure_parsability(true);  // retire TLABs
 991 
 992   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 993     HandleMark hm;  // Discard invalid handles created during verification
 994     gclog_or_tty->print(" VerifyBeforeGC:");
 995     Universe::verify(true);
 996   }
 997 
 998   // Verify object start arrays
 999   if (VerifyObjectStartArray &&
1000       VerifyBeforeGC) {
1001     heap->old_gen()->verify_object_start_array();
1002     heap->perm_gen()->verify_object_start_array();
1003   }
1004 
1005   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1006   DEBUG_ONLY(summary_data().verify_clear();)
1007 
1008   // Have worker threads release resources the next time they run a task.
1009   gc_task_manager()->release_all_resources();
1010 }
1011 
1012 void PSParallelCompact::post_compact()
1013 {
1014   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
1015 
1016   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
1017     // Clear the marking bitmap, summary data and split info.
1018     clear_data_covering_space(SpaceId(id));
1019     // Update top().  Must be done after clearing the bitmap and summary data.
1020     _space_info[id].publish_new_top();
1021   }
1022 
1023   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1024   MutableSpace* const from_space = _space_info[from_space_id].space();
1025   MutableSpace* const to_space   = _space_info[to_space_id].space();
1026 
1027   ParallelScavengeHeap* heap = gc_heap();
1028   bool eden_empty = eden_space->is_empty();
1029   if (!eden_empty) {
1030     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1031                                             heap->young_gen(), heap->old_gen());
1032   }
1033 
1034   // Update heap occupancy information which is used as input to the soft ref
1035   // clearing policy at the next gc.
1036   Universe::update_heap_info_at_gc();
1037 
1038   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1039     to_space->is_empty();
1040 
1041   BarrierSet* bs = heap->barrier_set();
1042   if (bs->is_a(BarrierSet::ModRef)) {
1043     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
1044     MemRegion old_mr = heap->old_gen()->reserved();
1045     MemRegion perm_mr = heap->perm_gen()->reserved();
1046     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
1047 
1048     if (young_gen_empty) {
1049       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
1050     } else {
1051       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
1052     }
1053   }
1054 
1055   Threads::gc_epilogue();
1056   CodeCache::gc_epilogue();
1057 
1058   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1059 
1060   ref_processor()->enqueue_discovered_references(NULL);
1061 
1062   if (ZapUnusedHeapArea) {
1063     heap->gen_mangle_unused_area();
1064   }
1065 
1066   // Update time of last GC
1067   reset_millis_since_last_gc();
1068 }
1069 
1070 HeapWord*
1071 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1072                                                     bool maximum_compaction)
1073 {
1074   const size_t region_size = ParallelCompactData::RegionSize;
1075   const ParallelCompactData& sd = summary_data();
1076 
1077   const MutableSpace* const space = _space_info[id].space();
1078   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1079   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1080   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1081 
1082   // Skip full regions at the beginning of the space--they are necessarily part
1083   // of the dense prefix.
1084   size_t full_count = 0;
1085   const RegionData* cp;
1086   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1087     ++full_count;
1088   }
1089 
1090   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1091   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1092   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1093   if (maximum_compaction || cp == end_cp || interval_ended) {
1094     _maximum_compaction_gc_num = total_invocations();
1095     return sd.region_to_addr(cp);
1096   }
1097 
1098   HeapWord* const new_top = _space_info[id].new_top();
1099   const size_t space_live = pointer_delta(new_top, space->bottom());
1100   const size_t space_used = space->used_in_words();
1101   const size_t space_capacity = space->capacity_in_words();
1102 
1103   const double cur_density = double(space_live) / space_capacity;
1104   const double deadwood_density =
1105     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1106   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1107 
1108   if (TraceParallelOldGCDensePrefix) {
1109     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1110                   cur_density, deadwood_density, deadwood_goal);
1111     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1112                   "space_cap=" SIZE_FORMAT,
1113                   space_live, space_used,
1114                   space_capacity);
1115   }
1116 
1117   // XXX - Use binary search?
1118   HeapWord* dense_prefix = sd.region_to_addr(cp);
1119   const RegionData* full_cp = cp;
1120   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1121   while (cp < end_cp) {
1122     HeapWord* region_destination = cp->destination();
1123     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1124     if (TraceParallelOldGCDensePrefix && Verbose) {
1125       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1126                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1127                     sd.region(cp), region_destination,
1128                     dense_prefix, cur_deadwood);
1129     }
1130 
1131     if (cur_deadwood >= deadwood_goal) {
1132       // Found the region that has the correct amount of deadwood to the left.
1133       // This typically occurs after crossing a fairly sparse set of regions, so
1134       // iterate backwards over those sparse regions, looking for the region
1135       // that has the lowest density of live objects 'to the right.'
1136       size_t space_to_left = sd.region(cp) * region_size;
1137       size_t live_to_left = space_to_left - cur_deadwood;
1138       size_t space_to_right = space_capacity - space_to_left;
1139       size_t live_to_right = space_live - live_to_left;
1140       double density_to_right = double(live_to_right) / space_to_right;
1141       while (cp > full_cp) {
1142         --cp;
1143         const size_t prev_region_live_to_right = live_to_right -
1144           cp->data_size();
1145         const size_t prev_region_space_to_right = space_to_right + region_size;
1146         double prev_region_density_to_right =
1147           double(prev_region_live_to_right) / prev_region_space_to_right;
1148         if (density_to_right <= prev_region_density_to_right) {
1149           return dense_prefix;
1150         }
1151         if (TraceParallelOldGCDensePrefix && Verbose) {
1152           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1153                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1154                         prev_region_density_to_right);
1155         }
1156         dense_prefix -= region_size;
1157         live_to_right = prev_region_live_to_right;
1158         space_to_right = prev_region_space_to_right;
1159         density_to_right = prev_region_density_to_right;
1160       }
1161       return dense_prefix;
1162     }
1163 
1164     dense_prefix += region_size;
1165     ++cp;
1166   }
1167 
1168   return dense_prefix;
1169 }
1170 
1171 #ifndef PRODUCT
1172 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1173                                                  const SpaceId id,
1174                                                  const bool maximum_compaction,
1175                                                  HeapWord* const addr)
1176 {
1177   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1178   RegionData* const cp = summary_data().region(region_idx);
1179   const MutableSpace* const space = _space_info[id].space();
1180   HeapWord* const new_top = _space_info[id].new_top();
1181 
1182   const size_t space_live = pointer_delta(new_top, space->bottom());
1183   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1184   const size_t space_cap = space->capacity_in_words();
1185   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1186   const size_t live_to_right = new_top - cp->destination();
1187   const size_t dead_to_right = space->top() - addr - live_to_right;
1188 
1189   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1190                 "spl=" SIZE_FORMAT " "
1191                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1192                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1193                 " ratio=%10.8f",
1194                 algorithm, addr, region_idx,
1195                 space_live,
1196                 dead_to_left, dead_to_left_pct,
1197                 dead_to_right, live_to_right,
1198                 double(dead_to_right) / live_to_right);
1199 }
1200 #endif  // #ifndef PRODUCT
1201 
1202 // Return a fraction indicating how much of the generation can be treated as
1203 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1204 // based on the density of live objects in the generation to determine a limit,
1205 // which is then adjusted so the return value is min_percent when the density is
1206 // 1.
1207 //
1208 // The following table shows some return values for a different values of the
1209 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1210 // min_percent is 1.
1211 //
1212 //                          fraction allowed as dead wood
1213 //         -----------------------------------------------------------------
1214 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1215 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1216 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1217 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1218 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1219 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1220 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1221 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1222 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1223 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1224 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1225 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1226 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1227 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1228 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1229 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1230 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1231 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1232 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1233 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1234 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1235 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1236 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1237 
1238 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1239 {
1240   assert(_dwl_initialized, "uninitialized");
1241 
1242   // The raw limit is the value of the normal distribution at x = density.
1243   const double raw_limit = normal_distribution(density);
1244 
1245   // Adjust the raw limit so it becomes the minimum when the density is 1.
1246   //
1247   // First subtract the adjustment value (which is simply the precomputed value
1248   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1249   // Then add the minimum value, so the minimum is returned when the density is
1250   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1251   const double min = double(min_percent) / 100.0;
1252   const double limit = raw_limit - _dwl_adjustment + min;
1253   return MAX2(limit, 0.0);
1254 }
1255 
1256 ParallelCompactData::RegionData*
1257 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1258                                            const RegionData* end)
1259 {
1260   const size_t region_size = ParallelCompactData::RegionSize;
1261   ParallelCompactData& sd = summary_data();
1262   size_t left = sd.region(beg);
1263   size_t right = end > beg ? sd.region(end) - 1 : left;
1264 
1265   // Binary search.
1266   while (left < right) {
1267     // Equivalent to (left + right) / 2, but does not overflow.
1268     const size_t middle = left + (right - left) / 2;
1269     RegionData* const middle_ptr = sd.region(middle);
1270     HeapWord* const dest = middle_ptr->destination();
1271     HeapWord* const addr = sd.region_to_addr(middle);
1272     assert(dest != NULL, "sanity");
1273     assert(dest <= addr, "must move left");
1274 
1275     if (middle > left && dest < addr) {
1276       right = middle - 1;
1277     } else if (middle < right && middle_ptr->data_size() == region_size) {
1278       left = middle + 1;
1279     } else {
1280       return middle_ptr;
1281     }
1282   }
1283   return sd.region(left);
1284 }
1285 
1286 ParallelCompactData::RegionData*
1287 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1288                                           const RegionData* end,
1289                                           size_t dead_words)
1290 {
1291   ParallelCompactData& sd = summary_data();
1292   size_t left = sd.region(beg);
1293   size_t right = end > beg ? sd.region(end) - 1 : left;
1294 
1295   // Binary search.
1296   while (left < right) {
1297     // Equivalent to (left + right) / 2, but does not overflow.
1298     const size_t middle = left + (right - left) / 2;
1299     RegionData* const middle_ptr = sd.region(middle);
1300     HeapWord* const dest = middle_ptr->destination();
1301     HeapWord* const addr = sd.region_to_addr(middle);
1302     assert(dest != NULL, "sanity");
1303     assert(dest <= addr, "must move left");
1304 
1305     const size_t dead_to_left = pointer_delta(addr, dest);
1306     if (middle > left && dead_to_left > dead_words) {
1307       right = middle - 1;
1308     } else if (middle < right && dead_to_left < dead_words) {
1309       left = middle + 1;
1310     } else {
1311       return middle_ptr;
1312     }
1313   }
1314   return sd.region(left);
1315 }
1316 
1317 // The result is valid during the summary phase, after the initial summarization
1318 // of each space into itself, and before final summarization.
