1 /*
   2  * Copyright (c) 2000, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // This class provides the interface between a barrier implementation and
  26 // the rest of the system.
  27 
  28 class BarrierSet: public CHeapObj {
  29   friend class VMStructs;
  30 public:
  31   enum Name {
  32     ModRef,
  33     CardTableModRef,
  34     CardTableExtension,
  35     G1SATBCT,
  36     G1SATBCTLogging,
  37     Other,
  38     Uninit
  39   };
  40 
  41 protected:
  42   int _max_covered_regions;
  43   Name _kind;
  44 
  45 public:
  46 
  47   BarrierSet() { _kind = Uninit; }
  48   // To get around prohibition on RTTI.
  49   BarrierSet::Name kind() { return _kind; }
  50   virtual bool is_a(BarrierSet::Name bsn) = 0;
  51 
  52   // These operations indicate what kind of barriers the BarrierSet has.
  53   virtual bool has_read_ref_barrier() = 0;
  54   virtual bool has_read_prim_barrier() = 0;
  55   virtual bool has_write_ref_barrier() = 0;
  56   virtual bool has_write_ref_pre_barrier() = 0;
  57   virtual bool has_write_prim_barrier() = 0;
  58 
  59   // These functions indicate whether a particular access of the given
  60   // kinds requires a barrier.
  61   virtual bool read_ref_needs_barrier(void* field) = 0;
  62   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
  63   virtual bool write_ref_needs_barrier(void* field, oop new_val) = 0;
  64   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
  65                                         juint val1, juint val2) = 0;
  66 
  67   // The first four operations provide a direct implementation of the
  68   // barrier set.  An interpreter loop, for example, could call these
  69   // directly, as appropriate.
  70 
  71   // Invoke the barrier, if any, necessary when reading the given ref field.
  72   virtual void read_ref_field(void* field) = 0;
  73 
  74   // Invoke the barrier, if any, necessary when reading the given primitive
  75   // "field" of "bytes" bytes in "obj".
  76   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
  77 
  78   // Invoke the barrier, if any, necessary when writing "new_val" into the
  79   // ref field at "offset" in "obj".
  80   // (For efficiency reasons, this operation is specialized for certain
  81   // barrier types.  Semantically, it should be thought of as a call to the
  82   // virtual "_work" function below, which must implement the barrier.)
  83   // First the pre-write versions...
  84   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
  85 private:
  86   // Keep this private so as to catch violations at build time.
  87   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
  88 protected:
  89   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
  90   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
  91 public:
  92 
  93   // ...then the post-write version.
  94   inline void write_ref_field(void* field, oop new_val);
  95 protected:
  96   virtual void write_ref_field_work(void* field, oop new_val) = 0;
  97 public:
  98 
  99   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
 100   // value(s) "val1" (and "val2") into the primitive "field".
 101   virtual void write_prim_field(HeapWord* field, size_t bytes,
 102                                 juint val1, juint val2) = 0;
 103 
 104   // Operations on arrays, or general regions (e.g., for "clone") may be
 105   // optimized by some barriers.
 106 
 107   // The first six operations tell whether such an optimization exists for
 108   // the particular barrier.
 109   virtual bool has_read_ref_array_opt() = 0;
 110   virtual bool has_read_prim_array_opt() = 0;
 111   virtual bool has_write_ref_array_pre_opt() { return true; }
 112   virtual bool has_write_ref_array_opt() = 0;
 113   virtual bool has_write_prim_array_opt() = 0;
 114 
 115   virtual bool has_read_region_opt() = 0;
 116   virtual bool has_write_region_opt() = 0;
 117 
 118   // These operations should assert false unless the correponding operation
 119   // above returns true.  Otherwise, they should perform an appropriate
 120   // barrier for an array whose elements are all in the given memory region.
 121   virtual void read_ref_array(MemRegion mr) = 0;
 122   virtual void read_prim_array(MemRegion mr) = 0;
 123 
 124   // Below length is the # array elements being written
 125   virtual void write_ref_array_pre(      oop* dst, int length) {}
 126   virtual void write_ref_array_pre(narrowOop* dst, int length) {}
 127   // Below count is the # array elements being written, starting
 128   // at the address "start", which may not necessarily be HeapWord-aligned
 129   inline void write_ref_array(HeapWord* start, size_t count);
 130 
 131   // Static versions, suitable for calling from generated code;
 132   // count is # array elements being written, starting with "start",
 133   // which may not necessarily be HeapWord-aligned.
 134   static void static_write_ref_array_pre(HeapWord* start, size_t count);
 135   static void static_write_ref_array_post(HeapWord* start, size_t count);
 136 
 137 protected:
 138   virtual void write_ref_array_work(MemRegion mr) = 0;
 139 public:
 140   virtual void write_prim_array(MemRegion mr) = 0;
 141 
 142   virtual void read_region(MemRegion mr) = 0;
 143 
 144   // (For efficiency reasons, this operation is specialized for certain
 145   // barrier types.  Semantically, it should be thought of as a call to the
 146   // virtual "_work" function below, which must implement the barrier.)
 147   inline void write_region(MemRegion mr);
 148 protected:
 149   virtual void write_region_work(MemRegion mr) = 0;
 150 public:
 151 
 152   // Some barrier sets create tables whose elements correspond to parts of
 153   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
 154   // normally reserve space for such tables, and commit parts of the table
 155   // "covering" parts of the heap that are committed.  The constructor is
 156   // passed the maximum number of independently committable subregions to
 157   // be covered, and the "resize_covoered_region" function allows the
 158   // sub-parts of the heap to inform the barrier set of changes of their
 159   // sizes.
 160   BarrierSet(int max_covered_regions) :
 161     _max_covered_regions(max_covered_regions) {}
 162 
 163   // Inform the BarrierSet that the the covered heap region that starts
 164   // with "base" has been changed to have the given size (possibly from 0,
 165   // for initialization.)
 166   virtual void resize_covered_region(MemRegion new_region) = 0;
 167 
 168   // If the barrier set imposes any alignment restrictions on boundaries
 169   // within the heap, this function tells whether they are met.
 170   virtual bool is_aligned(HeapWord* addr) = 0;
 171 
 172 };