1319 inline double
1320 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1321                                    HeapWord* const bottom,
1322                                    HeapWord* const top,
1323                                    HeapWord* const new_top)
1324 {
1325   ParallelCompactData& sd = summary_data();
1326 
1327   assert(cp != NULL, "sanity");
1328   assert(bottom != NULL, "sanity");
1329   assert(top != NULL, "sanity");
1330   assert(new_top != NULL, "sanity");
1331   assert(top >= new_top, "summary data problem?");
1332   assert(new_top > bottom, "space is empty; should not be here");
1333   assert(new_top >= cp->destination(), "sanity");
1334   assert(top >= sd.region_to_addr(cp), "sanity");
1335 
1336   HeapWord* const destination = cp->destination();
1337   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1338   const size_t compacted_region_live = pointer_delta(new_top, destination);
1339   const size_t compacted_region_used = pointer_delta(top,
1340                                                      sd.region_to_addr(cp));
1341   const size_t reclaimable = compacted_region_used - compacted_region_live;
1342 
1343   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1344   return double(reclaimable) / divisor;
1345 }
1346 
1347 // Return the address of the end of the dense prefix, a.k.a. the start of the
1348 // compacted region.  The address is always on a region boundary.
1349 //
1350 // Completely full regions at the left are skipped, since no compaction can
1351 // occur in those regions.  Then the maximum amount of dead wood to allow is
1352 // computed, based on the density (amount live / capacity) of the generation;
1353 // the region with approximately that amount of dead space to the left is
1354 // identified as the limit region.  Regions between the last completely full
1355 // region and the limit region are scanned and the one that has the best
1356 // (maximum) reclaimed_ratio() is selected.
1357 HeapWord*
1358 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1359                                         bool maximum_compaction)
1360 {
1361   if (ParallelOldGCSplitALot) {
1362     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1363       // The value was chosen to provoke splitting a young gen space; use it.
1364       return _space_info[id].dense_prefix();
1365     }
1366   }
1367 
1368   const size_t region_size = ParallelCompactData::RegionSize;
1369   const ParallelCompactData& sd = summary_data();
1370 
1371   const MutableSpace* const space = _space_info[id].space();
1372   HeapWord* const top = space->top();
1373   HeapWord* const top_aligned_up = sd.region_align_up(top);
1374   HeapWord* const new_top = _space_info[id].new_top();
1375   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1376   HeapWord* const bottom = space->bottom();
1377   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1378   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1379   const RegionData* const new_top_cp =
1380     sd.addr_to_region_ptr(new_top_aligned_up);
1381 
1382   // Skip full regions at the beginning of the space--they are necessarily part
1383   // of the dense prefix.
1384   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1385   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1386          space->is_empty(), "no dead space allowed to the left");
1387   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1388          "region must have dead space");
1389 
1390   // The gc number is saved whenever a maximum compaction is done, and used to
1391   // determine when the maximum compaction interval has expired.  This avoids
1392   // successive max compactions for different reasons.
1393   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1394   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1395   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1396     total_invocations() == HeapFirstMaximumCompactionCount;
1397   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1398     _maximum_compaction_gc_num = total_invocations();
1399     return sd.region_to_addr(full_cp);
1400   }
1401 
1402   const size_t space_live = pointer_delta(new_top, bottom);
1403   const size_t space_used = space->used_in_words();
1404   const size_t space_capacity = space->capacity_in_words();
1405 
1406   const double density = double(space_live) / double(space_capacity);
1407   const size_t min_percent_free =
1408           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
1409   const double limiter = dead_wood_limiter(density, min_percent_free);
1410   const size_t dead_wood_max = space_used - space_live;
1411   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1412                                       dead_wood_max);
1413 
1414   if (TraceParallelOldGCDensePrefix) {
1415     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1416                   "space_cap=" SIZE_FORMAT,
1417                   space_live, space_used,
1418                   space_capacity);
1419     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
1420                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1421                   density, min_percent_free, limiter,
1422                   dead_wood_max, dead_wood_limit);
1423   }
1424 
1425   // Locate the region with the desired amount of dead space to the left.
1426   const RegionData* const limit_cp =
1427     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1428 
1429   // Scan from the first region with dead space to the limit region and find the
1430   // one with the best (largest) reclaimed ratio.
1431   double best_ratio = 0.0;
1432   const RegionData* best_cp = full_cp;
1433   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1434     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1435     if (tmp_ratio > best_ratio) {
1436       best_cp = cp;
1437       best_ratio = tmp_ratio;
1438     }
1439   }
1440 
1441 #if     0
1442   // Something to consider:  if the region with the best ratio is 'close to' the
1443   // first region w/free space, choose the first region with free space
1444   // ("first-free").  The first-free region is usually near the start of the
1445   // heap, which means we are copying most of the heap already, so copy a bit
1446   // more to get complete compaction.
1447   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1448     _maximum_compaction_gc_num = total_invocations();
1449     best_cp = full_cp;
1450   }
1451 #endif  // #if 0
1452 
1453   return sd.region_to_addr(best_cp);
1454 }
1455 
1456 #ifndef PRODUCT
1457 void
1458 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1459                                           size_t words)
1460 {
1461   if (TraceParallelOldGCSummaryPhase) {
1462     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1463                   SIZE_FORMAT, start, start + words, words);
1464   }
1465 
1466   ObjectStartArray* const start_array = _space_info[id].start_array();
1467   CollectedHeap::fill_with_objects(start, words);
1468   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1469     _mark_bitmap.mark_obj(p, words);
1470     _summary_data.add_obj(p, words);
1471     start_array->allocate_block(p);
1472   }
1473 }
1474 
1475 void
1476 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1477 {
1478   ParallelCompactData& sd = summary_data();
1479   MutableSpace* space = _space_info[id].space();
1480 
1481   // Find the source and destination start addresses.
1482   HeapWord* const src_addr = sd.region_align_down(start);
1483   HeapWord* dst_addr;
1484   if (src_addr < start) {
1485     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1486   } else if (src_addr > space->bottom()) {
1487     // The start (the original top() value) is aligned to a region boundary so
1488     // the associated region does not have a destination.  Compute the
1489     // destination from the previous region.
1490     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1491     dst_addr = cp->destination() + cp->data_size();
1492   } else {
1493     // Filling the entire space.
1494     dst_addr = space->bottom();
1495   }
1496   assert(dst_addr != NULL, "sanity");
1497 
1498   // Update the summary data.
1499   bool result = _summary_data.summarize(_space_info[id].split_info(),
1500                                         src_addr, space->top(), NULL,
1501                                         dst_addr, space->end(),
1502                                         _space_info[id].new_top_addr());
1503   assert(result, "should not fail:  bad filler object size");
1504 }
1505 
1506 void
1507 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1508 {
1509   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1510     return;
1511   }
1512 
1513   MutableSpace* const space = _space_info[id].space();
1514   if (space->is_empty()) {
1515     HeapWord* b = space->bottom();
1516     HeapWord* t = b + space->capacity_in_words() / 2;
1517     space->set_top(t);
1518     if (ZapUnusedHeapArea) {
1519       space->set_top_for_allocations();
1520     }
1521 
1522     size_t min_size = CollectedHeap::min_fill_size();
1523     size_t obj_len = min_size;
1524     while (b + obj_len <= t) {
1525       CollectedHeap::fill_with_object(b, obj_len);
1526       mark_bitmap()->mark_obj(b, obj_len);
1527       summary_data().add_obj(b, obj_len);
1528       b += obj_len;
1529       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1530     }
1531     if (b < t) {
1532       // The loop didn't completely fill to t (top); adjust top downward.
1533       space->set_top(b);
1534       if (ZapUnusedHeapArea) {
1535         space->set_top_for_allocations();
1536       }
1537     }
1538 
1539     HeapWord** nta = _space_info[id].new_top_addr();
1540     bool result = summary_data().summarize(_space_info[id].split_info(),
1541                                            space->bottom(), space->top(), NULL,
1542                                            space->bottom(), space->end(), nta);
1543     assert(result, "space must fit into itself");
1544   }
1545 }
1546 
1547 void
1548 PSParallelCompact::provoke_split(bool & max_compaction)
1549 {
1550   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1551     return;
1552   }
1553 
1554   const size_t region_size = ParallelCompactData::RegionSize;
1555   ParallelCompactData& sd = summary_data();
1556 
1557   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1558   MutableSpace* const from_space = _space_info[from_space_id].space();
1559   const size_t eden_live = pointer_delta(eden_space->top(),
1560                                          _space_info[eden_space_id].new_top());
1561   const size_t from_live = pointer_delta(from_space->top(),
1562                                          _space_info[from_space_id].new_top());
1563 
1564   const size_t min_fill_size = CollectedHeap::min_fill_size();
1565   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1566   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1567   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1568   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1569 
1570   // Choose the space to split; need at least 2 regions live (or fillable).
1571   SpaceId id;
1572   MutableSpace* space;
1573   size_t live_words;
1574   size_t fill_words;
1575   if (eden_live + eden_fillable >= region_size * 2) {
1576     id = eden_space_id;
1577     space = eden_space;
1578     live_words = eden_live;
1579     fill_words = eden_fillable;
1580   } else if (from_live + from_fillable >= region_size * 2) {
1581     id = from_space_id;
1582     space = from_space;
1583     live_words = from_live;
1584     fill_words = from_fillable;
1585   } else {
1586     return; // Give up.
1587   }
1588   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1589 
1590   if (live_words < region_size * 2) {
1591     // Fill from top() to end() w/live objects of mixed sizes.
1592     HeapWord* const fill_start = space->top();
1593     live_words += fill_words;
1594 
1595     space->set_top(fill_start + fill_words);
1596     if (ZapUnusedHeapArea) {
1597       space->set_top_for_allocations();
1598     }
1599 
1600     HeapWord* cur_addr = fill_start;
1601     while (fill_words > 0) {
1602       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1603       size_t cur_size = MIN2(align_object_size_(r), fill_words);
1604       if (fill_words - cur_size < min_fill_size) {
1605         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1606       }
1607 
1608       CollectedHeap::fill_with_object(cur_addr, cur_size);
1609       mark_bitmap()->mark_obj(cur_addr, cur_size);
1610       sd.add_obj(cur_addr, cur_size);
1611 
1612       cur_addr += cur_size;
1613       fill_words -= cur_size;
1614     }
1615 
1616     summarize_new_objects(id, fill_start);
1617   }
1618 
1619   max_compaction = false;
1620 
1621   // Manipulate the old gen so that it has room for about half of the live data
1622   // in the target young gen space (live_words / 2).
1623   id = old_space_id;
1624   space = _space_info[id].space();
1625   const size_t free_at_end = space->free_in_words();
1626   const size_t free_target = align_object_size(live_words / 2);
1627   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1628 
1629   if (free_at_end >= free_target + min_fill_size) {
1630     // Fill space above top() and set the dense prefix so everything survives.
1631     HeapWord* const fill_start = space->top();
1632     const size_t fill_size = free_at_end - free_target;
1633     space->set_top(space->top() + fill_size);
1634     if (ZapUnusedHeapArea) {
1635       space->set_top_for_allocations();
1636     }
1637     fill_with_live_objects(id, fill_start, fill_size);
1638     summarize_new_objects(id, fill_start);
1639     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1640   } else if (dead + free_at_end > free_target) {
1641     // Find a dense prefix that makes the right amount of space available.
1642     HeapWord* cur = sd.region_align_down(space->top());
1643     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1644     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1645     while (dead_to_right < free_target) {
1646       cur -= region_size;
1647       cur_destination = sd.addr_to_region_ptr(cur)->destination();
1648       dead_to_right = pointer_delta(space->end(), cur_destination);
1649     }
1650     _space_info[id].set_dense_prefix(cur);
1651   }
1652 }
1653 #endif // #ifndef PRODUCT
1654 
1655 void PSParallelCompact::summarize_spaces_quick()
1656 {
1657   for (unsigned int i = 0; i < last_space_id; ++i) {
1658     const MutableSpace* space = _space_info[i].space();
1659     HeapWord** nta = _space_info[i].new_top_addr();
1660     bool result = _summary_data.summarize(_space_info[i].split_info(),
1661                                           space->bottom(), space->top(), NULL,
1662                                           space->bottom(), space->end(), nta);
1663     assert(result, "space must fit into itself");
1664     _space_info[i].set_dense_prefix(space->bottom());
1665   }
1666 
1667 #ifndef PRODUCT
1668   if (ParallelOldGCSplitALot) {
1669     provoke_split_fill_survivor(to_space_id);
1670   }
1671 #endif // #ifndef PRODUCT
1672 }
1673 
1674 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1675 {
1676   HeapWord* const dense_prefix_end = dense_prefix(id);
1677   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1678   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1679   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1680     // Only enough dead space is filled so that any remaining dead space to the
1681     // left is larger than the minimum filler object.  (The remainder is filled
1682     // during the copy/update phase.)
1683     //
1684     // The size of the dead space to the right of the boundary is not a
1685     // concern, since compaction will be able to use whatever space is
1686     // available.
1687     //
1688     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1689     // surrounds the space to be filled with an object.
1690     //
1691     // In the 32-bit VM, each bit represents two 32-bit words:
1692     //                              +---+
1693     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1694     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1695     //                              +---+
1696     //
1697     // In the 64-bit VM, each bit represents one 64-bit word:
1698     //                              +------------+
1699     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1700     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1701     //                              +------------+
1702     //                          +-------+
1703     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1704     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1705     //                          +-------+
1706     //                      +-----------+
1707     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1708     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1709     //                      +-----------+
1710     //                          +-------+
1711     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1712     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1713     //                          +-------+
1714 
1715     // Initially assume case a, c or e will apply.
1716     size_t obj_len = CollectedHeap::min_fill_size();
1717     HeapWord* obj_beg = dense_prefix_end - obj_len;
1718 
1719 #ifdef  _LP64
1720     if (MinObjAlignment > 1) { // object alignment > heap word size
1721       // Cases a, c or e.
1722     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1723       // Case b above.
1724       obj_beg = dense_prefix_end - 1;
1725     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1726                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1727       // Case d above.
1728       obj_beg = dense_prefix_end - 3;
1729       obj_len = 3;
1730     }
1731 #endif  // #ifdef _LP64
1732 
1733     CollectedHeap::fill_with_object(obj_beg, obj_len);
1734     _mark_bitmap.mark_obj(obj_beg, obj_len);
1735     _summary_data.add_obj(obj_beg, obj_len);
1736     assert(start_array(id) != NULL, "sanity");
1737     start_array(id)->allocate_block(obj_beg);
1738   }
1739 }
1740 
1741 void
1742 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1743 {
1744   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1745   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1746   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1747   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1748     cur->set_source_region(0);
1749   }
1750 }
1751 
1752 void
1753 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1754 {
1755   assert(id < last_space_id, "id out of range");
1756   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1757          ParallelOldGCSplitALot && id == old_space_id,
1758          "should have been reset in summarize_spaces_quick()");
1759 
1760   const MutableSpace* space = _space_info[id].space();
1761   if (_space_info[id].new_top() != space->bottom()) {
1762     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1763     _space_info[id].set_dense_prefix(dense_prefix_end);
1764 
1765 #ifndef PRODUCT
1766     if (TraceParallelOldGCDensePrefix) {
1767       print_dense_prefix_stats("ratio", id, maximum_compaction,
1768                                dense_prefix_end);
1769       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1770       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1771     }
1772 #endif  // #ifndef PRODUCT
1773 
1774     // Recompute the summary data, taking into account the dense prefix.  If
1775     // every last byte will be reclaimed, then the existing summary data which
1776     // compacts everything can be left in place.
1777     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1778       // If dead space crosses the dense prefix boundary, it is (at least
1779       // partially) filled with a dummy object, marked live and added to the
1780       // summary data.  This simplifies the copy/update phase and must be done
1781       // before the final locations of objects are determined, to prevent
1782       // leaving a fragment of dead space that is too small to fill.
1783       fill_dense_prefix_end(id);
1784 
1785       // Compute the destination of each Region, and thus each object.
1786       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1787       _summary_data.summarize(_space_info[id].split_info(),
1788                               dense_prefix_end, space->top(), NULL,
1789                               dense_prefix_end, space->end(),
1790                               _space_info[id].new_top_addr());
1791     }
1792   }
1793 
1794   if (TraceParallelOldGCSummaryPhase) {
1795     const size_t region_size = ParallelCompactData::RegionSize;
1796     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1797     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1798     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1799     HeapWord* const new_top = _space_info[id].new_top();
1800     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1801     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1802     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1803                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1804                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1805                   id, space->capacity_in_words(), dense_prefix_end,
1806                   dp_region, dp_words / region_size,
1807                   cr_words / region_size, new_top);
1808   }
1809 }
1810 
1811 #ifndef PRODUCT
1812 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1813                                           HeapWord* dst_beg, HeapWord* dst_end,
1814                                           SpaceId src_space_id,
1815                                           HeapWord* src_beg, HeapWord* src_end)
1816 {
1817   if (TraceParallelOldGCSummaryPhase) {
1818     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1819                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1820                   SIZE_FORMAT "-" SIZE_FORMAT " "
1821                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1822                   SIZE_FORMAT "-" SIZE_FORMAT,
1823                   src_space_id, space_names[src_space_id],
1824                   dst_space_id, space_names[dst_space_id],
1825                   src_beg, src_end,
1826                   _summary_data.addr_to_region_idx(src_beg),
1827                   _summary_data.addr_to_region_idx(src_end),
1828                   dst_beg, dst_end,
1829                   _summary_data.addr_to_region_idx(dst_beg),
1830                   _summary_data.addr_to_region_idx(dst_end));
1831   }
1832 }
1833 #endif  // #ifndef PRODUCT
1834 
1835 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1836                                       bool maximum_compaction)
1837 {
1838   EventMark m("2 summarize");
1839   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
1840   // trace("2");
1841 
1842 #ifdef  ASSERT
1843   if (TraceParallelOldGCMarkingPhase) {
1844     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1845                   "add_obj_bytes=" SIZE_FORMAT,
1846                   add_obj_count, add_obj_size * HeapWordSize);
1847     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1848                   "mark_bitmap_bytes=" SIZE_FORMAT,
1849                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1850   }
1851 #endif  // #ifdef ASSERT
1852 
1853   // Quick summarization of each space into itself, to see how much is live.
1854   summarize_spaces_quick();
1855 
1856   if (TraceParallelOldGCSummaryPhase) {
1857     tty->print_cr("summary_phase:  after summarizing each space to self");
1858     Universe::print();
1859     NOT_PRODUCT(print_region_ranges());
1860     if (Verbose) {
1861       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1862     }
1863   }
1864 
1865   // The amount of live data that will end up in old space (assuming it fits).
1866   size_t old_space_total_live = 0;
1867   assert(perm_space_id < old_space_id, "should not count perm data here");
1868   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1869     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1870                                           _space_info[id].space()->bottom());
1871   }
1872 
1873   MutableSpace* const old_space = _space_info[old_space_id].space();
1874   const size_t old_capacity = old_space->capacity_in_words();
1875   if (old_space_total_live > old_capacity) {
1876     // XXX - should also try to expand
1877     maximum_compaction = true;
1878   }
1879 #ifndef PRODUCT
1880   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1881     provoke_split(maximum_compaction);
1882   }
1883 #endif // #ifndef PRODUCT
1884 
1885   // Permanent and Old generations.
1886   summarize_space(perm_space_id, maximum_compaction);
1887   summarize_space(old_space_id, maximum_compaction);
1888 
1889   // Summarize the remaining spaces in the young gen.  The initial target space
1890   // is the old gen.  If a space does not fit entirely into the target, then the
1891   // remainder is compacted into the space itself and that space becomes the new
1892   // target.
1893   SpaceId dst_space_id = old_space_id;
1894   HeapWord* dst_space_end = old_space->end();
1895   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1896   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1897     const MutableSpace* space = _space_info[id].space();
1898     const size_t live = pointer_delta(_space_info[id].new_top(),
1899                                       space->bottom());
1900     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1901 
1902     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1903                                   SpaceId(id), space->bottom(), space->top());)
1904     if (live > 0 && live <= available) {
1905       // All the live data will fit.
1906       bool done = _summary_data.summarize(_space_info[id].split_info(),
1907                                           space->bottom(), space->top(),
1908                                           NULL,
1909                                           *new_top_addr, dst_space_end,
1910                                           new_top_addr);
1911       assert(done, "space must fit into old gen");
1912 
1913       // Reset the new_top value for the space.
1914       _space_info[id].set_new_top(space->bottom());
1915     } else if (live > 0) {
1916       // Attempt to fit part of the source space into the target space.
1917       HeapWord* next_src_addr = NULL;
1918       bool done = _summary_data.summarize(_space_info[id].split_info(),
1919                                           space->bottom(), space->top(),
1920                                           &next_src_addr,
1921                                           *new_top_addr, dst_space_end,
1922                                           new_top_addr);
1923       assert(!done, "space should not fit into old gen");
1924       assert(next_src_addr != NULL, "sanity");
1925 
1926       // The source space becomes the new target, so the remainder is compacted
1927       // within the space itself.
1928       dst_space_id = SpaceId(id);
1929       dst_space_end = space->end();
1930       new_top_addr = _space_info[id].new_top_addr();
1931       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1932                                     space->bottom(), dst_space_end,
1933                                     SpaceId(id), next_src_addr, space->top());)
1934       done = _summary_data.summarize(_space_info[id].split_info(),
1935                                      next_src_addr, space->top(),
1936                                      NULL,
1937                                      space->bottom(), dst_space_end,
1938                                      new_top_addr);
1939       assert(done, "space must fit when compacted into itself");
1940       assert(*new_top_addr <= space->top(), "usage should not grow");
1941     }
1942   }
1943 
1944   if (TraceParallelOldGCSummaryPhase) {
1945     tty->print_cr("summary_phase:  after final summarization");
1946     Universe::print();
1947     NOT_PRODUCT(print_region_ranges());
1948     if (Verbose) {
1949       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1950     }
1951   }
1952 }
1953 
1954 // This method should contain all heap-specific policy for invoking a full
1955 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1956 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1957 // before full gc, or any other specialized behavior, it needs to be added here.
1958 //
1959 // Note that this method should only be called from the vm_thread while at a
1960 // safepoint.
1961 //
1962 // Note that the all_soft_refs_clear flag in the collector policy
1963 // may be true because this method can be called without intervening
1964 // activity.  For example when the heap space is tight and full measure
1965 // are being taken to free space.
1966 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1967   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1968   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1969          "should be in vm thread");
1970 
1971   ParallelScavengeHeap* heap = gc_heap();
1972   GCCause::Cause gc_cause = heap->gc_cause();
1973   assert(!heap->is_gc_active(), "not reentrant");
1974 
1975   PSAdaptiveSizePolicy* policy = heap->size_policy();
1976   IsGCActiveMark mark;
1977 
1978   if (ScavengeBeforeFullGC) {
1979     PSScavenge::invoke_no_policy();
1980   }
1981 
1982   const bool clear_all_soft_refs =
1983     heap->collector_policy()->should_clear_all_soft_refs();
1984 
1985   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1986                                       maximum_heap_compaction);
1987 }
1988 
1989 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
1990   size_t addr_region_index = addr_to_region_idx(addr);
1991   return region_index == addr_region_index;
1992 }
1993 
1994 // This method contains no policy. You should probably
1995 // be calling invoke() instead.
1996 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1997   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1998   assert(ref_processor() != NULL, "Sanity");
1999 
2000   if (GC_locker::check_active_before_gc()) {
2001     return;
2002   }
2003 
2004   TimeStamp marking_start;
2005   TimeStamp compaction_start;
2006   TimeStamp collection_exit;
2007 
2008   ParallelScavengeHeap* heap = gc_heap();
2009   GCCause::Cause gc_cause = heap->gc_cause();
2010   PSYoungGen* young_gen = heap->young_gen();
2011   PSOldGen* old_gen = heap->old_gen();
2012   PSPermGen* perm_gen = heap->perm_gen();
2013   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
2014 
2015   // The scope of casr should end after code that can change
2016   // CollectorPolicy::_should_clear_all_soft_refs.
2017   ClearedAllSoftRefs casr(maximum_heap_compaction,
2018                           heap->collector_policy());
2019 
2020   if (ZapUnusedHeapArea) {
2021     // Save information needed to minimize mangling
2022     heap->record_gen_tops_before_GC();
2023   }
2024 
2025   heap->pre_full_gc_dump();
2026 
2027   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2028 
2029   // Make sure data structures are sane, make the heap parsable, and do other
2030   // miscellaneous bookkeeping.
2031   PreGCValues pre_gc_values;
2032   pre_compact(&pre_gc_values);
2033 
2034   // Get the compaction manager reserved for the VM thread.
2035   ParCompactionManager* const vmthread_cm =
2036     ParCompactionManager::manager_array(gc_task_manager()->workers());
2037 
2038   // Place after pre_compact() where the number of invocations is incremented.
2039   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2040 
2041   {
2042     ResourceMark rm;
2043     HandleMark hm;
2044 
2045     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
2046 
2047     // This is useful for debugging but don't change the output the
2048     // the customer sees.
2049     const char* gc_cause_str = "Full GC";
2050     if (is_system_gc && PrintGCDetails) {
2051       gc_cause_str = "Full GC (System)";
2052     }
2053     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2054     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2055     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
2056     TraceCollectorStats tcs(counters());
2057     TraceMemoryManagerStats tms(true /* Full GC */);
2058 
2059     if (TraceGen1Time) accumulated_time()->start();
2060 
2061     // Let the size policy know we're starting
2062     size_policy->major_collection_begin();
2063 
2064     // When collecting the permanent generation methodOops may be moving,
2065     // so we either have to flush all bcp data or convert it into bci.
2066     CodeCache::gc_prologue();
2067     Threads::gc_prologue();
2068 
2069     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2070     COMPILER2_PRESENT(DerivedPointerTable::clear());
2071 
2072     ref_processor()->enable_discovery();
2073     ref_processor()->setup_policy(maximum_heap_compaction);
2074 
2075     bool marked_for_unloading = false;
2076 
2077     marking_start.update();
2078     marking_phase(vmthread_cm, maximum_heap_compaction);
2079 
2080 #ifndef PRODUCT
2081     if (TraceParallelOldGCMarkingPhase) {
2082       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
2083         "cas_by_another %d",
2084         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
2085         mark_bitmap()->cas_by_another());
2086     }
2087 #endif  // #ifndef PRODUCT
2088 
2089     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
2090     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2091 
2092     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2093     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2094 
2095     // adjust_roots() updates Universe::_intArrayKlassObj which is
2096     // needed by the compaction for filling holes in the dense prefix.
2097     adjust_roots();
2098 
2099     compaction_start.update();
2100     // Does the perm gen always have to be done serially because
2101     // klasses are used in the update of an object?
2102     compact_perm(vmthread_cm);
2103 
2104     if (UseParallelOldGCCompacting) {
2105       compact();
2106     } else {
2107       compact_serial(vmthread_cm);
2108     }
2109 
2110     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2111     // done before resizing.
2112     post_compact();
2113 
2114     // Let the size policy know we're done
2115     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2116 
2117     if (UseAdaptiveSizePolicy) {
2118       if (PrintAdaptiveSizePolicy) {
2119         gclog_or_tty->print("AdaptiveSizeStart: ");
2120         gclog_or_tty->stamp();
2121         gclog_or_tty->print_cr(" collection: %d ",
2122                        heap->total_collections());
2123         if (Verbose) {
2124           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
2125             " perm_gen_capacity: %d ",
2126             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
2127             perm_gen->capacity_in_bytes());
2128         }
2129       }
2130 
2131       // Don't check if the size_policy is ready here.  Let
2132       // the size_policy check that internally.
2133       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2134           ((gc_cause != GCCause::_java_lang_system_gc) ||
2135             UseAdaptiveSizePolicyWithSystemGC)) {
2136         // Calculate optimal free space amounts
2137         assert(young_gen->max_size() >
2138           young_gen->from_space()->capacity_in_bytes() +
2139           young_gen->to_space()->capacity_in_bytes(),
2140           "Sizes of space in young gen are out-of-bounds");
2141         size_t max_eden_size = young_gen->max_size() -
2142           young_gen->from_space()->capacity_in_bytes() -
2143           young_gen->to_space()->capacity_in_bytes();
2144         size_policy->compute_generation_free_space(
2145                               young_gen->used_in_bytes(),
2146                               young_gen->eden_space()->used_in_bytes(),
2147                               old_gen->used_in_bytes(),
2148                               perm_gen->used_in_bytes(),
2149                               young_gen->eden_space()->capacity_in_bytes(),
2150                               old_gen->max_gen_size(),
2151                               max_eden_size,
2152                               true /* full gc*/,
2153                               gc_cause,
2154                               heap->collector_policy());
2155 
2156         heap->resize_old_gen(
2157           size_policy->calculated_old_free_size_in_bytes());
2158 
2159         // Don't resize the young generation at an major collection.  A
2160         // desired young generation size may have been calculated but
2161         // resizing the young generation complicates the code because the
2162         // resizing of the old generation may have moved the boundary
2163         // between the young generation and the old generation.  Let the
2164         // young generation resizing happen at the minor collections.
2165       }
2166       if (PrintAdaptiveSizePolicy) {
2167         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2168                        heap->total_collections());
2169       }
2170     }
2171 
2172     if (UsePerfData) {
2173       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2174       counters->update_counters();
2175       counters->update_old_capacity(old_gen->capacity_in_bytes());
2176       counters->update_young_capacity(young_gen->capacity_in_bytes());
2177     }
2178 
2179     heap->resize_all_tlabs();
2180 
2181     // We collected the perm gen, so we'll resize it here.
2182     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
2183 
2184     if (TraceGen1Time) accumulated_time()->stop();
2185 
2186     if (PrintGC) {
2187       if (PrintGCDetails) {
2188         // No GC timestamp here.  This is after GC so it would be confusing.
2189         young_gen->print_used_change(pre_gc_values.young_gen_used());
2190         old_gen->print_used_change(pre_gc_values.old_gen_used());
2191         heap->print_heap_change(pre_gc_values.heap_used());
2192         // Print perm gen last (print_heap_change() excludes the perm gen).
2193         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
2194       } else {
2195         heap->print_heap_change(pre_gc_values.heap_used());
2196       }
2197     }
2198 
2199     // Track memory usage and detect low memory
2200     MemoryService::track_memory_usage();
2201     heap->update_counters();
2202   }
2203 
2204 #ifdef ASSERT
2205   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2206     ParCompactionManager* const cm =
2207       ParCompactionManager::manager_array(int(i));
2208     assert(cm->marking_stack()->is_empty(),       "should be empty");
2209     assert(cm->region_stack()->is_empty(),        "should be empty");
2210     assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
2211   }
2212 #endif // ASSERT
2213 
2214   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2215     HandleMark hm;  // Discard invalid handles created during verification
2216     gclog_or_tty->print(" VerifyAfterGC:");
2217     Universe::verify(false);
2218   }
2219 
2220   // Re-verify object start arrays
2221   if (VerifyObjectStartArray &&
2222       VerifyAfterGC) {
2223     old_gen->verify_object_start_array();
2224     perm_gen->verify_object_start_array();
2225   }
2226 
2227   if (ZapUnusedHeapArea) {
2228     old_gen->object_space()->check_mangled_unused_area_complete();
2229     perm_gen->object_space()->check_mangled_unused_area_complete();
2230   }
2231 
2232   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2233 
2234   collection_exit.update();
2235 
2236   if (PrintHeapAtGC) {
2237     Universe::print_heap_after_gc();
2238   }
2239   if (PrintGCTaskTimeStamps) {
2240     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
2241                            INT64_FORMAT,
2242                            marking_start.ticks(), compaction_start.ticks(),
2243                            collection_exit.ticks());
2244     gc_task_manager()->print_task_time_stamps();
2245   }
2246 
2247   heap->post_full_gc_dump();
2248 
2249 #ifdef TRACESPINNING
2250   ParallelTaskTerminator::print_termination_counts();
2251 #endif
2252 }
2253 
2254 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2255                                              PSYoungGen* young_gen,
2256                                              PSOldGen* old_gen) {
2257   MutableSpace* const eden_space = young_gen->eden_space();
2258   assert(!eden_space->is_empty(), "eden must be non-empty");
2259   assert(young_gen->virtual_space()->alignment() ==
2260          old_gen->virtual_space()->alignment(), "alignments do not match");
2261 
2262   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2263     return false;
2264   }
2265 
2266   // Both generations must be completely committed.
2267   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2268     return false;
2269   }
2270   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2271     return false;
2272   }
2273 
2274   // Figure out how much to take from eden.  Include the average amount promoted
2275   // in the total; otherwise the next young gen GC will simply bail out to a
2276   // full GC.
2277   const size_t alignment = old_gen->virtual_space()->alignment();
2278   const size_t eden_used = eden_space->used_in_bytes();
2279   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2280   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2281   const size_t eden_capacity = eden_space->capacity_in_bytes();
2282 
2283   if (absorb_size >= eden_capacity) {
2284     return false; // Must leave some space in eden.
2285   }
2286 
2287   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2288   if (new_young_size < young_gen->min_gen_size()) {
2289     return false; // Respect young gen minimum size.
2290   }
2291 
2292   if (TraceAdaptiveGCBoundary && Verbose) {
2293     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2294                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2295                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2296                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2297                         absorb_size / K,
2298                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2299                         young_gen->from_space()->used_in_bytes() / K,
2300                         young_gen->to_space()->used_in_bytes() / K,
2301                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2302   }
2303 
2304   // Fill the unused part of the old gen.
2305   MutableSpace* const old_space = old_gen->object_space();
2306   HeapWord* const unused_start = old_space->top();
2307   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2308 
2309   if (unused_words > 0) {
2310     if (unused_words < CollectedHeap::min_fill_size()) {
2311       return false;  // If the old gen cannot be filled, must give up.
2312     }
2313     CollectedHeap::fill_with_objects(unused_start, unused_words);
2314   }
2315 
2316   // Take the live data from eden and set both top and end in the old gen to
2317   // eden top.  (Need to set end because reset_after_change() mangles the region
2318   // from end to virtual_space->high() in debug builds).
2319   HeapWord* const new_top = eden_space->top();
2320   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2321                                         absorb_size);
2322   young_gen->reset_after_change();
2323   old_space->set_top(new_top);
2324   old_space->set_end(new_top);
2325   old_gen->reset_after_change();
2326 
2327   // Update the object start array for the filler object and the data from eden.
2328   ObjectStartArray* const start_array = old_gen->start_array();
2329   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2330     start_array->allocate_block(p);
2331   }
2332 
2333   // Could update the promoted average here, but it is not typically updated at
2334   // full GCs and the value to use is unclear.  Something like
2335   //
2336   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2337 
2338   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2339   return true;
2340 }
2341 
2342 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2343   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2344     "shouldn't return NULL");
2345   return ParallelScavengeHeap::gc_task_manager();
2346 }
2347 
2348 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2349                                       bool maximum_heap_compaction) {
2350   // Recursively traverse all live objects and mark them
2351   EventMark m("1 mark object");
2352   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
2353 
2354   ParallelScavengeHeap* heap = gc_heap();
2355   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2356   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2357   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
2358 
2359   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2360   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2361 
2362   {
2363     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2364     ParallelScavengeHeap::ParStrongRootsScope psrs;
2365 
2366     GCTaskQueue* q = GCTaskQueue::create();
2367 
2368     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2369     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2370     // We scan the thread roots in parallel
2371     Threads::create_thread_roots_marking_tasks(q);
2372     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2373     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2374     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2375     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2376     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2377     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
2378     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2379 
2380     if (parallel_gc_threads > 1) {
2381       for (uint j = 0; j < parallel_gc_threads; j++) {
2382         q->enqueue(new StealMarkingTask(&terminator));
2383       }
2384     }
2385 
2386     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
2387     q->enqueue(fin);
2388 
2389     gc_task_manager()->add_list(q);
2390 
2391     fin->wait_for();
2392 
2393     // We have to release the barrier tasks!
2394     WaitForBarrierGCTask::destroy(fin);
2395   }
2396 
2397   // Process reference objects found during marking
2398   {
2399     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
2400     if (ref_processor()->processing_is_mt()) {
2401       RefProcTaskExecutor task_executor;
2402       ref_processor()->process_discovered_references(
2403         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2404         &task_executor);
2405     } else {
2406       ref_processor()->process_discovered_references(
2407         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
2408     }
2409   }
2410 
2411   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
2412   // Follow system dictionary roots and unload classes.
2413   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2414 
2415   // Follow code cache roots.
2416   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
2417                           purged_class);
2418   cm->follow_marking_stacks(); // Flush marking stack.
2419 
2420   // Update subklass/sibling/implementor links of live klasses
2421   // revisit_klass_stack is used in follow_weak_klass_links().
2422   follow_weak_klass_links();
2423 
2424   // Revisit memoized MDO's and clear any unmarked weak refs
2425   follow_mdo_weak_refs();
2426 
2427   // Visit symbol and interned string tables and delete unmarked oops
2428   SymbolTable::unlink(is_alive_closure());
2429   StringTable::unlink(is_alive_closure());
2430 
2431   assert(cm->marking_stacks_empty(), "marking stacks should be empty");
2432 }
2433 
2434 // This should be moved to the shared markSweep code!
2435 class PSAlwaysTrueClosure: public BoolObjectClosure {
2436 public:
2437   void do_object(oop p) { ShouldNotReachHere(); }
2438   bool do_object_b(oop p) { return true; }
2439 };
2440 static PSAlwaysTrueClosure always_true;
2441 
2442 void PSParallelCompact::adjust_roots() {
2443   // Adjust the pointers to reflect the new locations
2444   EventMark m("3 adjust roots");
2445   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
2446 
2447   // General strong roots.
2448   Universe::oops_do(adjust_root_pointer_closure());
2449   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
2450   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
2451   Threads::oops_do(adjust_root_pointer_closure(), NULL);
2452   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
2453   FlatProfiler::oops_do(adjust_root_pointer_closure());
2454   Management::oops_do(adjust_root_pointer_closure());
2455   JvmtiExport::oops_do(adjust_root_pointer_closure());
2456   // SO_AllClasses
2457   SystemDictionary::oops_do(adjust_root_pointer_closure());
2458   vmSymbols::oops_do(adjust_root_pointer_closure());
2459 
2460   // Now adjust pointers in remaining weak roots.  (All of which should
2461   // have been cleared if they pointed to non-surviving objects.)
2462   // Global (weak) JNI handles
2463   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
2464 
2465   CodeCache::oops_do(adjust_pointer_closure());
2466   SymbolTable::oops_do(adjust_root_pointer_closure());
2467   StringTable::oops_do(adjust_root_pointer_closure());
2468   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
2469   // Roots were visited so references into the young gen in roots
2470   // may have been scanned.  Process them also.
2471   // Should the reference processor have a span that excludes
2472   // young gen objects?
2473   PSScavenge::reference_processor()->weak_oops_do(
2474                                               adjust_root_pointer_closure());
2475 }
2476 
2477 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
2478   EventMark m("4 compact perm");
2479   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
2480   // trace("4");
2481 
2482   gc_heap()->perm_gen()->start_array()->reset();
2483   move_and_update(cm, perm_space_id);
2484 }
2485 
2486 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2487                                                       uint parallel_gc_threads)
2488 {
2489   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
2490 
2491   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
2492   for (unsigned int j = 0; j < task_count; j++) {
2493     q->enqueue(new DrainStacksCompactionTask(j));
2494   }
2495 
2496   // Find all regions that are available (can be filled immediately) and
2497   // distribute them to the thread stacks.  The iteration is done in reverse
2498   // order (high to low) so the regions will be removed in ascending order.
2499 
2500   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2501 
2502   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2503   unsigned int which = 0;       // The worker thread number.
2504 
2505   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
2506     SpaceInfo* const space_info = _space_info + id;
2507     MutableSpace* const space = space_info->space();
2508     HeapWord* const new_top = space_info->new_top();
2509 
2510     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2511     const size_t end_region =
2512       sd.addr_to_region_idx(sd.region_align_up(new_top));
2513     assert(end_region > 0, "perm gen cannot be empty");
2514 
2515     for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
2516       if (sd.region(cur)->claim_unsafe()) {
2517         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2518         cm->push_region(cur);
2519 
2520         if (TraceParallelOldGCCompactionPhase && Verbose) {
2521           const size_t count_mod_8 = fillable_regions & 7;
2522           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2523           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2524           if (count_mod_8 == 7) gclog_or_tty->cr();
2525         }
2526 
2527         NOT_PRODUCT(++fillable_regions;)
2528 
2529         // Assign regions to threads in round-robin fashion.
2530         if (++which == task_count) {
2531           which = 0;
2532         }
2533       }
2534     }
2535   }
2536 
2537   if (TraceParallelOldGCCompactionPhase) {
2538     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2539     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
2540   }
2541 }
2542 
2543 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2544 
2545 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2546                                                     uint parallel_gc_threads) {
2547   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
2548 
2549   ParallelCompactData& sd = PSParallelCompact::summary_data();
2550 
2551   // Iterate over all the spaces adding tasks for updating
2552   // regions in the dense prefix.  Assume that 1 gc thread
2553   // will work on opening the gaps and the remaining gc threads
2554   // will work on the dense prefix.
2555   unsigned int space_id;
2556   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2557     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2558     const MutableSpace* const space = _space_info[space_id].space();
2559 
2560     if (dense_prefix_end == space->bottom()) {
2561       // There is no dense prefix for this space.
2562       continue;
2563     }
2564 
2565     // The dense prefix is before this region.
2566     size_t region_index_end_dense_prefix =
2567         sd.addr_to_region_idx(dense_prefix_end);
2568     RegionData* const dense_prefix_cp =
2569       sd.region(region_index_end_dense_prefix);
2570     assert(dense_prefix_end == space->end() ||
2571            dense_prefix_cp->available() ||
2572            dense_prefix_cp->claimed(),
2573            "The region after the dense prefix should always be ready to fill");
2574 
2575     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2576 
2577     // Is there dense prefix work?
2578     size_t total_dense_prefix_regions =
2579       region_index_end_dense_prefix - region_index_start;
2580     // How many regions of the dense prefix should be given to
2581     // each thread?
2582     if (total_dense_prefix_regions > 0) {
2583       uint tasks_for_dense_prefix = 1;
2584       if (UseParallelDensePrefixUpdate) {
2585         if (total_dense_prefix_regions <=
2586             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2587           // Don't over partition.  This assumes that
2588           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2589           // so there are not many regions to process.
2590           tasks_for_dense_prefix = parallel_gc_threads;
2591         } else {
2592           // Over partition
2593           tasks_for_dense_prefix = parallel_gc_threads *
2594             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2595         }
2596       }
2597       size_t regions_per_thread = total_dense_prefix_regions /
2598         tasks_for_dense_prefix;
2599       // Give each thread at least 1 region.
2600       if (regions_per_thread == 0) {
2601         regions_per_thread = 1;
2602       }
2603 
2604       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2605         if (region_index_start >= region_index_end_dense_prefix) {
2606           break;
2607         }
2608         // region_index_end is not processed
2609         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2610                                        region_index_end_dense_prefix);
2611         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2612                                              region_index_start,
2613                                              region_index_end));
2614         region_index_start = region_index_end;
2615       }
2616     }
2617     // This gets any part of the dense prefix that did not
2618     // fit evenly.
2619     if (region_index_start < region_index_end_dense_prefix) {
2620       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2621                                            region_index_start,
2622                                            region_index_end_dense_prefix));
2623     }
2624   }
2625 }
2626 
2627 void PSParallelCompact::enqueue_region_stealing_tasks(
2628                                      GCTaskQueue* q,
2629                                      ParallelTaskTerminator* terminator_ptr,
2630                                      uint parallel_gc_threads) {
2631   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
2632 
2633   // Once a thread has drained it's stack, it should try to steal regions from
2634   // other threads.
2635   if (parallel_gc_threads > 1) {
2636     for (uint j = 0; j < parallel_gc_threads; j++) {
2637       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2638     }
2639   }
2640 }
2641 
2642 void PSParallelCompact::compact() {
2643   EventMark m("5 compact");
2644   // trace("5");
2645   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
2646 
2647   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2648   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2649   PSOldGen* old_gen = heap->old_gen();
2650   old_gen->start_array()->reset();
2651   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2652   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2653   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
2654 
2655   GCTaskQueue* q = GCTaskQueue::create();
2656   enqueue_region_draining_tasks(q, parallel_gc_threads);
2657   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
2658   enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
2659 
2660   {
2661     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
2662 
2663     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
2664     q->enqueue(fin);
2665 
2666     gc_task_manager()->add_list(q);
2667 
2668     fin->wait_for();
2669 
2670     // We have to release the barrier tasks!
2671     WaitForBarrierGCTask::destroy(fin);
2672 
2673 #ifdef  ASSERT
2674     // Verify that all regions have been processed before the deferred updates.
2675     // Note that perm_space_id is skipped; this type of verification is not
2676     // valid until the perm gen is compacted by regions.
2677     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2678       verify_complete(SpaceId(id));
2679     }
2680 #endif
2681   }
2682 
2683   {
2684     // Update the deferred objects, if any.  Any compaction manager can be used.
2685     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
2686     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2687     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2688       update_deferred_objects(cm, SpaceId(id));
2689     }
2690   }
2691 }
2692 
2693 #ifdef  ASSERT
2694 void PSParallelCompact::verify_complete(SpaceId space_id) {
2695   // All Regions between space bottom() to new_top() should be marked as filled
2696   // and all Regions between new_top() and top() should be available (i.e.,
2697   // should have been emptied).
2698   ParallelCompactData& sd = summary_data();
2699   SpaceInfo si = _space_info[space_id];
2700   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2701   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2702   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2703   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2704   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2705 
2706   bool issued_a_warning = false;
2707 
2708   size_t cur_region;
2709   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2710     const RegionData* const c = sd.region(cur_region);
2711     if (!c->completed()) {
2712       warning("region " SIZE_FORMAT " not filled:  "
2713               "destination_count=" SIZE_FORMAT,
2714               cur_region, c->destination_count());
2715       issued_a_warning = true;
2716     }
2717   }
2718 
2719   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2720     const RegionData* const c = sd.region(cur_region);
2721     if (!c->available()) {
2722       warning("region " SIZE_FORMAT " not empty:   "
2723               "destination_count=" SIZE_FORMAT,
2724               cur_region, c->destination_count());
2725       issued_a_warning = true;
2726     }
2727   }
2728 
2729   if (issued_a_warning) {
2730     print_region_ranges();
2731   }
2732 }
2733 #endif  // #ifdef ASSERT
2734 
2735 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
2736   EventMark m("5 compact serial");
2737   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
2738 
2739   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2740   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2741 
2742   PSYoungGen* young_gen = heap->young_gen();
2743   PSOldGen* old_gen = heap->old_gen();
2744 
2745   old_gen->start_array()->reset();
2746   old_gen->move_and_update(cm);
2747   young_gen->move_and_update(cm);
2748 }
2749 
2750 void
2751 PSParallelCompact::follow_weak_klass_links() {
2752   // All klasses on the revisit stack are marked at this point.
2753   // Update and follow all subklass, sibling and implementor links.
2754   if (PrintRevisitStats) {
2755     gclog_or_tty->print_cr("#classes in system dictionary = %d",
2756                            SystemDictionary::number_of_classes());
2757   }
2758   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
2759     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
2760     KeepAliveClosure keep_alive_closure(cm);
2761     Stack<Klass*>* const rks = cm->revisit_klass_stack();
2762     if (PrintRevisitStats) {
2763       gclog_or_tty->print_cr("Revisit klass stack[%u] length = " SIZE_FORMAT,
2764                              i, rks->size());
2765     }
2766     while (!rks->is_empty()) {
2767       Klass* const k = rks->pop();
2768       k->follow_weak_klass_links(is_alive_closure(), &keep_alive_closure);
2769     }
2770 
2771     cm->follow_marking_stacks();
2772   }
2773 }
2774 
2775 void
2776 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
2777   cm->revisit_klass_stack()->push(k);
2778 }
2779 
2780 void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
2781   cm->revisit_mdo_stack()->push(p);
2782 }
2783 
2784 void PSParallelCompact::follow_mdo_weak_refs() {
2785   // All strongly reachable oops have been marked at this point;
2786   // we can visit and clear any weak references from MDO's which
2787   // we memoized during the strong marking phase.
2788   if (PrintRevisitStats) {
2789     gclog_or_tty->print_cr("#classes in system dictionary = %d",
2790                            SystemDictionary::number_of_classes());
2791   }
2792   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
2793     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
2794     Stack<DataLayout*>* rms = cm->revisit_mdo_stack();
2795     if (PrintRevisitStats) {
2796       gclog_or_tty->print_cr("Revisit MDO stack[%u] size = " SIZE_FORMAT,
2797                              i, rms->size());
2798     }
2799     while (!rms->is_empty()) {
2800       rms->pop()->follow_weak_refs(is_alive_closure());
2801     }
2802 
2803     cm->follow_marking_stacks();
2804   }
2805 }
2806 
2807 
2808 #ifdef VALIDATE_MARK_SWEEP
2809 
2810 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
2811   if (!ValidateMarkSweep)
2812     return;
2813 
2814   if (!isroot) {
2815     if (_pointer_tracking) {
2816       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
2817       _adjusted_pointers->remove(p);
2818     }
2819   } else {
2820     ptrdiff_t index = _root_refs_stack->find(p);
2821     if (index != -1) {
2822       int l = _root_refs_stack->length();
2823       if (l > 0 && l - 1 != index) {
2824         void* last = _root_refs_stack->pop();
2825         assert(last != p, "should be different");
2826         _root_refs_stack->at_put(index, last);
2827       } else {
2828         _root_refs_stack->remove(p);
2829       }
2830     }
2831   }
2832 }
2833 
2834 
2835 void PSParallelCompact::check_adjust_pointer(void* p) {
2836   _adjusted_pointers->push(p);
2837 }
2838 
2839 
2840 class AdjusterTracker: public OopClosure {
2841  public:
2842   AdjusterTracker() {};
2843   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
2844   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
2845 };
2846 
2847 
2848 void PSParallelCompact::track_interior_pointers(oop obj) {
2849   if (ValidateMarkSweep) {
2850     _adjusted_pointers->clear();
2851     _pointer_tracking = true;
2852 
2853     AdjusterTracker checker;
2854     obj->oop_iterate(&checker);
2855   }
2856 }
2857 
2858 
2859 void PSParallelCompact::check_interior_pointers() {
2860   if (ValidateMarkSweep) {
2861     _pointer_tracking = false;
2862     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
2863   }
2864 }
2865 
2866 
2867 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
2868   if (ValidateMarkSweep) {
2869     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
2870     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
2871   }
2872 }
2873 
2874 
2875 void PSParallelCompact::register_live_oop(oop p, size_t size) {
2876   if (ValidateMarkSweep) {
2877     _live_oops->push(p);
2878     _live_oops_size->push(size);
2879     _live_oops_index++;
2880   }
2881 }
2882 
2883 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
2884   if (ValidateMarkSweep) {
2885     oop obj = _live_oops->at((int)_live_oops_index);
2886     guarantee(obj == p, "should be the same object");
2887     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
2888     _live_oops_index++;
2889   }
2890 }
2891 
2892 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
2893                                   HeapWord* compaction_top) {
2894   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
2895          "should be moved to forwarded location");
2896   if (ValidateMarkSweep) {
2897     PSParallelCompact::validate_live_oop(oop(q), size);
2898     _live_oops_moved_to->push(oop(compaction_top));
2899   }
2900   if (RecordMarkSweepCompaction) {
2901     _cur_gc_live_oops->push(q);
2902     _cur_gc_live_oops_moved_to->push(compaction_top);
2903     _cur_gc_live_oops_size->push(size);
2904   }
2905 }
2906 
2907 
2908 void PSParallelCompact::compaction_complete() {
2909   if (RecordMarkSweepCompaction) {
2910     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
2911     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
2912     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
2913 
2914     _cur_gc_live_oops           = _last_gc_live_oops;
2915     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
2916     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
2917     _last_gc_live_oops          = _tmp_live_oops;
2918     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
2919     _last_gc_live_oops_size     = _tmp_live_oops_size;
2920   }
2921 }
2922 
2923 
2924 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
2925   if (!RecordMarkSweepCompaction) {
2926     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
2927     return;
2928   }
2929 
2930   if (_last_gc_live_oops == NULL) {
2931     tty->print_cr("No compaction information gathered yet");
2932     return;
2933   }
2934 
2935   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
2936     HeapWord* old_oop = _last_gc_live_oops->at(i);
2937     size_t    sz      = _last_gc_live_oops_size->at(i);
2938     if (old_oop <= q && q < (old_oop + sz)) {
2939       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
2940       size_t offset = (q - old_oop);
2941       tty->print_cr("Address " PTR_FORMAT, q);
2942       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
2943       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
2944       return;
2945     }
2946   }
2947 
2948   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
2949 }
2950 #endif //VALIDATE_MARK_SWEEP
2951 
2952 // Update interior oops in the ranges of regions [beg_region, end_region).
2953 void
2954 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2955                                                        SpaceId space_id,
2956                                                        size_t beg_region,
2957                                                        size_t end_region) {
2958   ParallelCompactData& sd = summary_data();
2959   ParMarkBitMap* const mbm = mark_bitmap();
2960 
2961   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2962   HeapWord* const end_addr = sd.region_to_addr(end_region);
2963   assert(beg_region <= end_region, "bad region range");
2964   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2965 
2966 #ifdef  ASSERT
2967   // Claim the regions to avoid triggering an assert when they are marked as
2968   // filled.
2969   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2970     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2971   }
2972 #endif  // #ifdef ASSERT
2973 
2974   if (beg_addr != space(space_id)->bottom()) {
2975     // Find the first live object or block of dead space that *starts* in this
2976     // range of regions.  If a partial object crosses onto the region, skip it;
2977     // it will be marked for 'deferred update' when the object head is
2978     // processed.  If dead space crosses onto the region, it is also skipped; it
2979     // will be filled when the prior region is processed.  If neither of those
2980     // apply, the first word in the region is the start of a live object or dead
2981     // space.
2982     assert(beg_addr > space(space_id)->bottom(), "sanity");
2983     const RegionData* const cp = sd.region(beg_region);
2984     if (cp->partial_obj_size() != 0) {
2985       beg_addr = sd.partial_obj_end(beg_region);
2986     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2987       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2988     }
2989   }
2990 
2991   if (beg_addr < end_addr) {
2992     // A live object or block of dead space starts in this range of Regions.
2993      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2994 
2995     // Create closures and iterate.
2996     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2997     FillClosure fill_closure(cm, space_id);
2998     ParMarkBitMap::IterationStatus status;
2999     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
3000                           dense_prefix_end);
3001     if (status == ParMarkBitMap::incomplete) {
3002       update_closure.do_addr(update_closure.source());
3003     }
3004   }
3005 
3006   // Mark the regions as filled.
3007   RegionData* const beg_cp = sd.region(beg_region);
3008   RegionData* const end_cp = sd.region(end_region);
3009   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
3010     cp->set_completed();
3011   }
3012 }
3013 
3014 // Return the SpaceId for the space containing addr.  If addr is not in the
3015 // heap, last_space_id is returned.  In debug mode it expects the address to be
3016 // in the heap and asserts such.
3017 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
3018   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
3019 
3020   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
3021     if (_space_info[id].space()->contains(addr)) {
3022       return SpaceId(id);
3023     }
3024   }
3025 
3026   assert(false, "no space contains the addr");
3027   return last_space_id;
3028 }
3029 
3030 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
3031                                                 SpaceId id) {
3032   assert(id < last_space_id, "bad space id");
3033 
3034   ParallelCompactData& sd = summary_data();
3035   const SpaceInfo* const space_info = _space_info + id;
3036   ObjectStartArray* const start_array = space_info->start_array();
3037 
3038   const MutableSpace* const space = space_info->space();
3039   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
3040   HeapWord* const beg_addr = space_info->dense_prefix();
3041   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
3042 
3043   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
3044   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
3045   const RegionData* cur_region;
3046   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
3047     HeapWord* const addr = cur_region->deferred_obj_addr();
3048     if (addr != NULL) {
3049       if (start_array != NULL) {
3050         start_array->allocate_block(addr);
3051       }
3052       oop(addr)->update_contents(cm);
3053       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
3054     }
3055   }
3056 }
3057 
3058 // Skip over count live words starting from beg, and return the address of the
3059 // next live word.  Unless marked, the word corresponding to beg is assumed to
3060 // be dead.  Callers must either ensure beg does not correspond to the middle of
3061 // an object, or account for those live words in some other way.  Callers must
3062 // also ensure that there are enough live words in the range [beg, end) to skip.
3063 HeapWord*
3064 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
3065 {
3066   assert(count > 0, "sanity");
3067 
3068   ParMarkBitMap* m = mark_bitmap();
3069   idx_t bits_to_skip = m->words_to_bits(count);
3070   idx_t cur_beg = m->addr_to_bit(beg);
3071   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
3072 
3073   do {
3074     cur_beg = m->find_obj_beg(cur_beg, search_end);
3075     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
3076     const size_t obj_bits = cur_end - cur_beg + 1;
3077     if (obj_bits > bits_to_skip) {
3078       return m->bit_to_addr(cur_beg + bits_to_skip);
3079     }
3080     bits_to_skip -= obj_bits;
3081     cur_beg = cur_end + 1;
3082   } while (bits_to_skip > 0);
3083 
3084   // Skipping the desired number of words landed just past the end of an object.
3085   // Find the start of the next object.
3086   cur_beg = m->find_obj_beg(cur_beg, search_end);
3087   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
3088   return m->bit_to_addr(cur_beg);
3089 }
3090 
3091 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
3092                                             SpaceId src_space_id,
3093                                             size_t src_region_idx)
3094 {
3095   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
3096 
3097   const SplitInfo& split_info = _space_info[src_space_id].split_info();
3098   if (split_info.dest_region_addr() == dest_addr) {
3099     // The partial object ending at the split point contains the first word to
3100     // be copied to dest_addr.
3101     return split_info.first_src_addr();
3102   }
3103 
3104   const ParallelCompactData& sd = summary_data();
3105   ParMarkBitMap* const bitmap = mark_bitmap();
3106   const size_t RegionSize = ParallelCompactData::RegionSize;
3107 
3108   assert(sd.is_region_aligned(dest_addr), "not aligned");
3109   const RegionData* const src_region_ptr = sd.region(src_region_idx);
3110   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
3111   HeapWord* const src_region_destination = src_region_ptr->destination();
3112 
3113   assert(dest_addr >= src_region_destination, "wrong src region");
3114   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
3115 
3116   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
3117   HeapWord* const src_region_end = src_region_beg + RegionSize;
3118 
3119   HeapWord* addr = src_region_beg;
3120   if (dest_addr == src_region_destination) {
3121     // Return the first live word in the source region.
3122     if (partial_obj_size == 0) {
3123       addr = bitmap->find_obj_beg(addr, src_region_end);
3124       assert(addr < src_region_end, "no objects start in src region");
3125     }
3126     return addr;
3127   }
3128 
3129   // Must skip some live data.
3130   size_t words_to_skip = dest_addr - src_region_destination;
3131   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
3132 
3133   if (partial_obj_size >= words_to_skip) {
3134     // All the live words to skip are part of the partial object.
3135     addr += words_to_skip;
3136     if (partial_obj_size == words_to_skip) {
3137       // Find the first live word past the partial object.
3138       addr = bitmap->find_obj_beg(addr, src_region_end);
3139       assert(addr < src_region_end, "wrong src region");
3140     }
3141     return addr;
3142   }
3143 
3144   // Skip over the partial object (if any).
3145   if (partial_obj_size != 0) {
3146     words_to_skip -= partial_obj_size;
3147     addr += partial_obj_size;
3148   }
3149 
3150   // Skip over live words due to objects that start in the region.
3151   addr = skip_live_words(addr, src_region_end, words_to_skip);
3152   assert(addr < src_region_end, "wrong src region");
3153   return addr;
3154 }
3155 
3156 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
3157                                                      SpaceId src_space_id,
3158                                                      size_t beg_region,
3159                                                      HeapWord* end_addr)
3160 {
3161   ParallelCompactData& sd = summary_data();
3162 
3163 #ifdef ASSERT
3164   MutableSpace* const src_space = _space_info[src_space_id].space();
3165   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
3166   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
3167          "src_space_id does not match beg_addr");
3168   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
3169          "src_space_id does not match end_addr");
3170 #endif // #ifdef ASSERT
3171 
3172   RegionData* const beg = sd.region(beg_region);
3173   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
3174 
3175   // Regions up to new_top() are enqueued if they become available.
3176   HeapWord* const new_top = _space_info[src_space_id].new_top();
3177   RegionData* const enqueue_end =
3178     sd.addr_to_region_ptr(sd.region_align_up(new_top));
3179 
3180   for (RegionData* cur = beg; cur < end; ++cur) {
3181     assert(cur->data_size() > 0, "region must have live data");
3182     cur->decrement_destination_count();
3183     if (cur < enqueue_end && cur->available() && cur->claim()) {
3184       cm->push_region(sd.region(cur));
3185     }
3186   }
3187 }
3188 
3189 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
3190                                           SpaceId& src_space_id,
3191                                           HeapWord*& src_space_top,
3192                                           HeapWord* end_addr)
3193 {
3194   typedef ParallelCompactData::RegionData RegionData;
3195 
3196   ParallelCompactData& sd = PSParallelCompact::summary_data();
3197   const size_t region_size = ParallelCompactData::RegionSize;
3198 
3199   size_t src_region_idx = 0;
3200 
3201   // Skip empty regions (if any) up to the top of the space.
3202   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3203   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3204   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3205   const RegionData* const top_region_ptr =
3206     sd.addr_to_region_ptr(top_aligned_up);
3207   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3208     ++src_region_ptr;
3209   }
3210 
3211   if (src_region_ptr < top_region_ptr) {
3212     // The next source region is in the current space.  Update src_region_idx
3213     // and the source address to match src_region_ptr.
3214     src_region_idx = sd.region(src_region_ptr);
3215     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3216     if (src_region_addr > closure.source()) {
3217       closure.set_source(src_region_addr);
3218     }
3219     return src_region_idx;
3220   }
3221 
3222   // Switch to a new source space and find the first non-empty region.
3223   unsigned int space_id = src_space_id + 1;
3224   assert(space_id < last_space_id, "not enough spaces");
3225 
3226   HeapWord* const destination = closure.destination();
3227 
3228   do {
3229     MutableSpace* space = _space_info[space_id].space();
3230     HeapWord* const bottom = space->bottom();
3231     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3232 
3233     // Iterate over the spaces that do not compact into themselves.
3234     if (bottom_cp->destination() != bottom) {
3235       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3236       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3237 
3238       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3239         if (src_cp->live_obj_size() > 0) {
3240           // Found it.
3241           assert(src_cp->destination() == destination,
3242                  "first live obj in the space must match the destination");
3243           assert(src_cp->partial_obj_size() == 0,
3244                  "a space cannot begin with a partial obj");
3245 
3246           src_space_id = SpaceId(space_id);
3247           src_space_top = space->top();
3248           const size_t src_region_idx = sd.region(src_cp);
3249           closure.set_source(sd.region_to_addr(src_region_idx));
3250           return src_region_idx;
3251         } else {
3252           assert(src_cp->data_size() == 0, "sanity");
3253         }
3254       }
3255     }
3256   } while (++space_id < last_space_id);
3257 
3258   assert(false, "no source region was found");
3259   return 0;
3260 }
3261 
3262 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3263 {
3264   typedef ParMarkBitMap::IterationStatus IterationStatus;
3265   const size_t RegionSize = ParallelCompactData::RegionSize;
3266   ParMarkBitMap* const bitmap = mark_bitmap();
3267   ParallelCompactData& sd = summary_data();
3268   RegionData* const region_ptr = sd.region(region_idx);
3269 
3270   // Get the items needed to construct the closure.
3271   HeapWord* dest_addr = sd.region_to_addr(region_idx);
3272   SpaceId dest_space_id = space_id(dest_addr);
3273   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3274   HeapWord* new_top = _space_info[dest_space_id].new_top();
3275   assert(dest_addr < new_top, "sanity");
3276   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3277 
3278   // Get the source region and related info.
3279   size_t src_region_idx = region_ptr->source_region();
3280   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3281   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3282 
3283   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3284   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3285 
3286   // Adjust src_region_idx to prepare for decrementing destination counts (the
3287   // destination count is not decremented when a region is copied to itself).
3288   if (src_region_idx == region_idx) {
3289     src_region_idx += 1;
3290   }
3291 
3292   if (bitmap->is_unmarked(closure.source())) {
3293     // The first source word is in the middle of an object; copy the remainder
3294     // of the object or as much as will fit.  The fact that pointer updates were
3295     // deferred will be noted when the object header is processed.
3296     HeapWord* const old_src_addr = closure.source();
3297     closure.copy_partial_obj();
3298     if (closure.is_full()) {
3299       decrement_destination_counts(cm, src_space_id, src_region_idx,
3300                                    closure.source());
3301       region_ptr->set_deferred_obj_addr(NULL);
3302       region_ptr->set_completed();
3303       return;
3304     }
3305 
3306     HeapWord* const end_addr = sd.region_align_down(closure.source());
3307     if (sd.region_align_down(old_src_addr) != end_addr) {
3308       // The partial object was copied from more than one source region.
3309       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3310 
3311       // Move to the next source region, possibly switching spaces as well.  All
3312       // args except end_addr may be modified.
3313       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3314                                        end_addr);
3315     }
3316   }
3317 
3318   do {
3319     HeapWord* const cur_addr = closure.source();
3320     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3321                                     src_space_top);
3322     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3323 
3324     if (status == ParMarkBitMap::incomplete) {
3325       // The last obj that starts in the source region does not end in the
3326       // region.
3327       assert(closure.source() < end_addr, "sanity");
3328       HeapWord* const obj_beg = closure.source();
3329       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3330                                        src_space_top);
3331       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3332       if (obj_end < range_end) {
3333         // The end was found; the entire object will fit.
3334         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3335         assert(status != ParMarkBitMap::would_overflow, "sanity");
3336       } else {
3337         // The end was not found; the object will not fit.
3338         assert(range_end < src_space_top, "obj cannot cross space boundary");
3339         status = ParMarkBitMap::would_overflow;
3340       }
3341     }
3342 
3343     if (status == ParMarkBitMap::would_overflow) {
3344       // The last object did not fit.  Note that interior oop updates were
3345       // deferred, then copy enough of the object to fill the region.
3346       region_ptr->set_deferred_obj_addr(closure.destination());
3347       status = closure.copy_until_full(); // copies from closure.source()
3348 
3349       decrement_destination_counts(cm, src_space_id, src_region_idx,
3350                                    closure.source());
3351       region_ptr->set_completed();
3352       return;
3353     }
3354 
3355     if (status == ParMarkBitMap::full) {
3356       decrement_destination_counts(cm, src_space_id, src_region_idx,
3357                                    closure.source());
3358       region_ptr->set_deferred_obj_addr(NULL);
3359       region_ptr->set_completed();
3360       return;
3361     }
3362 
3363     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3364 
3365     // Move to the next source region, possibly switching spaces as well.  All
3366     // args except end_addr may be modified.
3367     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3368                                      end_addr);
3369   } while (true);
3370 }
3371 
3372 void
3373 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3374   const MutableSpace* sp = space(space_id);
3375   if (sp->is_empty()) {
3376     return;
3377   }
3378 
3379   ParallelCompactData& sd = PSParallelCompact::summary_data();
3380   ParMarkBitMap* const bitmap = mark_bitmap();
3381   HeapWord* const dp_addr = dense_prefix(space_id);
3382   HeapWord* beg_addr = sp->bottom();
3383   HeapWord* end_addr = sp->top();
3384 
3385 #ifdef ASSERT
3386   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3387   if (cm->should_verify_only()) {
3388     VerifyUpdateClosure verify_update(cm, sp);
3389     bitmap->iterate(&verify_update, beg_addr, end_addr);
3390     return;
3391   }
3392 
3393   if (cm->should_reset_only()) {
3394     ResetObjectsClosure reset_objects(cm);
3395     bitmap->iterate(&reset_objects, beg_addr, end_addr);
3396     return;
3397   }
3398 #endif
3399 
3400   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3401   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3402   if (beg_region < dp_region) {
3403     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3404   }
3405 
3406   // The destination of the first live object that starts in the region is one
3407   // past the end of the partial object entering the region (if any).
3408   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3409   HeapWord* const new_top = _space_info[space_id].new_top();
3410   assert(new_top >= dest_addr, "bad new_top value");
3411   const size_t words = pointer_delta(new_top, dest_addr);
3412 
3413   if (words > 0) {
3414     ObjectStartArray* start_array = _space_info[space_id].start_array();
3415     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3416 
3417     ParMarkBitMap::IterationStatus status;
3418     status = bitmap->iterate(&closure, dest_addr, end_addr);
3419     assert(status == ParMarkBitMap::full, "iteration not complete");
3420     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3421            "live objects skipped because closure is full");
3422   }
3423 }
3424 
3425 jlong PSParallelCompact::millis_since_last_gc() {
3426   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
3427   // XXX See note in genCollectedHeap::millis_since_last_gc().
3428   if (ret_val < 0) {
3429     NOT_PRODUCT(warning("time warp: %d", ret_val);)
3430     return 0;
3431   }
3432   return ret_val;
3433 }
3434 
3435 void PSParallelCompact::reset_millis_since_last_gc() {
3436   _time_of_last_gc = os::javaTimeMillis();
3437 }
3438 
3439 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3440 {
3441   if (source() != destination()) {
3442     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3443     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3444   }
3445   update_state(words_remaining());
3446   assert(is_full(), "sanity");
3447   return ParMarkBitMap::full;
3448 }
3449 
3450 void MoveAndUpdateClosure::copy_partial_obj()
3451 {
3452   size_t words = words_remaining();
3453 
3454   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3455   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3456   if (end_addr < range_end) {
3457     words = bitmap()->obj_size(source(), end_addr);
3458   }
3459 
3460   // This test is necessary; if omitted, the pointer updates to a partial object
3461   // that crosses the dense prefix boundary could be overwritten.
3462   if (source() != destination()) {
3463     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3464     Copy::aligned_conjoint_words(source(), destination(), words);
3465   }
3466   update_state(words);
3467 }
3468 
3469 ParMarkBitMapClosure::IterationStatus
3470 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3471   assert(destination() != NULL, "sanity");
3472   assert(bitmap()->obj_size(addr) == words, "bad size");
3473 
3474   _source = addr;
3475   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3476          destination(), "wrong destination");
3477 
3478   if (words > words_remaining()) {
3479     return ParMarkBitMap::would_overflow;
3480   }
3481 
3482   // The start_array must be updated even if the object is not moving.
3483   if (_start_array != NULL) {
3484     _start_array->allocate_block(destination());
3485   }
3486 
3487   if (destination() != source()) {
3488     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3489     Copy::aligned_conjoint_words(source(), destination(), words);
3490   }
3491 
3492   oop moved_oop = (oop) destination();
3493   moved_oop->update_contents(compaction_manager());
3494   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
3495 
3496   update_state(words);
3497   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3498   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3499 }
3500 
3501 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3502                                      ParCompactionManager* cm,
3503                                      PSParallelCompact::SpaceId space_id) :
3504   ParMarkBitMapClosure(mbm, cm),
3505   _space_id(space_id),
3506   _start_array(PSParallelCompact::start_array(space_id))
3507 {
3508 }
3509 
3510 // Updates the references in the object to their new values.
3511 ParMarkBitMapClosure::IterationStatus
3512 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3513   do_addr(addr);
3514   return ParMarkBitMap::incomplete;
3515 }
3516 
3517 // Verify the new location using the forwarding pointer
3518 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
3519 // to the initial value.
3520 ParMarkBitMapClosure::IterationStatus
3521 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3522   // The second arg (words) is not used.
3523   oop obj = (oop) addr;
3524   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
3525   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
3526   if (forwarding_ptr == NULL) {
3527     // The object is dead or not moving.
3528     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
3529            "Object liveness is wrong.");
3530     return ParMarkBitMap::incomplete;
3531   }
3532   assert(UseParallelOldGCDensePrefix ||
3533          (HeapMaximumCompactionInterval > 1) ||
3534          (MarkSweepAlwaysCompactCount > 1) ||
3535          (forwarding_ptr == new_pointer),
3536     "Calculation of new location is incorrect");
3537   return ParMarkBitMap::incomplete;
3538 }
3539 
3540 // Reset objects modified for debug checking.
3541 ParMarkBitMapClosure::IterationStatus
3542 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
3543   // The second arg (words) is not used.
3544   oop obj = (oop) addr;
3545   obj->init_mark();
3546   return ParMarkBitMap::incomplete;
3547 }
3548 
3549 // Prepare for compaction.  This method is executed once
3550 // (i.e., by a single thread) before compaction.
3551 // Save the updated location of the intArrayKlassObj for
3552 // filling holes in the dense prefix.
3553 void PSParallelCompact::compact_prologue() {
3554   _updated_int_array_klass_obj = (klassOop)
3555     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
3556 }
3557